北京丰台区高三二模理科数学试题

合集下载

北京市丰台区高三数学第二次模拟考试 理(丰台二模)新人教A版

北京市丰台区高三数学第二次模拟考试 理(丰台二模)新人教A版

北京市丰台区2012年高三二模 2012.5数学(理科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数1i2i-+的虚部是 (A) i -(B) 3i 5-(C) –1(D) 35-2.一个正四棱锥的所有棱长均为2,其俯视图如右图所示,则该正四棱锥的正 视图的面积为(C) 2 (D) 43.由曲线1y x =与y =x ,x =4以及x 轴所围成的封闭图形的面积是 (A) 3132 (B) 2316(C) 1ln 42+ (D) ln 41+4.执行如图所示的程序框图,若输出的结果为63,则判断框中应填 (A) 7n ≤ (B) 7n > (C) 6n ≤ (D) 6n >5.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机 取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是(A) 18125 (B)36125 (C) 44125(D) 811256.在△ABC 中,∠BAC =90º,D 是BC 中点,AB =4,AC =3,则AD BC ⋅(A) 7- (B) 72-(C)72(D) 77.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是俯视图(A)(B)(C)(D)8.已知平面上四个点1(0,0)A,2A,34,2)A ,4(4,0)A .设D 是四边形1234A A A A 及其内部的点构成的点的集合,点0P 是四边形对角线的交点,若集合0{|||||,1,2,3,4}i S P D PP PA i =∈≤=,则集合S 所表示的平面区域的面积为 (A) 2(B) 4(C) 8(D) 16第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在极坐标系中,圆2sin ρθ=的圆心的极坐标是____.10.已知椭圆22221(7x y m m m +=>-上一点M 到两个焦点的距离分别是5和3,则该椭圆的离心率为______.11.如图所示,AB 是圆的直径,点C 在圆上,过点B ,C 的切线交于点P ,AP 交圆于D ,若AB =2,AC =1,则PC =______,PD =______. 12.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:PBA从散点图可以看出y 与x 线性相关,且可得回归方程为ˆˆ4055.25ybx =+,据此模型可预测2012年该地区的恩格尔系数(%)为______.13.从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,若甲不参加生物竞赛,则不同的选择方案共有 种. 14. 在平面直角坐标系中,若点A ,B 同时满足:①点A ,B 都在函数()y f x =图象上;②点A ,B 关于原点对称,则称点对(A ,B )是函数()y f x =的一个“姐妹点对”(规定点对(A ,B )与点对(B ,A )是同一个“姐妹点对”).那么函数24,0,()2,0,x x f x x x x -≥⎧=⎨-<⎩的“姐妹点对”的个数为_______;当函数()x g x a x a =--有“姐妹点对”时,a 的取值范围是______.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数()cos sin )f x x x x =-. (Ⅰ)求()3f π的值;(Ⅱ)求函数()y f x =在区间[0,]2π上的最小值,并求使()y f x =取得最小值时的x 的值.16.(本小题共13分)某商场举办促销抽奖活动,奖券上印有数字100,80,60,0.凡顾客当天在该商场消费每.超过1000元,即可随机从抽奖箱里摸取奖券一张,商场即赠送与奖券上所标数字等额的现金(单位:元)E ξ=22.(Ⅰ)求a ,b 的值;(Ⅱ)若某顾客当天在商场消费2500元,求该顾客获得奖金数不少于160元的概率.17.(本小题共14分)在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º, AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(Ⅰ)若P 是DF 的中点,(ⅰ) 求证:BF // 平面ACP ;(ⅱ) 求异面直线BE 与CP 所成角的余弦值;(Ⅱ)若二面角D -AP -CPF 的长度. PFEDCAB18.(本小题共13分)已知数列{a n }满足14a =,131n n n a a p +=+⋅+(n *∈N ,p 为常数),1a ,26a +,3a 成等差数列.(Ⅰ)求p 的值及数列{a n }的通项公式;(Ⅱ)设数列{b n }满足2n n n b a n=-,证明:49n b ≤.19.(本小题共14分)在平面直角坐标系xOy 中,抛物线C 的焦点在y 轴上,且抛物线上的点P (x 0,4)到焦点F 的距离为5.斜率为2的直线l 与抛物线C 交于A ,B 两点.(Ⅰ)求抛物线C 的标准方程,及抛物线在P 点处的切线方程;(Ⅱ)若AB 的垂直平分线分别交y 轴和抛物线于M ,N 两点(M ,N 位于直线l 两侧),当四边形AMBN 为菱形时,求直线l 的方程.20.(本小题共13分)设函数()ln ()ln()f x x x a x a x =+--(0)a >. (Ⅰ)当1a =时,求函数()f x 的最小值;(Ⅱ)证明:对∀x 1,x 2∈R +,都有[]11221212ln ln ()ln()ln 2x x x x x x x x +≥++-;(Ⅲ)若211nii x==∑,证明:21ln ln 2nn i i i x x =≥-∑ *(,)i n ∈N .(考生务必将答案答在答题卡上,在试卷上作答无效)北京市丰台区2012年高三二模 数 学(理科)参考答案二、填空题:本大题共6小题,每小题5分,共30分.9.(1,)2π10.4 11712.31.25 13. 96 14.1,1a >注:第11题第一个空答对得2分,第二个空答对得3分;第14题第一个空答对得3分,第二个空答对得2分.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.解:因为()cos sin )f x x x x =-2sin cos x x x -=1cos 21)sin 222x x +--12sin 22x x -=cos(2)62x π+-(Ⅰ)()cos(2)3362f πππ=⨯+-OBACDEF P=22--= ……………………7分(Ⅱ)因为 [0,]2x π∈,所以2666x ππ7π≤+≤. 当 26x π+=π,即512x π=时,函数()y f x =有最小值是12--. 当512x π=时,函数()y f x =有最小值是12--. ……………………13分16.解:(Ⅰ)依题意,1000.05806000.722E a b ξ=⨯+++⨯=,所以 806017a b +=.因为 0.050.71a b +++=,所以0.25a b +=. 由806017,0.25,a b a b +=⎧⎨+=⎩ 可得00.15.a b =⎧⎨=⎩ ……………………7分(Ⅱ)依题意,该顾客在商场消费2500元,可以可以抽奖2次.奖金数不少于160元的抽法只能是100元和100元; 100元和80元; 100元和60元;80元和80元四种情况. 设“该顾客获得奖金数不少于160元”为事件A ,则()0.050.0520.050.120.050.150.10.10.0375P A =⨯+⨯⨯+⨯⨯+⨯=.答:该顾客获得奖金数不少于160元的概率为0.0375. ……………………13分17.(Ⅰ)(ⅰ)证明:连接BD ,交AC 于点O ,连接OP .因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线,所以BF // OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . ……………………4分 (ⅱ)因为∠BAF =90º,所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -.所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,C 所以 1(,0,1)2BE =-,1(1,1,)2CP =--,所以4cos ,15||||BE CP BE CP BE CP⋅<>==⋅, 即异面直线BE 与CP 所成角的余弦值为……………………9分(Ⅱ)解:因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -, 在平面APC 中,(0,22,)AP t t =-,(1,2,0)AC =, 所以 平面APC的法向量为222(2,1,)t n t-=-, 所以 121212||cos ,||||n n n n n n ⋅<>===⋅ 解得23t =,或2t =(舍). 此时||PF =……………………14分18.解:(Ⅰ)因为14a =,131nn n a a p +=+⋅+,所以1213135a a p p =+⋅+=+;23231126a a p p =+⋅+=+.因为1a ,26a +,3a 成等差数列,所以2(26a +)=1a +3a , 即610124126p p ++=++, 所以 2p =. 依题意,1231n n n a a +=+⋅+, 所以当n ≥2时,121231a a -=⋅+,232231a a -=⋅+,……212231n n n a a ----=⋅+, 11231n n n a a ---=⋅+.相加得12212(3333)1n n n a a n ---=+++++-,所以 113(13)2(1)13n n a a n ---=+--, 所以 3n n a n =+.当n =1时,11314a =+=成立, 所以3n n a n =+. ……………………8分(Ⅱ)证明:因为 3n n a n =+,所以 22(3)3n n n n n b n n ==+-.因为 2221+11(1)22+1=333n n n n n n n n n b b +++-+-=-,*()n ∈N .若 22+210n n -+<,则n >,即 2n ≥时 1n n b b +<. 又因为 113b =,249b =, 所以49n b ≤. ……………………13分19.解:(Ⅰ)依题意设抛物线C :22(0)x py p =>,因为点P 到焦点F 的距离为5,所以点P 到准线2py =-的距离为5. 因为P (x 0,4),所以由抛物线准线方程可得 12p=,2p =.所以抛物线的标准方程为24x y =. ……………………4分即 214y x =,所以 1'2y x =,点P (±4,4), 所以 41'|(4)22x y =-=⨯-=-,41'|422x y ==⨯=.所以 点P (-4,4)处抛物线切线方程为42(4)y x -=-+,即240x y ++=; 点P (4,4)处抛物线切线方程为42(4)y x -=-,即240x y --=.P点处抛物线切线方程为240x y ++=,或24x y --=. ……………………7分(Ⅱ)设直线l 的方程为2y x m =+,11(,)A x y ,22(,)B x y ,联立 242x y y x m⎧=⎨=+⎩,消y 得 2840x x m --=,64160m ∆=+>.所以 128x x +=,124x x m =-, 所以1242x x +=,1282y y m +=+, 即AB 的中点为(4,8)Q m +.所以 AB 的垂直平分线方程为1(8)(4)2y m x -+=--. 因为 四边形AMBN 为菱形,所以 (0,10)M m +,M ,N 关于(4,8)Q m +对称, 所以 N 点坐标为(8,6)N m +,且N 在抛物线上, 所以 644(6)m =⨯+,即10m =,所以直线l的方程为210y x =+. ……………………14分20.解:(Ⅰ)1a =时,()ln (1)ln(1)f x x x x x =+--,(01x <<),则()ln ln(1)ln 1xf x x x x'=--=-. 令()0f x '=,得12x =. 当102x <<时,()0f x '<,()f x 在1(0,)2是减函数, 当112x <<时,()0f x '>,()f x 在1(,1)2是增函数, 所以 ()f x 在12x =时取得最小值,即11()ln 22f =. ……………………4分 (Ⅱ)因为 ()ln ()ln()f x x x a x a x =+--,所以 ()ln ln()ln xf x x a x a x'=--=-. 所以当2ax =时,函数()f x 有最小值. ∀x 1,x 2∈R +,不妨设12x x a +=,则121211221111ln ln ln ()ln()2ln()22x x x xx x x x x x a x a x +++=+--≥⋅[]1212()ln()ln 2x x x x =++-. ……………………8分(Ⅲ)(证法一)数学归纳法ⅰ)当1n =时,由(Ⅱ)知命题成立.ⅱ)假设当n k =( k ∈N *)时命题成立,即若1221k x x x +++=,则112222ln ln ln ln2k k k x x x x x x +++≥-.当1n k =+时,1x ,2x ,…,121k x +-,12k x +满足 11122121k k x x x x ++-++++=.设11111122212122()ln ln ln ln k k k k F x x x x x x x x x ++++--=++++,由(Ⅱ)得11111212212212()()ln[()ln 2]()ln[()ln 2]k k k k F x x x x x x x x x ++++--≥++-++++-=111111212122122122()ln()()ln()(...)ln 2k k k k k x x x x x x x x x x x +++++--++++++-+++=11111212212212()ln()()ln()ln 2k k k k x x x x x x x x ++++--++++++-.由假设可得 1()ln 2ln 2ln 2k k F x +≥--=-,命题成立. 所以当 1n k =+时命题成立.由ⅰ),ⅱ)可知,对一切正整数n ∈N *,命题都成立, 所以若211ni i x ==∑,则21ln ln 2nn i i i x x =≥-∑ *(,)i n ∈N . ……………………13分(证法二)若1221n x x x +++=,那么由(Ⅱ)可得112222ln ln ln n n x x x x x x +++1212212212()ln[()ln 2]()ln[()ln 2]n n n n x x x x x x x x --≥++-++++-1212122122122()ln()()ln()(...)ln 2n n n n n x x x x x x x x x x x --=++++++-+++ 1212212212()ln()()ln()ln 2n n n n x x x x x x x x --=++++++-12341234212212()ln()()ln()2ln 2n n n n x x x x x x x x x x x x --≥+++++++++-121222(...)ln[()ln 2](1)ln 2n n x x x x x x n ≥≥++++++---ln 2n =-.……………………13分(若用其他方法解题,请酌情给分)。

年北京市丰台区二模理科数学试卷含答案

年北京市丰台区二模理科数学试卷含答案

学而思教育·学习改变命运思虑成就将来!北京市丰台区 2009 年高三一致练习(二)数学试题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

考试时间120 分钟。

考试结束,将本试卷和答题卡上并交回。

第Ⅰ卷(选择题共40分)注意事项:1.答第 I 卷前,考生务势必自己的姓名、准考据号、考试科目涂写在答题卡上。

2.每题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需变动,用橡皮擦洁净后,再选涂其余答案标号。

不可以答在试卷上。

一、选择题:本大题共8 个小题,每题 5 分,共 40 分。

在每个小题列出的四个选项中,选出切合题目要求的一项。

1.设会合A{ x | y1g ( x1)}, B{ x | x1}, 则A B 等于()A. R B.{ x | 1 x 1}C. -3D.{ x | x1或 x 1}a3i3,此中 i 是虚数单位,那么实数 a 等于()2.已知13i iA. 3B.3C. -3D.- 3x32sin , 为参数,点F为抛物线y2x的焦点,则 |GF| 等于3.已知圆C :()y 2 cos4()A. 6B.4C. 2D. 04.函数f ( x)1(sin x cos x)1| sin x cos x |的值域是()22A. [-1 ,1]B.[2,1] 211D.[ 1, 2 ]C.[,]2225.如图,在体积为 V1的正方体 ABCD— A1B1C1D1中, M,N 分别为所在边的中点,正方体的外接球的体积为V,有以下四个命题;①BD1= 3 AB②BD1与底面 ABCD所成角是45°;V3;③2V1④ MN// 平面 D1BC。

此中正确命题的个数为()A. 4B. 3C. 2D. 16.某班 5 位同学参加周一到周五的值日,每日安排一名学生,此中学生甲只好安排到周一或周二,学生乙不可以安排在周五,则他们不一样的值日安排有()A. 288 种B.72 种C.42 种D.36 种7.设函数 f(x)是以 2 为周期的奇函数,已知x(0,1), f ( x)2 x , 则f (x)在(1,2)上是()A.增函数且f ( x)0B.减函数且f ( x)0 C.增函数且 f ( x)0D.减函数且f ( x)08.数列 {a n }知足11a1(11) 2 a2(11)n a n n2n, n N。

北京市丰台区2023届高三二模数学试题(高频考点版)

