二次函数与面积(1)

合集下载

初中数学中考二轮6二次函数中的面积问题(1)

初中数学中考二轮6二次函数中的面积问题(1)

中考压轴题:二次函数中的面积问题学生姓名年级学科授课教师日期时段核心内容二次函数中求面积最值,图形平移或折叠面积问题课型一对一/一对N教学目标1.会利用函数的图象性质来研究几何图形的面积最值问题;2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。

3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.重、难点割补法求三角形面积,动态问题一般解题思路。

课首沟通1、上次的作业给我看看,完成了没有?还有不会的题吗?2、在初中学习二次函数过程中,是否还存在思维障碍和知识点?3、面对二次函数图象中的图形平移得到面积问题能不能自我总结出一般法则呢?知识导图导学一:二次函数中求面积的最值知识点讲解 1:直接公式法求解图形面积S△ = a ha d (d表示已知点到直线的距离)2、割补(和差)法以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。

S△ = ×水平宽×铅垂高如下图:或S△ =3、平行线等积变换①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC= S△DBC,S△AOB =S△COD例 1. (2015潍坊中考改编)如图,在平面直角坐标系中,抛物线y=mx2-8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2-x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.【学有所获】图形面积的求法常见有三种,分别是:(1)(2)(3)[学有所获答案] (1) 直接公式求法(2) 割补法(3) 平行线等积变换法我爱展示1.(2014海珠一模)如图,已知抛物线y=x2+bx+c与轴交于A,B两点(点A 在点B的左侧)与轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D,点E为y轴上一动点,CE的垂直平分线交抛物线于P,Q两点(点P在第三象限)(1)求抛物线的函数表达式和直线BC的函数表达式;(2)当△CDE是直角三角形,且∠CDE=90°时,求出点P的坐标;(3)当△PBC的面积为时,求点E的坐标.2.(2015越秀期末考试)如图,已知抛物线y=x2+ax+4a与x轴交于点A,B,与y轴负半轴交于点C且OB=OC,点P为抛物线上的一个动点,且点P位于x轴下方,点P与点C不重合.(1)求该抛物线的解析式;(2)若△PAC的面积为,求点P的坐标;(3)若以A,B,C,P为顶点的四边形面积记作S,则S取何值时,对应的点P有且只有2个?导学二:二次函数中的图形平移、折叠问题知识点讲解 1:二次函数、一次函数图象平移法则将()的图像如何平移到的图像。

二次函数的应用问题:面积、高度、利润等

二次函数的应用问题:面积、高度、利润等

二次函数的应用问题:面积、高度、利润

二次函数是数学中常见的一种函数类型,具有广泛的应用。

在实际生活中,我们可以利用二次函数来解决面积、高度、利润等问题。

面积
当需要求解一个图形的面积时,二次函数可以提供一个可行的解决方案。

例如,假设我们需要求解一个矩形的面积,已知其宽度是x,长度是y,可以建立如下的二次函数关系:
y = ax^2 + bx
其中a和b为常数,可以根据实际情况确定。

通过求解这个二次函数,我们可以得到矩形的面积,从而满足问题需求。

高度
在某些场景下,我们可能需要确定一个物体的最大高度。

例如,炮弹发射的最大高度问题就可以通过二次函数来解决。

假设物体的
高度是y,时间是x,可以建立如下的二次函数关系:
y = ax^2 + bx + c
其中a、b和c为常数,可以通过实验或者推导得到。

通过求
解这个二次函数,我们可以确定物体的最大高度及对应的时间,为
问题解决提供依据。

利润
二次函数还可以应用于经济领域,特别是求解利润相关的问题。

例如,假设某公司的利润随销售量的变化可以建立一个二次函数模型:
P = ax^2 + bx + c
其中P表示利润,x表示销售量,a、b和c为常数。

通过求解这个二次函数,我们可以确定最大利润对应的销售量及其他相关信息,为经济决策提供参考。

总结来说,二次函数在解决面积、高度、利润等问题时具有很大的潜力。

通过建立二次函数模型并进行求解,我们可以得到对应问题的答案,为实际应用提供指导。

二次函数与面积

二次函数与面积

二次函数与面积求三角形的面积: (1)直接用面积公式计算;如图:抛物线与x 轴交于A 、B 两点,P 是抛物线上一点。

则S △ABP=21AB •PE(2)割补法;如图:直线MN 与抛物线交于M 、N ,与y 轴交于E , 则S △MON=S △OEM+S △OEN(3)铅垂高法;如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

BC铅垂高水平宽 haA1、如图,抛物线经过A(-1,0),B(3,0),C(0,-3)三点,点P在第二象限的抛物线上,S△POB=S△PCO,求P点的坐标。

2、如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B的坐标为(3,- 3).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA=2S△AOB。

