原子吸收注意事项

原子吸收注意事项
原子吸收注意事项

原子吸收常见问题处理

1、为啥原子吸收仪器的灵敏度会突然下降了一半

通常灵敏度下降的原因有:

A、元素灯能量下降,低于原始能量得2/3;

B、雾化器故障,雾化效果不好;

C、燃烧头污染;

D、检测器故障,多半是老化(但这种现象很少);

E、样品吸收管路堵塞(这种现象经常导致灵敏度下降);

F、气体的燃烧比不对,或者气体压力不够;

2、如何判定AAS氘灯和元素灯的光斑一致原子吸收常见问题处理

准备一张白纸,在元素灯和氘灯调整完了后,用一张白纸挡在元素灯灯窗的前面,再用另一张白纸在原子化器的上方找到氘灯的光班,最好是在焦点的地方,然后设法固定。然后把原来的白纸去掉或是打开元素灯,让元素灯的光进来,看看元素灯的光斑是不是和氘灯的光班重合,如果重合就表明调节好了,如果不重合,先调节好氘灯后固定下来,就不要再动了,然后调节元素灯使其光斑与氘灯的光斑重合。

3、用火焰原子吸收法测定时,是不是每次做样前都要做标准曲线呢

A、最好每次都做标准曲线,如果单次样品量比较多的话,在测试过程中还要加入标准点进行校正。

B、如果每天有很多样品要测试,你就用QC来控制了,如果你控制的QC能过,那你也可以不用做标准曲线了。

4、火焰原子吸收测Cr方法

做铬的时候,加入氯化铵可以消除铁的干扰,还可以提高灵敏度,加入浓度一般为1%~5%。

5、钢瓶中乙炔气的总压力用到哪个数值时要换气在运输和使用中的注意事项

A、一般当钢瓶气体小于时,为安全考虑我们就要考虑换气了。

B、溶解乙炔气瓶必须根据国家《溶解乙炔气瓶安全监察规程》的要求,进行定期技术检验。

C、乙炔气瓶使用前,应稍微打开瓶阀除去瓶口的脏物,安装好专用的乙炔减压器,使减压器位于瓶体最高部位。并检查接头处是否有漏气,确认后调整到规定压力再使用。

D、乙炔气瓶一般应在40℃以下使用,当温度超过40℃时,应采取有效的降温措施。

E、乙炔气瓶不得靠近热源及电气设备,乙炔气瓶应竖直摆放;如果要使用已卧放的乙炔气瓶,必须先直立静止20分钟后再使用。

F、严禁铜、银、汞等及其制品与乙炔接触,必须使用铜合金器具时,合金的含铜量应小于65%。

G、乙炔气瓶内的气体严禁用尽,乙炔气瓶内应留余压~。

H、在室内或密闭的环境下使用乙炔气瓶,要防止泄漏,加强通风,避免发生燃爆事故。

6、为什么原子吸收点不燃火

原子吸收不能点火的可能原因如下:

A、看乙炔是否打开,指示压力是否正确。

B、打开空压机,打开空压机体上的放气阀,看空压机内有无水。

C、空压机压力上升后,调节出口压力是否在仪器规定的范围内。

D、查雾化器的的液封盒是否存满水,并装好雾化器。

E、检测点火器或者点火按钮失灵(已坏)。

F、以上都检测无误,请联系维修工程师。

7、原子吸收光谱检出限是怎样测定的

A、《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显着性差异即为检出限。这里的零浓度样品是不含待测物质的样品。=×δ式中:δ为空白平行测定的标准偏差(重复测定11次以上)。

B、美国EPA SW-846中规定方法检出限:MDL=×δ(δ为重复测定7次)。

一般来说,测试仪器的检出限,就用蒸馏水测试11次以上求出标准偏差,然后用3*δ计算仪器检出限。

8、为减少火灾及爆炸发生的可能性,注意以下几点:

A、选择有机溶液时,在满足分析要求的情况下,尽量选择闪点高的有机溶液;

B、不要选择比重低于的有机溶液;

C、不要将装有有机溶液的容器敞盖放在燃烧头附近,喷溶液时,用盖将容器盖好,在盖上通一个2mm的小孔,将进样毛细管插入进样。在满足要求的条件下尽可能少用有机溶液。

D、废液管应采用耐有机溶剂的管子,如腈橡胶。仪器标配废液管不适合有机溶液。液封盒上的通气口不能堵住。

E、废液容器要采用小的、宽口容器,并经常倒空。不要积累大量可燃溶剂。不要采用玻璃容器以防回火时容器爆炸产生尖利碎片。金属容器因不易观察到液面,不宜采用。将容器放置在仪器下可以看到的地方,每天工作完毕后,将废液清除干净。

F、分析工作完成后或每天工作完成后,应将液封盒中的溶液倒空。不要将硝酸或高氯酸残留物与有机溶剂混合。

H、保持燃烧狭缝及雾化室、液封盒清洁。

I、仅在所有安全连锁满足要求时,采用仪器内部点火器进行点火。

9、原子吸收火焰分类,各种元素测试适合的火焰

原子吸收火焰分类:空气-氢气、氩气-氢气、空气-丙烷、空气-乙炔和氧化亚氮-乙炔等

常用的原子吸收火焰类型有:乙炔~空气火焰,乙炔~笑气等等。乙炔~空气火焰用于测试以下元素:银、金、钙、铬、镉、钴、铁、汞、钾、锂、镁、锰、镍、铅、钠、锑、铊、锌等;乙炔~笑气火焰用于测试以下元素:铝、钡、镧、钼、锡、钛、钒、钨等。

10、原子吸收有什么优缺点

A、检出限较低,灵敏度较高。火焰原子吸收法的检出限可以达到ppb级,石墨炉原子吸收法的检出限可达到10-10~10-14g。

B、分析精度好;火焰原子吸收法测定中、高含量元素的相对标准差可<1%,其准确度已接近于经典化学方法。石墨炉原子吸收法的分析精度一般约为3-5%。

C、分析速度快。

D、应用范围广;可测定的元素达70多个,不仅可以测定金属元素,也可以用间接原子吸收法测定和有机化合物。

E、仪器比较简单,操作方便。

F、原子吸收光谱法的不足之处是多元素同时测定尚有困难,有相当一些元素的测定灵敏度还不能令人满意。

10、影响火焰灵敏度的因素有

A、灯电流

火焰原子吸收光谱仪使用光源大都是空心阴极灯,空心阴极灯的灯电流大小决定着灯辐射强度。在一定范围内增大灯电流可以增大辐射强度,同时噪音也增大,但是仪器灵敏度降低。如果灯电流过大,会导致灯本身发生自蚀现象而缩短灯使用寿命;会放电不正常。相反,在一定范围内降低灯电流可以降低辐射强度,仪器灵敏度提高,但灯稳定性和信噪比下降。因此,在具体检测工作中,如被测样浓度高时,则使用较大灯电流,以获得较好稳定性;如被测样浓度低时,则在保证稳定性满足要求的前提下,使用较低的灯电流,以获得较好的灵敏度。

