最新初中数学数据的收集与整理分类汇编附解析(2)
初中数学数据的收集与整理分类汇编附解析(1)
初中数学数据的收集与整理分类汇编附解析(1)一、选择题1.在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有()个.A.120 B.60 C.12 D.6【答案】A【解析】【分析】根据频率的意义,每组的频率=小组的频数:样本容量,据此即可解答.【详解】2.下列调查中,适宜采用普查方式的是()A.调查银川市市民垃圾分类的情况B.对市场上的冰淇淋质量的调查C.对乘坐某次航班的乘客进行安全检查D.对全国中学生心理健康现状的调查【答案】C【解析】【分析】普查的定义:为了特定目的而对所有考察对象进行的全面调查叫普查.【详解】A.调查银川市市民垃圾分类的情况, 人数多,耗时长,应当采用抽样调查的方式,故本选项错误;B.对市场上的冰淇淋质量的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;C.对乘坐某次航班的乘客进行安全检查, 因为调查的对象比较重要,应当采用全面调查,故本选项正确;D.对全国中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;故选:C【点睛】本题属于基础应用题,只需学生熟练掌握普查的定义,即可完成.3.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】【分析】【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.4.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是500【答案】D【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.5.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力【答案】D【解析】【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据此特征进行判断.【详解】A. 了解某班学生的身高情况,范围较小,容易操作,适合普查,故该选项错误;B. 选出某校短跑最快的学生参加全市比赛,要求比较严格,适合普查,故该选项错误;C. 了解全班同学每周体育锻炼的时间,范围较小,容易操作,适合普查,故该选项错误;D. 调查某批次汽车的抗撞击能力,破坏性大,适合抽样调查,故本选项正确.故选:D【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度高的调查、事关重大的调查往往选用普查.6.下列调查适合作普查的是()A.了解“嫦娥三号”卫星零部件的状况B.了解在校大学生的主要娱乐方式C.日光灯管厂要检测一批灯管的使用寿命D.了解某市居民对废电池的处理情况【答案】A【解析】【分析】【详解】解:A、了解“嫦娥三号”卫星零部件的状况调查需要精确,适合普查,故本选项正确;B、了解在校大学生的主要娱乐方式适合抽样调查,故本选项错误;C、日光灯管厂要检测一批灯管的使用寿命适合抽样调查,故本选项错误;D、了解某市居民对废电池的处理情况适合抽样调查,故本选项错误;故选A.【点睛】本题考查全面调查与抽样调查.7.在“校园读书月”活动中,小华调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.下面有四个推断:①这次调查获取的样本数据的众数是30元②这次调查获取的样本数据的中位数是40元③若该校共有学生1200人,根据样本数据,估计本学期计划购买课外书花费50元的学生有300人④花费不超过50元的同学共有18人.其中合理的是()A.①②B.②④C.①③D.①④【答案】C【解析】【分析】根据众数、中位数的定义及样本估计总体的思想解答可得.【详解】解:由条形图知30出现次数最多,即众数为30,故①正确;由于共有40个数据,则中位数为第20、21个数据的平均数,即中位数为50+502=50,故②错误;估计本学期计划购买课外书花费50元的学生有1200×1040=300(人),故③正确;花费不超过50元的同学共有6+12+10=28人,故④错误;故选:C.【点睛】本题主要考查众数、中位数及样本估计总体,熟练掌握众数、中位数的定义及样本估计总体的思想是解题的关键.8.在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票为()A.300 B.90 C.75 D.85【答案】C 【解析】 【分析】先算出总票数,再算出B,D 的票数和,再求出B 的票数. 【详解】B 的得票为:()00000010535135303075÷⨯---=人 故选:C 【点睛】考核知识点:从条形图和扇形图获取信息.9.为了估计湖中有多少条鱼.先从湖中捕捞n 条鱼作记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后再捕捞,第二次捕鱼共m 条,有k 条带记号,则估计湖里有鱼( )A .mkn 条 B .mnk条 C .k mn条 D .nk m条 【答案】B 【解析】 【分析】第二次捕鱼m 共条,有k 条带记号,说明有记号的占到km,已知共有n 条鱼作记号,由此即可解答. 【详解】 由题意可知:n÷k m =mn k. 故选B . 【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.10.太阳能是来自太阳的辐射能量,对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.如图是2013﹣2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理的是( )A.截至2017年底,我国光伏发电累计装机容量为13078万千瓦B.2017年我国光伏发电新装机容量占当年累计装机容量的50%C.2013﹣2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦D.2013﹣2017年,我国光伏发电新增装机容量先减少后增加【答案】B【解析】【分析】依据折线统计图中的数据进行判断,即可得出结论.【详解】解:A、截至2017年底,我国光伏发电累计装机容量为13078万千瓦,故本选项正确;B、2017年我国光伏发电新装机容量约占当年累计装机容量的40.6%,故本选项错误;C、2013﹣2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦,故本选项正确;D、2013﹣2017年,我国光伏发电新增装机容量先减少后增加,故本选项正确;故选:B.【点睛】本题主要考查了折线统计图,熟练掌握折线统计图的的特点及数据分析方法是解题的关键.11.在下列调查方式中,较为合适的是( )A.为了解石家庄市中小学生的视力情况,采用普查的方式B.为了解正定县中小学生的课外阅读习惯情况,采用普查的方式C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用抽样调查方式D.为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式【答案】D【解析】【分析】根据普查和抽样调查适用的条件逐一判断即可.【详解】A.为了解石家庄市中小学生的视力情况,适合采用抽样调查的方式,故该选项不符合题意,B.为了解正定县中小学生的课外阅读习惯情况,采用抽样调查的方式,故该选项不符合题意,C.为了解某校七年级(2)班学生期末考试数学成绩情况,采用普查方式,故该选项不符合题意,D.为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式,故该选项符合题意,故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多【答案】C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.14.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下列说法中错误的一项()A.图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量.B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半.C.图2显示意大利当前的治愈率高于西班牙.D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率【答案】C【解析】【分析】A中,读图1,将数据代入公式验证;B中,直接读图2比较即可;C中,治愈率=治愈人数÷患病人数,需要计算分析;D中,直接读图3可得出【详解】A中,现有确诊增加量为:-297,累计确诊增加量为:114,治愈增加量为:405,死亡增加量为:6,代入A中的公式,成立,A正确;B中,美国累计确诊人数为:104661,百万人口确诊:318,德国累计确诊人数为:50871,百万人口确诊:625,美国累计确诊人数约是德国的2倍,正确.德国百万人口确诊数约是美国的2倍,正确.故B正确.;C中,意大利治愈人数为:10950,患病人数为:86498,治愈率为0.127;西班牙治愈人数为:9357,患病人数为:65719,治愈率为:0.142.故西班牙治愈率更高,C错误;D中,从图3知,从3月16日开始,海外的病死率曲线比中国高,即高出中国,D正确故选:C【点睛】本题考查图表数据的分析能力,在解题过程中需要注意,有些数据是需要计算分析的,如治愈率,切不可仅观察表面数据15.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大【答案】D【解析】【分析】【详解】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选D.【点睛】本题考查折线统计图.16.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理...的是()A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份B.2019年的月接待旅游量的平均值超过300万人次C.2017年至2019年,年接待旅游量逐年增加D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳【答案】D【解析】【分析】根据折线统计图的反映数据的增减变化情况,这个进行判断即可.【详解】解:A、2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,故选项不符合题意;B、从2019年3月起,每个月的人数均超过300万人,并且整体超出的还很多,故选项不符合题意;C、从折线统计图的整体变化情况可得2017年至2019年,年接待旅游量逐年增加,故选项不符合题意;D、从统计图中可以看出2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性要大,故选项符合题意;故选:D.【点睛】本题考查折线统计图的意义和反映数据的增减变化情况,正确的识图是正确判断的前提.17.为了了解某地区七年级学生每天体育锻炼的时间,要进行抽样调查.以下是几个主要步骤:①随机选择该地区一部分七年级学生完成调查问卷:②设计调查问卷:③用样本估计总体:④整理数据:⑤分析数据.正确的顺序是()A.②①③④B.②①④③⑤C.①②④⑤③D.②①④⑤③【答案】D【解析】【分析】直接利用抽样调查收集数据的过程与方法分析排序即可.【详解】了解某地区七年级学生每天体育锻炼的时间所要经历的步骤顺序为:②设计调查问卷、①随机选择该地区一部分七年级学生完成调查问卷、④整理数据、⑤分析数据、③用样本估计总体,则正确顺序为:②①④⑤③,故选:D.18.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是()A.310B.16C.35D.12【答案】A【解析】【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数进行计算即可.【详解】∵连续抛了10次,共抛出了3次“6”向上∴出现“6”向上的频率是:310,故选A.【点睛】本题考查频数与频率,频率=频数÷数据总数,理解并熟记公式是解题关键.19.要反映某市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C.【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.20.为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是()A.抽样调查,24 B.普查,24 C.抽样调查,26 D.普查,26【答案】A【解析】分析:因为普查是针对调查对象的全体,抽查是针对调查对象中抽取部分样本进行调查,求频数可根据频数=样本容量-已知频数之和.详解:因为为了解中学生获取信息的主要渠道, 先随机抽取50名中学生进行该问卷调查,所以属于抽样调查,因为样本容量是50,所以图中a=50-6-10-6-4=24,故选A.点睛:本题主要考查抽查的概念和频数的求解方法,解决本题的关键是要熟练掌握抽查的概念和频数的求解方法.。