北京市丰台区2023届高三二模数学试题(高频考点版)

一、单选题二、多选题三、填空题四、解答题1. 在中,角的对边分别是,,则( )A.B.C.D.2. 三个数,,之间的大小关系是( )A.B.C.D.3. 已知R ,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知是一元二次方程的较小的根,则下列对的估计正确的是.A.B.C.D.5. 已知集合,,则( )A.B.C.D.6. 已知在中,点为边的中点,若,则( )A.B.C .1D .27. 已知正实数、、,,则( )A.B.C.D.8. 已知椭圆内一点,过点M 的直线l 与椭圆C 交于A ,B 两点,且M 是线段AB的中点,椭圆的左,右焦点分别为,,则下列结论正确的是( )A .椭圆C 的焦点坐标为,B .椭圆C 的长轴长为4C .直线与直线的斜率之积为D.9. 设全集,求满足的所有集合A 有________个.10. 已知,,是虚数单位,若,则 ______ .11. 已知椭圆E :(),F 是E 的左焦点,过E 的上顶点A 作AF 的垂线交E 于点B .若直线AB 的斜率为,的面积为,则E 的标准方程为______.12. 在平面直角坐标系中,若角的终边经过点,则__________.13.在中,已知,且.(1)试确定的形状;(2)求的值.北京市丰台区2023届高三二模数学试题(高频考点版)北京市丰台区2023届高三二模数学试题(高频考点版)14. 若函数满足,且,,则称为“型函数”.(1)判断函数是否为“型函数”,并说明理由;(2)已知为定义域为的奇函数,当时,,函数为“型函数”,当时,,若函数在上的零点个数为9,求的取值范围.15. 已知数列,,数列满足,n.(1)若,,求数列的前2n项和;(2)若数列为等差数列,且对任意n,恒成立.①当数列为等差数列时,求证:数列,的公差相等;②数列能否为等比数列?若能,请写出所有满足条件的数列;若不能,请说明理由.16. 已知向量,.(1)求向量,夹角的余弦值;(2)求与向量,夹角相等的单位向量的坐标.。

北京市丰台区2022届高三高考二模数学试题

北京市丰台区2022届高三高考二模数学试题

一、单选题二、多选题1. 设椭圆(m >0)的左焦点为F ,点P 在椭圆上且在第一象限,直线PF 与圆相交于A .B 两点,若A ,B 是线段PF 的两个三等分点,则直线PF 的斜率为( )A.B.C.D.2.过抛物线的焦点F 且倾斜角为锐角的直线与C 交于两点A ,B(横坐标分别为,,点A 在第一象限),为C 的准线,过点A 与垂直的直线与相交于点M .若,则( )A .3B .6C .9D .123. 函数的零点所在的区间是A.B.C.D.4.已知复数是纯虚数,其中是实数,则等于A.B.C .D.5. 在一个正方体内放置一个最大的圆锥,使圆锥的底面在正方体的底面上,圆锥的顶点在正方体的上底面内,记正方体的体积为,圆锥的体积为,则约为(注:)( )A .1B .2C .3D .46.在的展开式中,除常数项外,其余各项系数的和为( )A .63B .-517C .-217D .-1777. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )A.B.C.D.8. 紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石飘壶、潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台.如图给出了一个石瓢壶的相关数据(单位:),那么该壶的容积约接近于()A.B.C.D.9.已知函数,则( )A.有三个零点B .有两个极值点C .点是曲线的对称中心D .直线是曲线的切线10. 已知,则以下不等式成立的是( )A.B.C.D.11. 对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次北京市丰台区2022届高三高考二模数学试题北京市丰台区2022届高三高考二模数学试题三、填空题四、解答题函数都有对称中心,且“拐点”就是对称中心.若函数,则( )A.一定有两个极值点B.函数在R 上单调递增C.过点可以作曲线的2条切线D .当时,12. 下列说法正确的有( )A.设直线系:,则存在一个圆与中所有直线相交B.设直线系:,则存在一个圆与中所有直线相切C.如果圆:与圆:有四条公切线,则实数的取值范围是D .过点作圆的切线,切点为、,若直线的方程为,则13. 已知,为偶函数,若曲线在点处的切线方程为,则__________.14. 如图,在中,是的中点,在边上,,,与的交点为.若,则的长为______.15. 曲线在点处的切线的斜率为____________.16. 在中,角,,所对的边分别是,,,满足.(1)求角;(2)若为上一点,为的平分线,且,求面积的最小值.17.已知函数,函数与函数的图象关于直线对称.(1)求函数;(2)时,求证:函数在区间不单调.18.已知数列的前项和为,且.(1)求的值,并证明:数列是一个常数列;(2)设数列满足,记的前项和为,若,求正整数的值.19. 某紫砂壶加工工坊在加工一批紫砂壶时,在出窑过程中有的会因为气温骤冷、泥料膨胀率不均等原因导致紫砂壶出现一定的瑕疵而形成次品,有的直接损毁.通常情况下,一把紫砂壶的成品率为,损毁率为.对于烧窑过程中出现的次品,会通过再次整形调整后入窑复烧,二次出窑,其在二次出窑时不出现次品,成品率为.已知一把紫砂壶加工的泥料成本为500元/把,每把壶的平均烧窑成本为50元/次,复烧前的整形工费为100元/次,成品即可对外销售,售价均为1500元.(1)求一把紫砂壶能够对外销售的概率;(2)某客户在一批紫砂壶入窑前随机对一把紫砂壶坯料进行了标记,求被标记的紫砂壶的最终获利X 的数学期望.20. 已知常数,函数,.(1)讨论在上的单调性;(2)若在上存在两个极值点,,且,求常数的取值范围.21. 如图所示.在多面体中,平面,,,,且,,分别为棱,的中点,为棱上一点,且.(1)证明:为的中点;(2)求平面与平面夹角的余弦值.。

丰台区高三二模理科数学试题精选文档

丰台区高三二模理科数学试题精选文档
由 <0得2<x< ,所以f(x)的单调减区间是(2, );……………………….10分
② 时, 在(0,+)上恒成立,且当且仅当 ,
在(0,+)单调递增;……………………….11分
③当 时,由 >0得0<x< 或x>2,所以f(x)的单调增区间是(0, ), ,
由 <0得 <x<2,所以f(x)的单调减区间是( ,2).……………………….13分
解:(Ⅰ) , ,DE PE,……………….2分
, DE 平面PEB,
, BP DE;……………………….4分
(Ⅱ) PE BE,PE DE, ,所以,可由DE,BE,PE所在直线为x,y,z轴建立空间直角坐标系(如图),……………………………………………………………5分
设PE=a,则B(0,4-a,0),D(a,0,0),C(2,2-a,0),P(0,0,a),……………………7分
丰台区高三二模理科数学试题精选文档
丰台区2019年高三第二学期统一练习(二)
数学(理科)
第一部分(选择题共40分)
一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.复数 的虚部为
(A)3(B) (C)4(D)
2.设向量a=(x,1),b=(4,x),且a,b方向相反,则x的值是
分组
频数
频率
[0,50]
14
(50,100]
a
x
(100,150]
5
(150,200]
b
y
(200,250]
2
合计
30
1
解:(Ⅰ) ,………………………….4分

北京市丰台区高三二模理科数学

北京市丰台区高三二模理科数学

北京市丰台区高三二模理科数学北京市丰台区2012年高三二模 2012.5数学(理科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数1i2i-+的虚部是 (A) i -(B)3i 5-(C) –1(D) 35-2.一个正四棱锥的所有棱长均为2,其俯视图如右图所示,则该正四棱锥的正 视图的面积为 (A)2(B)3 (C) 2(D) 43.由曲线1y x=与y =x ,x =4以及x 轴所围成的封闭图形的面积是(A) 3132 (B) 2316(C) 1ln 42+ (D)ln41+4.断框中应填 (A)7n ≤ (B) 7n > (C) 6n ≤(D)6n >5.盒子中装有形状、大小完全相同的俯视图球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是(A) 18125(B)36 125(C)44125(D) 811256.在△ABC中,∠BAC=90º,D是BC中点,AB=4,AC=3,则AD BC⋅=(A) 7-(B) 72-(C)72(D) 77.已知函数sin(0)y ax b a=+>的图象如图所示,则函数log()ay x b=+的图象可能是(A) (B)(C)(D)8.已知平面上四个点1(0,0)A ,2(23,2)A ,3(234,2)A ,4(4,0)A .设D是四边形1234A AA A 及其内部的点构成的点的集合,点0P是四边形对角线的交点,若集合0{|||||,1,2,3,4}iS P D PP PA i =∈≤=,则集合S 所表示的平面区域的面积为 (A) 2(B) 4(C) 8 (D) 16第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在极坐标系中,圆2sin ρθ=的圆心的极坐标是____.10.已知椭圆22221(7)7x y m m m +=>-上一点M 到两个焦点的距离分别是5和3,则该椭圆的离心率为______. 11.如图所示,AB 是圆的直径,点C 在圆上,过点B ,C 的切线交于点P ,AP交圆于D ,若AB =2,AC =1,则PC =______,PD =______.12.某地区恩格尔系数(%)y 与年份x 的统计数据如下表: 年份x 2004 2005 2006 2007 恩格尔系数y (%)4745.5 43.541从散点图可以看出y 与x 线性相关,且可得回归方程为ˆˆ4055.25y bx =+,据此模型可预测2012年该地区的恩格PDC BA尔系数(%)为______.13.从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,若甲不参加生物竞赛,则不同的选择方案共有 种. 14. 在平面直角坐标系中,若点A ,B 同时满足:①点A ,B都在函数()y f x =图象上;②点A ,B 关于原点对称,则称点对(A ,B )是函数()y f x =的一个“姐妹点对”(规定点对(A ,B )与点对(B ,A )是同一个“姐妹点对”).那么函数24,0,()2,0,x x f x x x x -≥⎧=⎨-<⎩ 的“姐妹点对”的个数为_______;当函数()xg x a x a=--有“姐妹点对”时,a 的取值范围是______.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数()cos 3sin )3f x x x x =--(Ⅰ)求()3f π的值; (Ⅱ)求函数()y f x =在区间[0,]2π上的最小值,并求使()y f x =取得最小值时的x 的值.16.(本小题共13分)某商场举办促销抽奖活动,奖券上印有数字100,80,60,0.凡顾客当天在该商场消费每.超过1000元,即可随机从抽奖箱里摸取奖券一张,商场即赠送与奖券上所标数字等额的现金(单位:元).设奖券上的数字为ξ,ξ的分布列如下表所示,且ξ的数学期望Eξ=22.ξ100 80 60 0P 0.05 a b 0.7(Ⅰ)求a,b的值;(Ⅱ)若某顾客当天在商场消费2500元,求该顾客获得奖金数不少于160元的概率.17.(本小题共14分)在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º, AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(Ⅰ)若P 是DF 的中点,(ⅰ) 求证:BF // 平面ACP ;(ⅱ) 求异面直线BE 与CP 所成角的余弦值; (Ⅱ)若二面角D -AP -C 6PF 的长度.PFEDCAB18.(本小题共13分)已知数列{a n }满足14a=,131n n n aa p +=+⋅+(n *∈N ,p 为常数),1a ,26a+,3a 成等差数列.(Ⅰ)求p 的值及数列{a n }的通项公式; (Ⅱ)设数列{b n }满足2n n n b a n=-,证明:49nb≤.19.(本小题共14分)在平面直角坐标系xOy 中,抛物线C 的焦点在y 轴上,且抛物线上的点P (x 0,4)到焦点F 的距离为5.斜率为2的直线l 与抛物线C 交于A ,B 两点.(Ⅰ)求抛物线C 的标准方程,及抛物线在P 点处的切线方程;(Ⅱ)若AB 的垂直平分线分别交y 轴和抛物线于M ,N 两点(M ,N 位于直线l 两侧),当四边形AMBN 为菱形时,求直线l 的方程.20.(本小题共13分)设函数()ln ()ln()f x x x a x a x =+--(0)a >. (Ⅰ)当1a =时,求函数()f x 的最小值; (Ⅱ)证明:对∀x 1,x 2∈R +,都有[]11221212ln ln ()ln()ln 2x x x x x x x x +≥++-;(Ⅲ)若211nii x ==∑,证明:21ln ln 2nniii x x =≥-∑*(,)i n ∈N .(考生务必将答案答在答题卡上,在试卷上作答无效)北京市丰台区2012年高三二模数 学(理科)参考答案一、选择题:本大题共8小题,每小题5分,共40分.题号 1 2 3 4 5 6 7 8 答案 DACDBBCB二、填空题:本大题共6小题,每小题5分,共30分.9.(1,)2π10.71133712.31.25 13. 96 14.1,1a >注:第11题第一个空答对得2分,第二个空答对得3分;第14题第一个空答对得3分,第二个空答对得2分.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.解:因为()cos 3sin )3f x x x x =-23sin cos 3x x x -1cos 213()sin 2322x x +-3132sin 22x x -=3cos(2)62x π+-.(Ⅰ)3()cos(2)3362f πππ=⨯+-=333=.……………………7分(Ⅱ)因为[0,]2x π∈,所以 2666x ππ7π≤+≤.当26x π+=π,即512x π=时,函数()y f x =有最小值是312--.当512x π=时,函数()y f x =有最小值是31-. ……………………13分16.解:(Ⅰ)依题意,1000.05806000.722E a b ξ=⨯+++⨯=,所以 806017a b +=. 因为 0.050.71a b +++=,所以0.25a b +=. 由806017,0.25,a b a b +=⎧⎨+=⎩ 可得OBACDEFP0.1,0.15.a b =⎧⎨=⎩ ……………………7分(Ⅱ)依题意,该顾客在商场消费2500元,可以可以抽奖2次.奖金数不少于160元的抽法只能是100元和100元; 100元和80元; 100元和60元;80元和80元四种情况.设“该顾客获得奖金数不少于160元”为事件A ,则()0.050.0520.050.120.050.150.10.10.0375P A =⨯+⨯⨯+⨯⨯+⨯=. 答:该顾客获得奖金数不少于160元的概率为0.0375. ……………………13分17.(Ⅰ)(ⅰ)证明:连接BD ,交AC 于点O ,连接OP .因为P 是DF 中点,O 为矩形ABCD 对角线的交点,所以OP 为三角形BDF 中位线,所以BF // OP , 因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . (4)z yxPFEDCAB 分(ⅱ)因为∠BAF =90º, 所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -. 所以(1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,2,0)C .所以1(,0,1)2BE =-,1(1,1,)2CP =--, 所以45cos ,||||BE CP BE CP BE CP ⋅<>==⋅即异面直线BE 与CP 所成角的余弦值为45.……………………9分 (Ⅱ)解:因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -,在平面APC 中,(0,22,)AP t t =-,(1,2,0)AC =, 所以 平面APC 的法向量为222(2,1,)t n t-=-,所以12122212||6cos ,||||22(2)1()n n n n n n t t⋅<>===⋅--++解得23t =,或2t =(舍). 此时5||PF =.……………………14分18.解:(Ⅰ)因为14a=,131n n n aa p +=+⋅+,所以1213135aa p p =+⋅+=+;23231126aa p p =+⋅+=+.因为1a ,26a+,3a 成等差数列,所以2(26a +)=1a +3a , 即610124126p p ++=++,所以2p =.依题意,1231n n n aa +=+⋅+,所以当n ≥2时,121231aa -=⋅+, 232231a a -=⋅+, ……212231n n n a a ----=⋅+, 11231n n n a a ---=⋅+.相加得12212(3333)1n n naa n ---=+++++-,所以 113(13)2(1)13n n a a n ---=+--,所以 3n n a n=+.当n =1时,11314a=+=成立,所以 3n n a n=+.……………………8分(Ⅱ)证明:因为3n n a n=+,所以 22(3)3n n nn n b n n ==+-.因为 2221+11(1)22+1=333n n n n n n n n n b b +++-+-=-,*()n ∈N .若22+210n n -+<,则132n +>,即2n ≥时1n nb b +<.又因为 113b =,249b=,所以49n b ≤.……………………13分19.解:(Ⅰ)依题意设抛物线C :22(0)xpy p =>,因为点P 到焦点F 的距离为5,所以点P 到准线2py =-的距离为5.因为P (x 0,4),所以由抛物线准线方程可得12p =,2p =.所以抛物线的标准方程为24x y=. ……………………4分即214y x =,所以 1'2y x =,点P (±4,4), 所以 41'|(4)22x y =-=⨯-=-,41'|422x y ==⨯=.所以 点P(-4,4)处抛物线切线方程为42(4)y x -=-+,即240x y ++=;点P (4,4)处抛物线切线方程为42(4)y x -=-,即240x y --=.P点处抛物线切线方程为240x y ++=,或240x y --=. ……………………7分(Ⅱ)设直线l 的方程为2y x m =+,11(,)A x y ,22(,)B x y ,联立 242x y y x m⎧=⎨=+⎩,消y 得 2840xx m --=,64160m ∆=+>.所以 128x x +=,124x xm=-,所以1242x x +=,1282y ym+=+,即AB 的中点为(4,8)Q m +. 所以AB的垂直平分线方程为1(8)(4)2y m x -+=--. 因为 四边形AMBN 为菱形, 所以(0,10)M m +,M ,N 关于(4,8)Q m +对称,所以 N 点坐标为(8,6)N m +,且N 在抛物线上, 所以 644(6)m =⨯+,即10m =, 所以直线l的方程为210y x =+. ……………………14分20.解:(Ⅰ)1a =时,()ln (1)ln(1)f x x x x x =+--,(01x <<),则()ln ln(1)ln 1xf x x x x'=--=-. 令()0f x '=,得12x =. 当102x <<时,()0f x '<,()f x 在1(0,)2是减函数, 当112x <<时,()0f x '>,()f x 在1(,1)2是增函数, 所以()f x 在12x =时取得最小值,即11()ln 22f =. ……………………4分(Ⅱ)因为 ()ln ()ln()f x x x a x a x =+--,所以 ()ln ln()ln xf x x a x a x'=--=-. 所以当2a x =时,函数()f x 有最小值. ∀x 1,x 2∈R +,不妨设12x xa+=,则121211221111ln ln ln ()ln()2ln()22x x x xx x x x x x a x a x +++=+--≥⋅[]1212()ln()ln 2x x x x =++-.……………………8分 (Ⅲ)(证法一)数学归纳法ⅰ)当1n =时,由(Ⅱ)知命题成立. ⅱ)假设当n k =( k ∈N *)时命题成立, 即若1221k x xx +++=,则112222ln ln ln ln 2k k kx x x xx x +++≥-.当1n k =+时,1x ,2x ,…,121k x+-,12k x +满足11122121k k x x x x ++-++++=. 设11111122212122()ln ln ln ln k k k k F x x x x x x x x x ++++--=++++,由(Ⅱ)得11111212212212()()ln[()ln 2]()ln[()ln 2]k k k k F x x x x x x x x x ++++--≥++-++++-=111111212122122122()ln()()ln()(...)ln 2k k k k k x x x x x x x x x x x +++++--++++++-+++=11111212212212()ln()()ln()ln 2k k k k x x x x x x x x ++++--++++++-.由假设可得 1()ln 2ln 2ln 2k k F x +≥--=-,命题成立.所以当1n k =+时命题成立.由ⅰ),ⅱ)可知,对一切正整数n ∈N *,命题都成立,所以若211nii x==∑,则21ln ln 2nni ii x x=≥-∑*(,)i n ∈N . ……………………13分(证法二)若1221n x xx +++=,那么由(Ⅱ)可得 112222ln ln ln nnx x x x x x +++1212212212()ln[()ln 2]()ln[()ln 2]n n n n x x x x x x x x --≥++-++++-1212122122122()ln()()ln()(...)ln 2n n n n n x x x x x x x x x x x --=++++++-+++ 1212212212()ln()()ln()ln 2n n n n x x x x x x x x --=++++++-12341234212212()ln()()ln()2ln 2n n n n x x x x x x x x x x x x --≥+++++++++-121222(...)ln[()ln 2](1)ln 2n n x x x x x x n ≥≥++++++---ln 2n=-.…………………13分(若用其他方法解题,请酌情给分)。