B、雾化器

雾化器作用是将试液雾化。它是原子吸收光谱仪重要部件,其性能对测定灵敏度、精密度和化学物理干扰等产生显着影响。雾化器喷雾越稳定,雾滴越微小均匀,雾化效率也就越高,相应灵敏度越高,精密度越好,化学物理干扰越小。雾化器调节目前都是通过人工调节撞击球和毛细管之间相对位置来实现。检测人员应将雾化器调节到雾滴细小而均匀,最好是雾滴在撞击球周围均匀分布。

C、试液提升量

提升量大小影响到灵敏度高低。过高或过低的提升量会使雾化器雾化不稳定。每个厂家仪器提升量范围各不相同,各自有一定变化范围。增大提升量办法有:(1) 增大助燃气流量,

这样增大负压使提升量增大。(2)缩短进样管长度,缩短进样管长度使管阻力减小,使试液流量增大。相反,如想降低提升量,则可以减小助燃气流量或加长进样管长度。

D、元素的分析线

每种元素的分析线有很多条,通常共振线灵敏度最高,经常被用来作为分析线,但测量较高浓度样品时,就要选择次灵敏线。

E、燃烧头位置

调节燃烧头高度和前后位置,使来自空心阴极灯光束通过自由电子浓度最大火焰区,此时灵敏度最高,稳定性最好。若不需要高灵敏度时,如测定高浓度试液时,可通过旋转燃烧头角度来降低灵敏度,以便有利于检测。

F、火焰类型

火焰类型和状态对灵敏度高低起着重要作用,应根据被测元素特性去选择不同火焰。目前火焰按类型分有空气一氢火焰、空气一乙炔火焰、一氧化氮一乙炔火焰。空气一氢火焰的火焰温度较低,用于测定火焰中容易原子化的元素如砷、硒等;空气一乙炔火焰属于中温火焰,用于测定火焰中较难离解的元素如镁、钙、铜、锌、铅、锰等;一氧化氮一乙炔火焰属于高温火焰,用于测定火焰中难于离解的元素如钒、铝等。火焰按状态分有贫焰、化学计量焰、富焰。贫焰是指使用过量氧化剂时的火焰,由于大量冷的氧化剂带走火焰中的热量,这种火焰温度较低,又由于氧化剂充分,燃烧完全,火焰具有氧化性气氛,所以这种火焰适用于碱金属元素的测定。化学计量焰是按化学计量关系计算的燃料和氧化剂比率燃烧的火焰,它具有温度高、干扰少、稳定、背景低等特点,除碱金属和易形成难离解氧化物的元素,大多数常见元素常用这种火焰。富焰是便用过量燃料的火焰,由于燃烧不完全,火焰具有较强的还原气氛,所以,这种火焰具有还原性,适用于测定较易于形成难熔氧化物的元素如钥、稀土元素等。

G、狭缝

在其他条件一定的情况下,狭缝的大小是决定灵敏度的又一原因。当被测元素无邻近干扰线时,可采用较大的狭缝。当被测元素有邻近干扰线时,可采用较小的狭缝。

11、校正曲线为何会发生弯曲呢原子吸收常见问题处理

光吸收的最简式A=KC,只适用于理想状态均匀稀薄的蒸汽原子,随着吸收层中原子浓度的增加,上述简化关系就不应用了。

在高浓度下,分子不成比例地分解;相对于稳定的原子温度,较高浓度下给出的自由原子比率较低。

(1)由于有不被吸收的辐射、杂散光的存在,不可能全部光被吸收到同一程度来保持曲线线性;

(2)由于光源的老化或使用高的灯电流引起的空心灯谱线扩宽和产生自吸;

(3)由于单色器狭缝太宽,则传送到检测器去的谱线不可能只有一条,校正曲线表现出更大的弯曲

(4)样品中元素的电离电位不同,在火焰中发生电离时,不同元素的基态原子数不同。浓度低时,电离度大,吸光度下降多;浓度增高,电离度逐渐减小,吸光度下降程度也逐渐减小,所以引起标准工作曲线向浓度轴弯曲(下部弯曲)。

12.何谓锐线光源在原子吸收光谱分析中为什么要用锐线光源

锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数Kn 在此轮廓内不随频率而改变,吸收只限于发射线轮廓内。这样,求出一定的峰值吸收系数即可测出一定的原子浓度。

13.在原子吸收光度计中为什么不采用连续光源(如钨丝灯或氘灯),而在分光光度计中则需要采用连续光源

虽然原子吸收光谱中积分吸收与样品浓度呈线性关系,但由于原子吸收线的半宽度很小,如果采用连续光源,要测定半宽度很小的吸收线的积分吸收值就需要分辨率非常高的单色器,目前的技术条件尚达不到,因此只能借助锐线光源,利用峰值吸收来代替.

而分光光度计测定的是分子光谱,分子光谱属于带状光谱,具有较大的半宽度,使用普通的棱镜或光栅就可以达到要求.而且使用连续光源还可以进行光谱全扫描,可以用同一个光源对多种化合物进行测定.

