二次函数与面积专题

合集下载

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A -,与x 轴交于点()4,0B ,连接AB .(1)求抛物线的解析式.(2)P 是AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作PD x ⊥轴于点D .①求PC PD +的最大值.①连接PA ,PB ,是否存在点P ,使得线段PC 把PAB 的面积分成3:5两部分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.综合与探究如图1,抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C ,与x 轴的另一个交点为A ,连接AC ,BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1,点D 是线段AC 的中点,连接BD .点E 是抛物线上一点,若ABE BCD S S =△△,设点E 的横坐标为x ,请求出x 的值;(3)试探究在抛物线上是否存在一点P ,使得45PBO OBC ∠+∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图抛物线2y ax bx c =++经过点()1,0A -,点()0,3C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 是直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.4.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.5.如图,抛物线214y x bx c =-++与x 轴交于点,A B 两点(点A 在点B 的右侧),点()()8,02,0A B -、,与y 轴交于点C .(1)求抛物线的解析式; (2)点D 为抛物线的顶点,过点D 作DE AC ∥交抛物线于点E ,点P 为抛物线上点,D E 之间的一动点,连接,,,,AC AE AP CE CP ,线段,AP CE 交于点G ,记CPG △的面积为1,S AEG △的面积为2S ,且12S S S =-,求S 的最大值及此时点P 的坐标;(3)在(2)的条件下,将拋物线沿射线AC 方向平移5个单位长度后得到新抛物线,点Q 是新拋物线对称轴上一动点,在平面内确定一点R ,使得以点P Q B R 、、、为顶点的四边形是矩形.直接写出所有符合条件的点R 的坐标.6.如图,有一个长为30米的篱笆,一面利用墙(墙的最大可用长度18a =米)围成的中间隔有一道篱笆的长方形花圃设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)如何设计才能使长方形花圃面积最大;并求其最大面积.7.如图,过原点的抛物线212y x bx c =-++与x 轴的另一个交点为A ,且抛物线的对称轴为直线2x =,点B 为顶点(1)求抛物线的解析式(2)如图(1),点C 为直线OB 上方抛物线上一动点,连接AB,BC 和AC ,线段AC 交直线OB 于点E ,若CBE △的面积为1S ,ABE 的面积为2S ,求12S S 的最大值 (3)如图(2),设直线()20y kx k k =-≠与抛物线交于D ,F 两点,点D 关于直线2x =的对称点为D ,直线D F '与直线2x =交于点P ,求证:BP 的长是定值.8.抛物线2y x bx c =-++经过点A ,B ,C ,已知()1,0A -和()0,3C .(1)求抛物线的解析式及顶点E 的坐标;(2)点D 在BC 上方的抛物线上.①如图1,若CAB ABD ∠=∠,求点D 的坐标;①如图2,直线BD 交y 轴于点N ,过点B 作AD 的平行线交y 轴于点M ,当点D 运动时,求CBD AMNS S △△的最大值及此时点D 的坐标. 9.在平面直角坐标系中,O 为坐标原点,抛物线244y ax ax =-+交x 轴于点A 、B (A 左B右),交y 轴于点C ,直线123y x =-+,经过B 点,交y 轴于点D .(1)如图1,求a 的值;(2)如图2,点P 在第一象限内的抛物线上,过点A 、B 作x 轴的垂线,分别交直线PD 于点E 和F ,若PF DE =,求点P 的坐标;(3)如图3,在(2)的条件下,点Q 在第一象限内的抛物线上,过点Q 作QH DP ⊥于点H ,交直线BD 于点R ,连接EQ 和ER ,当QE ER =时,求ERQ △的面积.10.已知抛物线213222y x x =-++与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A .(1)判断ABC 的形状,并说明理由.(2)设点(,)P m n 是抛物线在第一象限部分上的点,过点P 作PH x ⊥轴于H ,交AC 于点Q ,设四边形OAPC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标和QHC △的面积;(3)在(2)的条件下,点N 是坐标平面内一点,抛物线的对称轴上是否存在点M ,使得以P 、C 和M 、N 为顶点的四边形是菱形,若存在,写出点M 的坐标,并选择一个点写出过程,若不存在,请说明理由.11.已知,如图,在平面直角坐标系中,点O 为坐标原点,直线6y x =+与x 轴相交于点B ,与y 轴交于点C ,点A 是x 轴正半轴上一点,且满足2tan 3ACO ∠=.(1)若抛物线2y ax bx c =++经过A 、B 和C 三点,求抛物线的解析式;(2)若点M 是第二象限内抛物线上的一个动点,过点M 作MP y ∥轴,交BC 于点P ,连接OP ,在第一象限内找一点Q ,过点Q 作⊥OQ OP 且OQ OP =,连接PQ ,MQ ,设MPQ 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,设PQ 与y 轴相交于点R ,若53=PR PC 时,求点P 的坐标. 12.已知抛物线22y ax ax c =-+过点()10A -,和()03C ,,与x 轴交于另一点B .(1)求抛物线的解析式;(2)若抛物线的顶点为D ,在直线BC 上方抛物线上有一点P (与D 不重合),BCP 面积与BCD △面积相等,求点P 的坐标;(3)若点E 为抛物线对称轴上一点,在平面内是否存在点F ,使得以E 、F 和B 、C 为顶点的四边形是菱形,若存在,请直接写出F 点的坐标;若不存在,请说明理由.13.如图,抛物线过点()08D ,,与x 轴交于()20A -,,()40B ,两点.(1)求抛物线的解析式;(2)若点C 为二次函数的顶点,求BCD S △.14.如图,O 为平面直角坐标系坐标原点,抛物线22y ax ax c =-+经过点()6,0B ,点()0,6C 与x 轴交于另一点A .(1)求抛物线的解析式;(2)D 点为第一象限抛物线上一点,连接AD 和BD ,设点D 的横坐标为t ,ABD △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,P 为第四象限抛物线上一点,连接PA 交y 轴于点E ,点F 在线段BC 上,点G 在直线AD 上,若1tan 2DAO ∠=,四边形BEFG 为菱形,求点P 的坐标. 15.已知抛物线2()20y ax x c a =++≠与x 轴交于点(1,0)A -和点B ,与直线3y x =-+交于点B 和点C ,M 为抛物线的顶点,直线ME 是抛物线的对称轴.(1)求抛物线的解析式及点M 的坐标;(2)点P 为直线BC 上方抛物线上一点,连接PB ,PC ,当PBC 的面积取最大值时,求点P 的坐标.参考答案:1.(1)2142y x x =-- (2)① PC PD +取得最大值254 ① 53,2⎛⎫- ⎪⎝⎭或 316,2⎛⎫+- ⎪⎝⎭2.(1)213222y x x =-++ (1,0)-; (2)3172+或3172-或3332+或3332- (3)存在,517(,)39--或113(,)39-3.(1)故抛物线的表达式为:223y x x =-++,函数的对称轴为:1x =;(2)10113++(3)()4,5-或()8,45-4.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为45.(1)213442y x x =-++ (2)S 的最大值为1,()4,6P(3)()7,3或()5,3-6.(1)2330S x x =-+ 410x ≤<;(2)当宽AB 为5米,长15BC =米时,长方形花圃的最大面积为75平方米.7.(1)2122y x x =-+ (2)188.(1)()1,4(2)①()2,3D ;①CBD AMN S S △△的最大值为916,此时315,24D ⎛⎫ ⎪⎝⎭9.(1)13a =- (2)()4,4P(3)1010.(1)直角三角形(2)244S m m =-++ (2,3)P 1QHC S =(3)存在,点M 坐标为3651(,)22+或3651(,)22-或333(,)22或333(,)22-或31(,)22,理由见解析11.(1)211642=--+y x x (2)()2396042S t t t =---<< (3)()()124,2,2,4P P --12.(1)223y x x =-++(2)()23P ,(3)存在,点F 的坐标为()417,或()417-,或()2314-+,或()2314--,13.(1)228y x x =-++(2)614.(1)211642y x x =-++ (2)2553042S t t =-++ (3)()8,6P -15.(1)抛物线的解析式为223y x x =-++,点M 的坐标为(1,4)(2)315,24P ⎛⎫ ⎪⎝⎭。

二次函数中的面积计算问题(包含铅垂高)

二次函数中的面积计算问题(包含铅垂高)

(D)二次函数中的面积计算问题【典型例子】例如,如图所示,二次函数2y x bx c =++图像x 在A 和B 两点(A 在B 的左边)与y 轴相交,在C 点与轴相交,顶点为M ,MAB ∆为直角三角形,图像的对称轴是一条直线2-=x ,该点P 是两点之间抛物线上的移动点,A C ,则PAC ∆面积的最大值为(C )A.274 B. 112C 。

278D.3 二次函数中常见的面积问题类型:1.选择填空的简单应用2.不规则三角形的面积用S=3.使用4.使用相似的三角形5.使用分割法将不规则图形转为规则图形例 1如图 1 所示,已知正方形ABCD 的边长为 1 , E , F , G , H 为每边的点, AE=BF=CG=DH ,设面积为小s 正方形EFGH 为, AE 为x , 那么about s 的x 函数图大致为 (乙)示例 2.回答以下问题:如图1所示,抛物线的顶点坐标为C 点( 1,4 ),与x 轴相交于A 点( 3 , 0),与y 轴相交于B 点。

抛物线和直线AB 的解析公式;(2)求△ CA AB 和S △ CAB 的垂直高度CD ;(3)假设点P 是抛物线上(第一象限)上的一个移动点,是否存在点P ,使得S △ PA B = 89S △ CA B ,如果存在,求点P 的坐标;如果不存在,请解释原因。

思想分析这个问题是二次函数中的常见面积问题。

该方法不是唯一的。

可以使用截补法,但是有点麻烦。

如图第10题xyABCOM图1B铅垂高水平宽ha图2A xC Oy ABD 112所示,我们可以画出一种计算三角形面积的新方法:ah S ABC 21=∆即三角形的面积等于水平宽度与前导垂直乘积的一半。

掌握了这个公式之后,思路就直截了当,过程也比较简单,计算量也相对少了很多。

答: (1)据已知,抛物线的解析公式可以设为y 1 = a ( x - 1 ) 2+ 4 ( a ≠ 0 ) 。

将A (3, 0)代入解析表达式,得到a = - 1 ,∴抛物线的解析公式为y 1 = - ( x - 1 ) 2+ 4,即y 1 = - x 2+2 x +3。

专题27 二次函数与面积压轴问题(学生版)

专题27 二次函数与面积压轴问题(学生版)