3、如图,在平面直角坐标系中,直线112y x=+与抛物线y=ax2+bx-3交于A、B两点,点A在x轴上,点B的纵坐标为3.点P是直线AB下方的抛物线上的一动点(不与点A、B 重合),连接PA、PB,S△PAB=6,求P点的坐标。

4、如图,在平面直角坐标系xOy 中,已知二次函数2+2y ax ax c =+的图像与y 轴交于点()3 0,C ,与x 轴交于A 、B 两点,点B 的坐标为()0 3,-。

(1) 求二次函数的解析式及顶点D 的坐标;(2) 点P 是第二象限内抛物线上的一动点,问:点P 在何处时△CPB 的面积最大?最大面积是多少?并求出此时点P 的坐标。

5、如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,92). (1)求抛物线的函数表达式;(2)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由.6、如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使△ABC面积有最大值,若存在,求出这个最大值;若不存在,请说明理由;7、如图,已知抛物线经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式.(2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示).(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使△BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由.。

二次函数与面积问题

二次函数与面积问题

用一段长38m的篱笆围成一个如图所示的矩形菜园,墙 长为18m,门宽2m,当这个矩形的长、宽各为多少时, 菜园的面积最大,最大面积是多少? 墙
解:设垂直于墙的边长为xm,矩形 面积为s,根据题意得:
S=x(38-2x+2) =-2x2+40x=-2(x-10)2+200
∴当x=11时,S有最大值,S=-2+200=198 38-2x+2=40-22=18 即:矩形的长为18m,宽为11m时面积最大为198m2

解:设垂直于墙的边长为xm,矩形 面积为s,根据题意得:
菜园
S=x(40-2x)=-2x2+40x
靠墙围矩形问题
例1:用一段长40m的篱笆围成一个一边靠墙的矩形菜园, 墙长为24m,求矩形面积与矩形一边长的函数关系式, 并求出自变量取值范围。当这个矩形的长、宽各为多少 18m 时,菜园的面积最大,最大面积是多少?
“二次函数应用” 的思 路
本节“最大面积”解决问题的过程,你能总结一 下解决此类问题的基本思路吗?与同伴交流. 1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系; 3.用数学的方式表示出它们之间的关系; 4.做数学求解;
5.检验结果的合理性,拓展等.
(1)列出二次函数的解析式,并根 据自变量的实际意义,确定自变量的 取值范围; (2)在自变量的取值范围内,运用 公式法或通过配方求出二次函数的最 大值或最小值。也可以利用图象判断。
解: (1) ∵ AB为x米、篱笆长为24米
∴ BC为(24-4x)米
∴ S=x(24-4x) =-4x2+24 x (0<x<6)
A B
D C
4ac b 2 b (2)当x= 2a 3 时,S最大值= 4a =36(平方米)

二次函数面积

二次函数面积

二次函数面积
二次函数的面积方法有很多种:铅垂高法、平行法、矩形覆盖法。

每个方法计算的方式方法是不同的,在学习和练习的时候,也要根据自己的实际情况进行学习。

方法一:铅垂高法
铅垂高的表示法是解这种题的关键。

可以结合写的简略过程,进行一下总结,而且还可以知识的迁移。

比如不问最大面积,而是问面积等于一个数,或者面积等于某三角形面积等类型,解法都是相同的。

方法二:平行法
平行法最关键的知识点,是平行线之间高的问题,一般这种情况都是平移高到与坐标轴交点处,最后用相似求值。

如果题目如下图,还涉及到二次函数与一次函数只有一个交点问题,解决方法是联立得到一元二次方程,根据只有一个交点,利用根的判别式等于0可以解决。

方法三:矩形覆盖法
这是最容易想到的方法,但也是计算最麻烦的方法。

利用面积的大减小去解决,一般不太建议使用这种方法,庞大的计
算量很容易出错。

二次函数图象中的面积问题.doc

二次函数图象中的面积问题.doc

二次函数图象中的面积问题
二次函数综合题中,常常会考面积相关的问题.
通常解决此类问题的关键是用未知数表示出图形的面积,再解决问题.
因此,第一步一般需要设出动点坐标(或用条件中的动点坐标),再选择适当的方式求图形的面积(三角形或四边形),然后用未知数表示出需要求的线段的长度,再得出结论.
常用求面积方法:
①直接法求三角形面积.如图所示,△ABC中AD为边BC上的高,则S△ABC=1/2BC·AD.
②补全法求三角形面积.如图所示,S△ABC=S矩形BDFE-S△ABE-S△ACF-S△BCD.
③分割法求三角形面积.如图所示,S△ABC=S△ABD+S△ACD=AD·BF+AD·CE=AD·(BF+CE).
④平移法求三角形面积.如图所示,过点A作AD∥BC,则S△ABC=S△BCD.
当一个三角形(或其他多边形)的形状或大小发生变化时,产生面积变化.选择合适的方法,利用已知条件求出变化过程中该三角形(或其他多边形)的面积.
【典型例题】
1.如图,已知抛物线y=ax2+bx+3与x轴交于A、B
两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).
(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD 的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.此类问题非常常见,不难掌握,希望大家灵活选择适当的方法.。