2018--2019年北京丰台区高三二模理科数学试题

2018--2019年北京丰台区高三二模理科数学试题

2018--2019年北京丰台区高三二模理科数学试题D14. C ,D ,则直线CD 的斜率是________。

三、解答题共6小题,共80分.解答要写出文字说明,演算步骤或证明过程. 15.(本小题13分) 已知ABC ∆的三个内角分别为A,B,C,且22sin ()2.B C A += (Ⅰ)求A 的度数;(Ⅱ)若7,5,BC AC ==求ABC ∆的面积S .16(本小题13分)国家对空气质量的分级规定如下表:某市去年6月份30天的空气污染指数的监测数据如下:34 140 1873 121 210 40 4578 2365 79 207 81 6042 101 38 163 15422 27 36 151 49 103 13520 16 48根据以上信息,解决下列问题: (Ⅰ)写出下面频率分布表中a,b,x,y 的值; (Ⅱ)某人计划今年6月份到此城市观光4天,若将(Ⅰ)中的频率作为概率,他遇到空气质量为优或良的天数用X 表示,求X 的分布列和均值EX.17. (本小题13分)如图(1),等腰直角三角形ABC 的底边AB=4,点D 在线段AC 上,DE AB 于频率分布表E ,现将△A DE 沿D E 折起到△PDE 的位置(如图(2)).(Ⅰ)求证:PB ⊥DE ;(Ⅱ)若PE ⊥BE ,直线PD 与平面PBC 所成的角为30°,求PE 长.EDBAC图(1)图(2)18.(本小题13分)已知函数()21()2ln (21)2f x x ax a x a R =+-+∈.(Ⅰ)当12a =-时,求函数f(x )在[1,e]上的最大值和最小值;(Ⅱ)若a >0,讨论()f x 的单调性. 19.(本小题14分)已知椭圆C :2214x y +=的短轴的端点分别为A,B,直线AM ,BM 分别与椭圆C 交于E,F 两点,其中点M (m,12) 满足0m ≠,且3m ≠±.(Ⅰ)求椭圆C 的离心率e ; (Ⅱ)用m 表示点E,F 的坐标;(Ⅲ)若∆BME 面积是∆AMF 面积的5倍,求m 的值.20.(本小题14分)已知等差数列{}na 的通项公式为a n =3n-2,等比数列{}nb 中,1143,1b a ba ==+.记集合{},*,n A x x a n N ==∈{},*n B x x b n N ==∈,U A B =⋃,把集合U中的元素按从小到大依次排列,构成数列{}nc . (Ⅰ)求数列{b n }的通项公式,并写出数列{}nc 的前4项;(Ⅱ)把集合UC A 中的元素从小到大依次排列构成数列{}nd ,求数列{}nd 的通项公式,并说明理由;(Ⅲ)求数列{}nc 的前n 项和.nS丰台区2019年高三第二学期统一练习(二)数学(理科)一 、选择题共8小题,每小题5分,共40分.二、填空题共6小题,每小题5分,共30分. 9. 1;10. 0.9; 11. 2;; 13. 3x +y -4=0, 2; 14. 43. 三、解答题共6小题,共80分.解答要写出文字说明,演算步骤或证明过程. 15.(本小题13分) 已知ABC ∆的三个内角分别为A,B,C,且22sin ()2.B C A += (Ⅰ)求A 的度数;(Ⅱ)若7,5,BC AC ==求ABC ∆的面积S . 解: (Ⅰ) 22sin ()2.B C A +=22sin cos A A A∴=, ……………………….2分sin 0,sin ,tan A A A A ≠∴=∴=, ……………………….4分60,0=∴<<A A π °.…………………….6分 (Ⅱ)在ABC∆中, 60cos 2222⨯⨯-+=AC AB AC AB BC ,7,5,BC AC ==,525492AB AB -+=∴8,02452=∴=--∴AB AB AB 或3-=AB (舍),………….10分31023852160sin 21=⨯⨯⨯=⨯⨯=∴∆ AC AB S ABC . …………………….13分16(本小题13分)国家对空气质量的分级规定如下表:某市去年6月份30天的空气污染指数的监测数据如下:314173 12214478 265 79 20864 0 8 1 0 05 3 7 1 042 101 38 163 15422 27 36 151 49 103 13520 16 48根据以上信息,解决下列问题: (Ⅰ)写出下面频率分布表中a,b,x,y 的值; (Ⅱ)某人计划今年6月份到此城市观光4天,若将(Ⅰ)中的频率作为概率,他遇到空气质量为优或良的天数用X 表示,求X 的分布列和均值EX. 解:(Ⅰ)101,51,3,6====y x b a , ………………………….4分(Ⅱ)由题意,该市4月份空气质量为优或频率分布表良的概率为P=3252154=+,………..5分 40411(0),381P X C ⎛⎫==⨯= ⎪⎝⎭,8183132)1(314=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C X P,2783132)2(2224=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛⨯==C X P,81323132)3(334=⨯⎪⎭⎫ ⎝⎛⨯==C X P444216(4)381P X C ⎛⎫==⨯=⎪⎝⎭. ………………………….10分X∴的分布列为:………………………….11分X ~B (4,32),∴38324=⨯=EX . ………………………….13分17. (本小题13分)如图(1),等腰直角三角形ABC 的底边AB=4,点D 在线段AC 上,DE AB ⊥于E ,现将△A DE 沿D E 折起到△PDE 的位置(如图(2)).(Ⅰ)求证:PB ⊥DE ;(Ⅱ)若PE ⊥BE ,直线PD 与平面PBC 所成的角为30°,求PE 的长.图(1) 图(2) 解: (Ⅰ)DE AB⊥,DE BE∴⊥,DE ⊥PE , (2)分EPE BE = , ∴DE ⊥平面PEB ,PEB PB 平面⊂ ,∴ BP ⊥ DE ; ……………………….4分(Ⅱ) PE ⊥BE , PE ⊥DE ,DE BE ⊥,所以,可由DE ,BE ,PE 所在直线为x ,y ,z 轴建立空间直角坐标系(如图),……………………………………………………………5分∴设PE=a ,则B (0,4-a ,0),D (a ,0,0),C (2,2-a ,0),P (0,0,a ),……………………7分(0,4,)PB a a =--,(2,2,0)BC =-,……………………8分设面PBC 的法向量),,(z y x n =,(4)0,220,a y az x y --=⎧∴⎨-=⎩令1y =,∴4(1,1,)a n a-=, (10)分 …………….10分(,0,)PD a a =-,……………………….12分 BC 与平面PCD 所成角为30°,∴sin 30cos ,PD n ︒= . ……………………….11分222(4)12(4)22a a a a a --=-⨯+,解得:a=45,或a=4(舍),所以,PE 的长为45.……………………….13分18.(本小题13分)已知函数()21()2ln (21)2f x x ax a x a R =+-+∈.(Ⅰ)当12a =-时,求函数f(x )在[1,e]上的最大值和最小值;(Ⅱ)若a >0,讨论()f x 的单调性. 解:(Ⅰ)()f x 的定义域为{|0}x x >, ……………………….xz1分 当21-=a 时,,2)2)(2()(xx x x f -+-=' ……………………….2分 令()0,f x '=在[1,e ]上得极值点,2=x……………………….4分,42)(,41)1(2e ef f -=-=……………………….5分),()1(e f f <max min 1()(2)2ln 21,()(1)4f x f f x f ∴==-==-. ………………….7分 (Ⅱ)(2)(1)()x ax f x x--'=, ……………………….8分210<<a 时,由()f x '>0得0<x <2或x>a1,所以f(x)的单调增区间是(0,2),1(,)a+∞, 由()f x '<0得2<x <1a,所以f (x )的单调减区间是(2,1a); ……………………….10分 ②21=a 时,()0f x '≥在(0,+∞)上恒成立,且当且仅当(2)0f '=,()f x ∴在(0,+∞)单调递增; ……………………….11分③当21>a 时,由()f x '>0得0<x <1a 或x >2,所以f (x )的单调增区间是(0,1a ),(2,)+∞, 由()f x '<0得1a<x <2,所以f (x )的单调减区间是(1a ,2). ……………………….13分19.(本小题14分)已知椭圆C :2214x y +=的短轴的端点分别为A,B (如图),直线AM ,BM 分别与椭圆C 交于E,F 两点,其中点M (m,12) 满足0m ≠,且3m ≠±.(Ⅰ)求椭圆C 的离心率e ;(Ⅱ)用m 表示点E,F的坐标;(Ⅲ)若∆BME 面积是∆AMF 面积的5倍,求m 的值. 解:(Ⅰ)依题意知2a =,3=c ,23=∴e ; ……………………… 3分 (Ⅱ))1,0(),1,0(-B A ,M (m ,12),且m ≠, ………………………4分∴直线AM 的斜率为k 1=m 21-,直线BM 斜率为k 2=m 23,∴直线AM 的方程为y =121+-x m ,直线BM 的方程为y =123-x m , ……………6分 由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m xmx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭………………………8分 由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()012922=-+mx xm ,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭; ………………………10分 (Ⅲ)1||||sin 2AMF S MA MF AMF ∆=∠,1||||sin 2BME S MB ME BME∆=∠,AMF BME ∠=∠,5AMF BME S S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =, ………………..12分∴225,41219m m m mm m m m =--++m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0mm --=, 又m ≠,∴230m -≠,12=∴m ,1m ∴=±为所求. ………………14分20.(本小题14分)已知等差数列{}na 的通项公式为a n =3n-2,等比数列{}nb 中,1143,1b a ba ==+.记集合{},*,n A x x a n N ==∈{},*n B x x b n N ==∈,U A B =⋃,把集合U中的元素按从小到大依次排列,构成数列{}nc . (Ⅰ)求数列{b n }的通项公式,并写出数列{}nc 的前4项;(Ⅱ)把集合UC A 中的元素从小到大依次排列构成数列{}nd ,求数列{}nd 的通项公式,并说明理由;(Ⅲ)求数列{}nc 的前n 项和.nS解:(Ⅰ)设等比数列{}nb 的公比为q ,11431,18b a b a ===+=,则q 3=8,∴q =2,∴b n =2n -1, ………………..2分数列{}na 的前4项为1,4,7,10,数列{b n }的前4项为1,2,4,8,∴数列{}nc 的前4项为1,2,4,7; ………………..3分(Ⅱ)据集合B 中元素2,8,32,128∉A ,猜测数列{}nd 的通项公式为d n =22n -1.……………..4分d n=b 2n ,∴只需证明数列{b n }中,b 2n-1∈A ,b 2n ∉A(n N *∈). 证明如下:b 2n +1-b 2n-1=22n -22n -2=4n -4n -1=3×4n -1,即b 2n +1=b 2n -1+3×4n -1, 若∃m ∈N *,使b 2n -1=3m -2,那么b 2n +1=3m -2+3×4n -1=3(m +4n-1)-2,所以,若b 2n -1∈A ,则b 2n +1∈A .因为b 1∈A ,重复使用上述结论,即得b 2n -1∈A (n N *∈)。