专题27二次函数与面积压轴问题【例1】(2022·湖北随州·统考中考真题)如图1,平面直角坐标系xOy 中,抛物线y =ax 2+bx +c +a <0与x 轴分则点A 和点B 1,0,与y 轴交于点C ,对称轴为直线x =−1,且OA =OC ,P 为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC ,当点P 在直线AC 上方时,求四边形PABC 面积的最大值,并求出此时P 点的坐标;(3)设M 为抛物线对称轴上一动点,当P ,M 运动时,在坐标轴上是否存在点N ,使四边形PMCN 为矩形?若存在,直接写出点P 及其对应点N 的坐标;若不存在,请说明理由.经典例题【例2】(2022·广西贺州·统考中考真题)如图,抛物线y=−x2+bx+c过点A(−1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP若存在,求出点M的横坐标;若不存在,请说明理由.【例3】(2022·河南洛阳·统考二模)如图,抛物线y=−x2−2x+3的图象与x轴交于A,B两点,(点A在点B 的左边),与y轴交于点C.(1)直接写出A,B,C的坐标;(2)点M为线段AB上一点(点M与点A,点B不重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P在点Q的左侧,当矩形PMNQ 的周长最大时,求△AEM的面积.【例4】(2022·福建·统考中考真题)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B(1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△PAB面积的2倍,求点P的坐标;(3)如图,OP交AB于点C,PD∥BO交AB于点D.记△CDP,△CPB,△CBO的面积分别为S1,S2,S3.判断S1S2+S2S3是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【例5】(2022·湖南岳阳·统考中考真题)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A−3,0和点B1,0.(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C 在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN 面积的最大值.培优训练1.(2022·广东·统考中考真题)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A1,0,AB=4,点P为线段AB上的动点,过P作PQ//BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2.(2022·湖南常德·统考中考真题)如图,已经抛物线经过点O(0,0),A(5,5),且它的对称轴为x=2.(1)求此抛物线的解析式;(2)若点B是抛物线对称轴上的一点,且点B在第一象限,当△OAB的面积为15时,求B的坐标;(3)在(2)的条件下,P是抛物线上的动点,当PA−PB的值最大时,求P的坐标以及PA−PB的最大值3.(2022·湖北襄阳·统考中考真题)在平面直角坐标系中,直线y=mx-2m与x轴,y轴分别交于A,B两点,顶点为D的抛物线y=-x2+2mx-m2+2与y轴交于点C.(1)如图,当m=2时,点P是抛物线CD段上的一个动点.①求A,B,C,D四点的坐标;②当△PAB面积最大时,求点P的坐标;(2)在y轴上有一点M(0,73m),当点C在线段MB上时,①求m的取值范围;②求线段BC长度的最大值.4.(2019·广东河源·校联考一模)如图,已知抛物线的顶点为A1,4,抛物线与y轴交于点B0,3,与x轴交于C、D两点,点P是抛物线上的一个动点.(1)求此抛物线的解析式.(2)求于C、D两点坐标及三角形△BCD的面积.(3)若点P在x轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.5.(2022·湖南娄底·统考中考真题)如图,抛物线y=12x2−2x−6与x轴相交于点A、点B,与y轴相交于点C.(1)请直接写出点A,B,C的坐标;(2)点P m,n0<m<6在抛物线上,当m取何值时,△PBC的面积最大?并求出△PBC面积的最大值.(3)点F是抛物线上的动点,作FE//AC交x轴于点E,是否存在点F,使得以A、C、E、F为顶点的四边形是平行四边形?若存在,请写出所有符合条件的点F的坐标;若不存在,请说明理由.6.(2022·四川攀枝花·统考中考真题)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为−1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.7.(2022·山东日照·校考一模)如图,抛物线y=ax2+bx+3与x轴交于A1,0,B3,0两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图2,M是抛物线x轴下方的抛物线上一点,连接MO、MB、MC,若△MOC的面积是△MBC面积的3倍,求点M的坐标(3)如图3,连接AC、BC,在抛物线上是否存在点N(不与点A重合),使得∠BCN=∠ACB?若存在求出点N的横坐标,若不存在说明理由8.(2022·黑龙江·统考中考真题)如图,抛物线y=x2+bx+c经过点A−1,0,点B2,−3,与y轴交于点C,抛物线的顶点为D.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使△PBC的面积是△BCD面积的4倍,若存在,请直接写出点P的坐标:若不存在,请说明理由.9.(2022·四川巴中·统考中考真题)如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F 为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,−1≤x≤3.(1)求抛物线的表达式;(2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.①当点P的横坐标为2时,求四边形ACFD的面积;②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.10.(2022·黑龙江绥化·校考二模)如图,抛物线y=−x2+bx+c与直线AB交于A(−4,−4),B(0,4)两点,且点D是它的顶点,在y轴上有一点C(0,−1).(1)求出抛物线的解析式及直线AB的解析式;(2)点E在直线AB上运动,若△BCE是等腰三角形时,求点E的坐标;(3)设点N是抛物线上一动点,若SΔBDN=32SΔBDO,求点N的坐标.11.(2022·重庆璧山·统考一模)如图,在平面直角坐标系xOy中,抛物线y=ax2+43x+c与x轴交于点A−3,0,与y轴交于点C0,−2.(1)求抛物线的解析式;(2)如图1,连接AC,点D为线段AC下方抛物线上一动点,过点D作DE∥y轴交线段AC于E点,连接EO,记△ADC的面积为S1,△AEO的面积为S2,求S1−S2的最大值及此时点D的坐标;(3)如图2,在(2)问的条件下,将抛物线沿射线CB M在原抛物线的对称轴上,点N为新抛物线上一点,直接写出所有使得以点A、D、M、N为顶点的四边形是平行四边形的点N的坐标,并把求其中一个点N的坐标的过程写出来.12.(2023·广西玉林·一模)已知二次函数y=x2+2bx−3b的图象经过点A1,0.(1)求该二次函数的表达式;(2)二次函数图象与x轴的另一个交点为B,与y轴的交点为C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;(3)在点P、Q运动的过程中,是否存在使△PBQ与△BOC相似的时刻,如果存在,求出运动时间t,如果不存在,请说明理由.13.(2022·内蒙古·中考真题)如图,抛物线y=ax2+x+c经过B(3,0),D−2,−x轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)14.(2022·辽宁大连·统考中考真题)在平面直角坐标系中,抛物线y=x2−2x−3与x轴相交于点A,B(点A 在点B的左侧),与y轴相交于点C,连接AC.(1)求点B,点C的坐标;(2)如图1,点E m,0在线段OB上(点E不与点B重合),点F在y轴负半轴上,OE=OF,连接AF,BF,EF,设△ACF 的面积为S1,△BEF的面积为S2,S=S1+S2,当S取最大值时,求m的值;(3)如图2,抛物线的顶点为D,连接CD,BC,点P在第一象限的抛物线上,PD与BC相交于点Q,是否存在点P,使∠PQC=∠ACD,若存在,请求出点P的坐标;若不存在,请说明理由.15.(2022·山东济南·模拟预测)如图1,已知抛物线y=ax2+bx+3经过点A−1,0和点B3,0,与y轴交于点C,点P为第一象限内抛物线上的动点.连接OP交BC于点D,连接PC.(1)试确定抛物线的解析式;(2)当S△CPD:S△BPD=1:2时,请求出点D的坐标;(3)如图2,连接AC,设P点横坐标为m(0<m<3),求当m为何值时,四边形BACP的面积最大?并求出点P 的坐标.16.(2022·甘肃嘉峪关·校考一模)如图,已知抛物线y=−x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A−1,0,C0,3.(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.17.(2022·山东济南·模拟预测)如图,抛物线y=ax2+bx−3与x轴相交于B(−1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)在(2)的条件下,设抛物线与y轴交于点Q,连接BQ、DQ,点P为抛物线上的一个动点(点P与点Q不重合),且S△PBD=S△BDQ,请求出所有满足条件的点P的横坐标.18.(2022·重庆大渡口·重庆市第三十七中学校校考二模)如图,在平面直角坐标系中,抛物线y=x2+bx+c 与直线AB交于A,B两点,其中A(0,1),B(4,−1).(1)求该抛物线的函数表达式;(2)点P,Q为直线AB下方抛物线上任意两点,且满足点P的横坐标为m,点Q的横坐标为m+1,过点P和点Q分别作y轴的平行线交直线AB于C点和D点,连接PQ,求四边形PQDC面积的最大值;(3)在(2)的条件下,将抛物线y=x2+bx+c沿射线AB平移25个单位,得到新的抛物线y1,点E为点P的对应点,点F为y1的对称轴上任意一点,点G为平面直角坐标系内一点,当点B,E,F,G构成以EF为边的菱形时,直接写出所有符合条件的点G的坐标.19.(2022·山东菏泽·统考二模)如图,抛物线y=ax2+bx+6经过A−2,0、B4,0两点,与y轴交于点C,D是抛物线上一动点,设点D的横坐标为m1<m<4,连结AC,BC,DB,DC.(1)求抛物线的函数表达式.(2)当△BCD的面积等于△AOC的面积的34时,求m的值.(3)当m=2时,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B、D、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的的坐标;若不存在,请说明理由.20.(2022·四川绵阳·校考二模)如图,直角三角形的斜边AB在x轴上,直角顶点在y轴正半轴上,已知A−1,0,C0,2,抛物线y=ax2+bx+c a≠0经过点A,B,C.(1)求抛物线的解析式.(2)如图①,点P是y轴右侧抛物线上一动点,若∠PCB=∠ACO,求点P的坐标.(3)如图②,点P是第一象限内抛物线上的一个动点,连接PA交BC于点E,交y轴于点F,连接PB.设ΔPBE,ΔCEF的面积分别为S1,S2,求S1−S2的最大值.21.(2022·山东淄博·统考中考真题)如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A在点B的左侧),顶点D(1,4)在直线l:y=43x+t上,动点P(m,n)在x轴上方的抛物线上.(1)求这条抛物线对应的函数表达式;(2)过点P作PM⊥x轴于点M,PN⊥l于点N,当1<m<3时,求PM+PN的最大值;(3)设直线AP,BP与抛物线的对称轴分别相交于点E,F,请探索以A,F,B,G(G是点E关于x轴的对称点)为顶点的四边形面积是否随着P点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.22.(2022·辽宁阜新·统考中考真题)如图,已知二次函数y=−x2+bx+c的图像交x轴于点A−1,0,B5,0,交y轴于点C.(1)求这个二次函数的表达式;(2)如图1,点M从点B出发,以每秒2个单位长度的速度沿线段BC向点C运动,点N从点O出发,以每秒1个单位长度的速度沿线段OB向点B运动,点M,N同时出发.设运动时间为t秒(0<t<5).当t为何值时,△BMN的面积最大?最大面积是多少?(3)已知P是抛物线上一点,在直线BC上是否存在点Q,使以A,C,P,Q为顶点的四边形是平行四边形?若存在,直接写出点Q坐标;若不存在,请说明理由.23.(2022·山东枣庄·统考中考真题)如图①,已知抛物线L:y=x2+bx+c的图象经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.24.(2022·山东日照·统考中考真题)在平面直角坐标系xOy中,已知抛物线y=-x2+2mx+3m,点A(3,0).(1)当抛物线过点A时,求抛物线的解析式;(2)证明:无论m为何值,抛物线必过定点D,并求出点D的坐标;(3)在(1)的条件下,抛物线与y轴交于点B,点P是抛物线上位于第一象限的点,连接AB,PD交于点M,PD 与y轴交于点N.设S=S△PAM-S△BMN,问是否存在这样的点P,使得S有最大值?若存在,请求出点P的坐标,并求出S的最大值;若不存在,请说明理由.。

二次函数面积问题

二次函数面积问题

二次函数与面积专题例1:已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(2,0),B(0,-1),D(-1,0)三点,。

(1)求二次函数的解析式。

(2)求S△BCD。

(3)在抛物线上找一点P,使S△ADP=S△BCD,求P坐标?(4)线段CD上有一动点P,过P作PQ//Y轴交抛物线于Q点,求PQ线段的最大值?(5)线段CD下方抛物线有一动点P,求三角形PCD面积的最大值?练习1:如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限。

①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.练习2:平面直角坐标系中,口ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到口A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)口ABOC和口A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.例2:已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC•把△PCH 分成面积之比为2:3的两部分,请求出P点的坐标练习1:(锦江区2021一诊)练习2:(成都2016中考)如图,在平面直角坐标系xOy中,抛物线()213=+-与x轴y a x交于A、B两点(点A在点B左侧),与y轴交于点C(0,8-),顶点为D,对称轴与x轴3交于点H.过点H的直线l交抛物线于P,Q两点,点Q在y轴右侧.(1)求a的值及点A、B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否成为菱形?若能,求出点N的坐标;若不能,请说明理由.巩固1:(2021青白江一诊)巩固2:如图,己知抛物线y=x 2+bx+c 与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)如图(1),己知点H (0,﹣1).问在抛物线上是否存在点G (点G 在y 轴的左侧),使得S △GHC =S △GHA ?若存在,求出点G 的坐标;若不存在,请说明理由;(3)如图(2),抛物线上点D 在x 轴上的正投影为点E (﹣2,0),F 是OC 的中点,连接DF ,P 为线段BD 上的一点,若∠EPF=∠BDF ,求线段PE 的长.巩固2:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线y =2ax2+ax -23经过点B . (1)求点B 的坐标;(2)求抛物线的解析式;(3)若三角板ABC 从点C 开始以每秒1个单位长度的速度向x 轴正方向平移,求点A 落在抛物线上时所用的时间,并求三角板在平移过程中扫过的面积;(4)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.。

二次函数中的面积问题

二次函数中的面积问题

二次函数——面积问题(一)〖知识要点〗一.求面积常用方法:1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边)2. 利用相似图形,面积比等于相似比的平方3. 利用同底或同高三角形面积的关系4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二. 常见图形及公式抛物线解析式y=ax2 +bx+c (a≠0)抛物线与x 轴两交点的距离AB=︱x1–x2︱=抛物线顶点坐标(-, ) 抛物线与y 轴交点(0,c )“歪歪三角形中间砍一刀”,即三角形面积等于水平宽与铅垂高乘积的一半. 〖基础习题〗 1、若抛物线y=-x2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为.2、若抛物线y=x2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________.3、已知抛物线与轴交于点A ,与轴的正半轴交于B 、C 两点,且BC=2,S △ABC=3,则=,B C 铅垂高水平宽ha图1 C BA O y x DB A O y x P=.〖典型例题〗● 面积最大问题1、二次函数的图像与轴交于点A (-1,0)、B (3,0),与轴交于点C ,∠ACB=90°.(1)求二次函数的解析式;(2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标(3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标(4) P 为抛物线上一点,若使得,求P 点坐标。

● 同高情况下,面积比=底边之比2.已知:如图,直线y=﹣x+3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x2+bx+c 经过点B 、C ,点A 是抛物线与x 轴的另一个交点.(1)求B 、C 两点的坐标和抛物线的解析式;(2)若点P 在直线BC 上,且,求点P 的坐标.3.已知:m 、n 是方程x2﹣6x+5=0的两个实数根,且m <n ,抛物线y=﹣x2+bx+c 的图象经过点A (m ,0)、B (0,n ).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标. yx B A C O三角形面积等于水平宽与铅垂高乘积的一半4.阅读材料:如图,过△ABC的三个顶点分别作出水平垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可以得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图,抛物线顶点坐标为点C(1,4)交x轴于点A,交y轴于点B(0,3)(1)求抛物线解析式和线段AB的长度;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)在第一象限内抛物线上求一点P,使S△PAB=S△CAB.法一:同底情况下,面积相等转化成平行线法二:同底情况下,面积相等转化成铅垂高相等变式一:如图2,点P是抛物线(在第一象限内)上的一个动点,连结PA,PB,是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.变式二:抛物线上是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明点动+面积5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.形动+面积6.如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?。

二次函数的应用课件面积问题(共10张PPT)

二次函数的应用课件面积问题(共10张PPT)
使销售利润最大?
请同学们完成这个 问题的解答
你会解吗?
例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。窗框 的长、宽各为多少时,它的透光面积最大?最大透光面积是多少?
解:设矩形的宽为x米,矩形的透光面积为y米。由题 意得:
y=x· 6-3x 2
(0<x<2)
即:y=- 3 x2+3x
2
配方,得:
的距离)能否通过此隧道? 如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1
米为数轴的单位长度,建立平面直角坐标系,
A CB
)
(6)y=- x2-4x+1
值范围; 例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。
该店想通过降低售价、增加销售量的办法来提高利润。
O x
(2) 有一辆宽2.8米,高3米的 y=x·
(0<x<2)
∴当x=5,y最大值=50
农用货车(货物最高处与地面AB y随着x的增大而减小。
(4)y=100-5x2 将这个函数关系式配方,得:
y=- 3 (x-1)2+ 3
2
2
∴它的顶点坐标是(1,1.5)
∴当x=1,y最大值=1.5
因为x=1时,满足0<x<2,这时
6-3x 2
=1.5
答:当矩形窗框的宽为5m时,长为1.5m时,它的透光
面积最大,最大面积为1.5m2。
1.求下列函数的最大值或最小值:
(1)y=x2-3x+4
(2)y=1-2x-x2
物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角

最全二次函数中的面积问题(中考数学必考题型)

最全二次函数中的面积问题(中考数学必考题型)

二次函数中的面积问题二次函数中的面积问题是中考的热点,面积问题如果是规则图形可以用常见的面积公式解决问题的就直接用面积公式,如果不能直接用面积公式在坐标系中处理面积问题,通常有以下三种思路:第一是割补法:分割求和、补形作差,其中用的最多的是铅垂线法;第二是同底等高利用平行线转化求面积;第三如果遇到的是面积比可以考虑用相似的性质得到线段比去解决相关问题。