九年级数学人教版(上册)22.3第1课时二次函数与图形面积

九年级数学人教版(上册)22.3第1课时二次函数与图形面积
C
Q
A P 图1 B
侵权必究
当堂练习
4、如图,四边形的两条对角线AC、BD互相垂直,AC+ BD=10,当AC、BD的长是多少时,四边形ABCD的面 积最大?
解:设AC=x,四边形ABCD面积为y,
则BD=(10-x).
y 1 x(10 x) 1 ( x 5)2 25 .
2
2
2
当x=5时, y有最大值 25 . 2
S 60 x • x 1 x2 30x 1 (x 30)2 450
2
2
2
侵权必究
问题4 当x=30时,S取最大值,此结论是否正确?
不正确.
问题5 如何求自变量的取值范围?
0 < x ≤18.
问题6 如何求最值?
由于30 >18,因此只能利用函数的增减性求其最值. 当x=18时,S有最大值是378.
侵权必究
讲授新课
✓ 典例精讲 ✓ 归纳总结
侵权必究
讲授新课
1
合作探究
求二次函数得最大(或最小)值
问题1
二次函数 y ax2 bx c 的最值由什么决定?
y
x b
2a
y 最大值
x b 2a
O
x
最小值
O
x
二次函数 y ax2 bx c 的最值由a及自变量的取值范围决定.
侵权必究
讲授新课
变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩
形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面 积最大,最大面积是多少?
问题1 变式2与变式1有什么异同? 问题2 可否模仿变式1设未知数、列函数关系式? x
问题3 可否试设与墙平行的一边为x米?则如何表示另一边与

二次函数中的面积问题

二次函数中的面积问题

二次函数——面积问题(一)〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二. 常见图形及公式抛物线解析式y=ax2 +bx+c (a≠0)抛物线与x 轴两交点的距离AB=︱x1–x2︱=抛物线顶点坐标(-, ) 抛物线与y 轴交点(0,c )“歪歪三角形中间砍一刀”,即三角形面积等于水平宽与铅垂高乘积的一半. 〖基础习题〗 1、若抛物线y=-x2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为.2、若抛物线y=x2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.3、已知抛物线与轴交于点A ,与轴的正半轴交于B 、C 两点,且BC=2,S △ABC=3,则=,B C 铅垂高水平宽ha图1 C BA O y x DB A O y x P=.〖典型例题〗● 面积最大问题1、二次函数的图像与轴交于点A (-1,0)、B (3,0),与轴交于点C ,∠ACB=90°.(1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得,求P 点坐标。

● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x+3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x2+bx+c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x2﹣6x+5=0的两个实数根,且m <n ,抛物线y=﹣x2+bx+c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. yx B A C O三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)(1)求抛物线解析式和线段AB的长度;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB.法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明点动+面积5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。

人教九年级数学上册《二次函数与图形面积问题》课件

人教九年级数学上册《二次函数与图形面积问题》课件

第1课时 二次函数与图形面积问题
重难互动探究
探究问题 求几何图形的最大(小)面积 例 [教材探究1变式题] 一条隧道的截面如图22-3-2所 示,它的上部是一个以AD为直径的半圆O,下部是一个矩形 ABCD.
图22-3-2
第1课时 二次函数与图形面积问题
(1)当AD=4米时,求隧道截面上部半圆O的面积; (2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米. ①求隧道截面的面积S(平方米)关于半径r(米)的函数关系 式(不要求写出r的取值范围); ②若2米≤CD≤3米,求隧道截面的面积S的最大值(π取3.14, 结果精确到0.1平方米).
与x间的函数关系,再求解.
解: 不妨设矩形纸较短边长为 a,设 DE=x,则 AE=a -x.
那么两个正方形的面积和为 y=x2+(a-x)2 =2x2-2ax+a2. 当 x=--2×22a=12a 时, y 最小=2×12a2-2a×12a+a2=12a2. 即点 E 选在矩形纸较短边的中点时,剪下的两个正方形的 面积和最小.
[解析] (1)已知AD=4米,即半圆O的半径为2米,直接根 据圆的面积公式计算;(2)①隧道的截面积由两部分组成, 即半圆面积和矩形面积;②注意自变量的取值范围,在实际问 题中求最大(小)值,要注意自变量的范围是否符合实际意义.
第1课时 二次函数与图形面积问题
解:(1)当 AD=4 米时,S 半圆=12π·A2D2=12π×22=2 π(平方米),
数学
新课标(RJ) 九年级上册
22.3 实际问题与二次函数
第1课时 二次函数与图形面积问题
第1课时 二次函数与图形面积问题
新知梳理
► 知识点 用二次函数求几何图形的最大(小)面积 在解答有关二次函数求几何图形的最大(小)面积的问题时 ,应遵循以下规律: (1)利用几何图形的面积(或体积)公式得到关于面积( 或体积)的二次函数关系式; (2)由已得到的二次函数关系式求解问题; (3)结合实际问题中自变量的取值范围得出实际问题的答 案.