初中数学知识归纳数据的收集与整理方法
初中数学知识归纳数据的收集与整理方法数据在数学中起着重要的作用,它是数学研究与应用的基础。
为了更好地利用数学知识,我们需要学会如何收集和整理数据。
下面将介绍一些初中数学知识归纳数据的收集与整理方法。
一、数据的收集方法1. 实地观察法:通过实地观察来收集数据。
例如,在实际生活中我们可以观察天气情况、人口分布等,并记录相关数据。
2. 问卷调查法:通过编制问卷,向一定范围的人群进行调查,收集他们的意见或经验。
例如,我们可以设计一份关于学生学习习惯的问卷,并统计回收到的问卷数据。
3. 实验法:通过进行实验来收集数据。
例如,在物理实验中我们可以通过测量、记录相关数据来验证某个物理定律。
4. 文献资料法:通过查阅相关的书籍、文献、报纸等来收集数据。
例如,在研究历史人物的生平时,可以查阅相关的历史资料,并整理其中的相关数据。
二、数据的整理方法1. 列表法:将收集到的数据按照一定的顺序列成列表。
例如,对于某个班级的学生成绩,可以按照学号的顺序进行排列,并将学生的姓名和成绩一一对应。
2. 表格法:将数据整理成表格的形式。
表格可以清晰地展示数据之间的关系。
例如,可以将多个班级的数学成绩按照班级和学生进行分类,并制作成表格。
3. 图表法:将数据整理成图表的形式,以直观地展示数据之间的趋势和关系。
例如,我们可以用直方图来表示某个班级学生的身高分布情况。
4. 图像法:将数据整理成图像的形式,以便更好地理解和比较数据。
例如,我们可以将两个班级的语文成绩制作成柱状图进行比较,以找出优劣之处。
三、数据的分析方法1. 平均数:平均数是最常用的一种数据分析方法,它能够代表一组数据的集中趋势。
例如,我们可以计算某个班级学生的平均分,以了解整体的学习水平。
2. 极差:极差是一组数据中最大值与最小值之间的差别,用于描述数据的离散程度。
例如,我们可以计算某个班级同学身高的极差,以了解身高的分散程度。
3. 频数与频率:频数表示某个数值或数值区间在一组数据中出现的次数,频率表示频数与总数之间的比值。
初中数学数据的收集与整理分类汇编及答案(1)
初中数学数据的收集与整理分类汇编及答案(1)一、选择题1.下列调查中,最适合采用普查方式的是()A.对太原市民知晓“中国梦”内涵情况的调查B.对全班同学1分钟仰卧起坐成绩的调查C.对2018年央视春节联欢晚会收视率的调查D.对2017年全国快递包裹产生的包装垃圾数量的调查【答案】B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【答案】D【解析】【分析】①求出80元以上的人数,能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【详解】解:①超过月均花费80元的人数为:200+100+80+50+25+25+15+5=500,小明乘坐地铁的月均花费是75元,所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为①②③,故选:D.【点睛】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.3.某校文学社成员的年龄分布如下表:对于不同的正整数,下列关于年龄的统计量不会发生改变的是()A.平均数B.众数C.方差D.中位数【答案】D【解析】【分析】由频数分布表可知后两组的频数和为15,即可得知总人数,结合前两组的频数知第15、16个数据的平均数,可得答案.【详解】解:∵14岁和15岁的频数之和为15﹣a+a=15,∴频数之和为6+9+15=30,则这组数据的中位数为第15、16个数据的平均数,即13+142=13.5,∴对于不同的正整数a,中位数不会发生改变,故选:D.【点睛】此题考查频数(率)分布表,加权平均数,中位数,众数,方差,看懂图中数据是解题关键4.下列调查中,适宜用全面调查方式的是()A.飞机起飞前,对其零部件进行检查B.调查一个条河流的水污染情况C.调查一批新型节能灯的使用寿命D.调查湖南省2015~2016学年度七年级学生的身高情况【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、飞机起飞前,对其零部件进行检查,意义重大,用全面调查,故此选项正确;B、调查一个条河流的水污染情况,意义不大,应采用抽样调查,故此选项错误;C、调查一批新型节能灯的使用寿命,破坏性较强,应采用抽样调查,故此选项错误;D、调查湖南省2015~2016学年度七年级学生的身高情况,人数众多,应采用抽样调查,故此选项错误;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌【答案】D【解析】由折线统计图可知2~6月份生产量增长率逐渐减少,7月份生产量月增长率开始回升,这七个月中,生产量的增长率始终是正数,则每月的生产量不断上涨,所以A、B、C都正确,错误的只有D;故选D.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,注意在图形中纵轴表示的是增长率,只有增长率是负数,才表示生产量下跌.6.下列调查中,最适合采用普查方式的是()A.调查某品牌灯泡的使用寿命B.调查重庆市国庆节期间进出主城区的车流量C.调查重庆八中九年级一班学生的睡眠时间D.调查某批次烟花爆竹的燃放效果【答案】C【解析】【分析】根据普查和抽样调查的特点即可,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就会受到限制,这时就应该选择抽样调查.【详解】解:A、调查某品牌灯泡的使用寿命适合采用抽样调查方式,故本选项错误;B、调查重庆市国庆节期间进出主城区的车流量适合采用抽样调查方式,故本选项错误;C、调查重庆八中九年级一班学生的睡眠时间适合采用普查方式,故本选项正确;D、调查某批次烟花爆竹的燃放效果适合采用抽样调查方式,故本选项错误.故选:C.【点睛】此题考查了抽样调查和普查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果计较近似.7.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是().A.50°B.60°C.90°D.80°【答案】C【解析】由题意得35351284+++++×360°=90°;故选C .点睛:本题主要考查条形统计图和扇形统计图,计算扇形统计图中某一部分所对圆心角的度数,需要先求出占总体的百分比,然后用360°乘以这个百分比就可得.8.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.下列判断正确的是()A.高铁站对旅客的行李的检查应采取抽样调查B.一组数据5、3、4、5、3的众数是5C.“掷一枚硬币正面朝上的概率是12”表示每抛掷硬币2次就必有1次反面朝上D.甲,乙组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据更稳定【答案】D【解析】A,高铁站对旅客的行李的检查应采用普查,故错误;B,数据5、3、4、5、3的众数是5和3,故错误;C,“掷一枚硬币正面朝上的概率是12”表示每掷硬币2次不一定有1次正面朝上,故错误;D,甲、乙两组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据稳定,故正确;故选D.10.为了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,被抽取的300个产品叫做()A.总体B.个体C.总体的一个样本D.调查方式【答案】C【解析】【分析】根据总体、个体、样本、样本容量的含义:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;被抽取的300个产品叫做总体的一个样本,据此解答即可.【详解】解:根据总体、个体、样本、样本容量的含义,可得被抽取的300个产品叫做总体的一个样本.故选C【点睛】此题主要考查了总体、个体、样本、样本容量,要熟练掌握,解答此题的关键是要明确:①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.11.下列调查中,适宜采用普查方式的是()A.了解一批灯泡的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护环境的意识D.了解全国八年级学生的睡眠时间【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A. 了解一批灯泡的寿命适宜采用抽样调查方式,A错误;B. 检查一枚用于发射卫星的运载火箭的歌零部件适宜采用普查方式,B正确;C. 考察人们保护环境的意识适宜采用抽样调查方式,C错误;D. 了解全国八年级学生的睡眠时间适宜采用抽样调查方式,D错误;故选B.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.下列调查方式,你认为最合适的是()A.了解某地区饮用水矿物质含量的情况,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用全面调查方式【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解某地区饮用水矿物质含量的情况,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、调查某种品牌笔芯的使用寿命,抽样调查方式,故错误;D、调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用抽样调查方式,故错误;故选:A.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.13.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下列说法中错误的一项()A.图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量.B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半.C.图2显示意大利当前的治愈率高于西班牙.D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率【答案】C【解析】【分析】A中,读图1,将数据代入公式验证;B中,直接读图2比较即可;C中,治愈率=治愈人数÷患病人数,需要计算分析;D中,直接读图3可得出【详解】A中,现有确诊增加量为:-297,累计确诊增加量为:114,治愈增加量为:405,死亡增加量为:6,代入A中的公式,成立,A正确;B中,美国累计确诊人数为:104661,百万人口确诊:318,德国累计确诊人数为:50871,百万人口确诊:625,美国累计确诊人数约是德国的2倍,正确.德国百万人口确诊数约是美国的2倍,正确.故B正确.;C中,意大利治愈人数为:10950,患病人数为:86498,治愈率为0.127;西班牙治愈人数为:9357,患病人数为:65719,治愈率为:0.142.故西班牙治愈率更高,C错误;D中,从图3知,从3月16日开始,海外的病死率曲线比中国高,即高出中国,D正确故选:C【点睛】本题考查图表数据的分析能力,在解题过程中需要注意,有些数据是需要计算分析的,如治愈率,切不可仅观察表面数据14.如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为( )A.180人B.200人C.210人D.220人【答案】B【解析】【分析】根据扇形统计图先求出5班所占的百分比,再用5班的人数除以5班所占的百分比即可得出答案.【详解】解:根据题意得:42÷(1-20%-18%-21%-20%)=200(人),答:该校八年级学生总数为200人;故选B.【点睛】本题考查扇形统计图,掌握频数、频率和总数之间的关系是解题关键.15.下列调查中,最适合采用抽样调查的是()A.调查我市居民对汽车废气污染环境的看法B.对全班同学的身高情况进行调查C.乘坐高铁对旅客的行李的检查D.对学校的卫生死角进行调查【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查我市居民对汽车废气污染环境的看法,适宜抽样调查;B、对全班同学的身高情况进行调查,调查范围小,适宜普查;C、乘坐高铁对旅客的行李的检查,调查范围小,适宜普查;D、对学校的卫生死角进行调查,必须普查,故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.16.