【引例1】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.【铅垂法】()11112222ABCACDBCDC D B A SSSCD AE CD BF CD AE BF y y x x =+=⋅+⋅=+=-⋅-【方法梳理】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)12S =⨯水平宽铅垂高.二、转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,PQ △AB . 当P ,Q 在AB 异侧时,AB 平分PQPABQQBA PDEF OyxCBA 铅垂高水平宽DA BCxyOE三、面积比类型例1.如图,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2﹣6x +5经过A 、C 两点,与x 轴的另一交点为B .若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的,求此时点M 的坐标;例2.如图,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC ,抛物线在线段BC 上方部分取一点P ,连接PB 、PC .(1)过点P 作PH△x 轴交BC 边于点H ,求PH 的最大值;(2)求△PBC 面积的最大值(可以用铅垂线法和平行线法);PyxO CB A变式1.如图,已知二次函数y=﹣x2+2x+3的图象经过点A(﹣1,0),B(3,0),与y轴交于点C.点D为抛物线的顶点,直线BC的解析式为y=﹣x+3,求△BCD 的面积;变式2.如图,抛物线y=﹣x2+4x﹣3;与x轴交于A,B两点,与y轴交于C 点,直线BC方程为y=x﹣3.点P为抛物线上一点,若S△PBC=S△ABC,求P 的坐标;变式3.已知抛物线y=x2﹣2x﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.变式4.如图,在直角坐标系中,二次函数y=x2﹣2x﹣3的图象与x轴相交于点A (﹣1,0)和点B(3,0),与y轴交于点C.若点D为第四象限内二次函数图象上的动点,设点D的横坐标为m,△BCD的面积为S.求S关于m的函数关系式,并求出S的最大值.例3.如图,抛物线y=﹣x2+4x﹣3与x轴交于点A(1,0)、B(3,0),与y轴交于点C,连接AC,BC.P为抛物线上一点,若S△PBC=S△ABC,求出点P的坐标;【引例2】如图,抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P 是第一象限内抛物线上的一点且横坐标为m.当CP与x轴不平行时,求的最大值;(化斜为直)例4.如图,抛物线y=﹣x2+2x+3与x轴交于点A和点B,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF =3:2时,求点D的坐标.变式1.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.变式2.已知:如图,二次函数y=﹣x2+x+4;点Q是线段AB上的动点,过点Q作QE△AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;变式3.已知二次函数解析式为y=3x2﹣3,直线l的解析式为y=,点P 为抛物线上第四象限上的一动点,过P作y轴的平行线交AD于M,作PN△AD 于N,当△PMN面积有最大值时,求点P的坐标;例4.如图抛物线y=﹣x2+2x+3经过点A(﹣1,0),点C(0,3),点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.变式1.已知抛物线y=x2﹣2x﹣3.与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).若直线y=mx﹣m﹣4将四边形ACDB的面积分为1:2两部分,则m的值为多少作业:1.已知二次函数y=2x2﹣8x+6的图象交x轴于A,B两点.若其图象上有且只有P1,P2,P3三点满足===m,则m的值是()A.1B.C.2D.42.已知抛物线y=x2﹣x+3;经过A(3,0)、B(4,1)两点,且与y轴交于点C.设抛物线与x轴的另一个交点为D,在抛物线上是否存在点P,使△P AB 的面积是△BDA面积的2倍?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点,点P为线段MB上一个动点,过点P作PD△x轴于点D,若OD=m.设△PCD 的面积为S,试判断S有最大值或最小值吗?若有,求出其最值,若没有,请说明理由;。

专题 二次函数与面积有关问题(专项训练)(解析版)

专题 二次函数与面积有关问题(专项训练)(解析版)

专题03 二次函数与面积有关问题(专项训练)1.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;【解答】解:(1)当k=2时,直线为y=2x﹣3,由得:或,∴A(﹣3,﹣9),B(1,﹣1);(2)当k>0时,如图:∵△B'AB的面积与△OAB的面积相等,∴OB'∥AB,∴∠OB'B=∠B'BC,∵B、B'关于y轴对称,∴OB=OB',∠ODB=∠ODB'=90°,∴∠OB'B=∠OBB',∴∠OBB'=∠B'BC,∵∠ODB=90°=∠CDB,BD=BD,∴△BOD≌△BCD(ASA),∴OD=CD,在y=kx﹣3中,令x=0得y=﹣3,∴C(0,﹣3),OC=3,∴OD=OC=,D(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=;当k<0时,过B'作B'F∥AB交y轴于F,如图:在y=kx﹣3中,令x=0得y=﹣3,∴E(0,﹣3),OE=3,∵△B'AB的面积与△OAB的面积相等,∴OE=EF=3,∵B、B'关于y轴对称,∴FB=FB',∠FGB=∠FGB'=90°,∴∠FB'B=∠FBB',∵B'F∥AB,∴∠EBB'=∠FB'B,∴∠EBB'=∠FBB',∵∠BGE=90°=∠BGF,BG=BG,∴△BGF≌△BGE(ASA),∴GE=GF=EF=,∴OG=OE+GE=,G(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=﹣,综上所述,k的值为或﹣;2.(2021•枣庄)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过坐标原点和点A,顶点为点M.(1)求抛物线的关系式及点M的坐标;(2)点E是直线AB下方的抛物线上一动点,连接EB,EA,当△EAB的面积等于时,求E点的坐标;【解答】解:(1)对于y=﹣x+3,令y=﹣x+3=0,解得x=6,令x=0,则y=3,故点A、B的坐标分别为(6,0)、(0,3),∵抛物线y=x2+bx+c经过坐标原点,故c=0,将点A的坐标代入抛物线表达式得:0=×36+6b,解得b=﹣2,故抛物线的表达式为y=x2﹣2x;则抛物线的对称轴为x=3,当x=3时,y=x2﹣2x=﹣3,则点M的坐标为(3,﹣3);(2)如图1,过点E作EH∥y轴交AB于点H,设点E的坐标为(x,x2﹣2x),则点H(x,﹣x+3),则△EAB的面积=S△EHB+S△EHA=×EH×OA=6×(﹣x+3﹣x2+2x)=,解得x=1或,故点E的坐标为(1,﹣)或(,﹣);3.(2021•柳州)在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.【解答】解:(1)依题意,设y=a(x+1)(x﹣3),代入C(0,﹣)得:a•1•(﹣3)=﹣,解得:a=,∴y=(x+1)(x﹣3)=x2﹣x﹣;(2)∵BE=2OE,设OE为x,BE=2x,由勾股定理得:OE2+BE2=OB2,x2+4x2=9,解得:x1=,x2=﹣(舍),∴OE=,BE=,过点E作TG平行于OB,T在y轴上,过B作BG⊥TG于G,∴△ETO∽△OEB,∴==,∴OE2=OB•TE,∴TE==,∴OT==,∴E(,﹣),∴直线OE的解析式为y=﹣2x,∵OE的延长线交抛物线于点D,∴,解得:x1=1,x2=﹣3(舍),当x=1时,y=﹣2,∴D(1,﹣2);(3)如图所示,延长BC于点F,AF∥y轴,过A点作AH⊥BF于点H,作MT∥y轴交BF于点T,过M点作MG⊥BF于点J,∵AF∥MT,∴∠AFH=∠MTJ,∵AH⊥BF,MJ⊥BF,∴∠AHF=∠MJT=90°,∴△AFH∽△MJT,∴=,∵S1=NB•MJ,S2=NB•AH,∴==,设直线BC的解析式为y=kx+b,将B,C两点代入得,,解得:,∴直线BC的解析式为y=x﹣,当x=﹣1时,y=•(﹣1)﹣=﹣2,∴F(﹣1,﹣2),∴AF=2,设M(x,x2﹣x﹣),∴MT=x﹣﹣(x2﹣x﹣)=﹣(x﹣)2+,∴a=﹣<0,∴MT max=,∴=====.4.(2020•宿迁)二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E.(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.∵S△CQE=S△CEM+S△QEM=.∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).5.(2020•淄博)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;【解答】解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;(2)∵y=﹣x2+x+=﹣(x﹣1)2+3,∴抛物线的顶点M(1,3)令y=0,可得x=﹣2或4,∴点D(4,0);∵△ADR的面积是▱OABC的面积的,∴×AD×|y R|=×OA×OB,则×6×|y R|=×2×,解得:y R=±④,联立④③并解得或,故点R的坐标为(1+,﹣)或(1,﹣)或(1,)或(1﹣,);6.(2020•天水)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C,且点A的坐标为A(﹣2,0),点C的坐标为C(0,6),对称轴为直线x =1.点D是抛物线上一个动点,设点D的横坐标为m(1<m<4),连接AC,BC,DC,DB.(1)求抛物线的函数表达式;(2)当△BCD的面积等于△AOC的面积的时,求m的值;【解答】解:(1)由题意得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+6;(2)过点D作DE⊥x轴于E,交BC于G,过点C作CF⊥ED交ED的延长线于F,如图1所示:∵点A的坐标为(﹣2,0),点C的坐标为(0,6),∴OA=2,OC=6,∴S△AOC=OA•OC=×2×6=6,∴S△BCD=S△AOC=×6=,当y=0时,﹣x2+x+6=0,解得:x1=﹣2,x2=4,∴点B的坐标为(4,0),设直线BC的函数表达式为:y=kx+n,则,解得:,∴直线BC的函数表达式为:y=﹣x+6,∵点D的横坐标为m(1<m<4),∴点D的坐标为:(m,﹣m2+m+6),点G的坐标为:(m,﹣m+6),∴DG=﹣m2+m+6﹣(﹣m+6)=﹣m2+3m,CF=m,BE=4﹣m,∴S△BCD=S△CDG+S△BDG=DG•CF+DG•BE=DG×(CF+BE)=×(﹣m2+3m)×(m+4﹣m)=﹣m2+6m,∴﹣m2+6m=,解得:m1=1(不合题意舍去),m2=3,∴m的值为3;7.(2021•沈阳)如图,平面直角坐标系中,O是坐标原点,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C (0,3),点P是抛物线的顶点,连接PC.(1)求抛物线的函数表达式并直接写出顶点P的坐标.(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;【解答】解(1)由题意得,,∴b=2,∴y=﹣x2+2x+3=﹣((x﹣1)2+4,∴P(1,4).(2)①如图1,作CE⊥PD于E,∵C(0,3),B(3,0),∴直线BC:y=﹣x+3,∴D(1,2),可设Q(a,3﹣a),∴CE=PE=DE,∴△PCD是等腰直角三角形,∴S△PCD=PD•CE=×2×1=1,∴AB•|3﹣a|=2,∴×4•|3﹣a|=2,∴a=2或a=4.∴Q(2,1)或(4,﹣1).8.(2021•辽宁)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y 轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD ⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF的面积是△BOC面积的3倍时,求点P的坐标;【解答】解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),则PF=2,由点A、B的坐标得,直线AB的表达式为y=﹣x+3,设点P的坐标为(x,﹣x2+x+3),则点E(x,﹣x+3),则矩形PEGF的面积=PF•PE=2×(﹣x2+x+3+x﹣3)=3S△BOC=3××BO•CO =×3×1,解得x=1或3,故点P的坐标为(1,)或(3,3);9.(2022•南宁一模)如图1所示抛物线与x轴交于O,A两点,OA=6,其顶点与x轴的距离是6.(1)求抛物线的解析式;(2)点P在抛物线上,过点P的直线y=x+m与抛物线的对称轴交于点Q.当△POQ与△P AQ的面积之比为1:3时,求m的值;【解答】解:(1)∵OA=6,∴抛物线的对称轴为直线x=3,设抛物线的解析式为y=a(x﹣3)2+k,∵顶点与x轴的距离是6,∴顶点为(3,﹣6),∴y=a(x﹣3)2﹣6,∵抛物线经过原点,∴9a﹣6=0,∴a=,∴y=(x﹣3)2﹣6;(2)①设直线y=x+m与y轴的交点为E,与x轴的交点为F,∴E(0,m),F(﹣m,0),∴OE=|m|,AF=|6+m|,∵直线y=x+m与坐标轴的夹角为45°,∴OM=|m|,AN=|6+m|,∵S△POQ:S△P AQ=1:3,∴OM:AN=1:3,∴|m|:|6+m|=1:3,解得m=﹣或m=3;10.(2022•本溪二模)如图,抛物线y=﹣x2+bx+c经过A(3,0),C(﹣1,0)两点,与y轴交于点B.(1)求抛物线的解析式;(2)如图1,点M是线段AB上方抛物线上一动点,以AB为边作平行四边形ABMD,连接OM,若OM将平行四边形ABMD的面积分成为1:7的两部分,求点M的横坐标;【解答】解:(1)将(3,0),(﹣1,0)代入y=﹣x2+bx+c,得,解得,∴;(2)连接AM,设AB与OM的交点为N,作NH⊥OA于点H,则NH∥OB,∵A(3,0),B(0,4),设直线AB的解析式为y=kx+4,∴3k+4=0,∴k=﹣,∴y=﹣x+4,设点M,点N,∵S△BMN:S△ABM=1:4,∴S△BMN:S△ABM=1:4,∴BN:AN=1:3,∵NH∥OB,∴△ANH∽△AOB,∴,即,解得,∴,∴直线OM的解析式为y=4x,联立方程组,解得,∵点M在第一象限,∴,∴点M的横坐标为;11.(2022•新抚区模拟)如图,直线y=mx+n与抛物线y=﹣x2+bx+c交于A(﹣2,0),B(2,2)两点,直线AB与y轴交于点C.(1)求抛物线与直线AB的解析式;(2)点P在抛物线上,直线PC交x轴于Q,连接PB,当△PBC的面积是△ACQ面积的2倍时,求点P的坐标;【解答】解:(1)将A(﹣2,0),B(2,2)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2+x+5.将A(﹣2,0),B(2,2)代入y=mx+n得,解得,∴直线AB解析式为y=x+1.(2)①点P在x轴上方是,过点P作x轴平行线,交y轴于点F,交直线AB于点E,将x=0代入y=x+1得y=1,∴点C坐标为(0,1),∵A(﹣2,0),B(2,2),∴C为AB中点,即AC=BC,∴当△PBC的面积是△ACQ面积的2倍时,点P到BC的距离是点Q到AC的距离的2倍,∵PE∥OA,∴△EPC∽△AQC,∴=2,∵PF∥OA,∴△PFC∽△OQC,∴==2,∴点P纵坐标为FC+OC=3OC=3,将y=3代入y=﹣x2+x+5得3=﹣x2+x+5,解得x1=﹣,x2=+,∴点P坐标为(﹣,3)或(+,3).②点P在x轴下方,连接BQ,PK⊥x轴于点K,∵C为AB中点,∴S△AQC=S△BQC,∵△PBC的面积是△ACQ面积的2倍,∴S△PBQ=S△BQC,∴点Q为CP中点,又∵∠CQO=∠PQK,∠COQ=∠PKQ=90°,∴△OCQ≌△KPQ,∴CQ=KP,即点P纵坐标为﹣1,将y=﹣1代入y=﹣x2+x+5得﹣1=﹣x2+x+5,解得x1=,x2=,∴点P坐标为(,﹣1),(,﹣1),综上所述,点P坐标为(﹣,3)或(+,3)或(,﹣1)或(,﹣1),12.(2022•福建)在平面直角坐标系xOy中,已知抛物线y=ax2+bx经过A(4,0),B (1,4)两点.P是抛物线上一点,且在直线AB的上方.(1)求抛物线的解析式;(2)若△OAB面积是△P AB面积的2倍,求点P的坐标;【解答】解:(1)将A(4,0),B(1,4)代入y=ax2+bx,∴,解得.∴抛物线的解析式为:y=﹣x2+x.(2)设直线AB的解析式为:y=kx+t,将A(4,0),B(1,4)代入y=kx+t,∴,解得.∵A(4,0),B(1,4),∴S△OAB=×4×4=8,∴S△OAB=2S△P AB=8,即S△P AB=4,过点P作PM⊥x轴于点M,PM与AB交于点N,过点B作BE⊥PM于点E,如图,∴S△P AB=S△PNB+S△PNA=PN×BE+PN×AM=PN=4,∴PN=.设点P的横坐标为m,∴P(m,﹣m2+m)(1<m<4),N(m,﹣m+),∴PN=﹣m2+m﹣(﹣m+)=.解得m=2或m=3;∴P(2,)或(3,4).13.(2022•苏州二模)如图,已知抛物线y=x2+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,OA=OC=3.(1)求抛物线的函数表达式;(2)若点P为直线AC下方抛物线上一点,连接BP并交AC于点Q,若AC分∠△ABP 的面积为1:2两部分,请求出点P的坐标;【解答】解:(1)∵OA=OC=3,∴A(﹣3,0),C(0,﹣3),将点A、C代入y=x2+bx+c,∴,解得,∴y=x2+2x﹣3;(2)令x2+2x﹣3=0,解得x=﹣3或x=1,∴B(1,0),过点P作PG⊥x轴交于点G,过点Q作QH⊥x轴交于点H,∴PG∥QH,设直线AC的解析式为y=kx+b,∴,解得,∴y=﹣x﹣3,设P(t,t2+2t﹣3),直线BP的解析式为y=k'x+b',∴,解得,∴y=(t+3)x﹣(t+3),联立方程组,解得,∴Q(,),∵AC分∠△ABP的面积为1:2两部分,∴=或=,当=时,=,解得t=﹣1或t=﹣2,∴P(﹣1,﹣4)或(﹣2,﹣3);当=时,=,此时t无解,。