浅谈原子吸收光谱仪常见故障及日常维护

浅谈原子吸收光谱仪常见故障及日常维护 发表时间:2019-10-12T11:49:21.337Z 来源:《科技新时代》2019年8期作者:张武[导读] 保证了该仪器在日常工作中能够提供准确可靠的数据,并延长了仪器的使用寿命。 (张家港市环境监测站江苏张家港 215600 )摘要:文中针对本站使用的Thermo Scientific原子吸收光谱仪为例,浅析对常见故障的排除和解决方法,通过有效的维护,保证了该仪器在日常工作中能够提供准确可靠的数据,并延长了仪器的使用寿命。 关键词:Thermo Scientific原子吸收光谱仪;故障解决;日常维护引言 原子吸收光谱仪作为一种有效的检测分析仪器具有操作简便、检出限低、选择性好、精密度高、应用范围广等特点。Thermo Scientific原子吸收光谱仪由光源、原子化器、进样系统、分光系统、检测器、数据处理和仪器控制组成。我站于2018年新购置Thermo Scientific原子吸收光谱仪,主要分析铁、锰、铜、锌、铅、镉、总铬、钾、钠、钙、镁等金属元素。经过实验和使用以及运行中出现的问题,对使用过程中常见的故障和日常维护进行探讨。 1 应用 1.1工作原理 将水样或者消解好的试样直接吸入火焰或形成的原子蒸汽对光源发射的特征电磁辐射产生吸收。将测得的样品吸光度和标准溶液的吸光度进行比较,确定样品中被测元素的含量。 1.2仪器特点 近几年原子吸收应用越来越广泛,在许多技术上也得到突破,已广泛应用于地质、冶金、材料、石油、化工、机械、建材、农、医、环保等各个部门和领域,并且随着其他仪器的发展,给原子吸收与其他技术联用创造了机会,在比如FIA-AAS、GC-FAAS、LC-AAS、GC-GFAAS、HPLC-GFAAS等,原子吸收光谱法的优点是具有较高灵敏度和精密度,并具有较好选择性和较强抗干扰能力,另外,在实际应用过程中便于快速操作,分析范围相对较广泛。目前,火焰原子吸收光谱法还是应用最为广泛的方法。 2 仪器常见故障及解决方法 2.1光源系统故障及处置方法 空心阴极灯或氘灯可能存在灯点不亮,发光异常,辉光色调正常而分析线能量低,测定时灵敏度低等故障。可能存在原因有供电系统故障、灯内有杂质气体、灯内惰性气体因吸附或慢漏而减少。处置方式可更换新灯。 2.2光学系统故障分析 仪器光学系统包括光源发射光束传导至分光系统入口的光束传导系统和使复合光产生空间色散的分光系统,由于光学元件需要机械支撑、承载或移动,因此光学系统的一些硬故障多数是机械结构问题造成的,而光学系统故障则往往是光学元件表面或内部状态变化而引起的。主要表现波长示值平移、波长不扫描、狭缝不能换挡或换挡时波长示值变化大、光源灯亮波长扫描出射狭缝处无能量、光源发射光束光斑位置不正等。可能存在的原因主要有光栅起始位置变化或驱动机构脱开、狭缝换挡电机损坏、分光系统光学元件损坏或脱落等。处置方式可根据产生的不同原因去解决,如重新调整光栅起始位置,重新调整光束传导系统、重新调整光源位置等。 2.3原子化系统故障及处置方法 2. 3.1火焰原子化系统可能存在火焰不能点燃、火焰不稳两端翘离燃烧缝、点火时没有电火花、火焰不连续呈锯齿状、发生回火等现象。发生故障的原因可能是燃气管道较长时,管内空气未排尽或燃气供气量过小,燃助比不合适、高压火花器件损坏或燃气小管道不通气,燃烧炭粒堵塞燃烧缝隙。可用以下方式处置:增加燃气适当流量,开启燃气管道顶出空气后点火;减少助燃气流量;更换电火花器件,及时清除燃烧缝隙炭粒。 2.3.2石墨炉原子化系统可能存在原子化温度异常升高、干燥阶段样品溶液暴沸、同一样品重复进样,吸收信号逐渐增大,吸收峰信号不回零,吸收信号出线双峰或多峰等故障。发生故障的原因可能有测量温度的探头光通量异常衰减、过电流监控功能失效、干燥温度设置过高、石墨管产生记忆效应、高温元素空烧不尽、原子化条件设置不合适。可以采用更换石墨管、调整干燥温度、不应高于100℃、提高空烧温度、增加空烧时间、适当提高原子化温度,增加原子化时间、添加基体改进剂取出共存元素干扰等方式解决故障。 2.4检测系统故障分析及处置 检测系统可能存在光源灯亮,波长扫描出射狭缝处有光斑但无检测信号,主要原因是检测器高燕供电器件故障,只需更换供电期间即可解决。还可能存在光源、光学、电学系统均正常,检出信号弱故障,可能发生的原因是检测器光窗污染,立即擦拭即可。 3日常保养和维护 3.1实验室环境 实验室需防尘、防湿、避震、避光线直接强烈照射,远离热源、烟尘,实验操作环境温度最好在10-40℃,室温波动≤2℃/H,湿度20%-80%,使用良好的排风。 3.2气源质量及系统 乙炔纯度>98.5%,杂质含量:硫和磷<15ppm,水分<100ppm。空气:采用无油去湿滤尘调压空压机,并及时排除分液罐中的积水。定期检查管道、阀门、接头等各部分是否漏气。 3.3空心阴极灯 空心阴极灯内充入的惰性气体压力远远低于正常大气压力。如果封套划伤或损坏,阴极灯可能发生内爆,其由高压电源供电,从光谱仪上拆下灯之前,确保关闭灯的电流,定期检验阴极灯。 3.4雾化燃烧器系统

原子荧光光谱仪的操作步骤及注意事项

原子荧光光谱仪的操作步骤及注意事项 发布时间:10-02-26 来源:点击量:1750 字段选择:大中小 原子荧光光谱法具有原子吸收和原子发射光谱两种技术的优势,克服了单一技术在某些方面的缺点,对一些元素具有分析灵敏度高、干扰少、线性范围宽、可多元素同时分析等特点,这些优点使得该方法在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。 原子荧光是原子蒸气受具有特征波长的光源照射后,其中一些自由原子被激发跃迁到较高能态,然后去活化回到某一较低能态(常常是基态)而发射出特征光谱的物理现象。各种元素都有其特定的原子荧光光谱,根据原子荧光强度的高低可测得试样中待测元素的含量。现将原子荧光光谱仪上机操作步骤和使用注意事项逐一介绍。 一、操作步骤: Ar气→电脑→主机→双泵→水封→As灯/Hg灯→调光→设置参数→点火→做标准曲线→测样→清洗管路→熄火→关主机→关电脑→关Ar气。 二、注意事项: 1.在开启仪器前,一定要注意先开启载气。 2.检查原子化器下部去水装置中水封是否合适。可用注射器或滴管添加蒸馏水。 3.一定注意各泵管无泄露,定期向泵管和压块间滴加硅油。 4.实验时注意在气液分离器中不要有积液,以防液体进入原子化器。 5.在测试结束后,一定在空白溶液杯和还原剂容器内加入蒸馏水,运行仪器清洗管路。关闭载气,并打开压块,放松泵管。

6.从自动进样器上取下样品盘,清洗样品管及样品盘,防止样品盘被腐蚀。 7.更换元素灯时,一定要在主机电源关闭的情况下,不得带电插拔灯。 8.当气温低及湿度大时,Hg灯不易起辉时,可在开机状态下,用绸布反复摩擦灯外壳表面,使其起辉或用随机配备的点火器,对灯的前半部放电,使其起辉。 9.调节光路时要使灯的光斑照射在原子化器的石英炉芯的中心的正上方;要使灯的光斑与光电倍增管的透镜的中心点在一个水平面上。 10.氩气:0.2~0.3 之间。 关机之前先熄火,换灯之前先熄火,退出程序时先熄火。