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.17.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为( ) A .70 B .720C .1680D .2370【答案】C 【解析】 【分析】 【详解】试题分析:7024001680100⨯=,故答案选C. 考点:用样本估计总体的统计思想.18.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )A .2010年至2014年间工业生产总值逐年增加B .2014年的工业生产总值比前一年增加了40亿元C .2012年与2013年每一年与前一年比,其增长额相同D .从2011年至2014年,每一年与前一年比,2014年的增长率最大【答案】D【解析】【分析】【详解】解:A 、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B 、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C 、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D 、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D 符合题意; 故选D .【点睛】本题考查折线统计图.19.如图是北京2017年3月1日﹣7日的 2.5PM 浓度(单位:3/g m μ)和空气质量指数(简称AQI )的统计图,当AQI 不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的 2.5PM 浓度最高②这七天的 2.5PM 浓度的平均数是330/g m μ③这七天中有5天的空气质量为“优”④空气质量指数AQI 与 2.5PM 浓度有关其中说法正确的是( )A .②④B .①③④C .①③D .①④ 【答案】D【解析】【分析】根据 2.5PM 浓度统计图可判断①;利用平均数公式可判断②;根据第二个图可判断③;综合分析一、二图,可判断④.【详解】由第一个图的纵坐标,得①3月4日的 2.5PM 浓度最高,故①符合题意; ②373682831416634.85/7g m μ++++++=,故②不符合题意; ③由第二个图得这七天中有4天的空气质量为“优”,故③不符合题意;④空气质量指数AQI 与 2.5PM 浓度有关,故④符合题意;故选:D .【点睛】本题考查折线统计图的分析,熟练掌握折线统计图的分析是解题关键.20.七年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是( )A .45°B .60°C .72°D .120° 【答案】C【解析】试题解析:由题意可得,第一小组对应的圆心角度数是:12122013510++++ ×360°=72°, 故选C .。
初中数学数据的收集与整理分类汇编及解析
初中数学数据的收集与整理分类汇编及解析一、选择题1.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下统计图:建设前经济收入构成比例统计图建设后经济收入构成比例统计图则下面结论中不正确的是( )A.新农村建设后,养殖收入增加了一倍B.新农村建设后,种植收入减少C.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半D.新农村建设后,其他收入增加了一倍以上【答案】B【解析】【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.【详解】设建设前经济收入为a,建设后经济收入为2a.A、建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故A项正确;B、种植收入37%×2a-60%a=14%a>0,故建设后,种植收入增加,故B项错误;C、建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故C项正确;D、建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故D项正确,故选:B.【点睛】本题主要考查扇形统计图的应用,命题的真假的判断,考查发现问题解决问题的能力.2.下列调查中,适宜采用普查方式的是()A.调查银川市市民垃圾分类的情况B.对市场上的冰淇淋质量的调查C.对乘坐某次航班的乘客进行安全检查D.对全国中学生心理健康现状的调查【答案】C【解析】【分析】普查的定义:为了特定目的而对所有考察对象进行的全面调查叫普查.【详解】A.调查银川市市民垃圾分类的情况, 人数多,耗时长,应当采用抽样调查的方式,故本选项错误;B.对市场上的冰淇淋质量的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;C.对乘坐某次航班的乘客进行安全检查, 因为调查的对象比较重要,应当采用全面调查,故本选项正确;D.对全国中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;故选:C【点睛】本题属于基础应用题,只需学生熟练掌握普查的定义,即可完成.3.如图是张亮、李娜两位同学零花钱全学期各项支出的统计图.根据统计图,下列对两位同学购买书籍支出占全学期总支出的百分比作出的判断中,正确的是()A.张亮的百分比比李娜的百分比大B.张娜的百分比比张亮的百分比大C.张亮的百分比与李娜的百分比一样大D.无法确定【答案】A【解析】【分析】由扇形统计图可知,李娜购买书籍支出占全学期总支出的百分比是32%,再求出张亮购买书籍支出占全学期总支出的百分比,进行比较即可解答.【详解】由扇形统计图可知,李娜购买书籍支出占全学期总支出的百分比是32%,张亮购买书籍支出占全学期总支出的百分比是200÷(150+200+100+100)≈36%,所以张亮的百分比比李娜的百分比大.故选A.【点睛】本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.4.观察市统计局公布的武汉市农村居民年人均收入每年比上年的增长率的统计图(如图所示),已知2004年农村居民年人均收入为8 000元,根据图中的信息判断:①农村居民年人均收入最多的是2005年;②2003年农村居民年人均收入为80001 6.8%+;③2006年农村居民年人均收入为8 000(1+13.6%)(1+12.1%);④从2002年到2006年武汉市农村居民的年人均收入在逐年增长.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】解:图示是增长率的折线图,由图可得从2002年到2006年武汉市农村居民的年人均收入在逐年增长;故农村居民年人均收入最多的是2006年;故①错误;2003年农村居民年人均收入为80001 5.4%+;故②错误;余下的③④都正确;故选:B.5.从一堆苹果中任取了20个,称得它们的质量(单位:克),其数据分布表如下.则这堆苹果中,质量不小于120克的苹果数约占苹果总数的()分组(90,100)(100,110)(110,120)(120,130)(130,140)(140,150)频数1231031A.80% B.70% C.40% D.35%【答案】B【解析】【分析】在样品中,质量不小于120克的苹果20个中有14个,通过计算在样本中所占比例来估计总体.【详解】解:103114= 123103120+++++++=70%,所以在整体中质量不小于120克的苹果数约占苹果总数的70%.故选B.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图【答案】C【解析】根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.7.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数,“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( )A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80 km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80 km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80 km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升【答案】D【解析】【分析】【详解】解:A. 以相同速度行驶相同路程,三辆车中,甲车燃油效率最高,甲车消耗汽油最少,此选项错误;B. 以低于80km/h的速度行驶时,行驶相同路程,三辆车中,甲车燃油效率最高,甲车消耗汽油最少,此选项错误;C. 以高于80km/h的速度行驶时,行驶相同路程,乙车燃油效率大于丙车燃油效率,乙车比丙车省油,此选项错误;D. 由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1L,行驶100km时耗油10L,此选项正确;故选D.【点睛】本题主要考查折线统计图,理解燃油效率的定义并从折线统计图中得出解题所需要的数据时解题的关键.8.某同学为了解三月份疫情期间某超市每天的客流量,随机抽查了其中五天的客流量,所抽查的这五天中每天的客流量是这个问题的()A.总体B.个体C.样本D.以上都不对【答案】B【解析】【分析】根据总体、个体、样本、样本容量的定义进行解答.【详解】解:∵抽查的是三月份疫情期间某超市每天的客流量,∴所抽查的这五天中每天的客流量是个体.故选B.【点睛】此题主要考察样本的定义,熟知样本是总体所抽取的一部分个体是解题的关键.9.甲校男生占全校总人数的50%,乙校女生占全校总人数的50%,则甲乙两校女生人数相比()A.甲校多于乙校B.甲校少于乙校C.甲乙两校一样多D.不能确定【答案】D【解析】【分析】根据总人数×女生所占百分比=女生人数进行计算比较即可.【详解】因为甲乙两校总人数不知道,无法计算出各校男女生人数,因此不能确定甲乙两校女生人数的多少,故选:D.【点睛】此题主要考查了频数与频率,关键是掌握总人数×女生所占百分比=女生人数.10.太阳能是来自太阳的辐射能量,对于地球上的人类来说,太阳能是对环境无任何污染的可再生能源,因此许多国家都在大力发展太阳能.如图是2013﹣2017年我国光伏发电装机容量统计图.根据统计图提供的信息,判断下列说法不合理的是()A.截至2017年底,我国光伏发电累计装机容量为13078万千瓦B.2017年我国光伏发电新装机容量占当年累计装机容量的50%C.2013﹣2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦D.2013﹣2017年,我国光伏发电新增装机容量先减少后增加【答案】B【解析】【分析】依据折线统计图中的数据进行判断,即可得出结论.【详解】解:A、截至2017年底,我国光伏发电累计装机容量为13078万千瓦,故本选项正确;B、2017年我国光伏发电新装机容量约占当年累计装机容量的40.6%,故本选项错误;C、2013﹣2017年,我国光伏发电新增装机容量的平均值约为2500万千瓦,故本选项正确;D、2013﹣2017年,我国光伏发电新增装机容量先减少后增加,故本选项正确;故选:B.【点睛】本题主要考查了折线统计图,熟练掌握折线统计图的的特点及数据分析方法是解题的关键.11.下列调查中,适宜采用普查方式的是()A.了解一批灯泡的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护环境的意识D.了解全国八年级学生的睡眠时间【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A. 了解一批灯泡的寿命适宜采用抽样调查方式,A错误;B. 检查一枚用于发射卫星的运载火箭的歌零部件适宜采用普查方式,B正确;C. 考察人们保护环境的意识适宜采用抽样调查方式,C错误;D. 了解全国八年级学生的睡眠时间适宜采用抽样调查方式,D错误;故选B.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为( )A.180人B.200人C.210人D.220人【答案】B【解析】【分析】根据扇形统计图先求出5班所占的百分比,再用5班的人数除以5班所占的百分比即可得出答案.【详解】解:根据题意得:42÷(1-20%-18%-21%-20%)=200(人),答:该校八年级学生总数为200人;故选B.【点睛】本题考查扇形统计图,掌握频数、频率和总数之间的关系是解题关键.13.