二次函数中的面积问题(教师版)

二次函数中的面积问题(教师版)

二次函数与几何综合专题----面积问题【模型解读】1.比例问题大部分题目的处理方法可以总结为两种:(1)计算;(2)转化. 策略一:运用比例计算类 策略二:转化面积比如图,B 、D 、C 三点共线,考虑△ABD 和△ACD 面积之比.转化为底:共高,面积之比化为底边之比:则.更一般地,对于共边的两三角形△ABD 和△ACD ,连接BC ,与AD 交于点E ,则.策略三:进阶版转化 在有些问题中,高或底边并不容易表示,所以还需在此基础上进一步转化为其他线段比值,比如常见有:“A ”字型线段比、“8”字型线段比. “A ”字型线段比:.DCBA::ABDACDSSBD CD =HABCD :::ABDACDSSBM CN BE CE ==M N EDCBA :::ABDACDSSBD CD BA AM ==“8”字型线段比:.转化为垂线:共底,面积之比化为高之比:.面积能算那就算,算不出来就转换; 底边不行就作高,还有垂线和平行.2.铅垂高求三角形的面积是几何题中常见问题之一,可用的方法也比较多,比如面积公式、割补、等积变形、三角函数甚至海伦公式,本文介绍的方法是在二次函数问题中常用的一种求面积的方法——铅垂法. 【问题描述】在平面直角坐标系中,已知()1,1A 、()7,3B 、()4,7C ,求△ABC 的面积.MDCBA:::ABDACDSSBD CD AB CM ==MDCBA:::ABDACDSSBD CD BM CN ==MNABCD【分析】显然对于这样一个位置的三角形,面积公式并不太好用,割补倒是可以一试,比如这样:构造矩形ADEF ,用矩形面积减去三个三角形面积即可得△ABC 面积. 这是在“补”,同样可以采用“割”:()111222ABCACDBCDSSSCD AE CD BF CD AE BF =+=⋅+⋅=+ 此处AE +AF 即为A 、B 两点之间的水平距离.由题意得:AE +BF =6. 下求CD :根据A 、B 两点坐标求得直线AB 解析式为:1233y x =+由点C 坐标(4,7)可得D 点横坐标为4, 将4代入直线AB 解析式得D 点纵坐标为2, 故D 点坐标为(4,2),CD =5, 165152ABCS=⨯⨯=.【方法总结】 作以下定义:A 、B 两点之间的水平距离称为“水平宽”;过点C 作x 轴的垂线与AB 交点为D ,线段CD 即为AB 边的“铅垂高”.如图可得:=2ABCS⨯水平宽铅垂高【解题步骤】(1)求A 、B 两点水平距离,即水平宽;(2)过点C 作x 轴垂线与AB 交于点D ,可得点D 横坐标同点C ; (3)求直线AB 解析式并代入点D 横坐标,得点D 纵坐标; (4)根据C 、D 坐标求得铅垂高; (5)利用公式求得三角形面积.引例1:如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,3OA OC ==,顶点为D ,对称轴交x 轴于点E . (1)求抛物线的解析式、对称轴及顶点D 的坐标.解:∵3OA OC ==, ∴A (-3,0),C (0,-3),∴()20333b c c ⎧=--+⎪⎨-=⎪⎩,解得:23b c =⎧⎨=-⎩,∴抛物线的解析式为:223y x x =+-,对称轴为:直线x =-1,顶点坐标为:D (-1,-4).(2)求四边形ABCD 的面积.解:由例题可知该二次函数的解析式为223y x x =+-,()()()()3,0,1,0,0,3,1,4A B C D ----, 连接OD ,如图所示,∴DOC △的底为OC ,高为点D 的纵坐标的绝对值, ∵AODDOCBOCABCD S SSS=++四边形,∴1113431139222ABCD S =⨯⨯+⨯⨯+⨯⨯=四边形(3)抛物线上是一点P ,若△PAC 面积为1,求P 点坐标(4)抛物线上是否存在点P ,使得ABP ABC S S =△△,若存在,求出点P 的坐标;若不存在,请说明理由.解:设点()2,23P m m m +-,点()0,3C -,由ABP ABC S S =△△可知:△ABP 与△ABC 同底,为AB ,则有点P 与点C 的纵坐标的绝对值相等, ∴P C y y =,∴2233m m +-=-或3,①当2233m m +-=-时,解得:2m =-或0m =(舍去), 此时点P 的坐标为()2,3--;②当2233m m +-=时,解得:1m ==-,此时点P 的坐标为()1-或()1-,综上所述:当ABP ABC S S =△△时,点P 的坐标为()2,3--或()1-或()1-(5)抛物线上是否存在点P ,使得ACPACDSS=,若存在,求出点P 的坐标;若不存在,请说明理由.解:过点D 作DM ∥y 轴,交AC 于点M ,过点P 作PN ∥y 轴,交AC 延长线于点N ,如图所示:∵()1,4D --,∴点M 的横坐标为-1,代入直线AC 的解析式3y x =--得:=2y -, ∴2DM =,根据铅垂法可知13232ADCACPSS =⨯⨯==,设()2,23P a a a +-,则有(),3N a a --,由铅垂法可把△ACP 的面积看作以AC 为水平宽,PN 为铅垂高,∴222333PN a a a a a =+-++=+,∴213332ACPSa a =⨯⨯+=,即232a a +=,∴当232a a +=时,解得:12a a =,此时点P 的坐标为⎝⎭或⎝⎭; 当232a a +=-时,解得:122,1a a =-=-(不符合题意,舍去), 此时点P 的坐标为()2,3--;综上所述:当ACPACDSS=时,点P 的坐标为()2,3--或⎝⎭或⎝⎭(6)抛物线上是否存在点P ,使得12ACPACD S S =(32ACPACD SS =),若存在,求出点P 的坐标;若不存在,请说明理由.(7)抛物线上是否存在点P ,使得AOPCOPSS=,若存在,求出点P 的坐标;若不存在,请说明理由.解:∵()()3,0,0,3A C --, ∴3OA OC ==,∴AOP 与COP 的底相等, ∴当AOPCOPSS=时,则AOP 与COP 的高也相等,由题意知AOP 的高是点P 的纵坐标的绝对值,而COP 的高是点P 的横坐标的绝对值,设()2,23P a a a +-,∴223a a a =+-,∴当223a a a =+-时,解得:12a a =,此时点P 的坐标为⎝⎭或⎝⎭;当223a a a =--+时,解得:12a a ==此时点P 的坐标为⎝⎭或⎝⎭;综上所述:当AOPCOP SS=时,点点P 的坐标为⎝⎭或⎝⎭或⎝⎭或⎝⎭(8)抛物线上是否存在点P ,使得BP 平分ABC 的面积,若存在,求出点P 的坐标;若不存在,请说明理由.解:设直线BP 与线段AC 交于点H ,如图所示:∵BP 平分ABC 的面积,∴线段BH 是ABC 的中线,即点H 是线段AC 的中点, ∵()()3,0,0,3A C --,∴根据中点坐标公式可得33,22H ⎛⎫-- ⎪⎝⎭,设直线BH 的解析式为y kx b =+,把点()33,,1,022H B ⎛⎫-- ⎪⎝⎭代入得:33220k b k b ⎧-+=-⎪⎨⎪+=⎩,解得:3535k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线BH 的解析式为3355y x =-, 联立抛物线与直线解析式得:2332355x x x +-=-, 解得:1212,15x x =-=(不符合题意,舍去), ∴1251,525⎛⎫-- ⎪⎝⎭(9)抛物线上是否存在点P ,使得BP 把ABC 的面积分为1:2,若存在,求出点P 的坐标;若不存在,请说明理由.(10)直线AC 下方的抛物线上有一动点P ,过点P 作PM x ⊥轴于点M ,使得AC 平分APM △的面积,若存在,求出点P 的坐标;若不存在,请说明理由.解:设直线AC 与线段PM 交于点Q ,如图所示:设()2,23P a a a +-,∵PM x ⊥轴, ∴(),0M a ,∵AC 平分APM △的面积,∴线段AQ 是APM △的中线,即点Q 是PM 的中点,∴根据中点坐标公式可得213,22Q a a a ⎛⎫+- ⎪⎝⎭,∵点Q 在直线AC 上,∴213322a a a +-=--, 解得:121,3a a =-=-(不符合题意,舍去), ∴()1,4P --(11)直线AC 下方的抛物线上有一动点P ,过点P 作PM x ⊥轴于点M ,交直线AC 于点N ,使得:2:1AMNANPSS=,若存在,求出点P 的坐标;若不存在,请说明理由.解:由:2:1AMNANPS S=,可知:2:1MN NP =,∴23MN MP =, 设()2,23P a a a +-,则有223MP a a =--+,∴224233MN a =--+,∴224,233N a a a ⎛⎫+- ⎪⎝⎭,∵点N 在直线AC 上,∴2242333a a a +-=--,化简得22730a a ++=, 解得:121,32a a =-=-(不符合题意,舍去),∴115,24P ⎛⎫-- ⎪⎝⎭(12)过E 点的直线l 将四边形ABCD 的面积分成2:7两部分,求直线l 的解析式.解:由(2)可得9ABCD S =四边形,①当过点E 的直线l 靠近点B 时,交直线BC 于点F ,把四边形ABCD 的面积分成2:7两部分,如图所示:∵点E 在抛物线的对称轴上, ∴BE =2,设点F 的纵坐标为y F , ∴2929EBFS=⨯=,即1222EBFy S F =⨯⨯=, ∴2y F =-,(2不符合题意,舍去),设BC 的解析式为:y kx b =+,则把点()()1,0,0,3B C -代入得:03k b b +=⎧⎨=-⎩,解得:33k b =⎧⎨=-⎩, ∴BC 的解析式为:33y x =-, ∵点F 在直线BC 上, ∴233x -=-,解得:13x =,∴1,23F ⎛⎫- ⎪⎝⎭,设直线l 的解析式为11y k x b =+,把点E 、F 代入得: 11111230k b k b ⎧+=-⎪⎨⎪-+=⎩,解得:113232k b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴直线l 的解析式为3322y x =--; ②当过点E 的直线l 靠近点A 时,交直线AD 于点G ,把四边形ABCD 的面积分成2:7两部分,如图所示:由①可知2AE =,1222AEGy S G =⨯⨯=, ∴2y G =-,设直线AD 的解析式为:y mx n =+,则把点()()3,0,1,4A D ---代入得:304m n m n -+=⎧⎨-+=-⎩,解得:26m n =-⎧⎨=-⎩, ∴直线AD 的解析式为:26y x =--, ∵点G 在直线AD 上,∴226x -=--,解得:2x =-, ∴()2,2G --,设直线l 的解析式为11y m x n =+,把点E 、G 代入得:1111220m n m n -+=-⎧⎨-+=⎩,解得:1122m n =⎧⎨=⎩, ∴直线l 的解析式为22y x =+;综上所述:当直线l 把四边形ABCD 的面积分成2:7两部分时,则直线l 的解析式为22y x =+或3322y x =--(13)抛物线上有一点P ,其横坐标为t ,抛物线上另有一点Q ,其横坐标为4t +,线段PQ 上有一点M ,作//MN y 轴交抛物线于点N ,求PNQ 面积的最大值.