北京市丰台区高三数学第二次模拟考试 理(丰台二模)

北京市丰台区高三数学第二次模拟考试 理(丰台二模)

北京市丰台区2012年高三二模 2012.5数学(理科)第一部分 (选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.复数1i2i-+的虚部是 (A) i -(B) 3i 5-(C) –1(D) 35-2.一个正四棱锥的所有棱长均为2,其俯视图如右图所示,则该正四棱锥的正 视图的面积为(C) 2 (D) 43.由曲线1y x =与y =x ,x =4以及x 轴所围成的封闭图形的面积是 (A) 3132 (B) 2316(C) 1ln 42+ (D) ln 41+4.执行如图所示的程序框图,若输出的结果为63,则判断框中应填 (A) 7n ≤ (B) 7n > (C) 6n ≤ (D) 6n >5.盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机 取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是(A) 18125 (B)36125 (C) 44125(D) 811256.在△ABC 中,∠BAC =90º,D 是BC 中点,AB =4,AC =3,则AD BC ⋅(A) 7- (B) 72-(C)72(D) 77.已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是俯视图(A)(B)(C)(D)8.已知平面上四个点1(0,0)A,2A,34,2)A ,4(4,0)A .设D 是四边形1234A A A A 及其内部的点构成的点的集合,点0P 是四边形对角线的交点,若集合0{|||||,1,2,3,4}i S P D PP PA i =∈≤=,则集合S 所表示的平面区域的面积为 (A) 2(B) 4(C) 8(D) 16第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在极坐标系中,圆2sin ρθ=的圆心的极坐标是____.10.已知椭圆22221(7x y m m m +=>-上一点M 到两个焦点的距离分别是5和3,则该椭圆的离心率为______.11.如图所示,AB 是圆的直径,点C 在圆上,过点B ,C 的切线交于点P ,AP 交圆于D ,若AB =2,AC =1,则PC =______,PD =______. 12.某地区恩格尔系数(%)y 与年份x 的统计数据如下表:PBA从散点图可以看出y 与x 线性相关,且可得回归方程为ˆˆ4055.25ybx =+,据此模型可预测2012年该地区的恩格尔系数(%)为______.13.从5名学生中任选4名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有1人参加,若甲不参加生物竞赛,则不同的选择方案共有 种. 14. 在平面直角坐标系中,若点A ,B 同时满足:①点A ,B 都在函数()y f x =图象上;②点A ,B 关于原点对称,则称点对(A ,B )是函数()y f x =的一个“姐妹点对”(规定点对(A ,B )与点对(B ,A )是同一个“姐妹点对”).那么函数24,0,()2,0,x x f x x x x -≥⎧=⎨-<⎩的“姐妹点对”的个数为_______;当函数()x g x a x a =--有“姐妹点对”时,a 的取值范围是______.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数()cos sin )f x x x x =-. (Ⅰ)求()3f π的值;(Ⅱ)求函数()y f x =在区间[0,]2π上的最小值,并求使()y f x =取得最小值时的x 的值.16.(本小题共13分)某商场举办促销抽奖活动,奖券上印有数字100,80,60,0.凡顾客当天在该商场消费每.超过1000元,即可随机从抽奖箱里摸取奖券一张,商场即赠送与奖券上所标数字等额的现金(单位:元)E ξ=22.(Ⅰ)求a ,b 的值;(Ⅱ)若某顾客当天在商场消费2500元,求该顾客获得奖金数不少于160元的概率.17.(本小题共14分)在如图所示的几何体中,四边形ABCD 为矩形,平面ABEF ⊥平面ABCD , EF // AB ,∠BAF =90º, AD = 2,AB =AF =2EF =1,点P 在棱DF 上.(Ⅰ)若P 是DF 的中点,(ⅰ) 求证:BF // 平面ACP ;(ⅱ) 求异面直线BE 与CP 所成角的余弦值;(Ⅱ)若二面角D -AP -CPF 的长度. PFEDCAB18.(本小题共13分)已知数列{a n }满足14a =,131n n n a a p +=+⋅+(n *∈N ,p 为常数),1a ,26a +,3a 成等差数列.(Ⅰ)求p 的值及数列{a n }的通项公式;(Ⅱ)设数列{b n }满足2n n n b a n=-,证明:49n b ≤.19.(本小题共14分)在平面直角坐标系xOy 中,抛物线C 的焦点在y 轴上,且抛物线上的点P (x 0,4)到焦点F 的距离为5.斜率为2的直线l 与抛物线C 交于A ,B 两点.(Ⅰ)求抛物线C 的标准方程,及抛物线在P 点处的切线方程;(Ⅱ)若AB 的垂直平分线分别交y 轴和抛物线于M ,N 两点(M ,N 位于直线l 两侧),当四边形AMBN 为菱形时,求直线l 的方程.20.(本小题共13分)设函数()ln ()ln()f x x x a x a x =+--(0)a >. (Ⅰ)当1a =时,求函数()f x 的最小值;(Ⅱ)证明:对∀x 1,x 2∈R +,都有[]11221212ln ln ()ln()ln 2x x x x x x x x +≥++-;(Ⅲ)若211nii x==∑,证明:21ln ln 2nn i i i x x =≥-∑ *(,)i n ∈N .(考生务必将答案答在答题卡上,在试卷上作答无效)北京市丰台区2012年高三二模 数 学(理科)参考答案二、填空题:本大题共6小题,每小题5分,共30分.9.(1,)2π10.4 11712.31.25 13. 96 14.1,1a >注:第11题第一个空答对得2分,第二个空答对得3分;第14题第一个空答对得3分,第二个空答对得2分.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.解:因为()cos sin )f x x x x =-2sin cos x x x -=1cos 21)sin 222x x +--12sin 22x x -=cos(2)62x π+-(Ⅰ)()cos(2)3362f πππ=⨯+-ADEF P=22--= ……………………7分(Ⅱ)因为 [0,]2x π∈,所以2666x ππ7π≤+≤. 当 26x π+=π,即512x π=时,函数()y f x =有最小值是12--. 当512x π=时,函数()y f x =有最小值是12--. ……………………13分16.解:(Ⅰ)依题意,1000.05806000.722E a b ξ=⨯+++⨯=,所以 806017a b +=.因为 0.050.71a b +++=,所以0.25a b +=. 由806017,0.25,a b a b +=⎧⎨+=⎩ 可得00.15.a b =⎧⎨=⎩ ……………………7分(Ⅱ)依题意,该顾客在商场消费2500元,可以可以抽奖2次.奖金数不少于160元的抽法只能是100元和100元; 100元和80元; 100元和60元;80元和80元四种情况. 设“该顾客获得奖金数不少于160元”为事件A ,则()0.050.0520.050.120.050.150.10.10.0375P A =⨯+⨯⨯+⨯⨯+⨯=.答:该顾客获得奖金数不少于160元的概率为0.0375. ……………………13分17.(Ⅰ)(ⅰ)证明:连接BD ,交AC 于点O ,连接OP .因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线,所以BF // OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . ……………………4分 (ⅱ)因为∠BAF =90º,所以AF ⊥AB ,因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB ,所以AF ⊥平面ABCD , 因为四边形ABCD 为矩形,所以以A 为坐标原点,AB ,AD ,AF 分别为x ,y ,z 轴,建立如图所示空间直角坐标系O xyz -.所以 (1,0,0)B ,1(,0,1)2E ,1(0,1,)2P ,(1,C 所以 1(,0,1)2BE =- ,1(1,1,)2CP =-- ,所以cos ,15||||BE CP BE CP BE CP ⋅<>==⋅,即异面直线BE 与CP 所成角的余弦值为……………………9分(Ⅱ)解:因为AB ⊥平面ADF ,所以平面APF 的法向量为1(1,0,0)n =.设P 点坐标为(0,22,)t t -,在平面APC 中,(0,22,)AP t t =- ,(1,2,0)AC =,所以 平面APC 的法向量为222(2,1,)t n t-=- , 所以121212||cos ,||||n n n n n n ⋅<>===⋅解得23t =,或2t =(舍). 此时||PF =……………………14分18.解:(Ⅰ)因为14a =,131nn n a a p +=+⋅+,所以1213135a a p p =+⋅+=+;23231126a a p p =+⋅+=+.因为1a ,26a +,3a 成等差数列,所以2(26a +)=1a +3a , 即610124126p p ++=++, 所以 2p =. 依题意,1231n n n a a +=+⋅+, 所以当n ≥2时,121231a a -=⋅+,232231a a -=⋅+,……212231n n n a a ----=⋅+, 11231n n n a a ---=⋅+.相加得12212(3333)1n n n a a n ---=+++++- ,所以 113(13)2(1)13n n a a n ---=+--, 所以 3n n a n =+.当n =1时,11314a =+=成立, 所以3n n a n =+. ……………………8分(Ⅱ)证明:因为 3n n a n =+,所以 22(3)3n n n n n b n n ==+-.因为 2221+11(1)22+1=333n n n n n n n n n b b +++-+-=-,*()n ∈N .若 22+210n n -+<,则n >,即 2n ≥时 1n n b b +<. 又因为 113b =,249b =, 所以49n b ≤. ……………………13分19.解:(Ⅰ)依题意设抛物线C :22(0)x py p =>,因为点P 到焦点F 的距离为5,所以点P 到准线2py =-的距离为5. 因为P (x 0,4),所以由抛物线准线方程可得 12p=,2p =.所以抛物线的标准方程为24x y =. ……………………4分即 214y x =,所以 1'2y x =,点P (±4,4), 所以 41'|(4)22x y =-=⨯-=-,41'|422x y ==⨯=.所以 点P (-4,4)处抛物线切线方程为42(4)y x -=-+,即240x y ++=; 点P (4,4)处抛物线切线方程为42(4)y x -=-,即240x y --=.P点处抛物线切线方程为240x y ++=,或24x y --=. ……………………7分(Ⅱ)设直线l 的方程为2y x m =+,11(,)A x y ,22(,)B x y ,联立 242x y y x m⎧=⎨=+⎩,消y 得 2840x x m --=,64160m ∆=+>.所以 128x x +=,124x x m =-, 所以1242x x +=,1282y y m +=+, 即AB 的中点为(4,8)Q m +.所以 AB 的垂直平分线方程为1(8)(4)2y m x -+=--. 因为 四边形AMBN 为菱形,所以 (0,10)M m +,M ,N 关于(4,8)Q m +对称, 所以 N 点坐标为(8,6)N m +,且N 在抛物线上, 所以 644(6)m =⨯+,即10m =,所以直线l的方程为210y x =+. ……………………14分20.解:(Ⅰ)1a =时,()ln (1)ln(1)f x x x x x =+--,(01x <<),则()ln ln(1)ln 1xf x x x x'=--=-. 令()0f x '=,得12x =. 当102x <<时,()0f x '<,()f x 在1(0,)2是减函数, 当112x <<时,()0f x '>,()f x 在1(,1)2是增函数, 所以 ()f x 在12x =时取得最小值,即11()ln 22f =. ……………………4分 (Ⅱ)因为 ()ln ()ln()f x x x a x a x =+--,所以 ()ln ln()ln xf x x a x a x'=--=-. 所以当2ax =时,函数()f x 有最小值. ∀x 1,x 2∈R +,不妨设12x x a +=,则121211221111ln ln ln ()ln()2ln()22x x x xx x x x x x a x a x +++=+--≥⋅[]1212()ln()ln 2x x x x =++-. ……………………8分(Ⅲ)(证法一)数学归纳法ⅰ)当1n =时,由(Ⅱ)知命题成立.ⅱ)假设当n k =( k ∈N *)时命题成立,即若1221k x x x +++= ,则112222ln ln ln ln2k k kx x x x x x +++≥- . 当1n k =+时,1x ,2x ,…,121k x +-,12k x +满足 11122121k k x x x x ++-++++= .设11111122212122()ln ln ln ln k k k k F x x x x x x x x x ++++--=++++ , 由(Ⅱ)得11111212212212()()ln[()ln 2]()ln[()ln 2]k k k k F x x x x x x x x x ++++--≥++-++++-用心 爱心 专心 - 11 -=111111212122122122()ln()()ln()(...)ln 2k k k k k x x x x x x x x x x x +++++--++++++-+++=11111212212212()ln()()ln()ln 2k k k k x x x x x x x x ++++--++++++- .由假设可得 1()ln 2ln 2ln 2k k F x +≥--=-,命题成立. 所以当 1n k =+时命题成立.由ⅰ),ⅱ)可知,对一切正整数n ∈N *,命题都成立, 所以若211ni i x ==∑,则21ln ln 2nn i i i x x =≥-∑ *(,)i n ∈N . ……………………13分(证法二)若1221n x x x +++= , 那么由(Ⅱ)可得112222ln ln ln n n x x x x x x +++1212212212()ln[()ln 2]()ln[()ln 2]n n n n x x x x x x x x --≥++-++++- 1212122122122()ln()()ln()(...)ln 2n n n n n x x x x x x x x x x x --=++++++-+++ 1212212212()ln()()ln()ln 2n n n n x x x x x x x x --=++++++-12341234212212()ln()()ln()2ln 2n n n n x x x x x x x x x x x x --≥+++++++++- 121222(...)ln[()ln 2](1)ln 2n n x x x x x x n ≥≥++++++--- ln 2n =-.……………………13分(若用其他方法解题,请酌情给分)。