下列说法正确的是()A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S甲2=5,S乙2=0.5,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.14.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )A .2010年至2014年间工业生产总值逐年增加B .2014年的工业生产总值比前一年增加了40亿元C .2012年与2013年每一年与前一年比,其增长额相同D .从2011年至2014年,每一年与前一年比,2014年的增长率最大 【答案】D 【解析】 【分析】 【详解】解:A 、2010年至2014年间工业生产总值逐年增加,正确,不符合题意; B 、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意; C 、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选D.【点睛】本题考查折线统计图.15.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理...的是()A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份B.2019年的月接待旅游量的平均值超过300万人次C.2017年至2019年,年接待旅游量逐年增加D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳【答案】D【解析】【分析】根据折线统计图的反映数据的增减变化情况,这个进行判断即可.【详解】解:A、2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,故选项不符合题意;B、从2019年3月起,每个月的人数均超过300万人,并且整体超出的还很多,故选项不符合题意;C、从折线统计图的整体变化情况可得2017年至2019年,年接待旅游量逐年增加,故选项不符合题意;D、从统计图中可以看出2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性要大,故选项符合题意;故选:D.【点睛】本题考查折线统计图的意义和反映数据的增减变化情况,正确的识图是正确判断的前提.16.下列调查中,最适合采用全面调查(普查)的是()A.某班学生对国家“一带一路”战略的知晓率B.鞋厂检测生产的鞋底能承受的弯曲次数C.检测某城市的空气质量D.了解电视栏目《朗读者》的收视率【答案】A【解析】【分析】按照全面调查(普查)和抽样调查的定义及适用范围,进行逐项分析即可得出答案.【详解】A.了解某班学生对国家”一带一路”战略的知晓率,人数不多,适合采用全面调查,故A选项正确;B.鞋厂检测生产的鞋底能承受的弯曲次数破坏性较大,适合抽样调查, 故B选项错误;C.检测某城市的空气质量做不了全面调查,故C选项错误;D.了解电视栏目《朗读者》的收视率人数众多,全面调查意义不大,适于抽样调查,故D 选项错误,故选:A.【点睛】本题考查全面调查和抽样调查.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,此时就应该选择抽样调查,而抽样调查得到的调查结果的准确性不如普查.17.某校八年级有1600名学生,从中随机抽取了200名学生进行立定跳远测试,下列说法正确的是()A.这种调查方式是普查B.200名学生的立定跳远成绩是个体C.样本容量是200D.这200名学生的立定跳远成绩是总体【答案】C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A、是抽样调查,故A不符合题意;B、每名学生的立定跳远成绩是个体,故B不符合题意;C、样本容量是200,故C符合题意;D、所有学生的立定跳远成绩是总体,故D不符合题意;故选:C.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.18.如图是北京2017年3月1日﹣7日的 2.5PM 浓度(单位:3/g m μ)和空气质量指数(简称AQI )的统计图,当AQI 不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的 2.5PM 浓度最高②这七天的 2.5PM 浓度的平均数是330/g m μ③这七天中有5天的空气质量为“优”④空气质量指数AQI 与 2.5PM 浓度有关其中说法正确的是( )A .②④B .①③④C .①③D .①④ 【答案】D【解析】【分析】根据 2.5PM 浓度统计图可判断①;利用平均数公式可判断②;根据第二个图可判断③;综合分析一、二图,可判断④.【详解】由第一个图的纵坐标,得①3月4日的 2.5PM 浓度最高,故①符合题意; ②373682831416634.85/7g m μ++++++=,故②不符合题意; ③由第二个图得这七天中有4天的空气质量为“优”,故③不符合题意;④空气质量指数AQI 与 2.5PM 浓度有关,故④符合题意;故选:D .【点睛】本题考查折线统计图的分析,熟练掌握折线统计图的分析是解题关键.19.为了解某校八年级720名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是( )A.这80名学生是总体的一个样本B.80名学生是样本容量C.每名学生的体重是个体D.720名学生是总体【答案】C【解析】【分析】根据总体、样本、样本容量及个体的定义逐一判断即可得答案.【详解】A.80名学生的体重情况是样本,故该选项错误,B.样本容量是80,故该选项错误,C.每个学生的体重情况是个体,故该选项正确,D.720名学生的体重情况是总体,故该选项错误.故选:C.【点睛】本题考查总体、个体、样本、样本容量的定义,根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的、具有某种共同性质构成的整体,我们把所要考察的对象的全体或整体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;某一个样本中的个体的数量就是样本容量;熟练掌握相关定义是解题关键.20.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】【分析】根据2014年1月至2016年12月期间月接待游客量的数据,逐一分析给定四个结论的正误,可得答案.【详解】月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D 正确;故选A.【点睛】本题主要考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.。
初中数学知识归纳数据的收集和整理
初中数学知识归纳数据的收集和整理在学习数学过程中,数据的收集和整理是一个非常重要的环节。
通过归纳数据,我们可以更好地理解和分析数学问题,从而提高问题解决的能力。
接下来,本文将介绍初中数学知识中数据的收集和整理方法。
一、数据的收集方法1. 实际观察法实际观察法是指通过实地观察来收集数据。
比如在测量长度时,可以使用尺子或标尺;在测量重量时,可以使用天平等。
通过实际观察,我们可以直接得到一些定量的数据。
2. 问卷调查法问卷调查法是指通过发放问卷来收集数据。
在问卷中,我们可以设置各种问题,比如个人兴趣、学习情况等。
通过统计和分析问卷结果,我们可以得出一些关于人群群体的定量或定性的数据。
3. 文献资料法文献资料法是指通过查找和分析已经存在的相关文献来收集数据。
比如,在研究某个数学定理时,我们可以阅读相关的数学专著、学术论文等。
通过获取和整理这些文献资料,我们可以得到一些关于数学问题的重要数据。
二、数据的整理方法1. 列表整理法列表整理法是最常见的一种数据整理方法。
通过将收集到的数据按照一定规律进行分类,并列成表格或列表形式,以便于观察和分析。
比如,当我们收集到一些统计数据时,可以将数据按照不同的属性进行分类整理,然后列成表格,有利于我们更好地理解和比较数据。
2. 图形整理法图形整理法是指通过绘制图形的方式来整理数据。
比如,我们可以使用柱状图、折线图、饼图等来展示数据的分布和变化情况。
图形直观清晰,可以帮助我们更好地理解和分析数据。
3. 统计分析法统计分析法是指通过统计学方法对数据进行处理和分析。
比如,我们可以计算数据的均值、中位数、众数等,从而揭示数据的一些规律和特点。
统计分析能够帮助我们更全面地理解和利用数据。
三、数据的应用与拓展1. 数据的应用通过收集和整理数据,我们可以将其应用于解决实际的数学问题。
比如,在概率问题中,我们可以通过收集一些实际数据,进行统计和分析,从而得出一些关于概率的结论。
数据的应用能够帮助我们更好地理解和应用数学知识。
最新初中数学数据的收集与整理分类汇编附答案(2)
最新初中数学数据的收集与整理分类汇编附答案(2)一、选择题1.为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是()A.抽样调查,24 B.普查,24 C.抽样调查,26 D.普查,26【答案】A【解析】分析:因为普查是针对调查对象的全体,抽查是针对调查对象中抽取部分样本进行调查,求频数可根据频数=样本容量-已知频数之和.详解:因为为了解中学生获取信息的主要渠道, 先随机抽取50名中学生进行该问卷调查,所以属于抽样调查,因为样本容量是50,所以图中a=50-6-10-6-4=24,故选A.点睛:本题主要考查抽查的概念和频数的求解方法,解决本题的关键是要熟练掌握抽查的概念和频数的求解方法.2.下列判断正确的是()A.高铁站对旅客的行李的检查应采取抽样调查B.一组数据5、3、4、5、3的众数是5C.“掷一枚硬币正面朝上的概率是12”表示每抛掷硬币2次就必有1次反面朝上D.甲,乙组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据更稳定【答案】D【解析】A,高铁站对旅客的行李的检查应采用普查,故错误;B,数据5、3、4、5、3的众数是5和3,故错误;C,“掷一枚硬币正面朝上的概率是12”表示每掷硬币2次不一定有1次正面朝上,故错误;D,甲、乙两组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据稳定,故正确;故选D.3.甲校男生占全校总人数的50%,乙校女生占全校总人数的50%,则甲乙两校女生人数相比()A.甲校多于乙校B.甲校少于乙校C.甲乙两校一样多D.不能确定【答案】D【解析】【分析】根据总人数×女生所占百分比=女生人数进行计算比较即可.【详解】因为甲乙两校总人数不知道,无法计算出各校男女生人数,因此不能确定甲乙两校女生人数的多少,故选:D.【点睛】此题主要考查了频数与频率,关键是掌握总人数×女生所占百分比=女生人数.4.在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测100C),王红家只有刻度量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(0100C的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔不超过010s测量一次锅中油温,测量得到的数据如下表:王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是010CB.加热50s,油的温度是0110CC.估计这种食用油的沸点温度约是0230CD.每加热10s,油的温度升高030C【答案】D【解析】【分析】根据表格中的数据得:每加热10s,温度升高20℃,由此逐一进行分析即可得.【详解】根据表格中的数据得:没有加热时,温度为10℃,每加热10s,温度升高20℃,由此可得加热50s时,油的温度是110℃,故选项A、B的说法正确,不符合题意,选项D的说法不正确,符合题意,烧了110s时,油沸腾了,此时油温为10+20×110÷10=230℃,故C选项正确,不符合题意,故选D.【点睛】本题考查了用样本估计总体的知识,弄清关系“每加热10s,温度升高20℃”是解本题的关键.5.为估计某池塘中鱼的数量,先捕100只鱼,做上标记后再放回池塘,一段时间后,再从从中随机捕500只,其中有标记的鱼有5只,请估计这方池塘中鱼的数量约有()只A.8000 B.10000 C.11000 D.12000【答案】B【解析】【分析】首先由题意可知:重新捕获500条,其中带标记的有5只,可以知道,在样本中,有标记的占到5500;接下来再根据在总体中,有标记的共有100只,根据比例进行解答,即可得到题目的结论.【详解】由题意可知在样本中有标记的占到5 500,又∵先总共有100只鱼做上标记,∴100÷5500=10000只.故选B.【点睛】此题考查用样本估计总体,解题关键在于掌握运算法则.6.下列调查中,最适合采用普查方式的是()A.调查某品牌灯泡的使用寿命B.调查重庆市国庆节期间进出主城区的车流量C.