解:由抛物线上有一点P ,其横坐标为t ,抛物线上另有一点Q ,其横坐标为4t +,可知:()()22,23,4,1021P t t t Q t t t +-+++,设直线PQ 的解析式为y kx b =+,把点()()22,23,4,1021P t t t Q t t t +-+++代入得:()222341021tk b t t t k b t t ⎧+=+-⎪⎨++=++⎪⎩,解得:22643k t b t t =+⎧⎨=---⎩, ∴直线PQ 的解析式为()22643y t x t t =+---, 设点()2,23N m m m +-,∵//MN y 轴,∴()()2,2643M m t m t t +---,∴()()2222264323244MN t m t t m m m t m t t =+-----+=-++--,由铅垂法可知,P Q 的水平距离即为水平宽,即为44t t +-=,MN 为铅垂高, ∴()22142442PNQSm t m t t ⎡⎤=⨯⨯-++--⎣⎦ =()2224828m t m t t -++--=()2228m t ---+, ∵-2<0,开口向下,∴当2m t =+时,PNQ 的面积有最大值,最大值为8引例2:如图,已知抛物线过A (4,0)、B (0,4)、C (-2,0)三点,P 是抛物线上一点 (1)求抛物线解析式答案:2142x x -++(2)若P 在直线AB 上方,求四边形PBCA 面积最大值,(3)点D 是点B 关于关于x 轴的对称点,连接CD ,点P 是第一象限上一点,求△PCD 面积最大值△APB 面积为:12PH •△△AO (AO 是PBH ,PAH 两个三角形高之和)设P (m ,-12m ²+m +4),H (m ,-m +4)PH=-12m ²+2m (上面的点减去下面的点)当m =-b2a时,PH 取最大值2△分离出面积为定值的ABCH过动点P作y轴平行线交对边(延长)与点HS △PCD =S △PCH -S △PDH =12PH •CO=PH推导过程如下:以PH为底,设△PHC的高为h1,△PDH的高为h212PH •h1-12PH •h2=12PH •h1-h2()=12PH •CO(4)若P 在直线AB 上方,作PF ⊥AB ,交线段AB 于F,作PE ∥y 轴交AB 于E ,求△PEF 面积的最大值(5)若P 在直线AB 上方,连接OP ,交AB 于D ,求PDOD的最大值(6)若P 在直线AB 上方,连接CP ,交AB 于D ,△PDA 面积为S 1,△CDA 面积为S 2,求21S S 的最小值x第一步:面积比转换为共线的边之比S 2S 1=CD PD第二步:构造,共线的边之比转换成平行边之比CD PD =CG PH =6PH1.将抛物线y=ax2(a≠0)向左平移1个单位,再向上平移4个单位后,得到抛物线H:y=a(x﹣h)2+k.抛物线H与x轴交于点A,B,与y轴交于点C.已知A(﹣3,0),点P是抛物线H上的一个动点.(1)求抛物线H的表达式;(2)如图,点P在线段AC上方的抛物线H上运动(不与A,C重合),过点P作PD⊥AB,垂足为D,PD交AC 于点E.作PF⊥AC,垂足为F,求△PEF的面积的最大值;【解答】解:(1)由题意得抛物线的顶点坐标为(﹣1,4),∴抛物线H:y=a(x+1)2+4,将A(﹣3,0)代入,得:a(﹣3+1)2+4=0,解得:a=﹣1,∴抛物线H的表达式为y=﹣(x+1)2+4;(2)如图,由(1)知:y=﹣x2﹣2x+3,令x=0,得y=3,∴C(0,3),设直线AC的解析式为y=mx+n,∵A(﹣3,0),C(0,3),∴,解得:,∴直线AC的解析式为y=x+3,设P(m,﹣m2﹣2m+3),则E(m,m+3),∴PE=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m=﹣(m+)2+,∵﹣1<0,∴当m=﹣时,PE有最大值,∵OA=OC=3,∠AOC=90°,∴△AOC 是等腰直角三角形, ∴∠ACO =45°, ∵PD ⊥AB , ∴∠ADP =90°, ∴∠ADP =∠AOC , ∴PD ∥OC ,∴∠PEF =∠ACO =45°, ∵PF ⊥AC ,∴△PEF 是等腰直角三角形, ∴PF =EF =PE ,∴S △PEF =PF •EF =PE 2,∴当m =﹣时,S △PEF 最大值=×()2=;2.如图,抛物线212y x bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,2C -,连接AC ,BC . (1)求抛物线的解析式;(2)点P 在第四象限的抛物线上,设ABC 的面积为1S ,PBC 的面积为2S ,当2S =451S 时,求点P 的坐标3.在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点分别为A (﹣3,0)、B (1,0),与y 轴交于点D (0,3),过顶点C 作CH ⊥x 轴于点H (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;4.如图1,平面直角坐标系xOy中,抛物线y=ax2+bx+c(a<0)与x轴分别交于点A和点B(1,0),与y轴交于点C,对称轴为直线x=﹣1,且OA=OC,P为抛物线上一动点.(1)直接写出抛物线的解析式;(2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;5.在平面直角坐标系中,抛物线y=﹣x2+2mx的顶点为A,直线l:y=x﹣1与x轴交于点B.(1)如图,已知点A的坐标为(2,4),抛物线与直线l在第一象限交于点C.①求抛物线的解析式及点C的坐标;②点M为线段BC上不与B,C重合的一动点,过点M作x轴的垂线交x轴于点D,交抛物线于点E,设点M的横坐标t.当EM>BD时,求t的取值范围;(2)过点A作AP⊥l于点P,作AQ∥l交抛物线于点Q,连接PQ,设△APQ的面积为S.直接写出①S关于m的函数关系式;②S的最小值及S取最小值时m的值.6.如图,已知二次函数的图象交x轴于点B(﹣8,0),C(2,0),交y轴点A.(1)求二次函数的表达式;(2)连接AC,AB,若点P在线段BC上运动(不与点B,C重合),过点P作PD∥AC,交AB于点D,试猜想△PAD的面积有最大值还是最小值,并求出此时点P的坐标.7.在平面直角坐标系xOy中,已知抛物线:y=ax2+bx+c交x轴于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣).(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接OD,过点B作BE⊥OD,垂足为E,若BE=2OE,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接AM,交BC于点N,连接BM,记△BMN的面积为S1,△ABN的面积为S2,求的最大值.8.抛物线y=ax2+c的顶点为C(0,1),与直线y=kx+3(k为常数)相交于A(x1,y1),B(x2,y2)两点.当k=0时,点B的横坐标恰好为2(如图1).(1)求a、c的值;(2)当k=0时,若点P是抛物线上异于A、C的一点,且满足2PC2=AB2+2AP2,试判断△PAC的形状,并说明理由;(3)若直线y=﹣1交y轴于点F,过点A、B分别作该直线的垂线,垂足分别为D、E,连接AF、BF(如图2).设△ADF、△ABF、△BEF的面积分别为S1、S2、S3,是否存在常数t,使S22=t•S1S3?若存在,求出t的值;若不存在,请说明理由.【模型解读】1.如图,抛物线y=ax2+x+c与x轴交于点A,B,与y轴交于点C,已知A,C两点坐标分别是A(1,0),C(0,﹣2),连接AC,BC.(1)求抛物线的表达式和AC所在直线的表达式;(2)将△ABC 沿BC 所在直线折叠,得到△DBC ,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第三象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,△BPQ 的面积记为S 1,△ABQ 的面积记为S 2,求的值最大时点P 的坐标.2.如图,已知抛物线2y x bx c =-与一直线相交于1,023A C -,,两点,与y 轴交于点N .其顶点为D . (1)抛物线及直线AC 的函数关系式;(2)设点()3,M m ,求使MN MD +的值最小时m 的值;(3)若P 是抛物线上位于直线AC 上方的一个动点,求APC △的面积的最大值.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与直线y=x﹣2交于点A(m,0)和点B(﹣2,n),与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)若向下平移抛物线,使顶点D落在x轴上,原来的抛物线上的点P平移后的对应点为P′,若OP′=OP,求点P的坐标;(3)在抛物线上是否存在点Q,使△QAB的面积是△ABC面积的一半?若存在,直接写出点Q的坐标;若不存在,请说明理由.4.点A,B在抛物线y=ax2(a>0)上,AB交y轴于点C.(1)过点C作DC⊥y轴交抛物线于点D,若AB∥OD,AB的解析式为y=x+2,求a的值;(2)过点B作BG⊥x轴交x轴于点G,BG的延长线交AO的延长线于点H,连接AG交y轴于点K,求OK•BH的值;(3)若a=1,将抛物线平移后交x轴于点A(﹣1,0),B(2,0)两点,点P为y轴正半轴上一点,AP,BP交抛物线于点M,N,设△PNA的面积为S1,△PMB的面积为S2,△PBA的面积为S3,若,求点P的坐标.。