氢化物原子吸收法实验室基本要求

氢化物原子吸收法实验室基本要求原子吸收分光光度计属于大型精密仪器,对环境和操作人员素质都有一定要求,最好是经过专业培训有一定学历的操作人员,现提供以下参考意见。 一、仪器室环境要求及配套设备: 1.要有一个单独房间放置仪器。 2.室内有通风设备,抽气量1700-2500L/min,罩口离仪器通风窗40cm。 3.室内温度:15-30℃,湿度≤80%,有空调,防尘条件较好,没有腐蚀性气体。室内不要有强烈震动和强烈电磁干扰。 4.电压:220V±10%,频率50Hz±1Hz,有良好的接地线,所在相线波动最小 5 配有功率1KVA以上精密净化稳压电源。 6.接线板(三插头)2付,一付固定墙上,另一付可移动。 7. 工作台,长2.5×宽0.8平方米,高80cm,离墙50cm的大理石或水泥平台,贴面有橡皮板。 8. 标准液柜,根据工作任务大小配置,以便放置标准溶液和样品及仪器配 件。 二、氢化物原子吸收分析必备条件: 1.空心阴极灯:根据所要测元素配相应的空心阴极灯,另外购买 2.标准溶液:根据要测的元素进行配置相应元素的标准溶液,另外购买。 3.氮气(或氩气),钢瓶装,纯度99.6%以上。 三、化学处理室的要求及配套设备: 应用氢化物原子吸收分光光度计分析前,必须对样品进行前处理。如果有的单位已有化学分析室,一般就可利用原来的设备,缺什么再添什麽,如果没有化学实验室,要从事原子吸收分析,要具备以下基本条件(视分析对象定): 1.万分之一天平一台。 2.电热板1KV以。 3.烘箱1KV以上(根据需要)。 4.工作台,长3米,宽1米,高0.8米 5.玻璃器皿:数量根据实际情况和工作量采购,容量瓶(200 ml,100ml, 50ml),烧杯(150ml,200ml),试管(10ml),移夜管(1 ml,2ml,5ml,10ml),微量滴定管(含支架5ml,10ml),量筒(500ml),蒸馏 水瓶。 6.水池,有上下水。 7.去离子水或二次蒸馏水,定量滤纸。 8.盐酸,硝酸,硫酸,碘化钾、抗坏血酸、铁氢化钾、和其它根据测试 元素的不同所必备的相关的化学试剂。

仪器分析笔记《原子吸收光谱法》..

第四章原子吸收光谱法 ——又称原子吸收分光光度法§4.1 原子吸收分光光度法(AAS)概述 4.1.1 概述 1、定义 原子吸收分光光度法是基于从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射谱线被减弱的程度来测定试样中待测元素含量的方法。 2、特点 ?灵敏度高:在原子吸收实验条件下,处于基态的原子数目比激发态多得多,故灵敏度高。检出限可达10—9 g /mL (某些元素可更高) ?几乎不受温度影响:由波兹曼分布公式 00 q E q q KT N g e N g - =知,激发态原子浓度与基态原子浓度的比 值 q N N 随T↗而↗。在原子吸收光谱法中,原子化器的温度一般低于3000℃,此时几乎所有元素的0 1% q N N =。也就是说, q N随温度而强烈变化,而 N却式中保持不变,其浓度几乎完全等于原子的 总浓度。 ?较高的精密度和准确度:因吸收线强度受原子化器温度的影响比发射线小。另试样处理简单。RSD 1~2%,相对误差0.1~0.5%。 ?选择性高:谱线简单,因谱线重叠引起的光谱干扰较小,即抗干扰能力强。分析不同元素时,选用不同元素灯,提高分析的选择性 ?应用范围广:可测定70多种元素(各种样品中)。 ?缺点:难熔元素、非金属元素测定困难,不能同时多元素分析。 3、操作 ①将试液喷入成雾状,挥发成蒸汽; ②用镁空心阴极灯作光源,产生波长285.2nm特征谱线; ③谱线通过镁蒸汽时,部分光被蒸汽中基态镁原子吸收而减弱; ④通过单色器和检测器测得镁特征谱线被减弱的程度,即可求得试样中镁的含量. 4、原子吸收光谱分析过程 ?确定待测元素。 ?选择该元素相应锐线光源,发射出特征谱线。 ?试样在原子化器中被蒸发、解离成气态基态原子。 ?特征谱线穿过气态基态原子,被吸收而减弱,经色散系统和检测系统后,测定吸光度。 ?根据吸光度与浓度间线性关系,定量分析。 5、与发射光谱异同点 ①原子吸收光谱分析利用的是原子的吸收现象,发射光谱分析则基于原子的发射现象; ②原子的吸收线比发射线的数目少得多,这样谱线重叠的概率就小得多; ③原子吸收法的选择性、灵敏度和准确性都好。

原子吸收光谱仪的日常维护

原子吸收光谱仪的日常维护 一、概述 在分析实验室中使仪器处于良好的状态是很重要的。有规律的日常维护能够确保仪器处于最佳的运行状态。原子吸收光谱仪的维护应包括以下四个重要方面: 1.普通的仪器维护 2.使用的气体的维护 3.火焰组件的维护 4.石墨平台组件的维护 日常维护的优点有以下几点: 1.延长仪器寿命 2.减少停机时间 3.全面改善仪器性能;增加分析人员对数据结果正确性的信心。 二、普通的仪器维护 灰尘和露水会在仪器表面积累,腐蚀性液体可能会溅到仪器上。为了降低危害,可以用蘸有水或中性洗涤剂的软布擦拭仪器。严禁使用有机溶剂。样品舱的光路窗口和空心阴极灯的石英窗会受到灰尘或指纹的污染。此时可以使用蘸有甲醇或乙醇水溶液的软的擦镜纸进行清洗。如果没有清除污染,用户将会发现元素灯的噪声变大,分析结果的重复性变差。 仪器的光学部分是密封的,但严禁将其暴露于腐蚀性气体或污染严重的大气中。如果实验室中大量的灰尘和腐蚀性气体无法避免,可以要求售后服务工程师来做年检,确保仪器的光路性能正常。作为用户请不要自行维护光路系统。三、使用的气体的维护 三种气体可以用于火焰的燃烧,空气和氧化亚氮作为助燃气(氧化剂)。乙炔作为燃烧气。每种气体都通过管路系统和橡胶软管到达仪器。铜或铜合金管可以用于氧化性气体的输送。乙炔只能使用黑钢管来输送。检查钢瓶和仪器之间的连接器以防泄漏,特别是更换钢瓶之后需要使用肥皂水或专用的泄漏检测器进行检测。检查橡胶软管和仪器之间的连接,以防磨损和开裂。另外每次更换钢瓶之