高三数学第二学期统一练习(二) 理(丰台二模) 试题

高三数学第二学期统一练习(二) 理(丰台二模) 试题

xyO π2π1-1心尺引州丑巴孔市中潭学校丰台区2021年高三年级第二学期统一练习〔二〕数 学〔理科〕一、本大题共8小题,每题5分,共40分.在每题列出的四个选项中,选出符合题目要求的一项. 1.在复平面内,复数121izi-=+对应的点位于 (A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限2.(A) x ∀∈R ,20x> (B) x ∀∈R ,2310x x ++> (C) x ∃∈R ,lg 0x >(D) x ∃∈R ,122x =3.a >0且a ≠1,函数log a y x =,x y a =,y x a =+在同一坐标系中的图象可能是(A)(B)(C)(D)4.参数方程2cos (3sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程4sin ρθ=所表示的图形分别是(A) 圆和直线(B) 直线和直线(C) 椭圆和直线(D) 椭圆和圆5.由1,2,3,4,5组成没有重复数字且2与5不相邻的四位数的个数是(A) 120(B) 84 (C) 60 (D) 486.函数sin()y A x ωϕ=+的图象如下列图,那么该函数的解析式可能是(A) 441sin()555y x =+ (B) 31sin(2)25y x =+(C) 441sin()555y x =-(D) 41sin(2)55y x =+OO O O x x xxyyyy1 11 1111 1此题就是考查正弦函数的图象变换。

最好采用排除法。

考查的关键是A ,ω,φ每一个字母的意义。

7.直线l :Ax By C ++=(A ,B 不全为0),两点111(,)P x y ,222(,)P x y ,假设1122()()0Ax By C Ax By C ++++>,且1122Ax By C Ax By C++>++,那么(A) 直线l 与直线P 1P 2不相交 (B) 直线l 与线段P 2 P 1的延长线相交 (C) 直线l 与线段P 1 P 2的延长线相交(D) 直线l 与线段P 1P 2相交此题就是考查线性规划问题。

北京市丰台区2022届高三高考二模数学试题(含详解)

北京市丰台区2022届高三高考二模数学试题(含详解)
所以当 时,点N到直线l的距离最大,
所以d的最大值为 ,
故答案为: ,6
15.如图,某荷塘里浮萍的面积y(单位: )与时间t(单位:月)满足关系式: (a为常数),记 ( ).给出下列四个结论:
①设 ,则数列 是等比数列;
②存在唯一的实数 ,使得 成立,其中 是 的导函数;
③常数 ;
④记浮萍蔓延到 , , 所经过的时间分别为 , , ,则 .
又 ,
所以 .
故选:A
8.设等差数列 的前n项和为 .若 ,则下列结论中正确的是()
A. B.
C. D.
【8题答案】
【答案】D
【解析】
【分析】根据 ,可得 , ,从而可判断AB,举出反例即可判断C,根据等差数列的性质结合基本不等式即可判断D.
【详解】解:因为 ,
所以 ,故A错误;
,所以 ,
则公差 ,故B错误;
【13题答案】
【答案】
【解析】
【分析】利用正弦定理结合二倍角的正弦公式即可得解.
【详解】解:在 中,
由正弦定理可得 ,
即 ,即 ,
所以 .
故答案为: .
14.在平面直角坐标系中,已知点 ,动点N满足 ,记d为点N到直线l: 的距离.当m变化时,直线l所过定点的坐标为______;d的最大值为______.
北京市丰台区2021-2022学年度第二学期综合练习(二)
高三数学2022.04
第一部分(选择题共40分)
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1.在复平面内,复数 对应的点的坐标是 ,则复数 ()
A. B. C. D.
2.“ ”是“ ”的()

丰台区高三二模统一练习数学试卷(理科)

丰台区高三二模统一练习数学试卷(理科)

丰台区高三二模统一练习数学试卷(理科)2005.5本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页,第II 卷3至9页。

共150分。

考试时间120分钟。

第I 卷(选择题 共40分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3. 考试结束,监考人将本试卷和答题卡一并收回。

参考公式:如果事件A 、B 互斥,那么P A B P A P B ()()()+=+ 如果事件A 、B 相互独立,那么P A B P A P B ()()()··= 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中恰好发生k 次的概率P k C p p n n kk n k()()=--1球的表面积公式S R =42π 球的体积公式V R =433π 其中R 表示球的半径一. 选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 如果函数f x x x ()sin()cos()=ωω的最小正周期为4π,那么常数ω为( )A.14B.12C. 2D. 42. 已知集合{}{}M a b c P x y z ==,,,,,,则从M 到P 的映射共有( )A. 3个B. 6个C. 9个D.27个3. 当a ≠0时,函数y ax b =+和y b ax=的图象只可能是( )4. 曲线x y ==⎧⎨⎩cos sin θθ(θ为参数)上的点到两坐标轴的距离之和的最大值是( )A. 12B. 22C. 1D.25. 三个数607607607...log ,,的大小顺序是( )A. log (076)076076<<B. 07660707.log ..6<<C. log (0707)66607<<D. 076660707.log ..<<6. 同室4人各写一张贺年卡,先集中起来,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有( ) A. 23种 B. 11种 C. 9种D. 6种7. 若向量||||a b →=→=32,,且a b →→与的夹角为30°,则||a b →+→等于( )A. 23B. 13C. 5D. 38. 直线y x =+3与曲线y x x 2941-=||的公共点的个数是( ) A. 1 B. 2 C. 3D. 4第II 卷(非选择题 共110分)注意事项:1. 第II 卷共7页,用钢笔或圆珠笔直接答在试题卷中。

2024年北京丰台区高三二模数学试题和答案

2024年北京丰台区高三二模数学试题和答案

2024北京丰台高三二模数 学2024.04本试卷共6页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分 (选择题40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合{12345}U =,,,,,{13}A =,,{23}B =,,则()()U UA B =(A ){3} (B ){1,2} (C ){4,5}(D ){1,2,3}2.在复平面内,复数z 对应的点为(1,1)Z −,则z 的共轭复数z = (A )1i + (B )1i − (C )1i −+(D )1i −−3.已知数列{}n a 对于任意*p q ∈N ,,都有p q p q a a a +=,若1a =4a =(A )2 (B )(C )4(D )4.下列函数中,是偶函数且在区间(0,)+∞上单调递增的是(A )1()||f x x = (B )()22x x f x −=+ (C )()sin f x x =(D )()tan f x x =5.若,a b ∈R ,且a b >,则 (A )221111a b <++ (B )22a b ab > (C )22a ab b >>(D )2a ba b +>> 6.已知,αβ是两个不同的平面,,m n 是两条不同的直线,能使m n ⊥成立的一组条件是(A )//,,m n αβαβ⊥⊥ (B )//,,m n αβαβ⊂⊥ (C ),,//m n αβαβ⊥⊥(D ),,//m n αβαβ⊥⊂7.已知函数ππ()sin()(0,)22f x x ωϕωϕ=+>−<< 的导函数是'()f x ,如果函数()'()y f x f x =− 的图象如右图所示,那么,ωϕ的值分别为(A )1,0(B )1,4π−(C )1,4π (D )2,4π−8.已知曲线2:1C y x =+与直线:l y kx b =+,那么下列结论正确的是 (A )当1k =时,对于任意的b ∈R ,曲线C 与直线l 恰有两个公共点 (B )当1k =时,存在b ∈R ,曲线C 与直线l 恰有三个公共点 (C )当2k =时,对于任意的b ∈R ,曲线C 与直线l 恰有两个公共点 (D )当2k =时,存在b ∈R ,曲线C 与直线l 恰有三个公共点9.已知等差数列{}n α的公差为d ,首项1(0,)2απ∈,那么“πd =”是“集合S ={|sin ,n x x α=*}n ∈N 恰有两个元素”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件10.“用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线”.利用这个原理,小明在家里用两个射灯(射出的光锥视为圆锥)在墙上投影出两个相同的椭圆(图 1),光锥的一条母线恰好与墙面垂直.图 2是一个射灯投影的直观图,圆锥PO 的轴截面APB 是等边三角形,椭圆1O 所在平面为α,PB α⊥,则椭圆1O 的离心率为图1 图2(A (B(C )2(D )3第二部分 (非选择题110分)二、填空题共5小题,每小题5分,共25分。

北京市丰台区2023届高三二模数学试题(高频考点版)

北京市丰台区2023届高三二模数学试题(高频考点版)

一、单选题二、多选题1.设分别是椭圆的左、右焦点,与直线相切的交椭圆于点,且点恰好是直线与的切点,则椭圆的离心率为A.B.C.D.2. 已知奇函数是定义在上的可导函数,其导函数为,当时,有,则不等式的解集为( )A.B.C.D.3.已知函数的所有极值点为,且函数在内恰有2023个零点,则满足条件的有序实数对( )A .只有2对B .只有3对C .只有4对D .有无数对4.设是定义域为的偶函数,且为奇函数.若,则( )A.B.C.D.5. 已知、为锐角,,,则( )A.B.C.或D .或6.已知函数,,,若与的图象上分别存在点、,使得、关于直线对称,则实数的取值范围是( )A.B.C.D.7. 设全集,集合,,则( )A.B.C.D.8. 函数的图象为A.B.C.D.9. 平面螺旋是以一个固定点开始,向外圈逐渐旋绕而形成的图案,如图(1).它的画法是这样的:正方形ABCD 的边长为4,取正方形ABCD 各边的四等分点E ,F ,G ,H 作第二个正方形,然后再取正方形EFGH 各边的四等分点M ,N ,P ,Q 作第三个正方形,以此方法一直循环下去,就可得到阴影部分图案,设正方形ABCD边长为,后续各正方形边长依次为,,…,,…;如图(2)阴影部分,设直角三角形AEH面积为,后续各直角三角形面积依次为,,…,,….则( )北京市丰台区2023届高三二模数学试题(高频考点版)北京市丰台区2023届高三二模数学试题(高频考点版)三、填空题A .数列是以4为首项,为公比的等比数列B.从正方形开始,连续个正方形的面积之和为32C .使得不等式成立的的最大值为3D .数列的前项和10.三角形的外心、重心、垂心所在的直线称为欧拉线.已知圆的圆心在的欧拉线上,为坐标原点,点与点在圆上,且满足,则下列说法正确的是( )A .圆的方程为B .的方程为C .圆上的点到的最大距离为D .若点在圆上,则的取值范围是11.年月,神舟十三号返回舱成功着陆,返回舱是宇航员返回地球的座舱,返回舱的轴截面可近似看作是由半圆和半椭圆都包含,点组成的“曲圆”半圆的圆心在坐标原点,半圆所在的圆过椭圆的焦点,椭圆的短轴长等于半圆的直径,如图,在平面直角坐标系中,下半圆与轴交于点若过原点的直线与上半椭圆交于点,与下半圆交于点,则()A.椭圆的离心率为B .的周长为C .面积的最大值是D .线段长度的取值范围是12. 已知,,,其中,则下列结论正确的是( )A.B.C.D.13. 已知定义在上的函数满足,当时,,则__________.14. 勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动(如图甲),利用这一原理,科技人员发明了转子发动机.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体如图乙所示,若正四面体的棱长为1,则勒洛四面体能够容纳的最大球的半径为_______;用过三点的平面去截勒洛四面体,所得截面的面积为_____________.四、解答题15. 已知平面向量,,且,则___________.16. 已知a ,b ,c 为正数,且满足.(1)证明:.(2)证明:.17.已知等差数列的前n 项和为,,.(1)求的通项公式;(2)设,数列的前n 项和为,证明:当,时,.18. 已知函数(e 是自然对数的底数,).(1)设的导函数为,试讨论的单调性;(2)当时,若是的极大值点,判断并证明与大小关系.19. 对于函数,若函数是严格增函数,则称函数具有性质.(1)若,求的解析式,并判断是否具有性质;(2)判断命题“严格减函数不具有性质”是否真命题,并说明理由;(3)若函数具有性质,求实数的取值范围,并讨论此时函数在区间上零点的个数.20. 在平面直角坐标系中, 圆为 的内切圆.其中.(1)求圆的方程及 点坐标;(2)在直线上是否存在异于的定点使得对圆上任意一点,都有为常数 )?若存在,求出点的坐标及的值;若不存在,请说明理由.21. 已知函数.(1)讨论函数的极值点的个数;(2)当时,都有,求实数的取值范围.参考:当时,.。

北京市丰台区2023届高三二模数学试题(1)

北京市丰台区2023届高三二模数学试题(1)

一、单选题二、多选题1.等差数列的前项和为,已知,,则A .57B .60C .63D .662. 一组数据原有三个数据,其均值为10,现分别加入6和14,得到两组新的数据,它们的方差分别是,和,则( )A.B.C.D.与的大小关系不能确定3. 已知在10件产品中可能存在次品,从中抽取2件检查,记次品数为,已知,且该产品的次品率不超过,则这10件产品的次品数为( )A .2件B .4件C .6件D .8件4. 若,其中a ,b 都是实数,i 是虚数单位,则等于( )A.B.C .0D .15. 在农业生产中,自动化控制技术的应用有效提高了农业生产效率.如图所示,在某矩形试验田中,为中点,为中点,三角形区域种植小麦,梯形区域种植玉米.为提高劳动效率,节约用水,现采用自动浇水机器人(忽略机器人的面积)对试验田进行灌溉.已知该机器人沿着以为焦点,为准线的抛物线运动,且向以自身为圆心,半径为的圆形区域内浇水.记小麦田能够被机器人灌溉的面积为,则( )(若直线与抛物线相切于点,平行于的直线与交于两点,记与围成的图形面积为的面积为,则)A.B.C.D.6. 如图,一个底面半径为的圆柱被与其底面所在平面的夹角为的平面所截,截面是一个椭圆,当为时,这个椭圆的离心率为()A.B.C.D.7. 已知正数,满足,则的最大值为A.B.C.D.8.已知向量满足,,则A .2B.C .4D .89. 有6个相同的球,分别标有数字1,2,3,4,5,6,从中不放回地随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是奇数”,乙表示事件“第二次取出的球的数字是偶数”,丙表示事件“两次取出的球的数字之和是奇数”,丁表示事件“两次取出的球的数字之和是北京市丰台区2023届高三二模数学试题(1)北京市丰台区2023届高三二模数学试题(1)三、填空题四、解答题偶数”,则( )A.乙发生的概率为B.丙发生的概率为C .甲与丁相互独立D .丙与丁互为对立事件10.是等比数列的前项和,若存在,使得,则( )A.B .是数列的公比C.D .可能为常数列11. 某保险公司销售某种保险产品,根据2020年全年该产品的销售额(单位:万元)和该产品的销售额占总销售额的百分比,绘制出如图所示的双层饼图.根据双层饼图,下列说法正确的是()A .2020年第四季度的销售额为280万元B .2020年上半年的总销售额为500万元C .2020年2月份的销售额为60万元D .2020年12个月的月销售额的众数为60万元12. 下列命题中,正确的命题是( ).A .数据1,2,3,4,5,6,7,8,9,10的70%分位数是7B.若随机变量,则C .在回归分析中,可用相关系数R 的值判断模型的拟合效果,越趋近于1,模型的拟合效果越好D .若随机变量,,则13. 在平面直角坐标系中,已知抛物线关于轴对称,顶点在原点,且过点,则该抛物线的方程是______.14. 已知m 、l 是直线,α、β是平面,给出下列命题:①若l 垂直于α内两条相交直线,则;②若l 平行于α,则l 平行于α内所有的直线;③若,且,则;④若且,则;⑤若,且,则.其中正确命题的序号是_______.15. 将五个1、五个2、五个3、五个4、五个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列任何两数之差的绝对值不超过2.设每列中五个数之和的最小值为,则的最大值为__________.16. 已知函数,数列的前项和为,点均在函数的图象上.(1)求数列的通项公式;(2)令,证明:.17. 如图,在多面体ABCDEF中,四边形ABFE是正方形,四边形ABCD是梯形,,,平面平面ABCD,.(1)证明:平面CDF;(2)求二面角的余弦值.18. 设函数.(1)讨论函数的单调性;(2)若函数有两个极值点,且,求证:.19. 已知分别为的内角的对边,且.(1)求;(2)若,的面积为2,求.20. 已知函数(是常数),(1)求函数的单调区间;(2)当时,函数有零点,求的取值范围.21. 已知函数.(1)若在单调递增,求a的取值范围.(2)若,且,求a.。