二次函数中面积问题

二次函数中面积问题

专题10 二次函数中面积问题方法1 割补法求面积1.如图,直线l :33y x =-+与x 轴、y 轴分别相交于A 、B 两点,抛物线()2240y ax ax a a =-++<经过点B .(1)求该抛物线的函数表达式:(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.【答案】(1)2y x 2x 3=-++;(2)21252528S m ⎛⎫=--+ ⎪⎝⎭;当52m =时,S 取得最大值258.【解析】 【分析】(1)根据题意先求出点B 的坐标,然后代入二次函数解析式求解即可;(2)由题意可求点A 坐标,连接OM ,由题意知,点M 的坐标为2(,23)m m m -++,则有03m <<,然后根据割补法求面积即可.【详解】解:(1)把0x =代入33y x =-+得3y =, △(0,3)B .把(0,3)B 代入224y ax ax a =-++, 得34a =+,△1a =-.△抛物线的解析式为2y x 2x 3=-++;(2)令0y =,则2230x x -++=,解得1x =-或3, △抛物线与x 轴的交点横坐标分别为1-和3. △点M 在抛物线上,且在第一象限内, △03m <<.将0y =代入33y x =-+,得033x =-+,解得1x =, △(1,0)A .如解图,连接OM ,由题意知,点M 的坐标为2(,23)m m m -++,则2111(31)2223132AOBOBMOAMAOBOAMB S S SSSSm m m =-=+-=⨯⨯+⨯-⨯-++⨯⨯四边形 2215122522528m m m ⎛⎫=-+=--+⎪⎝⎭, △102-<,且03m <<, △当52m =时,S 取得最大值258. 【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质是解题的关键.方法2 铅锤高水平宽求面积2.如图,抛物线y =ax 2+bx+c 经过A (0,3)、B (﹣1,0)、D (2,3),抛物线与x 轴的另一交点为E,点P 为直线AE 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的表达式;(2)当t 为何值时,△PAE 的面积最大?并求出最大面积;解:(1)由题意得:4233a b ca b cc-+=⎧⎪++=⎨⎪=⎩,解得:123abc=-⎧⎪=⎨⎪=⎩,△抛物线解析式为y=﹣x2+2x+3;(2)△A(0,3),D(2,3),△抛物线对称轴为x=1,△E(3,0),设直线AE的解析式为y=kx+3,△3k+3=0,解得,k=﹣1,△直线AE的解析式为y=﹣x+3,如图1,作PM△y轴,交直线AE于点M,设P(t,﹣t2+2t+3),M(t,﹣t+3),△PM=﹣t2+2t+3+t﹣3=﹣t2+3t,△12PAE PMA PMES S S PM OE=+=⋅=()21332t t⨯⨯-+=23327228t⎛⎫--+⎪⎝⎭,△t=32时,△PAE的面积最大,最大值是278.方法3 △=0时求面积最大3.如图,二次函数的图象与轴交于、两点,与轴交于点,已知点(-1,0),点C(0,-2).(1)求抛物线的函数解析式; (2)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.(1)将A (-1,0)、点C(0,-2).代入232y ax x c =-+ 求得:213222y x x =-- (2)已求得:B (4,0)、C (0,-2),可得直线BC 的解析式为:y=12x -2; 设直线l△BC ,则该直线的解析式可表示为:y=12x+b , 当直线l 与抛物线只有一个交点时,可列方程:12x+b=12x 2-32x -2,即:12x 2-2x -2-b=0,且△=0; △4-4×12(-2-b )=0,即b=-4; △直线l :y=12x -4.所以点M 即直线l 和抛物线的唯一交点,有: 213222{142y x x y x =--=-,解得:2{3x y ==-即 M (2,-3).过M 点作MN△x 轴于N ,S△BMC=S 梯形OCMN+S△MNB -S△OCB=12×2×(2+3)+12×2×3-12×2×4=4. △点M (2,﹣3),△MBC 面积最大值是4. 考点:二次函数综合题.类型拓展1 求四边形面积4.如图1,在平面直角坐标系中,一次函数y =12x ﹣2的图象与x 轴交于点B ,与y 轴交于点C ,抛物线y =12x 2+bx +c 的图象经过B 、C 两点,且与x 轴的负半轴交于点A . (1)求二次函数的表达式;(2)若点D 在直线BC 下方的抛物线上,如图1,连接DC 、DB ,设四边形OCDB 的面积为S ,求S 的最大值;解:(1)对于y =12x ﹣2,令y =12x ﹣2=0, 解得:x =4; 令x =0,则y =﹣2,故点B 、C 的坐标分别为(4,0)、(0,﹣2);将点B 、C 的坐标代入抛物线表达式得2116402c b c =-⎧⎪⎨⨯++=⎪⎩,解得:322b c ⎧=-⎪⎨⎪=-⎩, 故抛物线的表达式为213222y x x =--①; (2)连接OD ,点D 的坐标为(x ,213222x x --),则S =S △ODC +S △ODB =12×OC ×D x +12×BO ×(﹣D y )=12×2×x +12×4×(213222x x -++)=﹣x 2+4x +4,△﹣1<0,故S 有最大值, 当x =2时,S 有最大值8;5.如图,抛物线2y x bx c =-++与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,直线3y x =-+经过B ,C 两点,连接AC .(1)求抛物线的表达式;(2)点E 为直线BC 上方的抛物线上的一动点(点E 不与点B ,C 重合),连接BE ,CE ,设四边形BECA 的面积为S ,求S 的最大值; (1)解:(1)将(1A -,0)(3B ,0)代入2y x bx c =-++,∴10930b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩,223y x x ∴=-++;(2)(2)过E 作EF x ⊥轴于点F ,与BC 交于点H ,(1A -,0)(3B ,0),4AB ∴=当0x =时,3y =,(0,3)C ∴,3OC ∴=,设2(,23)F a a a -++,则(,3)H a a -+,222333EH a a a a a ∴=-+++-=-+,ABC BCE BECA S S S ∆∆=+四边形,21143(3)322S a a ∴=⨯⨯+-+⨯ 236(3)2a a =+-+23375()228a =--+,∴当32a =时,S 的最大值为758;类型拓展2 抛物线上有且只有三个点6.如图1,已知抛物线y =ax 2+2x +c (a ≠0),与y 轴交于点A (0,6),与x 轴交于点B (6,0).(1)求这条抛物线的表达式及其顶点坐标;(2)设点P 是抛物线上的动点,若在此抛物线上有且只有三个P 点使得△P AB 的面积是定值S ,求这三个点的坐标及定值S .解:(1)△抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B(6,0).△603612ca c=⎧⎨=++⎩△126 ac⎧=-⎪⎨⎪=⎩△抛物线解析式为:y=﹣12x2+2x+6,△y=﹣12x2+2x+6=﹣12(x﹣2)2+8,△顶点坐标为(2,8)(2)△点A(0,6),点B(6,0),△直线AB解析式y=﹣x+6,当x=2时,y=4,△点D(2,4)如图1,设AB上方的抛物线上有点P,过点P作AB的平行线交对称轴于点C,且与抛物线只有一个交点为P,设直线PC解析式为y=﹣x+b,△﹣12x2+2x+6=﹣x+b,且只有一个交点,△△=9﹣4×12×(b﹣6)=0△b =212, △直线PC 解析式为y =﹣x +212, △当x =2,y =172, △点C 坐标(2,172), △CD =92,△﹣12x 2+2x +6=﹣x +92,△x =3, △点P (3,152) △在此抛物线上有且只有三个P 点使得△P AB 的面积是定值S ,△另两个点所在直线与AB ,PC 都平行,且与AB 的距离等于PC 与AB 的距离, △DE =CD =92,△点E (2,﹣12),设P 'E 的解析式为y =﹣x +m , △﹣12=﹣2+m , △m =32△P 'E 的解析式为y =﹣x +32,△﹣12x 2+2x +6=﹣x +32,△x =△点P '(,﹣32﹣,P ''(3﹣,﹣32,△S =12×6×(152﹣3)=272.7.如图,直线334y x =-+与 x 轴交于点 C ,与 y 轴交于点 B ,抛物线 234y ax x c =++经过 B 、C 两点.(1)求抛物线的解析式;(2)如图,点 E 是抛物线上的一动点(不与 B ,C 两点重合),△BEC 面积记为 S ,当 S 取何值时,对应的点 E 有且只有三个?【答案】(1)233384y x x =-++;(2)3【解析】 【分析】(1)先利用一次函数解析式确定B (0,3),C (4,0),然后利用待定系数法求抛物线解析式;(2)由于E 点在直线BC 的下方的抛物线上时,存在两个对应的E 点满足△BEC 面积为S ,则当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S ,所以过E 点的直线与抛物线只有一个公共点,设此时直线解析式为34y x b =-+,利用方程组23433384y x b y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩只有一组解求出b 得到E 点坐标,然后计算此时S △BEC . 【详解】(1)当x=0时,y=-34x+3=3,则B (0,3),当y=0时,-34x+3=0,解得x=4,则C (4,0),把B (0,3),C (4,0)代入y=ax 2+34x+c 得383a c ⎧=-⎪⎨⎪=⎩, 所以抛物线解析式为233384y x x =-++;(2)当E 点在直线BC 的下方的抛物线上时,一定有两个对应的E 点满足△BEC 面积为S , 所以当E 点在直线BC 的上方的抛物线上时,只能有一个对应的E 点满足△BEC 面积为S , 即此时过E 点的直线与抛物线只有一个公共点,设此时直线解析式为34y x b =-+, 方程组23433384y x b y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩只有一组解, 方程23333844x x x b -++=-+有两个相等的实数解, 则△=122-4×3×(-24+8b )=0,解得b=92,解方程得x 1=x 2=2, E 点坐标为(2,3), 此时1343322BEC S ⎛⎫=⨯⨯-= ⎪⎝⎭, 所以当S=1时,对应的点E 有且只有三个.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.8.如图,直线4y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线223y x bx c =-++经过B 、C 两点.(1)求抛物线的解析式;(2)如图,点E 是抛物线上的一动点(不与B ,C 两点重合),当14BEC BOC S S =△时,求点E 的坐标;(3)若点F 是抛物线上的一动点,当BFC S △为什么取值范围时,对应的点F 有且只有两个?【答案】(1)225433y x x =-++;(2)1E ⎝⎭,2E ⎝⎭,34222E ⎛-+ ⎝⎭,44222E ⎛+- ⎝⎭;(3)当163BFC S >△时,对应的点F 有且只有两个.【解析】【分析】(1)根据待定系数法,即可求解;(2)过点E 作x 轴的垂线交BC 于点N ,设点225,433E a a a ⎛⎫-++ ⎪⎝⎭,点(,4)N a a -+,根据12BEC B C S EN x x =-△,14BEC BOC S S =△,列出方程,即可求解; (3)当F 点在直线BC 的下方的抛物线上时,一定有两个对应的F 点满足BCF △面积为S ,当F 点在直线BC 的上方的抛物线上时,无F 点满足BCF △面积为S 才符合题意,故只需要求出当点F 在直线BC 的上方时,BFC S △的最大值,即可得到结论 .【详解】(1)△直线4y x =-+与x 轴交于点C ,与y 轴交于点B ,△(0,4)B ,(4,0)C ,将(0,4)B ,(4,0)C 代入223y x bx c =-++, 可得2424403c b c =⎧⎪⎨-⨯++=⎪⎩,解得534b c ⎧=⎪⎨⎪=⎩, △225433y x x =-++; (2)如图,过点E 作x 轴的垂线交BC 于点N , 设点225,433E a a a ⎛⎫-++ ⎪⎝⎭,则点(,4)N a a -+, △2212541624423333BEC B C S EN x x a a a a a =-=-+++-=-+△, △182BOC S BO OC =⋅=△,14BEC BOC S S =△, △2416233a a -+=,解得:1x =2x =3x =4x = 将1x ,2x ,3x ,4x代入抛物线解析式,可得:1y =,2y =3y =4y =△1E ⎝⎭,2E ⎝⎭,34222E ⎛ ⎝⎭,44222E ⎛ ⎝⎭; (3)当点F 在直线BC 上方的抛物线上时,设点225,433F m m m ⎛⎫-++ ⎪⎝⎭, 由(2)同理可得:22416416(2)3333BFC S m m m =-+=--+△, △当2m =时,BFC S △的最大值为163, △当BFC S △>163时,在直线BC 的上方的抛物线上无法找到F 点, 综上所述:当163BFC S >△时,对应的点F 有且只有两个.【点睛】本题主要考查二次函数与一次函数的综合,掌握待定系数法,函数图像上的点的坐标特征以及三角形的面积=铅垂高×水平宽,是解题的关键.类型拓展3 综合运用9.综合与实践 如图,二次函数234y x bx c =++的图象与x 轴交于点A 和B ,点B 的坐标是()4,0,与y 轴交于点()0,3C -,点D 在抛物线上运动.(1)求抛物线的表达式;(2)如图2,当点D 在第四象限的抛物线上运动时,连接BD ,CD ,BC ,当BCD △的面积最大时,求点D 的坐标及BCD △的最大面积;(1)解:点B ()4,0和点()0,3C -代入二次函数234y x bx c =++, 得:01243b c c=++⎧⎨-=⎩ 解得943b c ⎧=-⎪⎨⎪=-⎩. △抛物线的表达式是239344y x x =--. (2) 解:如图,连接OD ,过点D 作DM x ⊥轴,作DN y ⊥轴.设点D 的坐标是239,344m m m ⎛⎫-- ⎪⎝⎭.△239344DM m m =-++,DN m =. △()4,0B ,()0,3C -,△4OB =,3OC =.△BCD OCD OBD OBC S S S S =+-△△△△111222OC DN OB DM OB OC =⋅+⋅-⋅ 2113913434322442m m m ⎛⎫=⨯+⨯-++-⨯⨯ ⎪⎝⎭ 2362m m =-+ 23(2)62m =--+. △302-<, △当2m =时,BCD △的面积最大且为6.当2m =时,2239399322344442m m --=⨯-⨯-=-. △点D 的坐标是92,2⎛⎫- ⎪⎝⎭,BCD △的最大面积是6. 10.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为()()3,0,0,3B C ,点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD x ⊥轴于点D ,若OD m =,PCD 的面积为S ,求S 与m 的函数关系式,并求当S 取得最大值时,点P 的坐标;(1)解:将点B (3,0),C (0,3)代入y =-x 2+bx +c ,得09333b c =-++⎧⎨=⎩;解得23b c =⎧⎨=⎩, △二次函数的解析式为y =-x 2+2x +3;(2)△y =-x 2+2x +3=-(x -1)2+4,△顶点M (1,4),设直线BM 的解析式为y =kx +b ,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩, 解得26k b =-⎧⎨=⎩, △直线BM 的解析式为y =-2x +6,△PD △x 轴且OD =m ,△P (m ,-2m +6),△S =S △PCD =12PD •OD =12m (-2m +6)=-m 2+3m ,即S =-m 2+3m ,△当点P 与点B 重合时,不存在以P 、C 、D 为顶点的三角形,△1≤m <3,△S =-m 2+3m =-(m -32)2+94, △-1>0,△当m =32时,S 取最大值94;此时点P 的坐标为332⎛⎫ ⎪⎝⎭,. 11.如图,在平面直角坐标系中,抛物线2y ax bx c =++的对称轴为2x =,与y 轴交于点A 与x 轴交于点E 、B ,且点(0,5)A ,(5,0)B ,过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的点,且在AC 的上方,作PD 平行于y 轴交AB 于点D .(1)求二次函数的解析式;(2)当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(1) 解:抛物线2y ax bx c =++的对称轴为2x =, △22b a-=, 4b a ∴=-,∴抛物线解析式为24y ax ax c =-+,点(0,5)A ,(5,0)B ,∴52550c a b c =⎧⎨-+=⎩, ∴15a c =-⎧⎨=⎩, ∴二次函数的解析式为245y x x =-++;(2)解://AC x 轴,点(0,5)A ,当5y =时,2455x x -++=,10x ∴=,24x =,(4,5)C ∴,4AC ∴=,设直线AB 的解析式为y mx n =+,(0,5)A ,(5,0)B ,由点A 、B 的坐标得,直线AB 的解析式为5y x =-+;设2(,45)P m m m -++,,5()D m m ∴-+,224555PD m m m m m ∴=-+++-=-+,4AC =, △()221525252222APCD S AC PD m m m ⎛⎫=⋅=-+=--+ ⎪⎝⎭四边形 ∴当52m =时,四边形APCD 的面积最大, ∴即点5(2P ,35)4时,四边形APCD 的面积最大为252; 12.如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与坐标轴交于A ,B ,C 三点,其中点B 的坐标为(1,0),点C 的坐标为(0,4),点D 的坐标为(0,2),点P 为二次函数图象上的动点.(1)求二次函数的解析式和直线AD 的解析式;(2)当点P 位于第二象限内二次函数的图象上时,连接AD ,AP ,以AD ,AP 为邻边作平行四边形APED ,设平行四边形APED 的面积为S ,求S 的最大值.【答案】(1)y =-x 2-3x +4,122y x =+;(2)814【解析】【分析】 (1)利用待定系数法将B (1,0),C (0,4)代入二次函数y =﹣x 2+bx +c 即可求出二次函数的解析式,令y =0,可求出A 点坐标,然后设直线AD 的解析式为y =kx +b ,利用待定系数法将A 点坐标和D 点坐标代入y =kx +b 即可求出直线AD 的解析式;(2)连接PD ,作PG y 轴交AD 于点G ,根据题意设出点P 和点G 的坐标,然后表示出线段PG 的长度,进而根据2APD S S ∆=表示出平行四边形APED 的面积,最后根据二次函数的性质求解即可.【详解】解:(1)将B (1,0),C (0,4)代入y =-x 2+bx +c 中,得014b c c =-++⎧⎨=⎩,解得34b c =-⎧⎨=⎩, △二次函数的解析式为y =-x 2-3x +4在y =-x 2-3x +4中,令y =0,即2340x x --+=,解得x 1=-4,x 2=1,△A (-4,0).设直线AD 的解析式为y =kx +b'.△D (0,2),△04'2'k b b =-+⎧⎨=⎩, 解得:12'2k b ⎧=⎪⎨⎪=⎩ △直线AD 的解析式为122y x =+. (2)连接PD ,作PG y 轴交AD 于点G ,如图所示.设P (t ,-t 2-3t +4)(-4<t <0),则G (t ,122t +), △2217342222PG t t t t t =--+--=--+, △2122||41482APD D A S S PG x x t t ∆==⨯⋅-=--+, 27814()44t =-++. △-4<0,-4<t <0,△当74t =-时,S 有最大值814.【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数中有关面积的综合题,解题的关键是熟练掌握待定系数法求函数表达式,根据题意设出点的坐标表示出平行四边形APED的面积.。