后检查压力表和阀门以便使用。 由于使用有潜在危害性的气体和燃烧排放出的废气,需要使用安装排放量在6m3/min以上的排风系统。简单的烟雾测试就能判别排风系统是否正常工作。(1)压缩气体钢瓶 空气可以通过钢瓶、室内空气系统和小型压缩机来提供。当然钢瓶是最贵的选择,特别是在工作量很大的情况下就要频繁的更换钢瓶,这问题就尤为显著。如果使用压缩空气,就需要在仪器的输入端前安装过滤器和压力表。如果用户需要可以向varian公司订购“Air Service Unit”(货号:01 102093 00)。 不管使用何种来源的空气,都必须保证气体供应的连续性,传送压力必须在420kPa(60psi)。空气必须洁净、干燥和无油。气体问题中50%的起因都是空气中的潮气和杂质引起的。 空气的污染也会严重影响信号的稳定性,产生噪音。因此对于原子吸收光谱仪必须安装空气过滤器,这一要求是强制性的。每周检查一次空气过滤器中水的累积程度。如果需要的话,拆下空气过滤器,清洗过滤芯、储水槽和排水阀。 根据下面的步骤拆卸和清洗随机提供的空气过滤器 1.关闭气体,排出系统内气体直到回到常压。 2.旋下过滤槽,拆下排水阀。 3.旋下定位环将排水阀装回到槽内。 4.小心的旋下隔板,拆下滤芯和滤芯保护器。 5.用肥皂水清洗过滤槽、排水阀、隔板和滤芯保护器。严禁使用有机溶剂,否则会损坏过滤槽和阀。用干净的水淋洗。 6.用乙醇或类似的溶剂清洗滤芯。 7.风干之后再进行安装。 (2)氧化亚氮 原子吸收光谱仪使用的氧化亚氮气体必须是无油的。如果没有使用带有加热功能的压力调节器,当氧化亚氮从钢瓶中流出时由于冷却效应将会造成气体压力过低。这将会造成分析结果不稳定,使用手动气体控制器时将会产生回火的危险。如果用户需要可向Varian公司订购加热型压力调节器。气体的消耗速度由实际的使用情况决定,通常在10~20升/分钟。

氢化物发生—原子吸收法的干扰产生机理及分类

氢化物发生—原子吸收法的干扰产生机理及分类 0 引言 Delina曾经对氢化物发生-原子吸收法中的干扰做了系统的分类,大致可以分为液相干扰和气相干扰俩大类,其中液相干扰又可以分为发生过程中的动力学干扰和发生效率干扰,而气相干扰又可以分成物理干扰和化学干扰,物理干扰又可以分成传输过程中的动力学干扰和传输效率干扰,化学干扰可以分为游离基数量引起的干扰和分析元素原子的衰减。 1 干扰的分类及定义 液相干扰产生在氢化物发生形成或形成的氢化物从样品溶液中逸出的过程中,它是由于氢化物发生速度的改变或者是由于发生效率的改变,即转化为氢化物的百分比的改变而引起的,气相干扰是氢化物传输过程中或在原子化器中产生的,可以分为传输过程干扰和原子化器中的干扰。 传输过程干扰发生在氢化物从样品溶液到原子化器的途中,包括分析元素氢化物的传输速度(传输动力学干扰)和损失(传输效率的干扰)引起的干扰。 原子化过程中的干扰包括游离基数量及分析元素原子的衰减所引起的干扰,其中产生游离基干扰的原因是干扰元素争夺游离基使其不够用来使分析元素原子化,产生分析元素衰减的原因是干扰元素加速了光路中游离的分析元素原子的衰减。 所谓“记忆性”干扰是指某种元素产生造成气相干扰之后,即使在以后的溶液中不含有该元素,干扰也继续存在,即存在着记忆效应。Delina提出的氢化物干扰是目前较为系统和细致的分类,这种分类方法原则上也适用于氢化物发生-原子荧光光谱法。 2 判别气相和液相干扰的方法 要想有效的客服干扰,就必须首先分清干扰是在液相还是在气相中产生,文献中曾经在判别气相和液相干扰方面做过一些工作。 2.1 同位素示踪法 Delina用示踪原子的方法来判别锡、砷、锑、铋、碲、铅、汞对硒的干扰,75Se进行试验,加入硼氢化钠产生氢化物之后,样品溶液与清洗的去离子水一同转移至测定的小瓶中,然后测定其放射性,并计算出溶液中残余的Se含量,在另外的实验中将填有活性炭的塑料管代替原子化器装在发生器的出口处,然后用同样方法测定活性炭吸收的SeH4的放射性,由此计算出Se发生的含量,实验发现汞和铅不产生干扰,只有砷和铋产生液相干扰,锡、砷、锑、铋、碲、产生很强的气相干扰,这种方法比较直观,但是由于使用了示踪原子,一般的实验室较难发现。 2.2 双发生器法 表1 将俩个基本一致的发生器(A和B)的出口相接再引入原子化器中,实验时分三个步骤。一、在A发生器中加入被测元素M及共存元素N,B发生器中加入空白溶液,测得信号值为A合;二、A发生器中加入被测元素M,B发生器中加入干扰元素N,测得信号为A分;三、A发生器中加入被测元素,B发生器中加入空白溶液,测得信号为A标,根据测量的结果即可判断干扰属于气相干扰还是液相干扰,判断的准则如表1。

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

原子荧光测定砷时注意事项

原子荧光测定砷时,配制标液的注意事项! 大家在用原子荧光测定砷的时候,砷标液是如何配置的呢?大家测定过程中有没有遇到砷的 标准曲线做不出来或做不好的情况呀? 比如下面的几种情况: 1、标准曲线做不出数,跟空白一样; 2、做标准曲线的荧光值很低,但是线性还很好; 3、标准曲线做得不错,只是荧光值比上一次做得明显偏低。 这是几种做砷时会遇到的几种情况。当然第三种情况可能不会影响你的检测工作,有时候不会多考虑什么,或者是其他原因造成的。而前两种情况最让人头疼,你在找原因的时候,可能从仪器条件、灯、管路、载流、还原剂(硼氢化钾)等,都找了一遍,甚至仪器重新清洗,试剂重新配制,结果还是那样,您可能会到崩溃的地步吧!这时候,你可能不会注意你的标准使用液,你也可能不会怀疑他的问题,因为你很确定这是你刚刚配制的,不会存在标液的问题。然而,好多问题就是出现在一些显而易见,却不易发觉的地方。 你是如何配制砷标液的呢? 首先,你要准备砷的母液、浓硝酸、还原剂溶液(硫脲,碘化钾,抗坏血酸等任选)。 酸介质为什么选硝酸呢? 因为,你的样品消化用的硝酸,即使赶酸,样品溶液也会有部分硝酸,你觉得介质用硝酸会是样品和标液的基体更加接近,所以选硝酸,这也是大多数做砷选择硝酸的原因。当然选盐酸介质也可以,咱在这不做讨论,单独讨论使用硝酸介质的情况。 下面继续配制标液 第一种操作,吸取定量的砷母液于干净的容量瓶中,加入定量的浓硝酸介质,加入还原剂溶 液,定容,摇匀,备用。 第二种操作,在容量瓶中加入适量的水(要求尽量多,只要不影响最终定容就可以),加入定量的硝酸,摇匀,再加入定量的标液,边加边摇。在家加还原剂,定容,摇匀,备用。 当然这只是两种比较极端的方法,或许大家都知道第一种方法不正确,第二种方法比较正确。 哪两种方法到底区别在哪里呢?各有什么优缺点呢? 先分析一下第一种方法,我们都知道硝酸具有很强的氧化性,他会很容易的将砷氧化成高价态,当加入还原剂的时候,部分还原剂会首先和硝酸反应掉,剩下的还原剂的量可能就不足以将高价态的砷还原为低价态,高价态的砷的在原子荧光光上的荧光值极低,几乎没有,于是就可能