二次函数解析式求法及图形面积问题

二次函数解析式求法及图形面积问题

注:任何求抛物线解析式的问题,都可以使用一般式.
练习1: 二次函数 的图象经过点(4,3), (3,0),求二次函数的解析式
二次函数解析式特点: +k 2、顶点式:y=a(x-h)²
(a≠0), 这种形式易得顶点坐标和对称轴,顶 点坐标是 (h,k) ,对称轴是直 线 x=h .
注:一般情况下,已知抛物线的顶点坐标求其解析 式时,选用顶点式比较方便。
中考链接
(2017济南 )如图1,矩形OABC的顶点A,C的坐标 分别为(4,0),(0,6),直线AD交B C于点D, tan∠OAD=2,抛物线M1:y=ax² +bx(a≠0)过A, D两点. (1)求点D的坐标和抛物线M1的表达式;
y D C B C E
O 图1
A
xห้องสมุดไป่ตู้
O
二、二次函数中面积问题常见解决方法: 一、直接计算法
水平宽 铅锤高 二、运用 S 2
三、割补法
例1. 如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0), 另一个交点为B,且与y轴交于点C. (1)求m的值; (2)求点B的坐标; (3)该二次函数图象上有一点D,使S△ABD =S△ABC,求点D的坐标.
铅垂高法; 如图,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两 条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内 部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积 的新方法:S△ABC=ah/2,即三角形面积等于水平宽与铅垂高乘积的一半 一
例2.如图,在平面直角坐标系中,已知点C(0,4),点A、B在x轴 上,并且OA=OC=4OB,动点P在过A、B、C三点的抛物线上. (1)求抛物线的函数表达式; (2)在直线AC上方的抛物线上,是否存在点P,使得Δ PAC的面积最大? 若存在,求出P点坐标及Δ PAC面积的最大值;若不存在,请说明理 由. (3)在x轴上是否存在点Q,使得Δ ACQ是等腰三角形?若存在,请直 接写出点Q的坐标;若不存在,请说明理由.

二次函数动点中求面积全解 (1)

二次函数动点中求面积全解 (1)
• 解 如图7,直线BC的解析式是y=x+3,过点P作BC 的平行线l,从而可设直线L的解析式为:y=x+b.
=27/8
三角函数法
解 如图 8,作 PE⊥x 轴交于点 E,交 BC 于点 F,作 PM⊥BC 于点 M.
设P点(x,-x2-2x+3),则F(x,x+3).
• 从以上四种解法可以看到,本题解题思路都是过 点P作辅助线,然后利用相关性质找出各元素之间 的关系进行求解。
解答: (1)抛物线解析式为y=-x2-2x+3; (2)Q(-1,2);
下面着重探讨求第(3)小题中面积最大值的几种方法.
解法1 补形、割形法
几何图形中常见的处理方式有分割、补形等,此类方法的要点在于把所求图形的面积 进行适当的补或割,变成有利于表示面积的图形。
方法一 如图3,设P点(x,-x2-2x+3)
如图,在平面直角坐标系中,二次函数
于点
,在 轴上有一点
,连接 .
交 轴于点

,交 轴
(1)求二次函数的表达式; (2)若点 为抛物线在 轴负半轴上方的一个动点,求 面积的最大值; (3)抛物线对称轴上是否存在点 ,使 为等腰三角形,若存在,请直接写出所有 点 的坐标,若不存在请说明理由.
(2)当点 P 运动到什么位置时,△PAB 的面积最大?
图1
(2)当点 P 运动到什么位置时,△PAB 的面积最大?
解:过点 P 作 PH⊥x 轴于点 H,交 AB 于点 F,如解图 1 所示.
∵x=0 时,y=-x2-2x+3=3,
∴A(0,3).
∴直线 AB 的解析式为 y=x+3.
∵点 P 在线段 AB 上方的抛物线上,
根据上述方法,本题解答如下:
解 如图6,作PE⊥x轴于点E,交BC于