调查重庆八中九年级一班学生的睡眠时间D.调查某批次烟花爆竹的燃放效果【答案】C【解析】【分析】根据普查和抽样调查的特点即可,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就会受到限制,这时就应该选择抽样调查.【详解】解:A、调查某品牌灯泡的使用寿命适合采用抽样调查方式,故本选项错误;B、调查重庆市国庆节期间进出主城区的车流量适合采用抽样调查方式,故本选项错误;C、调查重庆八中九年级一班学生的睡眠时间适合采用普查方式,故本选项正确;D、调查某批次烟花爆竹的燃放效果适合采用抽样调查方式,故本选项错误.故选:C.【点睛】此题考查了抽样调查和普查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果计较近似.7.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,因此,A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D.8.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.老师布置10道题作为课堂练习,学习委员将全班同学的答题情况绘制成右图,问答对8道题同学频率是( )A.0.8 B.0.4 C.0.25 D.0.08【答案】B【解析】【分析】根据条形统计图,求出答对题的总人数,再求出答对8道题的同学人数,然后利用答对8道题的同学人数÷答对题的总人数即可得出答案.【详解】解:答对题的总人数:4+20+18+8=50(人)答对8道题的人数: 20人∴答对8道题的同学的频率:20÷50=0.4故选:B【点睛】本题主要考查了条形统计图的应用,利用条形统计图得出答对题的总人数与答对8道题的人数是解题的关键.10.在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B 的得票为()A.300 B.90 C.75 D.85【答案】C 【解析】 【分析】先算出总票数,再算出B,D 的票数和,再求出B 的票数. 【详解】B 的得票为:()00000010535135303075÷⨯---=人 故选:C 【点睛】考核知识点:从条形图和扇形图获取信息.11.如图是北京2017年3月1日﹣7日的 2.5PM 浓度(单位:3/g m μ)和空气质量指数(简称AQI )的统计图,当AQI 不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的 2.5PM 浓度最高②这七天的 2.5PM 浓度的平均数是330/g m μ ③这七天中有5天的空气质量为“优” ④空气质量指数AQI 与 2.5PM 浓度有关 其中说法正确的是( ) A .②④ B .①③④C .①③D .①④【答案】D 【解析】 【分析】根据 2.5PM 浓度统计图可判断①;利用平均数公式可判断②;根据第二个图可判断③;综合分析一、二图,可判断④. 【详解】由第一个图的纵坐标,得①3月4日的 2.5PM 浓度最高,故①符合题意; ②373682831416634.85/7g m μ++++++=,故②不符合题意;③由第二个图得这七天中有4天的空气质量为“优”,故③不符合题意;PM浓度有关,故④符合题意;④空气质量指数AQI与 2.5故选:D.【点睛】本题考查折线统计图的分析,熟练掌握折线统计图的分析是解题关键.12.下列调查中,最适宜采用普查方式的是()A.对全国初中学生视力状况的调査B.对“十一国庆”期间全国居民旅游出行方式的调查C.旅客上飞机前的安全检查D.了解某种品牌手机电池的使用寿命【答案】C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A.对全国初中学生视力状况的调査,范围广,适合抽样调查,故A错误;B.对“十一国庆”期间全国居民旅游出行方式的调查范围广,适合抽样调查,故B错误;C.旅客上飞机前的安全检查,适合普查,故C正确;D.了解某种品牌手机电池的使用寿命,适合抽样调查,故D错误.故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有()A.24人B.10人C.14人D.29人【答案】A【解析】【分析】根据直方图给出的数据,把成绩在69.589.5~分范围内的学生人数相加即可得出答案. 【详解】解:成绩在69.589.5~分范围内的学生共有:101424(+=人), 故选A . 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.14.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是( )A .男女生5月份的平均成绩一样B .4月到6月,女生平均成绩一直在进步C .4月到5月,女生平均成绩的增长率约为8.5%D .5月到6月女生平均成绩比4月到5月的平均成绩增长快 【答案】C 【解析】 【分析】男女生5月份的平均成绩均为8.9,据此判断A 选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B 选项;根据增长率的概念,结合折线图的数据计算,从而判断C 选项;根据女生平均成绩两端折线的上升趋势可判断D 选项. 【详解】解:A .男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意; B .4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C .4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D .5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意; 故选:C . 【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.15.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A型的有200人,那么该校血型为AB型的人数为()A.100B.50C.20D.8【答案】B【解析】【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB 型血所对应的百分比即可求解.【详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.16.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.17.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【答案】C【解析】【分析】【详解】试题分析:7024001680100⨯=,故答案选C.考点:用样本估计总体的统计思想.18.下列调查中,最适合采用全面调查(普查)的是()A.某班学生对国家“一带一路”战略的知晓率B.鞋厂检测生产的鞋底能承受的弯曲次数C.检测某城市的空气质量D.了解电视栏目《朗读者》的收视率【答案】A【解析】【分析】按照全面调查(普查)和抽样调查的定义及适用范围,进行逐项分析即可得出答案.【详解】A.了解某班学生对国家”一带一路”战略的知晓率,人数不多,适合采用全面调查,故A选项正确;B.鞋厂检测生产的鞋底能承受的弯曲次数破坏性较大,适合抽样调查, 故B选项错误;C.检测某城市的空气质量做不了全面调查,故C选项错误;D.了解电视栏目《朗读者》的收视率人数众多,全面调查意义不大,适于抽样调查,故D 选项错误,故选:A.【点睛】本题考查全面调查和抽样调查.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,此时就应该选择抽样调查,而抽样调查得到的调查结果的准确性不如普查.19.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.20.从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【答案】B【解析】【分析】先计算出8条鱼的平均质量,然后乘以240即可.【详解】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选B.【点睛】本题考查了用样本平均数估计总体平均数的方法,这种方法在生活中常用.。
初中数学知识归纳数据的收集整理与分析
初中数学知识归纳数据的收集整理与分析数据的收集是数学研究和应用的基础,能够帮助我们更好地理解和分析问题。
在初中数学中,归纳数据的收集整理与分析是一项重要的技能,本文将介绍如何进行有效的数据收集、整理和分析。
一、数据的收集数据的收集是指通过调查、实验等方式获取相关信息的过程。
在数学中,我们可以通过问卷调查、观察、实验等方式收集数据。
在进行数据收集时,我们应该注意以下几点:1.明确目的:在开始数据收集之前,我们应该明确自己的研究目的,了解自己想要回答的问题是什么。
只有明确了目的,才能有针对性地进行数据收集。
2.选择样本:在收集数据时,我们往往无法对整个人群或对象进行调查或观察,而是选择一个样本进行研究。
选择样本时,我们应该注意样本的代表性,尽量使其能够反映整体情况。
3.选择合适的数据收集方法:数据收集方法有很多种,我们应根据实际情况选择合适的方法。
例如,如果我们想调查学生的学习时间,可以通过发放问卷进行调查;如果我们想研究植物的生长情况,可以通过观察和记录数据来收集。
二、数据的整理数据的整理是指将收集到的数据进行分类、排序和清理的过程。
在整理数据时,我们应该注意以下几点:1.分类归类:根据收集到的数据的特点,我们可以将其进行分类归类。
例如,如果我们调查学生的兴趣爱好,可以将其分为体育、音乐、艺术等不同的类别。
2.排序排列:根据需要,我们可以将数据进行排序排列,以便更好地进行分析。
例如,如果我们研究学生的考试成绩,可以按照分数从高到低进行排列。
3.清理数据:在整理数据的过程中,我们可能会发现一些异常或错误的数据,我们应该将其进行清理。
例如,如果我们发现某个学生的考试成绩明显异常,我们可以将其排除在外。
三、数据的分析数据的分析是指对整理到的数据进行进一步的研究和处理,以获得有用的信息和结果。
在进行数据分析时,我们应该注意以下几点:1.统计分析:统计分析是数据分析的一种重要方法,通过对数据的计数、比较、计算等操作,我们可以得到更详细的结论。
初中数学知识点整理数据的收集与整理
初中数学知识点整理数据的收集与整理初中数学知识点整理:数据的收集与整理在我们的日常生活和学习中,数据无处不在。
从考试成绩的统计到市场调查的分析,从天气预报的数据收集到人口普查的信息整理,数据都扮演着重要的角色。
而在初中数学中,数据的收集与整理是一个基础且关键的知识点,它不仅能够帮助我们更好地理解和处理各种信息,还为后续的数据分析和统计推断打下坚实的基础。
一、数据的收集数据收集是获取信息的第一步,其目的是为了得到能够反映研究对象特征和规律的数据。
在初中数学中,我们主要学习了两种常见的数据收集方法:普查和抽样调查。
普查是对全体研究对象进行调查的一种方法。
例如,要了解一个班级学生的视力情况,我们可以对班级里的每一位学生进行视力检查。
普查能够得到全面、准确的信息,但它往往需要耗费大量的时间、人力和物力。
抽样调查则是从全体研究对象中抽取一部分个体进行调查,并根据这部分个体的调查结果来估计全体研究对象的情况。
比如,要了解一个城市居民的平均收入水平,由于城市居民数量众多,不可能对每一个居民都进行调查,这时就可以抽取一定数量的居民作为样本进行调查。
抽样调查具有省时省力的优点,但抽样时需要保证样本的代表性和随机性,以确保调查结果的准确性。
在进行数据收集时,我们还需要确定收集数据的对象和内容。
比如,如果要研究学生的学习情况,可能需要收集学生的考试成绩、作业完成情况、课堂表现等方面的数据。
二、数据的整理收集到的数据往往是杂乱无章的,为了便于分析和使用,我们需要对数据进行整理。
常见的数据整理方法包括分类、排序和分组。
分类是将数据按照一定的标准分成不同的类别。
例如,将学生的考试成绩分为优秀、良好、及格和不及格等类别。
排序则是将数据按照一定的顺序排列,如从小到大或从大到小。
通过排序,我们可以更直观地看出数据的分布情况。
分组是将数据分成若干个组,并统计每组中数据的个数。
比如,将学生的身高分成若干个区间,然后统计每个区间内学生的人数。
初中数学数据的收集与整理知识点总复习有答案解析