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100l。固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10l即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

原子吸收光谱法的原理

原子吸收光谱法 原子吸收光谱(Atomic Absorption Spectroscopy,AAS),又称原子分光光度法,是基于待测元素的基态原子蒸汽对其特征谱线的吸收,由特征谱线的特征性和谱线被减弱的程度对待测元素进行定性定量分析的一种仪器分析的方法。 中文名 原子吸收光谱法 外文名 Atomic Absorption Spectroscopy 光线范围 紫外光和可见光 出现时间 上世纪50年代 简称 AAS 测定方法 标准曲线法、标准加入法 别名 原子吸收分光光度法 基本原理 原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,在线性范围内与被测元素的含量成正比: A=KC

式中K为常数;C为试样浓度;K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础 由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。AAS现已成为无机元素定量分析应用最广泛的一种分析方法。该法主要适用样品中微量及痕量组分分析。 原子吸收光谱法谱线轮廓 原子吸收光谱线并不是严格几何意义上的线,而是占据着有限的相当窄的频率或波长范围,即有一定的宽度。原子吸收光谱的轮廓以原子吸收谱线的中心波长和半宽度来表征。中心波长由原子能级决定。半宽度是指在中心波长的地方,极大吸收系数一半处,吸收光谱线轮廓上两点之间的频率差或波长差。半宽度受到很多实验因素的影响。影响原子吸收谱线轮廓的两个主要因素: 1、多普勒变宽。多普勒宽度是由于原子热运动引起的。从物理学中已知,从一个运动着的

安捷伦原子吸收光谱仪操作规程

安捷伦原子吸收光谱仪Agilent AA 240FS操作规程1.辅助系统检查:打开空压机(风机开关-->排风开关),分压阀0.35Mpa作用;打开乙炔气瓶,分压阀0.075Mpa左右(总阀低于0.7Mpa需要换气,防止丙酮溢出)。 2.通电:打开排风系统;打开仪器开关;开计算机,进入操作系统。 3.运行:启动SpectrAA软件,进入仪器页面。单击【工作表格】-->【新建】,出现新工作窗口,在此输入方法名称,并按确定,进入工作表格建立界面。 4.按【添加方法】,选择分析元素,并勾选火焰选项,按确定,重复此步直到选完待分析元素。 5.按【编辑方法】进入【方法】窗口:在【类型/模式】中将每一个元素进样模式选为手动。并注意火焰类型是否为软件默认类型,否则需要更改与仪器使用的火焰一致;灯电流根据元素灯的标识选择;选择积分;波长<300nm需选择扣背景;测量时间设3,延迟设5;在【光学参数】中设定对应好每一个灯位;在标样中,输入每一个元素的标样浓度(不能设为0),按确定,结束方法编辑(测K和Na需要选择发射)。如果以多元素快速序列分析,按【快速多元素fs】进入fs向导,一直按下一步直到完成。 6.按【分析】进入工作表分析界面:按选择,选择要分析的样品标签(使分析的标签变红),此时开始或是继续按钮会变实。再按选择,确认所选择的内容;按优化,选择要优化的方法后按确定,并按提示进行操作,确保每一个元素灯安装和方法设定一致,将卡片前后移动调节燃烧头使光斑位于卡片的靶心,手动调节灯位,使吸光值最大,按自动增益,确定,优化完毕后按取消完成优化。按开始,按软件提示进行点火,检查,并按软件提示安装灯,切换灯位及提供空白,标样和样品溶液,直至完成分析。如果需要对样品溶液进行重新检测,点【选择】-->【选中】-->【仪器】-->【从溶液开始】;如果需要对某标准溶液进行重新检测,点击【标样3】-->【启动GTA】。 7.报告:单击【视窗】-->【报告】,选择要打印的报告的方法名称-->下一步-->选择-->选择标签范围-->下一步-->设置页面-->设置所需要的报告内容-->下一步-->进入报告页面预览或打印报告。 8.关机:做样完成后吸蒸馏水3至5分钟,清洗雾化器-->关闭乙炔气瓶(若火焰已熄灭,则点火让火焰自然熄灭,燃尽乙炔)-->关闭空压机压缩机(工作开关-->放水-->风机开关)。

原子吸收光谱仪全年维护保养计划

大家都谈保养维护,但是没有一篇关于维护保养的完整计划,鄙人不才,总结出原子吸收的完整版保养计划,希望对各位版友有帮助哈。以下所有的内容是原子吸收的所有保养计划,分常规维护内容及各部件维护的细节,希望各位专家版友阅读完毕后补充!一、目的 规范原子吸收光谱仪的维护,确保仪器各功能部件的正常使用和延长使用寿命。 二、常规维护规范 每次关机及分析结束后应当做好以下工作: 1、放干净空压机贮气灌内的冷凝水、检查燃气是否关好;用水彻底冲洗排废系统。 2、如果用了有机溶剂,则要倒干净废液罐中的废液,并用自来水冲洗废液罐。 3、高含量样品做完后,应取下燃烧头放在自来水下冲洗干净并用滤纸仔细把缝口积碳擦除,然后用纯水冲洗,最后甩掉水滴晾干以备用。 4、关火前应继续用纯水喷雾几分钟以清洗雾化器。 5、清除灯窗和样品盘上的液滴或溅上的样液水渍,并用棉球擦干净,将测试过的样品瓶等清理好,拿出仪器室,擦净实验台。 6、关闭通风设施,检查所有电源插座是否已切断,水源、气源是否关好。 7、使用石墨炉系统时,要注意检查自动进样针的位置是否准确,原子化温度一般不超过2850 ℃及尽可能驱尽试液中的强酸和强氧化剂,确保石墨管的寿命。 每月维护项目 a、检查雾化效率是否正常,必要时进行调整。 b、检查雾化器毛细管是否有阻塞,若有应按要求疏通,注意疏通时只能用工厂提供的软细金属丝。 c、检查贮气罐有无变化,有变化时应检查泄漏,检查阀门控制;每次钢瓶换气后或重新联结气路,都应按要求检漏。 d、乙炔钢瓶内的压力低于0.2MPa时应立即更换。 e、氩气必须使用高纯氩气,大于99.995%。 f、检查石墨管的寿命,同时应检查石墨管内是否积碳。 g、检查自动进样器进样针的位置是否正确。 h、检查循环冷却水系统内的水面液位。 i、整个仪器室的卫生除尘。 三、各功能部件维护保养 1、主机 1)更换保险丝(仪器背后) 2)清洁样品室两边的石英窗(火焰/石墨炉) --气体吹扫/无水酒精棉球/镜头纸