(word完整版)二次函数与几何综合--面积问题

(word完整版)二次函数与几何综合--面积问题

二次函数与几何综合—-面积问题➢ 知识点睛1.“函数与几何综合"问题的处理原则:_________________,__________________.2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.② ___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息.3.二次函数之面积问题的常见模型①割补求面积—-铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ .➢ 例题示范例1:如图,抛物线y =ax 2+2ax —3a 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OA =OC ,连接AC .(1)求抛物线的解析式.(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值.(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A,B ,E ,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (—3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,—3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】解:(1)由223y ax ax a =+-(3)(1)a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =,∴(03)C -,, 将(03)C -,代入223y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即-3〈x P <0; (2)设计方案:1()2APBB A S PM x x =⋅⋅-△注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP .【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q ,易得:3AC l y x =--设点P 的横坐标为t ,则2(23)P t t t +-,, ∵PQ ∥y 轴, ∴(3)Q t t --,,∴223(23)3(30)Q P PQ y y t t t t t t =-=---+-=---<<, ∴2139()(30)222ACP C A S PQ x x t t t =⋅-=---<<△ ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-, ∴当32t =-时,ACP S △最大,为278. 第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素: 要使这个四边形为平行四边形.首先考虑AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB 既可以作边,也可以作对角线. 画图求解:先根据平行四边形的判定来确定EF 和AB 之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB 作为边时,依据平行四边形的判定,需满足EF ∥AB 且EF =AB ,要找EF ,可借助平移.点E 在对称轴上,沿直线容易平移,故将线段AB 拿出来沿对称轴上下方向平移,确保点E 在对称轴上,来找抛物线上的点F .注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E 点坐标,利用平行且相等表达抛物线上F 点坐标,代入抛物线解析式求解.②AB 作为对角线时,依据平行四边形的判定,需满足AB ,EF 互相平分,先找到定线段AB 的中点,在旋转过程中找到EF 恰好被AB 中点平分的位置,因为E 和AB 中点都在抛物线对称轴上,说明EF 所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F 点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形. 【过程示范】(3)①当AB 为边时,AB ∥EF 且AB =EF , 如图所示,设E 点坐标为(—1,m ),当四边形是□ABFE 时,由(30)A -,,(10)B ,可知,F 1代入抛物线解析式,可得,m =12, ∴F 1(3,12); 当四边形是□ABEF 时,由(30)A -,,(10)B ,可知,F 2(—5,m )可得,m =12, ∴F 2(—5,12).②当AB 为对角线时,AB 与EF 互相平分,AB 的中点D (—1,0),设E (—1,m ),则F (—1,—m ),代入抛物线解析式,可得,m =4, ∴F 3(—1,-4).综上:F 1(3,12),F 2(—5,12),F 3(—1,—4).精讲精练1.如图,抛物线经过A (—1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式.(2)点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长.(3)在(2)的条件下,连接MB ,MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及四边形OBMC 的最大面积;若不存在,2.如图,在平面直角坐标系中,点A ,B 在x 轴上,点C ,D在y 轴上且OB =OC =3,OA =OD =1,抛物线2(0)y ax bx c a =++≠经过A ,B ,C 三点,直线AD 与抛物线交于另一点E . (1)求这条抛物线的解析式;(2)若M 是直线AD 上方抛物线上的一个动点,求△AME 面积的最大值.(3)在直线AD 下方的抛物线上,是否存在点G ,使得6AEG S =△?如果存在,求出点G 的坐标;如果不存在,请说明理由.(4)已知点Q 在x 轴上,点P 在抛物线上,Q 的坐标.3.如图,已知抛物线y =ax 2-2ax -b (a 〉0)与x 轴交于A ,B 两点,点A 在点B 的右侧,且点B 的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC ,CD ,∠ACD =90°. (1)求抛物线的解析式;(2)若点M 在抛物线上,且以点M ,A ,C 以及另一点N 为顶点的平行四边形ACNM 的面积为12,设M 的横坐标为m ,求m 的值.(3)已知点E 在抛物线的对称轴上,点F 在抛物线上,且以A ,B ,E ,F 为顶点的四边形是平行四边形,求点F 的坐标.4.如图,抛物线254y ax ax =-+(0a <)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC .(1)求抛物线的解析式;(2)设抛物线与x 轴的另一个交点为点D ,在抛物线上是否存在异于点B 的一点Q ,使△CDQ 的面积与△CDB 的面积相等?若存在,求出点Q 的横坐标;若不存在,请说明理由.(3)已知点F 是抛物线上的动点,点E 是直线y =—x 上的动点,且以O ,C ,E ,F 为顶点的四边形是平行四边形,求点E 的横坐标.。

二次函数综合(一)——面积问题

二次函数综合(一)——面积问题

二次函数综合(一) ——面积问题
一、解决函数综合题中面积问题的常用方法:
1. 割补法
当所求图形的面积没有办法直接求出时,我们采取间接(分割或补全图形再分割)的方法来表示所求图形的面积,如图1:
4. 相似法
利用相似三角形面积比等于相似比的平方进行转化.
二、基本题型
1.如图,在平面直角坐标系中,△AOB的顶点O为原点,已知点A(3,6),B(5,2),求△AOB的面积.
2.已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。