2023-2024学年北京市丰台区高三下学期综合练习(二)数学试卷含详解

2023-2024学年北京市丰台区高三下学期综合练习(二)数学试卷含详解

北京市丰台区2023~2024学年度第二学期综合练习(二)高三数学2024.04本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}{}1,2,3,4,5,1,3,2,3U A B ===,则()()UUA B ⋂=痧()A.{}3 B.{}1,2 C.{}4,5 D.{}1,2,32.在复平面内,复数z 的对应点为(1,1)-,则z =()A.1i+ B.1i-+ C.1i - D.1i--3.已知数列{}n a 对于任意*,p q ∈N ,都有p q p q a a a +=,若1a =,则4a =()A.2B. C.4D.4.下列函数中,是偶函数且在区间()0,∞+上单调递增的是()A.()1||f x x =B.()22xxf x -=+ C.()sin f x x= D.()tan =f x x5.若,a b ∈R ,且a b >,则()A.221111a b <++ B.22a b ab >C.22a ab b >> D.2a ba b +>>6.已知,αβ是两个不同的平面,,m n 是两条不同的直线,能使m n ⊥成立的一组条件是()A.,,m n αβαβ⊥⊥∥B.,,m n αβαβ⊂⊥∥C.,,m n αβαβ⊥⊥∥ D.,,m n αβαβ⊥⊂∥7.已知函数()()ππsin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的导函数是()f x ',如果函数()()y f x f x =-'的图像如图所示,那么,ωϕ的值分别为()A.1,0B.π1,4-C.π1,4D.π2,4-8.已知曲线2:1C y x =+与直线:l y kx b =+,那么下列结论正确的是()A.当1k =时,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点B.当1k =时,存在R b ∈,曲线C 与直线l 恰有三个公共点C.当2k =时,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点D.当2k =时,存在R b ∈,曲线C 与直线l 恰有三个公共点9.已知等差数列{}n α的公差为d ,首项1π0,2α⎛⎫∈ ⎪⎝⎭,那么“πd =”是“集合{}*sin ,n S x x n α==∈N 恰有两个元素”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10.“用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线”.利用这个原理,小明在家里用两个射灯(射出的光锥视为圆锥)在墙上投影出两个相同的椭圆(图1),光锥的一条母线恰好与墙面垂直.图2是一个射灯投影的直观图,圆锥PO 的轴截面APB 是等边三角形,椭圆1O 所在平面为,PB αα⊥,则椭圆1O 的离心率为()A.32B.63C.22D.33第二部分(非选择题110分)二、填空题共5小题,每小题5分,共25分.11.已知函数()()()22,log 1xf xg x x ==+,那么()()0f g =______.12.若)4117+=+=a ______.13.如图,在正方形ABCD 中,2AB =,点,E F 分别为,BC CD 的中点,点G 在BF 上,则AE AG ⋅=______.14.如图,正方体1111ABCD A B C D -的棱长为2,,M N 分别为11,BB DD 的中点,α为过直线MN 的平面.从下列结论①,②中选择一个,并判断该结论的真假.你选的结论是______(填“①”或“②”),该结论是______命题(填“真”或“假”).①平面α截该正方体所得截面面积的最大值为②若正方体的12条棱所在直线与平面α所成的角都等于θ,则3sin 3θ=.15.设函数(),0,0.x m x f x x ⎧+<⎪=⎨≥⎪⎩给出下列四个结论:①当0m =时,函数()f x 在(),-∞+∞上单调递减;②若函数()f x 有且仅有两个零点,则0m >;③当0m <时,若存在实数,a b ,使得()()f a f b =,则a b -的取值范围为()2,+∞;④已知点(),0P m -,函数()f x 的图象上存在两点()()()11122212,,,0Q x y Q x y x x <<,12,Q Q 关于坐标原点O 的对称点也在函数()f x 的图象上.若12322PQ PQ +=,则1m =.其中所有正确结论的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步聚或证明过程.16.已知ABC满足cos 2A A +=.(1)求A ;(2)若ABC 满足条件①、条件②、条件③中的两个,请选择一组这样的两个条件,并求ABC 的面积.条件①:2a b -=;条件②:cos 14B =;条件③:8c =.17.在正四棱柱1111ABCD A B C D -中,1,AB E =为1BB 中点,直线11B C 与平面1AD E 交于点F .(1)证明:F 为11B C 的中点;(2)若直线AC 与平面1AD E 所成的角为π3,求二面角11A AD F --的余弦值.18.激光的单光子通讯过程可用如下模型表述:发送方将信息加密后选择某种特定偏振状态的单光子进行发送,在信息传输过程中,若存在窃听者,由于密码本的缺失,窃听者不一定能正确解密并获取准确信息.某次实验中,假设原始信息的单光子的偏振状态0,1,2,3等可能地出现,原始信息息的单光子的偏振状态与窃听者的解密信息的单光子的偏振状态有如下对应关系.原始信息的单光子的偏振状态0123解密信息的单光子的偏振状态0,1,20,1,31,2,30,2,3已知原始信息的任意一种单光子的偏振状态,对应的窃听者解密信息的单光子的偏振状态等可能地出现.(1)若发送者发送的原始信息的单光子的偏振状态为1,求窃听者解密信息的单光子的偏振状态与原始信息的单光子的偏振状态相同的概率;(2)若发送者连续三次发送的原始信息的单光子的偏振状态均为1,设窃听者解密信息的单光子的偏振状态为1的个数为X ,求X 的分布列和数学期望()E X ;(3)已知发送者连续三次发送信息,窃听者解密信息的单光子的偏振状态均为1.设原始信息的单光子只有一种偏振状态的可能性为a ,有两种偏振状态的可能性为b ,有三种偏振状态的可能性为c ,试比较,,a b c 的大小关系.(结论不要求证明)19.已知函数()()222ln 0f x a x x a =+≠.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若函数()f x 有两个零点,求a 的取值范围.20.已知两点()()121,0,1,0F F -,曲线Ω上的动点M 满足12122MF MF F F +=,直线2MF 与曲线Ω交于另一点N .(1)求曲线Ω的方程;(2)设曲线Ω与x 轴的交点分别为,A B (点A 在点B 的左侧,且M 不与,A B 重合),直线AM 与直线BN 交于点P .当点B 为线段NP 的中点时,求点N 的横坐标.21.将数列0:1,2,3,4,N ⋅⋅⋅中项数为平方数的项依次选出构成数列1:1,4,9,16,A ⋅⋅⋅,此时数列0N 中剩下的项构成数列1:2,3,5,6,N ⋅⋅⋅;再将数列1N 中项数为平方数的项依次选出构成数列2:2,6,12,20,A ⋅⋅⋅,剩下的项构成数列2N ;….如此操作下去,将数列()*1k N k -∈N 中项数为平方数的项依次选出构成数列k A ,剩下的项构成数列k N .(1)分别写出数列34,A A 的前2项;(2)记数列m A 的第n 项为(),f m n .求证:当2n ≥时,()(),,122f m n f m n n m --=+-;(3)若(),108f m n =,求,m n 的值.北京市丰台区2023~2024学年度第二学期综合练习(二)高三数学2024.04第一部分(选择题40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}{}1,2,3,4,5,1,3,2,3U A B ===,则()()UUA B ⋂=痧()A.{}3 B.{}1,2 C.{}4,5 D.{}1,2,3【答案】C【分析】由补集和交集的定义求解.【详解】集合{}{}{}1,2,3,4,5,1,3,2,3U A B ===,{}2,4,5U A =ð,{}1,4,5U B =ð,()(){}4,5U U A B ⋂=痧.故选:C2.在复平面内,复数z 的对应点为(1,1)-,则z =()A.1i + B.1i-+ C.1i- D.1i--【答案】A【分析】依据题意可得复数z ,然后根据共轭复数的概念,可得结果.【详解】由题可知:复数z 的对应点为(1,1)-,则1z i =-所以1z i =+故选:A【点睛】本题考查共轭复数以及复数与所对应的点之间的关系,熟悉概念,属基础题.3.已知数列{}n a 对于任意*,p q ∈N ,都有p q p q a a a +=,若1a =,则4a =()A.2B.C.4D.【答案】C【分析】根据题意,分别取1p q ==,2p q ==然后代入计算,即可得到结果.【详解】因为数列{}n a 对于任意*,p q ∈N ,都有p q p q a a a +=,取1p q ==,则2112a a a =⋅==,取2p q ==,则422224a a a =⋅=⨯=,则44a =.故选:C4.下列函数中,是偶函数且在区间()0,∞+上单调递增的是()A.()1||f x x = B.()22xxf x -=+ C.()sin f x x= D.()tan =f x x【答案】B【分析】利用函数的奇偶性定义判断奇偶性,再利用相应函数的性质判断ACD 选项,利用()0f x '>判断B 选项即可.【详解】对于A ,因为()()11f x f x x x -===-,所以是偶函数,当()0,x ∞∈+时,()11f x x x==,是反比例函数,在()0,∞+上单调递减,故A 错误;对于B ,因为()()22xx f x f x --=+=,所以是偶函数,当()0,x ∞∈+时,()()22ln 2xxf x -=-',0,21,021x x x ->∴><< ,()0f x ∴'>,()f x ∴在()0,∞+上单调递增,故B 正确;对于C ,因为()()()sin sin =f x x x f x -=-=--,所以是奇函数,当()0,x ∞∈+时,()sin f x x =不单调,故C 错误;对于D ,因为()()()tan tan f x x x f x -=-=-=-,所以是奇函数,当()0,x ∞∈+时,()tan f x x =不是单调递增函数,故D 错误;故选:B.5.若,a b ∈R ,且a b >,则()A.221111a b <++ B.22a b ab >C.22a ab b >> D.2a ba b +>>【答案】D【分析】举反例即可求解ABC ,根据不等式的性质即可求解D.【详解】由于a b >,取1,1a b ==-,22111112a b =++=,221a b ab ==,无法得到221111a b <++,22a b ab >,故AB 错误,取0,2a b ==-,则220,0,4a ab b ===,无法得到22a ab b >>,C 错误,由于a b >,则22a b a b >+>,所以2a ba b +>>,故选:D6.已知,αβ是两个不同的平面,,m n 是两条不同的直线,能使m n ⊥成立的一组条件是()A.,,m n αβαβ⊥⊥∥B.,,m n αβαβ⊂⊥∥C.,,m n αβαβ⊥⊥∥ D.,,m n αβαβ⊥⊂∥【答案】B【分析】利用给定条件得到n m ,判断A ,利用给定条件得到m n ⊥判断B ,举反例判断C ,D 即可.【详解】对于A ,若,,m n αβαβ⊥⊥∥,则n m ,故A 错误,对于B ,若,,m n αβαβ⊂⊥∥,则m n ⊥,故B 正确,对于C ,若,,m n αβαβ⊥⊥∥,则,m n 可能相交,平行或异面,故C 错误,对于D ,若,,m n αβαβ⊥⊂∥,则,m n 可能相交,平行或异面,故D 错误.故选:B7.已知函数()()ππsin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的导函数是()f x ',如果函数()()y f x f x =-'的图像如图所示,那么,ωϕ的值分别为()A.1,0B.π1,4-C.π1,4D.π2,4-【答案】A【分析】根据题意,求导可得()()cos f x x ωωϕ'=+,从而可得()()y f x f x '=-的解析式,再结合函数图像代入计算,即可得到结果.【详解】因为()()ππsin 0,22f x x ωϕωϕ⎛⎫=+>-<< ⎪⎝⎭,则()()cos f x x ωωϕ'=+,则()()()()co sin s y f x f x x x ωωϕωϕ'=+=-+-()x ωϕθ=+-⎡⎤⎣⎦,其中tan 1ωθω==,,即=,且0ω>,所以1ω=,π4θ=,即π4y x ϕ⎛⎫=+- ⎪⎝⎭,又函数过点()0,1-,将点()0,1-代入可得π14ϕ⎛⎫-=- ⎪⎝⎭,即ππ32,2k k ϕ=+∈Z ,或2π2π,k k ϕ=+∈Ζ,又ππ22ϕ-<<,则当ππ32,2k k ϕ=+∈Z 时,无解,当2π2π,k k ϕ=+∈Ζ时,1k =-,则0ϕ=,所以1ω=,0ϕ=.故选:A8.已知曲线2:1C y x =+与直线:l y kx b =+,那么下列结论正确的是()A.当1k =时,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点B.当1k =时,存在R b ∈,曲线C 与直线l 恰有三个公共点C.当2k =时,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点D.当2k =时,存在R b ∈,曲线C 与直线l 恰有三个公共点【答案】C【分析】根据曲线C 的对称性,分别讨论当直线l 与曲线C 的上、下半部分相切时b 的取值即可求解.【详解】曲线2:1C y x =+的图象如图所示,若1k =,当直线l 与曲线上半部分相切时,由21y x y x b⎧=+⎨=+⎩整理得210x x b -+-=,由()()2Δ14110b =--⨯⨯-=得34b =,当直线l 与曲线下半部分相切时,由21y x y x b⎧=--⎨=+⎩整理得210x x b +++=,由()2Δ1410b =-⨯+=得34b =-,结合曲线C 图象的对称性可得,当34b =或34b =-时,曲线C 与直线l 有一个交点,当3344b -<<时,曲线C 与直线l 没有交点,当34b >或34b <-时,,曲线C 与直线l 有两个交点,AB 说法错误;若2k =,当直线l 与曲线上半部分相切时,由212y x y x b⎧=+⎨=+⎩整理得2210x x b -+-=,由()()2Δ24110b =--⨯⨯-=得0b =,当直线l 与曲线下半部分相切时,由212y x y x b⎧=--⎨=+⎩整理得2210x x b +++=,由()2Δ24110b =-⨯⨯+=得0b =,结合曲线C 图象的对称性可得,对于任意的R b ∈,曲线C 与直线l 恰有两个公共点,C 说法正确,D 说法错误,故选:C9.已知等差数列{}n α的公差为d ,首项1π0,2α⎛⎫∈ ⎪⎝⎭,那么“πd =”是“集合{}*sin ,n S x x n α==∈N 恰有两个元素”的()A .充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【分析】依据题意证明充分性成立,举反例否定必要性即可.【详解】对于充分性,已知等差数列{}n α的公差为d ,首项1π0,2α⎛⎫∈ ⎪⎝⎭,当“πd =”时,集合{}*sin ,n S x x n α==∈N 恰有两个元素{}11sin ,sin S αα=-,故充分性成立,对于必要性,当3πd =时,“集合{}*sin ,n S x x n α==∈N也恰有两个元素”,故必要性不成立,故“πd =”是“集合{}*sin ,nS x x n α==∈N 恰有两个元素”的充分而不必要条件.故选:A10.“用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线”.利用这个原理,小明在家里用两个射灯(射出的光锥视为圆锥)在墙上投影出两个相同的椭圆(图1),光锥的一条母线恰好与墙面垂直.图2是一个射灯投影的直观图,圆锥PO 的轴截面APB 是等边三角形,椭圆1O 所在平面为,PB αα⊥,则椭圆1O 的离心率为()A.32B.63C.22D.33【答案】D【分析】根据题意,由勾股定理结合余弦定理代入计算可得134PO PQ=,再由相似三角形的相似比结合勾股定理可分别计算出椭圆的,,a b c ,结合椭圆的离心率即可得到结果.【详解】设2AB r =,由于PB α⊥,所以PB AM ⊥,在等边三角形PAB 中,点M 为PB 的中点,于是3AM r =,在平面α中,由椭圆的对称性可知,1132AO MO r ==,连接11,OO PO ,延长1PO 与AB 交于点Q ,由于1,O O 为中点,所以在ABM 中,13,2PM r MO r ==,由勾股定理可得2222113722PO PM MO r r ⎛⎫=++ ⎪ ⎪⎝⎭,在PQO 中,3PO r =,172PO r =,112OO r =,由余弦定理可得222222111171332144cos 2147232r r r PO PO OO OPO PO POr r+-+-∠==⋅⨯⨯,在Rt PQO △中,由于1cos PO OPO PQ∠=,所以137cos 332114PO r PQ OPO ===∠,于是有17324273r PO PQ r ==,设椭圆1O 短轴的两个顶点为,G H ,连接,PG PH 分别交圆锥于,E F ,由于PGH PEF ∽,所以134PG PO PEPQ==,由于PE 为圆锥母线,所以2PE PA r ==,从而有3332442PG PE r r ==⨯=,在1Rt PGO中,由勾股定理可得12GO r ==,所以在椭圆1O中,12a MO r ==,12b GO ==,则12c ==,则离心率为12332r c e a ====.故选:D【点睛】关键点睛:本题主要考查了椭圆定义的理解以及椭圆离心率的求解,难度较大,解答本题的关键在于结合椭圆的定义以及余弦定理代入计算,分别求得,a b ,从而得到结果.第二部分(非选择题110分)二、填空题共5小题,每小题5分,共25分.11.已知函数()()()22,log 1xf xg x x ==+,那么()()0f g =______.【答案】1【分析】先求出()0g ,再求()()0f g 即可.【详解】易知()()20log 010g =+=,故()()()00021f g f ===,故答案为:112.若)4117+=+=a ______.【答案】12【分析】根据题意,将)41+展开计算,即可得到结果.【详解】)(42131717=+=++,所以12a =.故答案为:1213.如图,在正方形ABCD 中,2AB =,点,E F 分别为,BC CD 的中点,点G 在BF 上,则AE AG ⋅=______.【答案】4【分析】根据向量的线性运算可得11,122AE AB AD AG AB AD λλ⎛⎫=+=-+ ⎪⎝⎭,即可利用数量积的运算律求解.【详解】设BG BF λ=,则()1111122222AE AG AB AD AB BF AB AD AB AD AB AB AD AB AD λλλλλ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅+-=+⋅-+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2211311111444224222AB AB AD AD λλλλλ⎛⎫⎛⎫⎛⎫=-++⋅+=-⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:414.如图,正方体1111ABCD A B C D -的棱长为2,,M N 分别为11,BB DD 的中点,α为过直线MN 的平面.从下列结论①,②中选择一个,并判断该结论的真假.你选的结论是______(填“①”或“②”),该结论是______命题(填“真”或“假”).①平面α截该正方体所得截面面积的最大值为33②若正方体的12条棱所在直线与平面α所成的角都等于θ,则3sin 3θ=.【答案】①.①(答案不唯一)②.假(答案不唯一)【分析】选①,根据四边形11BDD B 的面积即可判断,选②,根据三棱锥111A AD B -为正三棱锥,利用等体积法求解1AA 与平面11AD B 所成角的正弦值即可求解②.【详解】若选①,平面11BDD B 是过直线MN 的平面.此时四边形11BDD B 即为该平面截正方体所得截面,由于四边形11BDD B 的面积为1233BD BB ⋅>=,故①为假命题,若选②,由于三棱锥111A AD B -为正三棱锥,所以1111,,A A A B A D 与平面11AD B 所成角均相等,故平面α//平面11AD B ,设1A 到平面11AD B 的距离为h,则1111111111111111111222·2··AD A A AD B B AD A AD B AD A AD B S A B V V S h S A B h S --⨯⨯⨯=⇒=⇒=所以1AA 与平面11AD B所成角的正弦值为13h AA =,故sin 3θ=,②为真命题故答案为:①(答案不唯一),假(答案不唯一)15.