初中数学数据的收集与整理知识点总复习有答案解析一、选择题1.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多【答案】C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.2.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体 B.总体 C.样本容量 D.总体的样本【答案】C【解析】【分析】根据总体:所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【详解】为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选:C.【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.3.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.4【答案】B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.2.故选B.4.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【答案】D【解析】【分析】①求出80元以上的人数,能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【详解】解:①超过月均花费80元的人数为:200+100+80+50+25+25+15+5=500,小明乘坐地铁的月均花费是75元,所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为①②③,故选:D.【点睛】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.5.某公司的生产量在七个月之内的增长变化情况如图所示,从图上看,下列结论不正确的是()A.2~6月生产量增长率逐月减少B.7月份生产量的增长率开始回升C.这七个月中,每月生产量不断上涨D.这七个月中,生产量有上涨有下跌【答案】D【解析】由折线统计图可知2~6月份生产量增长率逐渐减少,7月份生产量月增长率开始回升,这七个月中,生产量的增长率始终是正数,则每月的生产量不断上涨,所以A、B、C都正确,错误的只有D;故选D.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,注意在图形中纵轴表示的是增长率,只有增长率是负数,才表示生产量下跌.6.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是().A.50°B.60°C.90°D.80°【答案】C【解析】由题意得35351284+++++×360°=90°;故选C .点睛:本题主要考查条形统计图和扇形统计图,计算扇形统计图中某一部分所对圆心角的度数,需要先求出占总体的百分比,然后用360°乘以这个百分比就可得.7.观察市统计局公布的武汉市农村居民年人均收入每年比上年的增长率的统计图(如图所示),已知2004年农村居民年人均收入为8 000元,根据图中的信息判断:①农村居民年人均收入最多的是2005年;②2003年农村居民年人均收入为80001 6.8%+;③2006年农村居民年人均收入为8 000(1+13.6%)(1+12.1%);④从2002年到2006年武汉市农村居民的年人均收入在逐年增长.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】解:图示是增长率的折线图,由图可得从2002年到2006年武汉市农村居民的年人均收入在逐年增长;故农村居民年人均收入最多的是2006年;故①错误;2003年农村居民年人均收入为80001 5.4%;故②错误;余下的③④都正确;故选:B.8.为了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,被抽取的300个产品叫做()A.总体B.个体C.总体的一个样本D.调查方式【答案】C【解析】【分析】根据总体、个体、样本、样本容量的含义:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;被抽取的300个产品叫做总体的一个样本,据此解答即可.【详解】解:根据总体、个体、样本、样本容量的含义,可得被抽取的300个产品叫做总体的一个样本.故选C【点睛】此题主要考查了总体、个体、样本、样本容量,要熟练掌握,解答此题的关键是要明确:①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.9.中华汉字,源远流长.某校为了传承中华优秀传统文化,组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校随机抽取了其中200名学生的成绩进行统计分析,下列说法正确的是()A.这3000名学生的“汉字听写”大赛成绩的全体是总体B.每个学生是个体C.200名学生是总体的一个样本D.样本容量是3000【答案】A【解析】【分析】根据总体、个体、样本、样本容量的定义即可判断.【详解】A.这3000名学生的“汉字听写”大赛成绩的全体是总体,故A选项正确;B.每个学生的大赛的成绩是个体,故B选项错误;C.200名学生的大赛的成绩是总体的一个样本,故C选项错误;D.样本容量是200,故D选项错误.故答案选:A.【点睛】本题考查的知识点是总体、个体、样本、样本容量,解题的关键是熟练的掌握总体、个体、样本、样本容量.10.从江岸区某初中九年级1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:以下结论中正确的个数是()①参加调查的学生有200人;②估计校上网不超过7小时的学生人数是900;③C的人数是60人;④D所对的圆心角是72°.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】①A类学生人数除以A类学生的占比即可求解出参加调查的总人数;②九年级总人数乘以上网不超过7小时的学生人数的占比即可;③总人数减去A、B、D的人数即可求解C 的人数;④根据圆心角公式求解即可.【详解】解:①参加调查的学生有20÷36360=200(人),正确;②1200×208060200++=960(人),故错误;③C的人数是:200﹣20﹣80﹣40=60(人),正确;④40200×360°=72°,正确;正确的有3个,故选:C.【点睛】本题考查了概率统计的问题,掌握饼状图的性质、条形图的性质、圆心角公式是解题的关键.11.下列调查中,适宜采用普查方式的是()A.了解一批灯泡的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护环境的意识D.了解全国八年级学生的睡眠时间【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A. 了解一批灯泡的寿命适宜采用抽样调查方式,A错误;B. 检查一枚用于发射卫星的运载火箭的歌零部件适宜采用普查方式,B正确;C. 考察人们保护环境的意识适宜采用抽样调查方式,C错误;D. 了解全国八年级学生的睡眠时间适宜采用抽样调查方式,D错误;故选B.【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下统计图:建设前经济收入构成比例统计图建设后经济收入构成比例统计图则下面结论中不正确的是( )A.新农村建设后,养殖收入增加了一倍B.新农村建设后,种植收入减少C.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半D.新农村建设后,其他收入增加了一倍以上【答案】B【解析】【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.【详解】设建设前经济收入为a,建设后经济收入为2a.A、建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故A项正确;B、种植收入37%×2a-60%a=14%a>0,故建设后,种植收入增加,故B项错误;C、建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故C项正确;D、建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故D项正确,故选:B.【点睛】本题主要考查扇形统计图的应用,命题的真假的判断,考查发现问题解决问题的能力.13.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④ B.③→④→①→② C.①→②→④→③ D.②→④→③→①【答案】D【解析】根据频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】由题意可得:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类.故选D.【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.14.下列调查中,最适合采用抽样调查的是()A.调查我市居民对汽车废气污染环境的看法B.对全班同学的身高情况进行调查C.乘坐高铁对旅客的行李的检查D.对学校的卫生死角进行调查【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查我市居民对汽车废气污染环境的看法,适宜抽样调查;B、对全班同学的身高情况进行调查,调查范围小,适宜普查;C、乘坐高铁对旅客的行李的检查,调查范围小,适宜普查;D、对学校的卫生死角进行调查,必须普查,故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.15.嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率()A.11 B.12 C.0.11 D.0.12【解析】【分析】首先根据总数与表格的数据求出第⑤组的频数,由此进一步求出相应的频率即可.【详解】由题意得:第⑤组的频数为:()1003815221814911-++++++=,∴其频率为:111000.11÷=,故选:C.【点睛】本题主要考查了频率的计算,熟练掌握相关概念是解题关键.16.下列关于统计与概率的知识说法正确的是( )A .武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B .检测100只灯泡的质量情况适宜采用抽样调查C .了解北京市人均月收入的大致情况,适宜采用全面普查D .甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A ,根据调查事物的特点,可判断B ;根据调查事物的特点,可判断C ;根据方差的性质,可判断D .【详解】解:A 、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A 说法不正确;B 、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B 符合题意;C 、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C 说法错误;D 、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D 说法错误;故选B .【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.17.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是( )A .总体B .样本C .个体D .样本容量【答案】B【解析】【分析】根据总体、个体、样本、样本容量的定义逐个判断即可.【详解】解:抽出的500名考生的数学成绩是样本,故选B.【点睛】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.18.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是( )A .310B .16C .35D .12【答案】A【解析】【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数进行计算即可.【详解】∵连续抛了10次,共抛出了3次“6”向上∴出现“6”向上的频率是:310, 故选A.【点睛】本题考查频数与频率,频率=频数÷数据总数,理解并熟记公式是解题关键.19.如图是北京2017年3月1日﹣7日的 2.5PM 浓度(单位:3/g m )和空气质量指数(简称AQI )的统计图,当AQI 不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的 2.5PM 浓度最高②这七天的 2.5PM 浓度的平均数是330/g m μ③这七天中有5天的空气质量为“优”④空气质量指数AQI 与 2.5PM 浓度有关其中说法正确的是( )A .②④B .①③④C .①③D .①④ 【答案】D【解析】【分析】根据 2.5PM 浓度统计图可判断①;利用平均数公式可判断②;根据第二个图可判断③;综合分析一、二图,可判断④.【详解】由第一个图的纵坐标,得①3月4日的 2.5PM 浓度最高,故①符合题意; ②373682831416634.85/7g m μ++++++=,故②不符合题意; ③由第二个图得这七天中有4天的空气质量为“优”,故③不符合题意;④空气质量指数AQI 与 2.5PM 浓度有关,故④符合题意;故选:D .【点睛】本题考查折线统计图的分析,熟练掌握折线统计图的分析是解题关键.20.下列调查中,最适合采用全面调查(普查)方式的是( )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查【答案】D【解析】【分析】【详解】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.。