求△ACD的面积。

3已知二次函数的图像y=-x2+3x+4与x轴交于A、B两点(点A在点B的左端),与y轴交于点C,抛物线的顶点为D。

求△BCD的面积。

二次函数与面积问题

二次函数与面积问题
(1)如果所围成的花圃的面积为45平方米,试求宽 AB的长; (2)按题目的设计要求,能围成面积比45平方米更大 的花圃吗?如果能,请求出最大面积,并说明围法, 如果不能请说明理由.
例1在ΔABC中,AB=8cm,BC=6cm,∠B=90°, 点P从点A开始沿AB边向点B以2厘米/秒的速度移动, 点Q从点B开始沿BC边向点C以1厘米/秒的速度 A
解(2)设过B(2,0) M( 的解析式为:y=kx+b 3 则 k= b=-3 2 ∴直线BM的解析式为:
1 9 ,- ) 2 4
y 5 4 3 2
1 Q B 3 A y= x-3 2 -3 -2 -1 O 1 2 3 ∵QN=t ∴把y=t代入直线 -1 N MB的解析式, 2 -2C M 得x=2- t -3 3 1 1 2 ∴S= ×2×1+ (2+t)(2- t) 2 2 3
A
(0<t<4)
P
=-t2 +4t (2)s=-t2 +4t
=-(t2 -4t +4 -4) = -(t - 2)2 + 4 t=2,s有最大值4
最大面积是 4 cm2
C
Q
B
所以,当P、Q同时运动2秒后Δ PBQ的面积最大
练习2.如图,在平面直角坐标系中,四边形OABC为菱形, 点C的坐标为(4,0),∠AOC=60°,垂直于x轴的直线l从y轴 出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线l 与菱形OABC的两边分别交于点M、N(点M在点N的上方).
移动,如果P,Q分别从A,B同时出发,
1)△PBQ的面积S随出发时 间t如何变化?写出函数关系 式及t的取值范围. (2)当t为何值时,s的值最大? 最大值为多少?
C Q

专题 二次函数与面积有关的问题(知识解读)-中考数学(全国通用)

专题  二次函数与面积有关的问题(知识解读)-中考数学(全国通用)

专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。

特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。

与面积有关的问题,更是常见。

本节介绍二次函数考试题型种,与面积问题的常用解法。

同学们,只要熟练运用解法,炉火纯青,在考试答题的时候,能够轻松答题。

【知识点梳理】类型一:面积等量关系类型二:面积平分方法一:利用割补将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD解法不简便。

)方法二: 铅锤法铅锤高水平宽⨯=21S方法三 :其他面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比. 如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3【典例分析】【类型一:面积等量关系】【典例21】(2022•盘锦)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B (4,0)两点(A 在B 的左侧),与y 轴交于点C (0,﹣4).点P 在抛物线上,连接BC ,BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE,记△DCE的面积为S1,△DBP的面积为S2,当S1=S2时,求点P的坐标;【变式1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A (﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【类型二:面积平分】【典例2】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;【变式2】(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.【典例3】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB =OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【变式3】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。

二次函数面积问题

二次函数面积问题

二次函数面积问题
二次函数面积是数学中一个重要内容,也是很多人亟待解决的问题。

二次函数
面积有着渊博的数学知识,涉及数学几何、初等数学、微积分等多学科交叉的知识。

在数学运算中,二次函数面积被广泛应用于极限计算、微积分、复数函数和三角函数等复杂问题的解决中。

二次函数面积的计算基本包括曲线上的点的坐标、函数的参数,面积的值取决
于曲线的参数,而参数则是二次函数的系数和截距。

我们可以把曲线上的点的坐标写成关于参数的式子,而面积的计算则取决于把这些表达式代入到一般方程中,根据方程得出面积的结果。

二次函数面积的计算还涉及到三角函数,比如求椭圆面积,我们要对函数求导,再对导数求积分,而有时候,为了方便计算,我们也可以采用其它方法,比如变量积分求解法、微分法,可以利用相关函数和变量求助于有效地求解二次函数面积。

总之,二次函数面积的计算涉及到诸多的数学知识,使用不同的方法解决二次
函数面积的计算才可以达到最优的结果。

在现实中,二次函数面积的计算往往与诸多应用紧密相关,在科研和工程中有着重要的意义,要有效求解二次函数面积的问题,需要更深入地学习和研究,无论是针对实践中的经验,还是更深入的理论分析,对于二次函数面积的深入研究都有着突出的重要价值。