中考一轮复习:二次函数与面积专题训练

中考一轮复习:二次函数与面积专题训练

二次函数与面积专题例题1:如图1,抛物线y=mx2﹣11mx+24m (m<0)与x轴交于B、C两点(点B在点C的左侧),抛物线另有一点A在第一象限内,且∠BAC=90°.(1)填空:OB=_________,OC=_________;(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;(3)如图2,设垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.例题2.平面直角坐标系中,口ABOC如图放置,点A、C的坐标分别为(0,3)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到口A'B'OC'.(1)若抛物线过点C,A,A',求此抛物线的解析式;(2)口ABOC和口A'B'OC'重叠部分△OC'D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.例题3:在梯形OABC中,CB∥OA,∠AOC=60°,∠OAB=90°,OC=2,BC=4,以点O为原点,OA所在的直线为x轴,建立平面直角坐标系,另有一边长为2的等边△DEF,DE在x轴上(如图(1)),如果让△DEF以每秒1个单位的速度向左作匀速直线运动,开始时点D与点A重合,当点D到达坐标原点时运动停止.(1)设△DEF运动时间为t,△DEF与梯形OABC重叠部分的面积为S,求S关于t的函数关系式.(2)探究:在△DEF运动过程中,如果射线DF交经过O、C、B三点的抛物线于点G,是否存在这样的时刻t,使得△OAG的面积与梯形OABC的面积相等?若存在,求出t的值;若不存在,请说明理由.例题4:如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,﹣3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,﹣1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P 为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.例题5:如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.练习1:如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,﹣3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.练习2:如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(﹣1,0).(1)求二次函数的关系式;(2)在抛物线上有一点A,其横坐标为﹣2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足﹣2<x B<,当△AOB的面积最大时,求出此时直线l的关系式;(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等?若存在,求出点C 的横坐标;若不存在说明理由.练习3:抛物线y=ax2+bx+c与x轴的交点为A(m﹣4,0)和B(m,0),与直线y=﹣x+p相交于点A和点C(2m﹣4,m﹣6).(1)求抛物线的解析式;(2)若点P在抛物线上,且以点P和A,C以及另一点Q为顶点的平行四边形ACQP面积为12,求点P,Q的坐标;(3)在(2)条件下,若点M是x轴下方抛物线上的动点,当△PQM的面积最大时,请求出△PQM 的最大面积及点M的坐标.练习4:如图,已知二次函数y=﹣x2+mx+4m的图象与x轴交于A(x1,0),B(x2,0)两点(B点在A点的右边),与y轴的正半轴交于点C,且(x1+x2)﹣x1x2=10.(1)求此二次函数的解析式.(2)写出B,C两点的坐标及抛物线顶点M的坐标;(3)连接BM,动点P在线段BM上运动(不含端点B,M),过点P作x轴的垂线,垂足为H,设OH的长度为t,四边形PCOH的面积为S.请探究:四边形PCOH的面积S有无最大值?如果有,请求出这个最大值;如果没有,请说明理由.练习5:如图,已知直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB =2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连结EF,设△BEF与△BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值.练习6:如图,已知抛物线y =-21x2+x +4交x 轴的正半轴于点A ,交y 轴于点B . (1)求A 、B 两点的坐标,并求直线AB 的解析式;(2)设P (x ,y )(x >0)是直线y =x 上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF ,若正方形PEQF 与直线AB 有公共点,求x 的取值范围;(3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值.练习7:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,且点A (0,2),点C (-1,0),如图所示,抛物线y =2ax 2+ax -23经过点B . (1)求点B 的坐标;(2)求抛物线的解析式;(3)若三角板ABC 从点C 开始以每秒1个单位长度的速度向x 轴正方向平移,求点A 落在抛物线上时所用的时间,并求三角板在平移过程中扫过的面积;(4)在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.练习8:如图①,在平面直角坐标系中,等腰直角△AOB 的斜边OB 在x 轴上,顶点A 的坐标为(3,3),AD 为斜边上的高.抛物线y =ax 2+2x 与直线y =21x 交于点O 、C ,点C 的横坐标为6.点P 在x 轴的正半轴上,过点P 作PE ∥y 轴,交射线OA 于点E .设点P 的横坐标为m ,以A 、B 、D 、E 为顶点的四边形的面积为S .(1)求OA 所在直线的解析式.(2)求a 的值.(3)当m ≠3时,求S 与m 的函数关系式.(4)如图②,设直线PE 交射线OC 于点R ,交抛物线于点Q .以RQ 为一边,在RQ 的右侧作矩形RQMN ,其中RN =23.直接写出矩形RQMN 与△AOB 重叠部分为轴对称图形时m 的取值范围.练习9:在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A、B(点A在点B的左边),与y轴相交于点C(0,3),顶点P的坐标是(1,4),对称轴与x轴相交于点D.(1)求出抛物线y=ax2+bx+c的表达式,及点A、B的坐标;(2)如图,点M与点C关于直线PD对称,连接MA、MB、MO,过点D作DE∥OM交线段MB 于点E,连接OE.△BOE的面积记作S1,△MOE的面积记作S2,△MOA的面积记作S3,求证:S1=S2+S3;(3)若(2)中的点M是第一象限内抛物线上的任意一点,其它条件不变,(2)中的结论是否成立?若成立,请说明理由;若不成立,写出新的结论并证明.练习10:如图,已知直线y =-21x +1交坐标轴于A 、B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线另一个交点为E .(1)请直接写出点C ,D 的坐标;(2)求抛物线的解析式;(3)若正方形以每秒5个单位长度的速度沿射线AB 下滑,直至顶点D 落在x 轴上时停止.设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,直至顶点D 落在x 轴上时停止,求抛物线上C 、E 两点间的抛物线弧所扫过的面积.练习11 如图,已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形OECD 的面积S 1与四边形OABD 的面积S 满足:S 1=32S?若存在,求点E 的坐标;若不存在,请说明理由.练习12 如图,在直角坐标系中,矩形ABCD 的边AD 在y 轴正半轴上,点A 、C 的坐标分别为(0,1)、(2,4).点P 从点A 出发,沿A →B →C 以每秒1个单位的速度运动,到点C 停止;点Q 在x 轴上,横坐标为点P 的横、纵坐标之和.抛物线c bx x y ++-=241经过A 、C 两点.过点P 作x 轴的垂线,垂足为M ,交抛物线于点R .设点P 的运动时间为t (秒),△PQR 的面积为S (平方单位).(1)求抛物线对应的函数关系式.(2)分别求t=1和t=4时,点Q 的坐标.(3)当0<t ≤5时,求S 与t 之间的函数关系式,并直接写出S 的最大值.练习13已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4。

二次函数面积最大问题专题典型题

二次函数面积最大问题专题典型题

二次函数(面积最值)专题典型题1、用20米材料制作一日字形窗框,窗框的高度为多少时,窗框面积最大,最大面积是多少?2、用20米材料制作一田字形窗框,窗框的高度为多少时,窗框面积最大,最大面积是多少?3、用20米材料制作一如图所示窗框,窗框上半部分框的高度是下半部分框高度的一半,那么窗框的宽度为多少时,窗框面积最大,最大面积是多少?4、用20米材料靠墙围一矩形场地,如图所示其中一边开一1米宽度的门,该矩形场地的一边长x 为多少时,场地面积最大,最大面积是多少?小题(1) 小题(2) 小题(3)5、用20米材料靠墙围一矩形场地,且矩形内分成三个小矩形场地,如图所示其中每个场地均设置一1米宽度的门,该矩形场地的一边长x 为多少时,场地面积最大,最大面积是多少?小题(1) 小题(2)小题(3)6、一直角三角形形状区域,其中两直角边为墙,一墙宽度为10米,另一墙宽度为20米。

在该区域内靠墙用足够多的材料围一矩形场地,矩形场地的长度为多少时,所围面积最大,最大面积是多少?7、一直角梯形形状区域,其中一腰和一底边为墙,梯形上底边宽度为20米,下底边宽度为30米,梯形高度为25米。

在该区域内靠墙用足够多的材料围一矩形场地,矩形场地的长度为多少时,所围面积最大,最大面积是多少?8、用20米的材料制作如图所示一窗框,窗框上半部分为一半圆,下半部分为一矩形,窗框上半部分半径为多少时,窗框透光面积最大,最大面积是多少?9、已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.10、用一张长为4,宽为3的矩形白纸剪一如图所示的平行四边形纸片,其中剪掉的两个小直角三角形为全等等腰三角形,为使所剪得到的纸片面积最大,则小等腰直角三角形的直角边应为多少,此时面积最大为多少?11、在一半径为10的四分之一个圆内围一矩形,矩形一边长为多少时,面积最大,最大面积是多少?12、点P 是抛物线y x 42 上一点,另有两个点A(4,0)和B(0,-3),求三角形PAB 的最小面积。

二次函数图像与面积问题

二次函数图像与面积问题

xy O A BCxC Oy ABD 1 1专题一:二次函数综合面积问题回顾:常见求面积的方法 一、 面积相等问题例1、如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2) 求△CAB 的铅垂高CD 及CAB S △;(3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由(4) 设点Q 是抛物线(在第一象限内)上的一个动点,是否存在一点Q ,使S △QAB =89S △CAB ,若存在,求出Q 点的坐标;若不存在,请说明理由. 做题要点:怎么读题?求面积有几种方法?方法之间有什么区别?例2. 如图,已知抛物线2y ax bx c =++与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3).(1)求抛物线的解析式及顶点M 坐标; (2)在抛物线的对称轴上找到点P ,使得△P AC 的周长最小,并求出点P 的坐标;(3)若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE ∥PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,S △PDE =19S 四边形ABMC .例3.如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停止移动.(1)求线段所在直线的函数解析式; (2)设抛物线顶点的横坐标为,①用的代数式表示点的坐标; ②当为何值时,线段最短; (3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.二、 面积最值问题 1、 用解析式解析式求最值例1、.如图①, 已知抛物线32-+=bx ax y (a ≠0)与x 轴交于点A(1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;(2) 如图②,若点E 为第三象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.2-2-4-551015yxCNAB512-2-4yxCAB图①图②A CxyBOyxBD O AEC例2、已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合). 过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.例3. 已知:抛物线2y ax bx c =++与x 轴交于A 、B 两点,与y 轴交于点C . 其中点A 在x 轴的负半轴上,点C 在y 轴的负半轴上,线段OA 、OC 的长(OA <OC )是方程2540x x -+=的两个根,且抛物线的对称轴是直线1x =.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的解析式;(3)若点D 是线段AB 上的一个动点(与点A 、B 不重合),过点D 作DE ∥BC 交AC 于点E ,连结CD ,设BD 的长为m ,△CDE 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.S 是否存在最大值?若存在,求出最大值并求此时D 点坐标;若不存在,请说明理由.xyBFO ACPx =12、 用几何方法求最值例1、如图11,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.例 2. 如图,在平面直角坐标系中,点A C 、的坐标分别为(10)(03)--,、,,点B 在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线1x =, 点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F .(1)求该二次函数的解析式; (2)若设点P 的横坐标为m ,用含m 的代数式表示线段PF 的长. (3)求PBC △面积的最大值,并求此时点P 的坐标.三、练习1.将直角边长为6的等腰Rt △AOC 放在平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B (–3,0). (1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当 △APE 的面积最大时,求点P 的坐标;(3)在第一象限内的该抛物线上是否存在点G ,使△AGC 的面积与(2)中△APE 的面积最 大面积相等?若存在,请求出点G 的坐标;若不存在,请说明理由.(4)在第一象限内的该抛物线上是否存在点M ,使△AMC 的面积最大?若存在,请求出点M 的坐标;若不存在,请说明理由.。

二次函数和面积问题专题

二次函数和面积问题专题

专题:二次函数和面积问题问题一:在抛物线y=-x 2+2x+3上是否存在一点D (在直线BC 上方),使S △BCD =S △BCP ?问题二:在抛物线y =-x 2+2x+3上是否存在一点D ,使S △BCD =S △BCP ?问题三:若D 是抛物线y =-x 2+2x+3上(在直线BC 上方)一个动点,△BCD 是否有最大面积?问题四:如图,若D 是抛物线y =-x 2 +2x+3上一点,BC 和DP 相交于点E,满足S △CDE =S △BEP,你知道点D 的坐标吗?问题五:如图,直线DE:y=-0.5x+k 与抛物线y =-x 2+2x+3交于点D,E (点A 在点B 左边),与y轴交于点F.(1)若=5,求k.(2)若S △CEF : S △CDF =8:3,求k.y 2与x 轴交于A,B 两点(点A 在点B 左边),与y 轴交于点C ,抛物线上一点D (1,n ),若S △BCD =3,求m 的值。

(你能先尝试画出大致图像吗?)问题七:抛物线y =-x 2+(m-1)x+m(m>1)与x 轴交于A,B 两点(点A 在点B 左边),与y 轴交于点C ,顶点为点P ,直线:y=x+ 24m 与抛物线交于M,N 两点,S △PMN 是定值吗?FCPEA BD练习:1.如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x 刻画,斜坡可以用一次函数y=x 刻画.(1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连接抛物线的最高点P 与点O 、A 得△POA,求△POA 的面积; (4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积.请直接写出点M 的坐标.2.已知抛物线与x 轴相交于不同的两点,(1)求的取值范围(2)证明该抛物线一定经过非坐标轴上的一点,并求出点的坐标;(3)当时,由(2)求出的点和点构成的的面积是否有最值,若有,求出最值及相对应的值;若没有,请说明理由.3.一次函数y=x 的图象如图所示,它与二次函数y=ax 2﹣4ax+c 的图象交于A 、B 两点(其中点A 在点B 的左侧),与这个二次函数图象的对称轴交于点C . (1)求点C 的坐标;(2)设二次函数图象的顶点为D .①若点D 与点C 关于x 轴对称,且△ACD 的面积等于3,求此二次函数的关系式; ②若CD=AC ,且△ACD 的面积等于10,求此二次函数的关系式.4.在平面直角坐标系中,O 为原点,直线y=﹣2x ﹣1与y 轴交于点A ,与直线y=﹣x 交于点B ,点B 关于原点的对称点为点C .(1)求过A ,B ,C 三点的抛物线的解析式;(2)P 为抛物线上一点,它关于原点的对称点为Q . 若点P 的横坐标为t (﹣1<t <1),当t 为何值时,四边形PBQC 面积最大?并说明理由.。

专题 二次函数与面积有关的问题(知识解读)-中考数学(全国通用)