设函数(),0,0.x m x f x x ⎧+<⎪=⎨≥⎪⎩给出下列四个结论:①当0m =时,函数()f x 在(),-∞+∞上单调递减;②若函数()f x 有且仅有两个零点,则0m >;③当0m <时,若存在实数,a b ,使得()()f a f b =,则a b -的取值范围为()2,+∞;④已知点(),0P m -,函数()f x 的图象上存在两点()()()11122212,,,0Q x y Q x y x x <<,12,Q Q 关于坐标原点O 的对称点也在函数()f x 的图象上.若12322PQ PQ +=,则1m =.其中所有正确结论的序号是______.【答案】②③④【分析】根据0x ≥时,()0f x =即可判断①,求解方程的根,即可求解②,结合函数图象,求解临界状态时2a b -→,即可求解③,根据函数图象的性质可先判断0m >,继而根据对称性联立方程得==,根据122PQ PQ +=可得2132x x -=,代入即可求解④.【详解】当0m =时,0x ≥时,()0f x =,故在(),∞∞-+上不是单调递减,①错误;对于②,当0m =显然不成立,故0m ≠,当0x ≥时,令()0f x =,即0=,得0x =,0,0x x m x m <+=⇒=-,要使()f x 有且仅有两个零点,则0m -<,故0m >,②正确,对于③,当0m <时,(),0,0.x m x f x x --<⎧⎪=⎨≥⎪⎩,此时()f x 在(),0-∞单调递减,在[0,+∞)单调递增,如图:若()()f a f b =,由2m x -=⇒=,故2a b ->,所以a b -的取值范围为()2,∞+;③正确对于④,由①③可知:0m ≤时,显然不成立,故0m >,要使()()()11122212,,,0Q x y Q x y x x <<,12,Q Q 关于坐标原点O 的对称点也在函数()f x 的图象上,则只需要0,x y x m >=--的图象与()0,x f x ≥=故120x m x <-<<,))12121221322PQ PQ m x m m x x m x x +=-++=++=⇒-=,由对称可得()111f x x m x m -==---=+,化简可得10x m ++=,故20m =⇒()222f x x m x m -==---=--,化简得20m +==由于12,x x--均大于0==,因此222221x x⎛-=-=-⎪ ⎪⎪ ⎪⎝⎭⎝⎭==由于0m>,()43142f m m m=+为()0,+∞单调递增函数,且()912f=,此时2132x x-==,因此1m=,④正确,故答案为:②③④【点睛】方法点睛:函数零点问题常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题共6小题,共85分.解答应写出文字说明,演算步聚或证明过程.16.已知ABC满足cos2A A+=.(1)求A;(2)若ABC满足条件①、条件②、条件③中的两个,请选择一组这样的两个条件,并求ABC的面积.条件①:2a b-=;条件②:7cos14B=;条件③:8c=.【答案】(1)π3(2)见解析.【分析】(1)根据辅助角公式可得πsin16A⎛⎫+=⎪⎝⎭,即可求解π3A=,(2)选择①②,根据正弦定理可得b a=>与2a b-=矛盾,即可求解,选择②③,根据71cos142B=<,故π3B >,a b <,这与2a b -=矛盾,再由三角恒等变换及正弦定理、三角形面积公式即可求解,选择①③,根据余弦定理可得5b =,7a =,即可由面积公式求解.【小问1详解】cos 2A A +=得π2sin 26A ⎛⎫+= ⎪⎝⎭,所以πππ2π2π,Z 623A k A k k +⇒∈=+=+,由于()0,πA ∈,所以π3A =【小问2详解】若选①2a b -=,②7cos 14B =,则7π321cos 0,sin 14214B B B ⎛⎫=∴∈ ⎪⎝⎭,,由正弦定理可得3213sin sin 142a b a b b a A B =⇒⇒=>=,这与2a b -=矛盾,故不可以选择①②,若选①2a b -=,③8c =,由余弦定理可得()222222821cos 2216b b c b a A bc b+-++-===,解得5b =,7a =,此时2224964257cos 227814a cb B ac +-+-==≠⨯⨯,不满足②,符合题意;此时113sin 58222ABC S bc A ==�△选②7cos 14B =,③8c =,由于7πcos 0,142B B ⎛⎫=∴∈ ⎪⎝⎭,又71cos 142B =<,故π3B >,而π3A =,故a b <,这与①2a b -=矛盾,因此可以选择②③;则321sin 14B =,()21sin =sin sin cos cos sin 7C A B A B A B +=+=,由正弦定理可得8sin =sin 217c Aa C==所以11sin 82214ABC S ac B △==创�.17.在正四棱柱1111ABCD A B C D -中,1,AB E =为1BB 中点,直线11B C 与平面1AD E 交于点F .(1)证明:F 为11B C 的中点;(2)若直线AC 与平面1AD E 所成的角为π3,求二面角11A AD F --的余弦值.【答案】(1)证明见解析(2)66【分析】(1)根据线面平行的性质定理判断;(2)建立如图所示的空间直角坐标系,由空间向量法求线面角确定E 点位置,再由空间向量法求二面角.【小问1详解】如图,连接1BC ,1,FE FD ,在正四棱柱1111ABCD A B C D -中,由AB 与11C D 平行且相等得11ABC D 是平行四边形,所以11//BC AD ,又1BC ⊄平面1AD E ,1AD ⊂平面1AD E ,所以1//BC 平面1AD E ,1BC ⊂平面11BCC B ,平面1AD E 平面11BCC B EF =,所以1//BC EF ,E 是1BB 中点,所以F 是11B C 的中点;【小问2详解】以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,如图,设1AA m =(0m >),则(1,0,0)A ,(0,1,0)C ,1(0,0,)D m ,(1,1,2mE ,(1,1,0)AC =- ,1(1,0,),(0,1,)2mAD m AE =-= ,设平面1AD E 的一个法向量是(,,)t x y z =,则102t AD x mz mt AE y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取1z =,得(,,1)2m t m =- ,因为直线AC 与平面1AD E 所成的角为π3,所以πcos ,sin3t ACt AC t AC⋅==,解得2m =(负值舍去),所以(2,1,1)t =-,平面11AA D 的一个法向量是(0,1,0)n =,平面1AD F 即为平面1AD E ,则6cos ,6t n t n t n ⋅===- ,二面角11A AD F --为锐角,因此其余弦值为66.18.激光的单光子通讯过程可用如下模型表述:发送方将信息加密后选择某种特定偏振状态的单光子进行发送,在信息传输过程中,若存在窃听者,由于密码本的缺失,窃听者不一定能正确解密并获取准确信息.某次实验中,假设原始信息的单光子的偏振状态0,1,2,3等可能地出现,原始信息息的单光子的偏振状态与窃听者的解密信息的单光子的偏振状态有如下对应关系.原始信息的单光子的偏振状态0123解密信息的单光子的偏振状态0,1,20,1,31,2,30,2,3已知原始信息的任意一种单光子的偏振状态,对应的窃听者解密信息的单光子的偏振状态等可能地出现.(1)若发送者发送的原始信息的单光子的偏振状态为1,求窃听者解密信息的单光子的偏振状态与原始信息的单光子的偏振状态相同的概率;(2)若发送者连续三次发送的原始信息的单光子的偏振状态均为1,设窃听者解密信息的单光子的偏振状态为1的个数为X ,求X 的分布列和数学期望()E X ;(3)已知发送者连续三次发送信息,窃听者解密信息的单光子的偏振状态均为1.设原始信息的单光子只有一种偏振状态的可能性为a ,有两种偏振状态的可能性为b ,有三种偏振状态的可能性为c ,试比较,,a b c 的大小关系.(结论不要求证明)【答案】(1)13(2)分布列见解析,()1E X =(3)a c b<<【分析】(1)列出基本事件,再求解概率即可.(2)利用分布列的定义求解分布列,再求解数学期望即可.(3)依据题意猜测结论即可.【小问1详解】设“解密信息的单光子的偏振状态与原始信息的单光子的偏振相同”独立作为事件A ,易知共有3个基本事件,则1()3P A =.【小问2详解】X 的可能取值为0,1,2,3.328(0)()327P X ===,123124(1)C (339P X ==创=,223122(2)C ()339P X ==创=,33311(3)C ()327P X ==´=,所以,X 的分布列如下:X0123P82749291278421()01231279927E X =⨯+⨯+⨯+⨯=.【小问3详解】结论:a c b<<证明:易知3113(39a =⨯=,3126(39c =⨯=,3166()39b =3⨯⨯=,故a c b <<得证.19.已知函数()()222ln 0f x a x x a =+≠.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)3y =(2)340e a -<<或20a -<<【分析】(1)求导,代值可得()()10,13f f '==,即可求解切线,(2)求导得()()()21f x x+'=,对a 分类讨论,求解函数的单调性,即可根据最小值为负求解.【小问1详解】当1a =时,()2ln f x x x =+,则()21f xx'=,所以()()10,13f f '==,故()y f x =在点()()1,1f 处的切线方程为3y =【小问2详解】()()()()()22202102x a f x a a xxx x +'=+==≠>,当0a >时,则20+>,令()0,f x '>则21x a>,令()0,f x '<则210x a <<,故()f x 在21,a ⎛⎫+∞ ⎪⎝⎭单调递增,在210,a ⎛⎫ ⎪⎝⎭单调递减,故当21x a=,()f x 取极小值也是最小值,则222211122ln 34ln f a a a a a ⎛⎫=+=+⎪⎝⎭,又当(),,x f x →+∞→+∞且()0,x f x →→+∞,故要使函数()f x 有两个零点,只需要()min 34ln 0f x a =+<,解得340e a -<<;当0a <时,则10<,令()0,f x '>则24x a >,令()0,f x '<则240x a<<,故()f x 在24,a ⎛⎫+∞⎪⎝⎭单调递增,在240,a ⎛⎫⎪⎝⎭单调递减,故当24x a =,()f x 取极小值也是最小值,则222222444422ln 2ln 4ln 22ln f a a a a a a ⎛⎫=+=-=-+ ⎪⎝⎭,又当(),,x f x →+∞→+∞且()0,x f x →→+∞,故要使函数()f x 有两个零点,只需要()2min 4ln 22ln 0f x a =-+<,解得20a -<<;综上可得340e a -<<或20a -<<.20.已知两点()()121,0,1,0F F -,曲线Ω上的动点M 满足12122MF MF F F +=,直线2MF 与曲线Ω交于另一点N .(1)求曲线Ω的方程;(2)设曲线Ω与x 轴的交点分别为,A B (点A 在点B 的左侧,且M 不与,A B 重合),直线AM 与直线BN 交于点P .当点B 为线段NP 的中点时,求点N 的横坐标.【答案】(1)22143x y +=(2)0【分析】(1)根据椭圆的定义即可求解,(2)联立直线与椭圆方程得韦达定理12122269,3434t y y y y t t --+==++,即可根据中点关系以及向量共线得2135y y -=,代入韦达定理中即可求解213t =,进而可求解.【小问1详解】由于121212242MF MF F F F F +==>=,所以M 是以()()121,0,1,0F F -为焦点,以4为长轴长的椭圆,故2,1==⇒=a cb 故椭圆方程为22143x y +=.【小问2详解】由于MN 斜率不为0,故设直线MN 方程为:1x ty =+,联立()2222134690143x ty t y ty x y =+⎧⎪⇒++-=⎨+=⎪⎩,设()()1122,,,M x y N x y ,则12122269,3434t y y y y t t --+==++,()2,0,(2,0)A B -,由于点B 为线段NP 的中点,则()224,P x y --,又P 是直线AM 与直线BN 的交点,所以//AP AM,()()22116,,2,AP x y AM x y =--=+,故()()212162x y y x -=-+,()()22121121353535y ty y y ty y y y --=-+⇒=-⇒=,将2135y y -=代入12122269,3434t y y y y t t --+==++可得22222223235569,35434t y y t y y t --=-==-+++,故2225695234343t t t ⎡⎤---⎛⎫⎛⎫=⨯ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦,解得213t =,故222953343y t --⎛⎫=⨯= ⎪+⎝⎭,由2222143x y +=可得20x =,故点N 的横坐标为0.21.将数列0:1,2,3,4,N ⋅⋅⋅中项数为平方数的项依次选出构成数列1:1,4,9,16,A ⋅⋅⋅,此时数列0N 中剩下的项构成数列1:2,3,5,6,N ⋅⋅⋅;再将数列1N 中项数为平方数的项依次选出构成数列2:2,6,12,20,A ⋅⋅⋅,剩下的项构成数列2N ;….如此操作下去,将数列()*1k N k -∈N 中项数为平方数的项依次选出构成数列k A ,剩下的项构成数列k N .(1)分别写出数列34,A A 的前2项;(2)记数列m A 的第n 项为(),f m n .求证:当2n ≥时,()(),,122f m n f m n n m --=+-;(3)若(),108f m n =,求,m n 的值.【答案】(1)3A 的前2项为3,8;4A 的前2项为5,11;(2)证明见解析;(3)6,8.m n ==【分析】(1)直接利用数列定义求解;(2)证明{}(,)(,1)f m n f m n --为等差数列即可求解;(3)先利用数学归纳法证明22(22,1)1,(212,1) 1.f n i i n i f n i i n n i -+=+++-+=+++进而求得(,)f m n 的表达式,利用累加法再解方程求解【小问1详解】数列3A 的前2项为3,8;数列4A 的前2项为5,11;【小问2详解】首先2(1,)f n n =,当2n ≥时,(1,)(1,1)21f n f n n --=-结论成立;当2m ≥时,对于相邻的两个数列:1:(1,1),(1,2),,(1,1),(1,),,:(,1),(,2),,(,1),(,),,m m A f m f m f m n f m n A f m f m f m n f m n ------- 149162536496426122030425672381524354863805111929415571897142334476279981018284054708810813223346617897118172739536987107129因为(,1),(1,)f m n f m n --都在数列2m N -中,且(,1)f m n -在(1,)f m n -之前,所以(,1)(1,)f m n f m n -<-在数列1,m m A A -中,必有(1,)(,)f m n f m n -<,所以(,1)(1,)(,)f m n f m n f m n -<-<,所以(,)(,1)(1,)(1,1)1f m n f m n f m n f m n --=----+所以{}(,)(,1)f m n f m n --构成首项为(1,)(1,1)21f n f n n --=-,公差为1的等差数列,所以(,)(,1)(21)(1)2 2.f m n f m n n m n m --=-+-=+-【小问3详解】由各个数列生成的规则知,{}2221,2,,2n n n n +++ 中不可能有两个元素是同一数列的项.从上面的表格,我们猜想:集合{}2221,2,,2n n n n +++ 中的每个元素,且仅是数列2321,,,n A A A + 中某个数列的项.具体地可概括成结论P :对任意,n *∈N ,1i i n ∈-N ≤,有22(22,1)1,(212,1) 1.f n i i n i f n i i n n i -+=+++-+=+++下面用数学归纳法证明:(i)当1n =时,(2,1)2,(3,1)3,f f ==由题意数列23,A A 的首项分别是2,3,结论成立;(ii)假设当N ()n k k *=∈时,结论成立,即对N,1i i k ∀∈-≤,22(22,1)1,(212,1)1f k i i k i f k i i k k i -+=+++-+=+++那么由第(2)问的结论知:当N,1i i k ∈≤-时,(22,2)(22,1)2(2)(22)2f k i i f k i i i k i -+=-++++--22(1)22(1)2k i k k i =++++=+++,[](212,2)(212,1)2(2)2122f k i i f k i i i k i +-+=+-+++++--2(1)(23)k k i k =+++++2(1)(1)2k k i =+++++,上式表明,集合{}222(1)1,(1)2,,(1)2(1)k k k k +++++++ 中除了22(1)1,(1)(2)k k k +++++的每一个元素都是数列2321,,,k A A A + 中的某个数列的项,还剩下两个元素:22(1)1,(1)(2)k k k +++++,它们必是数列2223,k k A A ++的首项,结果只有22(22,1)(1)1,(23,1)(1)(1)1f k k f k k k +=+++=++++.根据(1)(2)知,结论P 成立.由结论P 可得,数列2k A 的首项为21k +,21k A +的首项为21k k ++,即22221,1,44(,1)(1)111,,1,,424m m m m f m m m m m m ⎧⎧++⎪⎪⎪⎪==⎨⎨---⎪⎪+++⎪⎪⎩⎩为偶数,为偶数,为奇数为奇数另一方面,由第(2)问的结论:(,)(,1)22f m n f m n n m --=+-得:(,2)(,1)2f m f m m -=+,(,3)(,2)4f m f m m -=+,…(,)(,1)22f m n f m n n m --=+-,相加得:(,)24(22)(1)(1)()(,1)f m n n n m n n m f m =+++-+-=-++ ,当1n =时,上式也成立.所以22(1)(1)(),4(,)1(1)(1)(),.4mn n m m f m n m n n m m ⎧++-+⎪⎪=⎨-⎪++-+⎪⎩为偶数,为奇数221,211,.24m n n m mn n m ⎧⎛⎫+-+⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪+-+- ⎪⎪⎝⎭⎩为偶数,为奇数令2(1)1082m n n +-+=,则2(1)108,2mn n +-=-所以(1)2mn =--.由12m≥得2108n n +≤,所以9n ≤,所以108[99,107)n -∈,10=.所以8n =(81)3-=,所以6m =;令21(1)10824m n n +-+-=,有2(22)4334m n n +-=-,22m n =-.由m 1≥得2108n ≤,所以10n ≤.所以4334(393,429)n -∈*,N 无解.综上,当(,)108f m n =时,6,8.m n ==【点睛】关键点点睛:本题考查数列新定义,关键是利用数学归纳法得22(22,1)(1)1,(23,1)(1)(1)1f k k f k k k +=+++=++++,进而得到(,)f m n 的表达式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Ⅱ)若PE BE,直线PD与平面PBC所成的角为30°,求PE长.
图(1)图(2)
18.(本小题13分)已知函数 .
(Ⅰ)当 时,求函数f(x)在[1,e]上的最大值和最小值;
(Ⅱ)若a>0,讨论 的单调性.
19.(本小题14分)已知椭圆C: 的短轴的端点分别为A,B,直线AM,BM分别与椭圆C交于E,F两点,其中点M (m, )满足 ,且 .
3 ,使得直线 与图象G交于4个点,且相邻点之间的距离相等.
其中正确命题的序号是
(A)①②(B)①③(C)②③(D)①②③
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
9.圆 的半径是________。
10.已知变量 具有线性相关关系,测得 的一组数据如下: ,其回归方程为 ,则 的值是。
(A)18(B)36(C) 54(D) 72
8.已知偶函数f(x)(x∈R),当 时,f(x)=-x(2+x),当 时,f(x)=(x-2)(a-x)( ).
关于偶函数f(x)的图象G和直线 :y=m( )的3个命题如下:
1当a=4时,存在直线 与图象G恰有5个公共点;
2若对于 ,直线 与图象G的公共点不超过4个,,………………………….4分
(C)充分而不必要条件(D)既不充分又不必要条件
5.下列四个函数中,最小正周期为 ,且图象关于直线 对称的是
(A) (B)
(C) (D)
6.在平面区域 内任取一点 ,若 满足 的概率大于 ,则 的取值范围是
(A) (B) (C) (D)
7.用5,6,7,8,9组成没有重复数字的五位数,其中两个偶数数字之间恰有一个奇数数字的五位数的个数是
频率分布表
分组
频数
频率
[0,50]
14
(50,100]
a
x
(100,150]
5
(150,200]
b