二次函数与几何专题一 面积问题 教案

二次函数与几何专题一 面积问题 教案

二次函数与几何专题一 面积问题一、学习目标1、 学生学会在二次函数中解决简单的与二次函数有关的面积问题2、 学生会用代数、几何的方法解决面积最大问题二、重点、难点函数中的坐标与线段的互相转化三、学习过程(一)基础训练1、若抛物线y=-x 2–x+6与x 轴交于A 、B 两点,则AB= 此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为 .2、已知二次函数y=x 2–21x-23与x 轴交于A 、B 两点,顶点为C ,则△ABC 的面积为 . 3、已知二次函数y=-21x 2+x+4的图象与x 轴的交点从右向左为A 、B 两点,与y 轴交点为C ,顶点为D ,求四边形ABCD 的面积.4、已知抛物线y=x 2–4x+1, 与x 轴交于A 、B 两点,在抛物线上有一点N,使△ABN 的面积为43,求点N 的坐标.5、 已知一次函数y=kx+m 的图象与二次函数y=a x 2 +bx+c 相交于A(-2,-1),B(6,3)两点,且二次函数图象与y 轴的负半轴交于C 点,若△ABC 的面积为12,求一次函数及二次函数解析式.(二)能力提升(2011•清远)如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.二次函数与几何专题二直角三角形一、学习目标1、学生学会在二次函数中解决与二次函数有关的直角三角形问题2、学生会用勾股定理、相似的方法解决直角问题二重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形三、学习过程1、如图,抛物线y=(x-1)2+n与x轴交于A、B两点,A在B的左侧,与y轴交于C(0,-3).(1)求抛物线的解析式;(2)点P为对称轴右侧的抛物线上一点,以BP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,求P点的坐标.2、(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.二次函数与几何——相似一、学习目标学生学会在二次函数中解决与二次函数有关的相似问题二、重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形1、(2013•莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.2、(2013•营口)如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C (0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.3、(2013•凉山州)如图,抛物线y=ax2-2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM 的形状;若不存在,请说明理由.二次函数与几何——全等一、学习目标学生学会在二次函数中解决与二次函数有关的全等问题二重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形1、(2013•贵港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD.(1)求该抛物线的解析式;(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,若经过点P的直线PE与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由.2、(2012•威海)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为点F,点P在抛物线上,且位于对称轴的右侧,PM⊥x轴,垂足为点M,△PCM为等边三角形.(1)求该抛物线的表达式;(2)求点P的坐标;(3)试判断CE与EF是否相等,并说明理由;(4)连接PE,在x轴上点M的右侧是否存在一点N,使△CMN与△CPE全等?若存在,试求出点N的坐标;若不存在,请说明理由.二次函数与几何——等腰三角形一、学习目标学生学会在二次函数中解决与二次函数有关的等腰三角形问题二、重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形三、学习过程3、(2012•龙岩)在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB 在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B、C的坐标;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.二次函数与几何——平行四边形 4月16日一、学习目标学生学会在二次函数中解决与平行四边形有关的问题二重点、难点函数中的坐标与线段的互相转化;在函数图象中找到几何的基本图形三、学习过程活动一:1、若抛物线y =x 2-bx +16过点(1,10),则b 的值为____ __2、抛物线过(-1,0),(3,0),(1,-5)三点,则这个二次函数的解析式_________________________。

二次函数综合专题一面积问题

二次函数综合专题一面积问题

二次函数专题一ABC的“水平宽”(a),中间的这条直线在△ABC 内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)是否存在抛物线上一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号).2+bx+4与x轴的两个交点分别为A(﹣4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,△EFK的面积最大?并求出最大面积.题型一:面积问题变式训练1变式训练2如图已知:直线y=﹣x+3交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式;(2)若点D 的坐标为(﹣1,0),在直线y=﹣x+3上有一点P ,使△ABO 与△ADP 相似,求出点P 的坐标;(3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使△ADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由.堂堂清一.选择题(共5小题)1.如图,如果把抛物线y=x 2沿直线y=x 向上方平移2个单位后,其顶点在直线y=x 上的A 处,那么平移后的抛物线解析式是( )A .y=(x+2)2+2B .y=(x+2)2+2C .y=(x ﹣2)2+2D .y=(x ﹣2)2+22.已知抛物线c :y=x 2+2x ﹣3,将抛物线c 平移得到抛物线c ′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )A .将抛物线c 沿x 轴向右平移个单位得到抛物线c ′B .将抛物线c 沿x 轴向右平移4个单位得到抛物线c ′C .将抛物线c 沿x 轴向右平移个单位得到抛物线c ′D .将抛物线c 沿x 轴向右平移6个单位得到抛物线c ′3.将抛物线y 1=x 2﹣2x ﹣3先向左平移1个单位,再向上平移4个单位后,与抛物线y 2=ax 2+bx+c 重合,现有一直线y 3=2x+3与抛物线y 2=ax 2+bx+c 相交,当y 2≤y 3时,利用图象写出此时x 的取值范围是( )A .x ≤﹣1B .x ≥3C .﹣1≤x ≤3D .x ≥04.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列4个结论:①abc >0;②b <a+c ;③4a+2b+c >0;④b 2﹣4ac >0;其中正确的结论有( )A .1个B .2个C .3个D .4个5.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,对于下列结论:①a <0;②b <0;③c >0;④2a+b=0;⑤a ﹣b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个二.填空题(共5小题)6.已知抛物线y=ax 2+x+c 与x 轴交点的横坐标为﹣1,则a+c= .7.如果抛物线y=ax 2﹣2ax+c 与x 轴的一个交点为(5,0),那么与x 轴的另一个交点的坐标是 .8.如果抛物线y=ax 2+5的顶点是它的最低点,那么a 的取值范围是 .9.已知点(﹣1,m )、(2,n )在二次函数y=ax 2﹣2ax ﹣1的图象上,如果m >n ,那么a 0(用“>”或“<”连接).10.如图,抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3;③3a+c >0;④当y >0时,x 的取值范围是﹣1≤x <3;⑤当x <0时,y 随x 增大而增大;其中结论正确有 .三.解答题(共4小题)11.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.12.如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.13.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.14.如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与面积专题
考点方法:
(1)在直角坐标系中求图形的面积 (2)面积问题常见的思路和方法。