专题  二次函数与面积有关的问题(知识解读)-中考数学(全国通用)

专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。

特别是在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。

与面积有关的问题,更是常见。

本节介绍二次函数考试题型种,与面积问题的常用解法。

同学们,只要熟练运用解法,炉火纯青,在考试答题的时候,能够轻松答题。

【知识点梳理】类型一:面积等量关系类型二:面积平分方法一:利用割补将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD解法不简便。

)方法二: 铅锤法铅锤高水平宽⨯=21S方法三 :其他面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比. 如图3,同高三角形的面积比等于底的比.如图1 如图2 如图3【典例分析】【类型一:面积等量关系】【典例21】(2022•盘锦)如图,抛物线y =x 2+bx +c 与x 轴交于A ,B (4,0)两点(A 在B 的左侧),与y 轴交于点C (0,﹣4).点P 在抛物线上,连接BC ,BP .(1)求抛物线的解析式;(2)如图1,若点P 在第四象限,点D 在线段BC 上,连接PD 并延长交x 轴于点E ,连接CE,记△DCE的面积为S1,△DBP的面积为S2,当S1=S2时,求点P的坐标;【变式1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A (﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【类型二:面积平分】【典例2】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;【变式2】(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为1:5两部分,求点P的坐标.【典例3】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB =OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBP A的面积分为3:5两部分,求点P的坐标.【变式3】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。

二次函数面积问题(整)

二次函数面积问题(整)

二次函数面积问题题型题型一:割补法1.抛物线y=﹣x2+bx+c经过点A(4,0)和点B(0,2),且抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AC、BC、BD,求四边形ADBC的面积.2.如图,在直角坐标系中,已知直线y=x+4与y轴交于A点,与x轴交于B点,C点坐标为(﹣2,0).(1)求经过A,B,C三点的抛物线的解析式;(2)如果M为抛物线的顶点,联结AM、BM,求四边形AOBM的面积.3.已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.4.如图,抛物线y=x2﹣4x+3交x轴于A、B两点(点A在B左侧),顶点为D点,点C为抛物线上一点,且横坐标是4;(1)求A、B、D三点的坐标;(2)求△ACD的面积;5.如图,抛物线y=x2+bx+c的图象与x轴负半轴交于A点,与x轴正半轴交于B点,与y轴交于点C,且BO=CO=3AO,△ABC面积为6.(1)求b,c的值;(2)设抛物线顶点为M,求△BCM的面积.6.如图,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).(1)k=,点A的坐标为,点B的坐标为;(2)设抛物线y=x2﹣2x+k的顶点为M,求四边形OBMC的面积.题型二:分类讨论1.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.2.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.3.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△P AB=8,并求出此时P点的坐标.4.如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)求此抛物线顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=1,求点B的坐标.5.如图在直角平面坐标系xOy中,OA=OC=3OB,二次函数y=﹣x2+bx+c的图象经过A、B、C.(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使S△P AO=4S△OAC?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知抛物线y=x2+bx+c与x轴相交于A,B两点(A点在B点的左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的解析式;(2)在抛物线上是否存在一点E,使得2S△ABE=S△ABC?若存在,求出点E的坐标;若不存在,请说明理由.题型三:铅垂线1.如图,抛物线y=﹣x2+bx+c经过点B(0,3)和点A(3,0).(1)求抛物线的函数表达式和直线的函数表达式;(2)若点P是抛物线落在第一象限,连接P A,PB,求△P AB的面积S的最大值及此时点P的坐标.2.如图,抛物线y=﹣x2+bx+c与一条直线相交于A(﹣1,0),C(2,3)两点.(1)求抛物线和直线的解析式;(2)若动点P在抛物线上位于直线AC上方运动,求△APC的面积最大值.3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C.(1)求此抛物线的解析式;(2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.4.如图,已知抛物线经过两点A(﹣3,0),B(0,3),且其对称轴为直线x=﹣1.(1)求此抛物线的解析式;(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求△P AB的面积的最大值,并求出此时点P的坐标.5.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求此抛物线的解析式;(2)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.6.如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于点E.(1)求抛物线的函数表达式;(2)求线段DE长度的最大值.题型四:作平行线1.如图,直线y=﹣x+c与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c经过点A、B、C.(1)求点A的坐标和抛物线的解析式;(2)当点P在直线BC下方的抛物线上(不与点A重合),且△PBC的面积和△ABC的面积相等时,求出点P 的横坐标.变式:(3)当点P在抛物线上(不与点A重合),且△PBC的面积和△ABC的面积相等时,求出点P的横坐标.2.已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中A(1,0),B(3,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A),①当△PBC的面积与△ABC的面积相等时,求点P的坐标;②如图2,当∠PCB=∠BCA时,求直线CP的解析式.。

二次函数面积问题类型总结

二次函数面积问题类型总结

二次函数面积专题知识导航:1、求图形面积2、面积最值3、已知面积探寻其他问题第一讲求图形面积考点类型1.三角形面积求法:特殊型:有一条边在坐标轴或者有一条边平行于坐标轴三角形面积主要分成两类:普通型:三边均不平行于坐标轴特殊型:直接选用平行于坐标轴或者在坐标轴的边为底及对应高进行计算例1、(青海)如图,抛物线224233y x x =-++与坐标轴交点分别为(1,0)A -,(3,0)B ,(0,2)C ,作直线BC .点P 为抛物线上第一象限内一动点,过点P 作PD x ⊥轴于点D ,设点P 的横坐标为(03)t t <<,求ABP ∆的面积S 与t 的函数关系式;1.补形法 一般型2.铅锤法3.面积转化法 1.补形法2. 割法之铅锤线法:公式:三角形面积=铅锤高×水平宽×21 x B -x Ax B -x ABAMPPM AB1()2APB B A S PM x x =⋅⋅-△3:面积转化法转化法——借助平行线转化:AB若S△ABP=S△ABQ,若S△ABP=S△ABQ,当P,Q在AB同侧时,当P,Q在AB异侧时,考点类型2:多边形面积求法多边形面积:主要采用割补法进行计算例1、若抛物线223y x x =--+的顶点为点D ,求四边形ABCD 的面积.练习:已知二次函数y=x 2-2x-3,图象如图所示,求四边形ACBD 及△BCD 的面积.第二讲 面积最值问题例1、如图,已知抛物线215222y x x =-+-,与x 轴交于,A B 两点,交y 轴交于点C .在直线AC 上方的抛物线上是否存在一点D ,使得DCA ∆的面积最大?若存在,求出点D 的坐标及DCA ∆面积的最大值;若不存在,请说明理由.练习:1.如图1,在平面直角坐标系中,直线3944y x =-+与x 轴交于点A ,与y 轴交于点B ;抛物线2339424y x x =-++过A ,B 两点,与x 轴交于另一点(1,0)C -,抛物线的顶点为D ,在直线AB 上方的抛物线上有一动点E ,求出点E 到直线AB 的距离的最大值;小结:三角形面积ABD 最大的时候,F 点坐标有什么特点:2.如图,抛物线223y x x =--+与x 轴交于点A 和点B ,与y 轴交于点C .若动点P 在第二象限内的抛物线上,当四边形P ABC 的面积最大时,求四边形P ABC 面积的最大值及此时点P 的坐标.例2、如图,已知二次函数213222y x x =-++的图象经过()()()1,04,00,2A B C -、、三点. 点P 是该二次函数图象上位于第一象限上的一动点,连接P A 分别交BC 、y 轴于点E 、F ,若△PEB 、△CEF 的面积分别为S 1、S 2,求S 1﹣S 2的最大值.第三讲 已知面积求其他问题例1.已知二次函数y=x 2-2x-3,图象如图所示,在抛物线上求出所有点P 的坐标,使△PBD 的面积与△ABC 面积相等.例2、抛物线223y x x =--+是否存在过点C 的直线把ABC ∆面积分成2:1的两部分,若存在,求出直线解析式,若不存在,请说明理由? xyA C BO变式1、抛物线223y x x =--+上是否存在点P ,使PAB ∆的面积等于BCD ∆的面积的38倍,若存在,求出点P 的坐标;若不存在,请说明理由;例3、如图,抛物线223y x x =-++与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),与y 轴交于点C .如图1,连接BC ,点D 是直线BC 上方抛物线上的点,连接OD ,CD .OD 交BC 于点F ,当:3:2COF CDF S S ∆∆=时,求点D 的坐标.变式、已知抛物线228y x x =-++经过点(3,7)A --,(3,5)B ,顶点为点E ,抛物线的对称轴与直线AB 交于点C .在抛物线上A ,E 两点之间的部分(不包含A ,E 两点),是否存在点D ,使得2DAC DCE S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.例4、如图,已知抛物线215222y x x =-+-,与x 轴交于,A B 两点,交y 轴交于点C . (1)P 是抛物线上一点,且3ABP S ∆=,求点P 的坐标.(2)Q 是抛物线上一点,且2ACQ S ∆=,求点Q 的坐标.(3)在抛物线上是否存在异于A 、C 的点P ,使PAC ∆中AC 25?若存在,求出点P 的坐标;若不存在,请说明理由.变式、如图,在平面直角坐标系中,A 是抛物线212y x =上的一个动点,且点A 在第一象限内.AE ⊥y 轴于点E ,点B 坐标为(0,2),直线AB 交x 轴于点C ,点D 与点C 关于y 轴对称,直线DE 与AB 相交于点F ,连结BD .设线段AE 的长为m ,△BED 的面积为S .(1)当2m =时,求S 的值.(2)求S 关于m (2m ≠)的函数解析式. (3)①若3S =时,求AF BF 的值.②当2m >时,设AF k BF=,猜想k 与m 的数量关系并证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市巴川中学初2019级九上数学专题训练三
——二次函数与面积问题
班级______姓名_______等级________
题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数).
例1、定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点.
(1)直接写出抛物线y=-x2+1的勾股点的坐标;
(2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式;
(3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标.
图1图2
练习1. 如图,已知抛物线322
++-=x x y 与x 轴交于点A 和点B ,与y 轴交于点C ,连接BC 交抛物线的对称轴于点E,D 是抛物线的顶点.
(1)直接写出点A 、B 、C 、D 的坐标,并求出S △ABD ; (2)求出直线BC 的解析式;
(3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.
题型二:已知二定点,在抛物线上求一动点,使三角形面积最大
例2.如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(-1,0),C点坐标是(-4,-3).
(1)求抛物线的解析式;
(2)若点E是位于直线AC的上方抛物线上的一动点,试求△ACE的最大面积及E点的坐标;(3)在(2)的条件下,在抛物线上是否存在异于点E的P点,使S△PAC=S△EAC,若存在,求出点P的坐标;若不存在,请说明理由.
变式:在抛物线上是否存在点P,使S△PAC=S△ABC,若存在,求出点P的坐标;若不存在,请说明理由.
A
B
C
x y
O
A
B
C
x y
O
[练习]1.如图, 已知抛物线y=
2
1x 2
+bx+c 与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;
(2)点E 是线段AC 上一动点,过点E 作DE△x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;
(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.
2.在平面直角坐标系xoy中,规定:抛物线y=a(x-h)2+k的伴随直线为y=a(x-h)+k.例如:抛物线y=2(x+1)2-3的伴随直线为y=2(x+1)-3,即y=2x-1
(1)在上面规定下,抛物线y=(x+1)2-4的顶点为.伴随直线为;抛物线y=(x+1)2-4与其伴随直线的交点坐标为和;
(2)如图,顶点在第一象限的抛物线y=m(x-1)2-4m与其伴随直线相交于点A,B (点A在点B 的右侧)与x轴交于点C,D.
△若△CAB=90°求m的值;
27△如果点P(x,y)是直线BC上方抛物线的一个动点,△PBC的面积记为S,当S 取得最大值
4时,求m的值.
3.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线y=0.6x2+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N,连结PC、PD,在点P运动过程中,△PCD 的面积是否存在最大值?若存在,求出这个最大值及P的坐标;若不存在,说明理由;
(3)在(2)的条件下,在抛物线上是否存在点Q,使S△QCD=S△PCD,若存在,求出点Q的坐标,若不存在,请说明理由.
4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD△x轴交抛物线于点D.
(1)求此抛物线的表达式;
(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;
(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.
题型三:抛物线中,以面积为条件的几何问题
例3.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A 在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
练习3:1.如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC=3,直线l是抛物线的对称轴,E是抛物线的顶点.
(1)求b,c的值;
(2)如图1,连BE,线段OC上的点F关于直线l的对称点F′恰好在线段BE上,求点F的坐标;
(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.
2.如图,已知二次函数y=ax2+bx+c的图象的顶点坐标为(2,﹣9),该函数的图象与y轴交于点A(0,﹣5),与x轴交于点B,C
(1)求该二次函数的解析式;
(2)求点B的坐标;
(3)过点A作AD△x轴,交二次函数的图象于点D,M为二次函数图象上一点,设点M的横坐标为m,且0<m≤5,过点M作MN△y轴,交AD于点N,连接AM,MD,设△AMD的面积为s.
△求s关于m的函数解析式;
△判断出当点M在何位置时,△AMD的面积最大,并求出最大面积.
3.二次函数y=ax2+bx+6(a≠0)的图象交y轴于C点,交x轴于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.
(1)求出点A、点B的坐标及该二次函数表达式.
(2)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合),过点Q 作QD△AC交于BC点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.
(3)如图3,线段MN是直线y=x上的动线段(点M在点N左侧),且MN=,若M点的横坐标为n,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出n的值;若不能,请说明理由.
4.如图,已知点C(0,3),抛物线的顶点为A(2,0),与y轴交于点B(0,1),F在抛物线的对称轴上,且纵坐标为1.点P是抛物线上的一个动点,过点P作PM△x轴于点M,交直线CF 于点H,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若点P在直线CF下方的抛物线上,用含m的代数式表示线段PH的长,并求出线段PH 的最大值及此时点P的坐标;
(3)当PF﹣PM=1时,若将“使△PCF面积为2”的点P记作“巧点”,则存在多个“巧点”,且使△PCF 的周长最小的点P也是一个“巧点”,请直接写出所有“巧点”的个数,并求出△PCF的周长最小时“巧点”的坐标.。

相关文档
最新文档