原子荧光操作要点

原子荧光操作要点 一、仪器的正确开机顺序: 开启计算机(待进入操作系统)依次打开主机电源、泵电源(待仪器完全进入复位状态)双击操作软件进入自检 二、更换元素灯 注意一定在主机电源关闭状态下更换,元素灯插头的凸出之处与灯插座的凹处相对。 三、试剂、污染的避免 所有上机的酸必须是优级纯,保证不含或含有很低的被测元素及干扰。 称还原剂尽量不用玻璃器皿,直接用塑料瓶。 所有玻璃器皿必须用10%~30%的硝酸浸泡过夜方可使用,污染比较大的要用超声波超一超再用高浓度的硝酸浸泡时间长点。 如发现空白特别高(只是汞),可用以下方法检查污染: 1.将进样管和进还原剂的管子都放入纯水中,检测纯水中的荧光值, 2.将进样管和进还原剂的管子都放入载流中,检测载流的荧光值多少 3.将进样管和进还原剂的管子都放入还原剂中,检测还原剂的荧光值多少 4.以上数据如果明显不正常,则该溶液被污染!换掉即可降低空

一般都是酸不好,可配5%和10%的硝酸,做空白进行比较,如果空白差别很大,或呈倍数关系,则肯定是酸不好!! 四、做汞的注意事项 汞灯是阳极灯,并且受外界因素如温度湿度的影响很大,所以检测时荧光值有漂移的现象。但是如果在检测之前将汞灯预热好,漂移的现象可消除。这里所说的预热必须是在测量状态下进行,为了缩短预热时间,我们采取大电流预热小电流测量, 选择仪器条件测量方法选择test (此时泵块松着) PMT:270,I:50 预热半小时 另外硼氢化钾溶液浓度越低,测Hg灵敏度越高,同时还可降低各种干扰(但不能低于0.01%),即用0.05%KBH4(冷汞法)降炉高也可以有效的降低空白 五、保养仪器 1.至少半个月开一次极,让仪器空运转 2.每次做完样品,先点三到四次重做空白,然后将进样管和还原剂管分别放入纯水中点重做空白,最后降管子都放在空气中点重做空白,排空水之后即可 3.长时间不开机,在做样前检查一下水封里是否有水,给泵和自动进样器的滑竿上涂一到两滴润滑油 4.长时间的泵管挤压使泵管变形,进液不准确,这时可将泵管调个头连接(就是左边的换右边来,右边的换左边去)或更换新的泵

氢化物-原子荧光光谱法和石墨炉-原子吸收光谱法

氢化物-原子荧光光谱法和石墨炉-原子吸收光谱法 测定土壤中铅的比较 黄芳1,孙永泉1,张琰1,李绍南2 ( 1.苏州市农产品质量与环境监测站,苏州215011 2.苏州市环境监测站,苏州215004 ) 摘要:对于氢化物发生-原子荧光光谱法和石墨炉-原子吸收光谱法这两种方法测定土壤中痕量铅的结果作了研究比较。试验结果表明,两种方法测定的样品含量、精密度和回收率之间无显著性差异。两种测定结果相对误差范围为-6.7%~2.7% ,相对标准偏差小于 5.5%,回收率在91.0%~107% 之间。 关键词:氢化物-原子荧光光谱法;石墨炉-原子吸收光谱法;铅;土壤;比较 Comparison Between the Determination of Lead in Soil by Hydride Generation-Atomic Fluorescence Spectrometry and by Graphite-Furnace Atomic Absorption Spectrometry HUANG Fang 1,SUN Yongquan 1,ZHANG Yan 1,LI Shaonan 2 (1. Suzhou Agricultural Product Quality and Environment Monitoring Station , Suzhou 215011 ; 2.Suzhou Environment Monitoring Station ) Abstract: A comparative study of determination of lead in soil by hydride generation-atomic fluorescence spectrometry (HG-AFS) and by graphite furnace-atomic absorption spectrometry (GF-AAS). It was shown by the experimental results that no significant difference of content in sample, precisions and recoveries were found between these two methods. Relative error of both kinds of results were in the range of - 6.7%~2.7%.RSD ' found were less than 5.5%,Recoveries obtained were in the range of 91.0%~107%. Keyword: HG-AFS; GF-AAS; Lead; Soil; Comparison 土壤中铅的测定,本实验室研究颇多。以往多用石墨炉-原子吸收光谱法测定[1 ,2,4],近 年又应用氢化物-原子荧光光谱法进行测定[3]。试验结果表明,两种方法测定土壤中铅的含量, 精密度和回收率均呈现良好的一致性,后者由于采用了流动注射技术,操作略感简便快速,但两种方法完全可视为等效方法。 1 试验部分

第3章_原子吸收光谱法(练习题)-2008级

第三章原子吸收光谱法 单选题: 1.原子吸收光谱是由下列哪种粒子产生的? (1)固体物质中原子的外层电子;(2)气态物质中基态原子的外层电子;(3)气态物质中激发态原子的外层电子;(4)气态物质中基态原子的内层电子。 2. 原子吸收光谱线的多普勒变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 3. 原子吸收光谱线的洛仑兹变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 4. 用原子吸收光度法测定钙时,加入EDTA是为了消除下述哪种物质的干扰?(1)磷酸;(2)硫酸;(3)钠;(4)镁。 5. 为了提高石墨炉原子吸收光谱法的灵敏度,原子化阶段测量信号时,保护气体的流速应: (1)减小;(2)增大;(3)不变;(4)为零。 6. 原子吸收光谱测定食品中微量砷,最好采用下列哪种原子化方法? (1)冷原子吸收;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 7. 原子吸收光谱测定污水中微量汞,最好采用下列哪种原子化方法? (1)化学还原冷原子化法;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 8. 与原子吸收光谱法相比,原子荧光光谱法: (1)要求光源发射强度高;(2)要求光源发射线窄;(3)要求单色仪分辨能力更强;(4)更适宜测高浓度样品。 9. 消除原子吸收光谱分析中的物理干扰一般用: (1)背景校正;(2)光源调制;(3)标准加入法;(4)加入缓冲剂。 10. 石墨炉法原子吸收分析,应该在下列哪一步记录吸光度信号: (1)干燥;(2)灰化;(3)原子化;(4)除残。 11. 作为原子吸收光谱分析的消电离剂,最有效的是: (1)Na;(2)K;(3)Rb;(4)Cs。 12. 空心阴极灯中对发射谱线宽度影响最大的因素是: (1)阴极材料;(2)填充气体;(3)灯电流;(4)阳极材料。 13. 原子吸收分析中,吸光度最佳的测量范围是:

原子吸收光谱仪使用操作规程

原子吸收光谱仪使用操作规程 1.打开电脑后和原子吸收主机,然后点击软件点确定后进入初始界面。 2.初次进入界面后要点击软件左上角的系统项,选择通讯设置把正确的COM 口输入,并把波特率设置成19200点击确定待仪器与电脑连接后进行操作,后续做样则无需进行这一步操作。 3.打开灯室,把要测量的元素灯放入灯座上面,并记住灯位置,如果被测的元 素灯本来就在灯座上则记住灯位置以方便下步操作。 4.如果被测元素为第一次所测,按第5~12步操作;如果被测元素之前测量过, 直接点击软件右下角配方法,选择被测元素加入工作池即可。 5.点击软件左上角的建方法选项,选择要测量的元素,并选火焰连续法,点下 一步进行操作,在弹出的界面中点灯位设定选择对应的灯号并保存(如果默认的灯电流不对则把灯电流改下)点击下一步进行操作。 6.当弹出的界面显示是否进行谱线搜索时,点击否。进行下一步操作(如果点 了是则耐心等待两到三分钟待仪器显示谱线搜索完成后)。 7.在弹出的界面中设置,助燃气选择空气,乙炔流量设置2.0 L/min,火焰高度 10mm,点击下一步。 8.在弹出的界面中设置合适的基本信息并输入自己想要的重复测量次数,一般 空白1次,样品3次,采样时间设定成1s,延时时间1s,调零时间1s,然后点击下一步进行操作 9.在弹出的标样信息中输入要测的标准样品个数(一般3个),多了可以删除, 少了可以添加,并依次从低到高输入标准样品的实际浓度值(根据实际所配配标液浓度设定),点击下一步。注:使用对照法,标样信息全部删除。10.选择要测量的未知样品个数并在弹出的未知样品信息中输入自己能理解的 未知样品标识,点击下一步。 11.输入正确的各个因子的准确数据,点击下一步(其中重量因子是指所称量的 未知样品重量,定容因子是指上面所称的未知样品在通过一系列处理后最终定容的体积,稀释因子是指上面溶液最终稀释后的倍数,如果没有稀释则为1,矫正因子是指现在所测得浓度和要测的浓度值的换算关系)。 12.阻尼系数一般默认设置是200,点击确定后加入工作池。

原子荧光作业指导书

AFS-8220原子荧光光度计操作与维护规程 1.目的 规范原子荧光光度计操作程序,正确使用仪器,保证监测工作顺利进行,操作人员安全和设备安全。 2.适用范围 适用于AFS-8220原子荧光光度计的使用操作。 3.职责 3.1 、AFS-8220原子荧光光度计操作人员按照本规程操作仪器,做好使用记录登记。 3.2、AFS-8220原子荧光光度计保管员负责监督仪器操作是否符合规程,对仪器进行日常维护及定期保养。 4.仪器用途 本台AFS-8220原子荧光光度计可以对含砷、硒、汞、锑的样品进行定性和定量分析。 5.主要技术参数 检出限DL : AS 、Se 、Pb 、Bi 、Sb 、Te 、Sn : <0.01μg/L Hg 、Cd : <0.001μg/L Ge : <0.05μg/L Zn : <1.0μg/L Au : <3.0μg/L 相对标准偏差RSD : <1% 线性范围: 大于三个数量级 6.操作规程

6.1打开电脑,进入WINDOWS 桌面。 6.2打开氩气瓶,调节分压表压力为0.3MPa 。 6.3换上所用的元素灯。 6.4打开仪器主机电源和(双泵)电源,若元素灯不亮可用点火枪激发。 6.5检查元素灯光斑是否对正,用调光器进行调节。 6.6检查二级气液分离器(水封)中是否有水。 6.7双击桌面上 6.8 6.9 6.10A ,B 道自动识别元素灯。 None ) 6.11 6.12S1~S5输入A ,B 道所测做元素标准曲线各点浓度和码 6.13 输入插入样品的个数、样品的名称、稀释因子(前框为取样量,后框为定容体积)、 6.14 6.15点击,仪器需要预热30分钟以上(测汞预热一小时以上)。 6.16(新建一个文件,本次所

氢化物发生──冷原子吸收法测定食物中的汞.

氢化物发生──冷原子吸收法测定食物中的汞 闫军,金雨琴,陈文平 (北京出入境检验检疫局,北京100029) 摘要汞是有毒元素之一,如果食品中含汞超标对人体非常有害,造成疾病,有的甚至死亡,故对食品中Hg的测定十分重视,决不可以超标,以免对人体健康带来威胁。测Hg的方法有很多,如专用测汞仪,化学法,原子荧光,冷原子吸收以及氢化发生冷原子吸收法等,比较各种方法,我们认为氢化物发生冷原子吸收法较好,具有灵敏度关键词食品,汞,氢化物发生冷原子吸收法。 1实验部分 1. 1仪器与试剂 1.1. 1仪器 TAS 986原子吸收光谱仪(北京普析通用仪器责任有限公司) WHG 102A2氢化物发生器(北京瀚时制作所) 纯水器,电阻率18.3MΩ·cm-1(HU─MAN公司制造,北京普析通用仪器公司中国总代理) 1.1.2 试剂 混酸HNO3+HCLO4=5+1(V/V) 高锰酸钾1%(W/V) 载流1%HCL(V/V) 介质4%H2SO4(V/V) 参照物:大米中Hg GBW—08508S,(购自国家标准物质中心) 1. 2实验步骤 1.2.1样品预处理 称取大米(广州来样)3g左右(标准至0.0001g)至于放有3~4粒玻璃珠的三角烧杯中,加入混酸10mL,过夜,次日置电炉板上缓缓加热(经常摇动一下三角

瓶)。加热约3h,驱除NO2,到瓶口冒HNO白烟,浓缩至1~2 mL小体积,取下冷却。用4%H2SO4转移至20 mL具塞试管中,加几滴1%的高锰酸钾呈紫红色,用4%H2SO4稀至刻度,摇匀备用。 1.2.2 实验 标准储备Hg溶液的浓度不能小于100μg/mL用此溶液逐级稀释配制成含汞 100ng/mL的溶液,用此溶液配制Hg的标准溶液系列。 于6支25mL容量瓶中分别加入100ng/mL的Hg溶液0.0、0.25、0.5、1.5、2.0、2.5mL配制成Hg的标准系列,其浓度为0.00、1.0、2.0、6.0、10.0ng/mL用 4%H2SO4稀释(滴几滴1%高锰酸钾)至刻度,使溶液呈粉紫色。工作曲线见图1相关系数r=0.9997 0.6405 0.5030 0.3656 0.2281 0.0907 0.0486 -1.000 1.420 3.840 6.26 8.680 11.1 浓度 ng/mL 图1 工作曲线 1.2.3测定条件 仪器测定条件见表1 表1 仪器条件

相关文档
最新文档