【探究】——求抛物线中常见图形的面积 1、说出如何表示各图中阴影部分的面积?
_____________________ ___________________ ___________________
____________________ __________________ ____________________ 【归纳】
(1)一般取在 上的线段为底边。


2)三边均不在坐标轴上的三角形及不规则多边形需将图形 ,即用割或补的方法
把它转化为若干个易于求面积的图形。

(3)解决该问题用到了 等数学思想。

【尝试应用】——知识整合
2、已知二次函数322
--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为P. 在抛物线上(除点C 外),是否存在点N ,使得NAB S S ∆=若存在,请写出点N 的坐标;若不存在,请说明理由。

图五
图四
图六
图二
图一
CE AB S ABC
⋅=∆2
1
图三
变式:在抛物线的对称轴上是否存点N ,使得ABC NAB S S ∆∆=,若存在直接写出N
的坐标;若不存在,请说明理由.
【归纳】——万变不离其宗
同底 高的三角形面积相等,平行线间的距离处处 ;该类问题最终可转
化为方程组是否有解的问题.
1) 已知二次函数
322--=x x y 与x 轴交于A 、B 两点(A 在B 与y 轴交于点C.在抛物线上是否存在点N ,使得NBC ABC S S ∆∆=.
2) 如图,抛物线m ax ax y +-=22
经过点A(-1,0),与x 轴另一交点为B ,交y 轴负半轴
于点C ,连AC 、BC ,若ABC S ∆=6,求此抛物线的解析式。

3) 如图,已知抛物线b ax ax y +-=22
与x 轴交于A 、B 两点,与y 轴交于C(0,8),连
AC 、BC ,ABC S ∆=24, 求此抛物线的解析式。

4) 如图,已知抛物线1)2(2
+-=x a y ,与Y 轴交于点C (0,3),与x 轴相交于A 、B 两
点,ABC S ∆=3, 求此抛物线的解析式。

5. 如图,抛物线13
2
312--=
x x y 经过点A(-1,0)、B (3,0)
、C (0,-1)三点,在x 轴下方的抛物线上是否存在点D ,是ABDC S =3,若存在,求出D 点坐标,若不存在,请说明理由。

6. 如图,抛物线322
+-=x x y 经过点B (3,6),与y 轴交于点A (0,3),若点M 是直线AB 下方抛物线上的一点,且ABM S ∆=3,求点M 的坐标。

7. 如图,抛物线542
+--=x x y 交坐标轴于A 、B 、C 三点,点P 在第二象限的抛物线上,PF ⊥x 轴于F 点,交AC 于E 点,若PAE S ∆:AEF S ∆=2:3,求P 点坐标。

8. 如图,抛物线经过A (-1,0),B(3,0)、C (0,-3)三点,点P 在第二象限的抛物线上,
POB S ∆=PCO S ∆,求P 点坐标。

9. 已知二次函数23
8
322+-=
x x y 与x 轴交于A 、B 两点,A 在B 点的左边,与y 轴交于C 点,点P 在第一象限的抛物线上,且在对称轴右边,PAC S ∆=4,求P 点的坐标。

10. 已知抛物线22
3
212++-
=x x y 与x 轴交于A 、B 两点,与y 轴交于C 点,D 为第四象限的抛物线上的一点,CD 交x 轴于E 点,若DBE ACE S S ∆∆=,求直线CD 的解析式。

11. 如图,二次函数m x x y ++-=22
的图像与x 轴的一个交点A (3,0),两一个交点为B ,且与y 轴交于点C ,该二次函数图像上有一点D (x,y )(其中x>0,y>0),使ABC ABD S S ∆∆=,求点D 的坐标。

12. 如图,抛物线322
--=x x y 交坐标轴于A 、B 、C 三点,M 为顶点,点M 为顶点,点N 在x 轴上,且BCM BCN S S ∆∆=,求N 点的坐标。

13. 如图,抛物线c x y +-
=22
1与x 轴交于点A 、B ,且经过点D(-3,
2
9
)。

若点C 为抛物线上一点,且直线AC 把四边形ABCD 分成面积相等的两部分,,求直线AC 的解析式。

相关文档
最新文档