(200,250]
2
合计
30

17.(本小题13分)如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上, 于E,现将△ADE沿DE折起到△PDE的位置(如图(2)).
(Ⅰ)求证:PB DE;
1. 复数 的虚部为
(A)3(B) (C)4(D)
2.设向量a=(x,1),b=(4,x),且a,b方向相反,则x的值是
(A)2(B)-2 (C) (D)0
3. 展开式中的常数项是
(A)6(B)4(C)-4(D)-6
4.已知数列{an},则“{an}为等差数列”是“a1+a3=2a2”的
(A)充要条件(B)必要而不充分条件
(Ⅱ)把集合 中的元素从小到大依次排列构成数列 ,求数列 的通项公式,并说明理由;
(Ⅲ)求数列 的前n项和
丰台区2013年高三第二学期统一练习(二)
数学(理科)
一 、选择题共8小题,每小题5分,共40分.
题号
1
2
3
4
5
6

8
答案
A
B
A


D
B
D
二、填空题共6小题,每小题5分,共30分.
9.1;10.0.9;11.2; 12. ; 13.3x+y-4=0, 2;14. .
三、解答题共6小题,共80分.解答要写出文字说明,演算步骤或证明过程.
15.(本小题13分)已知 的三个内角分别为A,B,C,且
(Ⅰ)求A的度数;
(Ⅱ)若 求 的面积S.
解:(Ⅰ)
,……………………….2分
,……………………….4分
°.…………………….6分
(Ⅱ)在 中, ,
或 (舍),………….10分
(Ⅰ)写出下面频率分布表中a,b,x,y的值;
(Ⅱ)某人计划今年6月份到此城市观光4天,若将(Ⅰ)中的频率作为概率,他遇到空气质量为优或良的天数用X表示,求X的分布列和均值EX.
频率分布表
分组
频数
频率
[0,50]
14
(50,100]

x
(100,150]
5
(150,200]


(200,250]
2
合计
三、解答题共6小题,共80分.解答要写出文字说明,演算步骤或证明过程.
15.(本小题13分)已知 的三个内角分别为A,B,C,且
(Ⅰ)求A的度数;
(Ⅱ)若 求 的面积S.
16(本小题13分)国家对空气质量的分级规定如下表:
污染指数
0~50
51~100
101~150
151~200
201~300
>300
空气质量


轻度污染
中度污染
重度污染
严重污染
某市去年6月份30天的空气污染指数的监测数据如下:
34
14
207
81
60
42
1
27
36
20
16
48
根据以上信息,解决下列问题:
(Ⅰ)写出下面频率分布表中a,b,x,y的值;
(Ⅱ)某人计划今年6月份到此城市观光4天,若将(Ⅰ)中的频率作为概率,他遇到空气质量为优或良的天数用X表示,求X的分布列和均值EX.
年北京丰台区高三二模理科数学试题
———————————————————————————————— 作者:
———————————————————————————————— 日期:
丰台区2013年高三第二学期统一练习(二)
数学(理科)
第一部分(选择题 共40分)
一 、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
11. 如图,已知⊙O的弦AB交半径OC于点D,若AD=4,BD=3,OC=4,则CD的长为______。
12.若双曲线C: 的离心率为 ,则抛物线 的焦点到C的渐近线距离是______。
13.曲线 在 处的切线方程是______,在x=x0处的切线与直线 和y轴围成三角形的面积为。
14.在圆 上有一点P(4,3),点E,F是y轴上两点,且满足 ,直线PE,PF与圆交于C,D,则直线CD的斜率是________。
.…………………….13分
16(本小题13分)国家对空气质量的分级规定如下表:
污染指数
0~50
51~100
101~150
151~200
201~300
>300
空气质量


轻度污染
中度污染
重度污染
严重污染
某市去年6月份30天的空气污染指数的监测数据如下:
34
14
207
81
60
42
1
27
36
20
16
48
根据以上信息,解决下列问题:
(Ⅰ)求椭圆C的离心率e;
(Ⅱ)用m表示点E,F的坐标;
(Ⅲ)若∆BME面积是∆AMF面积的5倍,求m的值.
20.(本小题14分)已知等差数列 的通项公式为an=3n-2,等比数列 中, .记集合 , ,把集合U中的元素按从小到大依次排列,构成数列 .
(Ⅰ)求数列{bn}的通项公式,并写出数列 的前4项;
相关文档
最新文档