(易错题精选)初中数学数据的收集与整理技巧及练习题附解析
(易错题精选)初中数学数据的收集与整理技巧及练习题附解析一、选择题1.下列调查适合作普查的是()A.了解“嫦娥三号”卫星零部件的状况B.了解在校大学生的主要娱乐方式C.日光灯管厂要检测一批灯管的使用寿命D.了解某市居民对废电池的处理情况【答案】A【解析】【分析】【详解】解:A、了解“嫦娥三号”卫星零部件的状况调查需要精确,适合普查,故本选项正确;B、了解在校大学生的主要娱乐方式适合抽样调查,故本选项错误;C、日光灯管厂要检测一批灯管的使用寿命适合抽样调查,故本选项错误;D、了解某市居民对废电池的处理情况适合抽样调查,故本选项错误;故选A.【点睛】本题考查全面调查与抽样调查.2.某牧场为估计该地区山羊的只数,先捕捉20只山羊给它们分别做上标志,然后放回,待有标志的山羊完全混合于山羊群后,第二次捕捉80只山羊,发现其中2只有标志,从而估计该地区有山羊()A.400只B.600只C.800只D.1000只【答案】C【解析】【分析】捕捉80只山羊,发现其中2只有标志,说明有标志的占到280,而有标记的共有20只,根据所占比例列式计算即可.【详解】解:该地区有山羊有:20÷280=800(只);故选:C.【点睛】本题考查了用样本估计总体的思想,熟练掌握是解题的关键.3.下列调查中,适宜采用普查方式的是()A.调查银川市市民垃圾分类的情况B.对市场上的冰淇淋质量的调查C.对乘坐某次航班的乘客进行安全检查D.对全国中学生心理健康现状的调查【答案】C【解析】【分析】普查的定义:为了特定目的而对所有考察对象进行的全面调查叫普查.【详解】A.调查银川市市民垃圾分类的情况, 人数多,耗时长,应当采用抽样调查的方式,故本选项错误;B.对市场上的冰淇淋质量的调查,由于具有破坏性,应当使用抽样调查,故本选项错误;C.对乘坐某次航班的乘客进行安全检查, 因为调查的对象比较重要,应当采用全面调查,故本选项正确;D.对全国中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;故选:C【点睛】本题属于基础应用题,只需学生熟练掌握普查的定义,即可完成.4.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量 B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量 D.调查一批显像管的使用寿命【答案】D【解析】【分析】根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.5.为估计某池塘中鱼的数量,先捕100只鱼,做上标记后再放回池塘,一段时间后,再从从中随机捕500只,其中有标记的鱼有5只,请估计这方池塘中鱼的数量约有()只A.8000 B.10000 C.11000 D.12000【答案】B【解析】【分析】首先由题意可知:重新捕获500条,其中带标记的有5只,可以知道,在样本中,有标记的占到5500;接下来再根据在总体中,有标记的共有100只,根据比例进行解答,即可得到题目的结论.【详解】由题意可知在样本中有标记的占到5 500,又∵先总共有100只鱼做上标记,∴100÷5500=10000只.故选B.【点睛】此题考查用样本估计总体,解题关键在于掌握运算法则.6.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解深圳市居民日平均用水量,采用全面调查方式D.了解深圳市每天的平均用电量,采用抽样调查方式【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.据此作答.【详解】A.日光灯管厂要检測一批灯管的使用寿命,应用抽样调查,故A错误;B.旅客上飞机前的安检,采用普查方式,故B错误;C.了解深圳市居民日平均用水量,采用抽样调查方式,故C错误;D.了解深圳市每天的平均用电量,采用抽样调查方式,故D正确.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元【答案】A【解析】1x=++++=.所以4月份营业额约为3×30=90(万元).(3.4 2.9 3.0 3.1 2.6)358.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,因此,A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故本选项错误;B、旅客上飞机前的安检,意义重大,宜用全面调查,故本选项错误;C、学校招聘教师,对应聘人员面试必须全面调查,故本选项错误;D、了解全市中小学生每天的零花钱,工作量大,且普查的意义不大,不适合全面调查,故本选项正确.故选D.9.老师布置10道题作为课堂练习,学习委员将全班同学的答题情况绘制成右图,问答对8道题同学频率是( )A.0.8 B.0.4 C.0.25 D.0.08【答案】B【解析】【分析】根据条形统计图,求出答对题的总人数,再求出答对8道题的同学人数,然后利用答对8道题的同学人数÷答对题的总人数即可得出答案.【详解】解:答对题的总人数:4+20+18+8=50(人)答对8道题的人数: 20人∴答对8道题的同学的频率:20÷50=0.4故选:B本题主要考查了条形统计图的应用,利用条形统计图得出答对题的总人数与答对8道题的人数是解题的关键.10.观察市统计局公布的武汉市农村居民年人均收入每年比上年的增长率的统计图(如图所示),已知2004年农村居民年人均收入为8 000元,根据图中的信息判断:①农村居民年人均收入最多的是2005年;②2003年农村居民年人均收入为80001 6.8%+;③2006年农村居民年人均收入为8 000(1+13.6%)(1+12.1%);④从2002年到2006年武汉市农村居民的年人均收入在逐年增长.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】解:图示是增长率的折线图,由图可得从2002年到2006年武汉市农村居民的年人均收入在逐年增长;故农村居民年人均收入最多的是2006年;故①错误;2003年农村居民年人均收入为80001 5.4%+;故②错误;余下的③④都正确;故选:B.11.要反映某市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.12.七年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是( )A.45°B.60°C.72°D.120°【答案】C【解析】试题解析:由题意可得,第一小组对应的圆心角度数是:12122013510++++×360°=72°,故选C.13.在“校园读书月”活动中,小华调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.下面有四个推断:①这次调查获取的样本数据的众数是30元②这次调查获取的样本数据的中位数是40元③若该校共有学生1200人,根据样本数据,估计本学期计划购买课外书花费50元的学生有300人④花费不超过50元的同学共有18人.其中合理的是()A.①②B.②④C.①③D.①④【答案】C【解析】【分析】根据众数、中位数的定义及样本估计总体的思想解答可得.【详解】解:由条形图知30出现次数最多,即众数为30,故①正确;由于共有40个数据,则中位数为第20、21个数据的平均数,即中位数为50+502=50,故②错误;估计本学期计划购买课外书花费50元的学生有1200×1040=300(人),故③正确;花费不超过50元的同学共有6+12+10=28人,故④错误;故选:C.【点睛】本题主要考查众数、中位数及样本估计总体,熟练掌握众数、中位数的定义及样本估计总体的思想是解题的关键.14.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图【答案】C【解析】根据题意,得要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选C.15.下列调查适合做普查的是()A.了解全球人类男女比例情况B.了解一批灯泡的平均使用寿命C.调查20~25岁年轻人最崇拜的偶像D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查【答案】D【解析】A.了解全球人类男女比例情况,人数众多,范围较广,应采用抽样调查,故此选项错误;B.了解一批灯泡的平均使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C.调查20~25岁年轻人最崇拜的偶像,人数众多,范围较广,应采用抽样调查,故此选项错误;D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查,人数较少,意义重大,必须采用普查,故此选项正确;故选D.16.下列说法正确的是()A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.了解无锡市每天的流动人口数,采用抽查方式D.“掷一枚硬币,正面朝上”是必然事件【答案】C【解析】【分析】【详解】A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50,故错误;B.若一个游戏的中奖率是1%,则做100次这样的游戏有可能中奖,故错误;C.了解无锡市每天的流动人口数,采用抽查方式,正确;D.因为一枚硬币有正反两面,所以“掷一枚硬币,正面朝上”是随机事件,故错误;故选C.17.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组 B.9组 C.8组 D.7组【答案】A【解析】【分析】分析题意求组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,属于基础题,掌握组数的计算方法是解答此题的关键,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.18.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见.现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为()A.70 B.720 C.1680 D.2370【答案】C【解析】【分析】【详解】试题分析:7024001680100⨯=,故答案选C.考点:用样本估计总体的统计思想.19.为了了解某地区七年级学生每天体育锻炼的时间,要进行抽样调查.以下是几个主要步骤:①随机选择该地区一部分七年级学生完成调查问卷:②设计调查问卷:③用样本估计总体:④整理数据:⑤分析数据.正确的顺序是()A.②①③④B.②①④③⑤C.①②④⑤③D.②①④⑤③【答案】D【解析】【分析】直接利用抽样调查收集数据的过程与方法分析排序即可.【详解】了解某地区七年级学生每天体育锻炼的时间所要经历的步骤顺序为:②设计调查问卷、①随机选择该地区一部分七年级学生完成调查问卷、④整理数据、⑤分析数据、③用样本估计总体,则正确顺序为:②①④⑤③,故选:D.20.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.。
人教版初中数学数据的收集、整理与描述_教学课件2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
人教版初中数学数据的收集、整理与 描述_教 学课件 2 人教版初中数学数据的收集、整理与 描述_教 学课件 2
最新初中数学数据的收集与整理分类汇编含答案解析(2)
最新初中数学数据的收集与整理分类汇编含答案解析(2)一、选择题1.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】【分析】根据2014年1月至2016年12月期间月接待游客量的数据,逐一分析给定四个结论的正误,可得答案.【详解】月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D 正确;故选A.【点睛】本题主要考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.2.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】【分析】【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.3.下列调查中,最适合采用普查方式的是()A.调查某品牌灯泡的使用寿命B.调查重庆市国庆节期间进出主城区的车流量C.调查重庆八中九年级一班学生的睡眠时间D.调查某批次烟花爆竹的燃放效果【答案】C【解析】【分析】根据普查和抽样调查的特点即可,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就会受到限制,这时就应该选择抽样调查.【详解】解:A、调查某品牌灯泡的使用寿命适合采用抽样调查方式,故本选项错误;B、调查重庆市国庆节期间进出主城区的车流量适合采用抽样调查方式,故本选项错误;C、调查重庆八中九年级一班学生的睡眠时间适合采用普查方式,故本选项正确;D、调查某批次烟花爆竹的燃放效果适合采用抽样调查方式,故本选项错误.故选:C.【点睛】此题考查了抽样调查和普查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果计较近似.4.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的14,且数据有160个,则中间一组的频数为()A.0.2B.0.25C.32D.40【答案】C【解析】【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1,x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.【详解】解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1, x=14 y,解得x=0.2∴中间一组的频数=160×0.2=32.故选C.【点睛】本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系5.下列调查中,适宜采用全面调查方式的是()A.了解全国中学生的视力情况 B.调查某批次日光灯的使用情况C.调查市场上矿泉水的质量情况 D.调查机场乘坐飞机的旅客是否携带了违禁物品【答案】D【解析】解:A.人数太多,不适合全面调查,此选项错误;B.是具有破坏性的调查,因而不适用全面调查方式,此选项错误;C.市场上矿泉水数量太大,不适合全面调查,此选项错误;D.违禁物品必须全面调查,此选项正确.故选D.6.下列调查中,最适合采用普查方式的是()A.对太原市民知晓“中国梦”内涵情况的调查B.对全班同学1分钟仰卧起坐成绩的调查C.对2018年央视春节联欢晚会收视率的调查D.对2017年全国快递包裹产生的包装垃圾数量的调查【答案】B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.在“校园读书月”活动中,小华调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.下面有四个推断:①这次调查获取的样本数据的众数是30元②这次调查获取的样本数据的中位数是40元③若该校共有学生1200人,根据样本数据,估计本学期计划购买课外书花费50元的学生有300人④花费不超过50元的同学共有18人.其中合理的是()A.①②B.②④C.①③D.①④【答案】C【解析】【分析】根据众数、中位数的定义及样本估计总体的思想解答可得.【详解】解:由条形图知30出现次数最多,即众数为30,故①正确;由于共有40个数据,则中位数为第20、21个数据的平均数,即中位数为50+502=50,故②错误;估计本学期计划购买课外书花费50元的学生有1200×1040=300(人),故③正确;花费不超过50元的同学共有6+12+10=28人,故④错误;故选:C.【点睛】本题主要考查众数、中位数及样本估计总体,熟练掌握众数、中位数的定义及样本估计总体的思想是解题的关键.8.随机抽取某校八年级60名女生测试一分钟仰卧数,依据数据绘制成如图所示的数分布直方图,则这60名女生仰卧起坐达到优良(次数不低于41次)频率为().A.0.65 B.0.35 C.0.25 D.0.1【答案】B【解析】【分析】根据1分钟仰卧起坐的次数在40.5~60.5的频数除以总数60,得出结果即可.【详解】这60名女生仰卧起坐达到优良(次数不低于41次)的频率为1560.35 60+=.故选:B.【点睛】本题考查了频数分布直方图,学会观看频数分布直方图,频率等于频数除以总数.9.某牧场为估计该地区山羊的只数,先捕捉20只山羊给它们分别做上标志,然后放回,待有标志的山羊完全混合于山羊群后,第二次捕捉80只山羊,发现其中2只有标志,从而估计该地区有山羊()A.400只B.600只C.800只D.1000只【答案】C【解析】【分析】捕捉80只山羊,发现其中2只有标志,说明有标志的占到280,而有标记的共有20只,根据所占比例列式计算即可.【详解】解:该地区有山羊有:20÷280=800(只);故选:C.【点睛】本题考查了用样本估计总体的思想,熟练掌握是解题的关键.10.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【答案】D【解析】【分析】【详解】A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选D.11.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量【答案】B【解析】【分析】根据总体、个体、样本、样本容量的定义逐个判断即可.【详解】解:抽出的500名考生的数学成绩是样本,故选B.【点睛】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.12.12×1000=120,∴在总体1000个数据中,数据落在54.5~57.5之间的约有120个.故选A.【点睛】本题主要考查频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.13.从江岸区某初中九年级1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:以下结论中正确的个数是()①参加调查的学生有200人;②估计校上网不超过7小时的学生人数是900;③C的人数是60人;④D所对的圆心角是72°.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】①A类学生人数除以A类学生的占比即可求解出参加调查的总人数;②九年级总人数乘以上网不超过7小时的学生人数的占比即可;③总人数减去A、B、D的人数即可求解C 的人数;④根据圆心角公式求解即可.【详解】解:①参加调查的学生有20÷36360=200(人),正确;②1200×208060200++=960(人),故错误;③C的人数是:200﹣20﹣80﹣40=60(人),正确;④40200×360°=72°,正确;正确的有3个,故选:C.【点睛】本题考查了概率统计的问题,掌握饼状图的性质、条形图的性质、圆心角公式是解题的关键.14.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是()A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为8.5%D.5月到6月女生平均成绩比4月到5月的平均成绩增长快【答案】C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.15.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多【答案】C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.16.下列调查方式,你认为最合适的是()A.了解某地区饮用水矿物质含量的情况,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用全面调查方式【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解某地区饮用水矿物质含量的情况,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、调查某种品牌笔芯的使用寿命,抽样调查方式,故错误;D、调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用抽样调查方式,故错误;故选:A.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.17.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④ B.③→④→①→② C.①→②→④→③ D.②→④→③→①【答案】D【解析】【分析】根据频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】由题意可得:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类.故选D.【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.18.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大【答案】D【解析】【分析】【详解】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选D.【点睛】本题考查折线统计图.19.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.20.下列调查适合做普查的是()A.了解全球人类男女比例情况B.了解一批灯泡的平均使用寿命C.调查20~25岁年轻人最崇拜的偶像D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查【答案】D【解析】A.了解全球人类男女比例情况,人数众多,范围较广,应采用抽样调查,故此选项错误;B.了解一批灯泡的平均使用寿命,普查具有破坏性,应采用抽样调查,故此选项错误;C.调查20~25岁年轻人最崇拜的偶像,人数众多,范围较广,应采用抽样调查,故此选项错误;D.对患甲型H7N9的流感患者同一车厢的乘客进行医学检查,人数较少,意义重大,必须采用普查,故此选项正确;故选D.。
最新初中数学数据的收集与整理分类汇编(2)
最新初中数学数据的收集与整理分类汇编(2)一、选择题1.从江岸区某初中九年级1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:以下结论中正确的个数是()①参加调查的学生有200人;②估计校上网不超过7小时的学生人数是900;③C的人数是60人;④D所对的圆心角是72°.A.1个B.2个C.3个D.4个【答案】C【解析】【分析】①A类学生人数除以A类学生的占比即可求解出参加调查的总人数;②九年级总人数乘以上网不超过7小时的学生人数的占比即可;③总人数减去A、B、D的人数即可求解C 的人数;④根据圆心角公式求解即可.【详解】解:①参加调查的学生有20÷36360=200(人),正确;②1200×208060200++=960(人),故错误;③C的人数是:200﹣20﹣80﹣40=60(人),正确;④40200×360°=72°,正确;正确的有3个,故选:C.【点睛】本题考查了概率统计的问题,掌握饼状图的性质、条形图的性质、圆心角公式是解题的关键.2.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量 B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量 D.调查一批显像管的使用寿命【答案】D【解析】【分析】根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.3.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是500【答案】D【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.4.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.22【答案】B【解析】【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.5.下列调查中,适宜采用全面调查方式的是()A.了解全国中学生的视力情况 B.调查某批次日光灯的使用情况C.调查市场上矿泉水的质量情况 D.调查机场乘坐飞机的旅客是否携带了违禁物品【答案】D【解析】解:A.人数太多,不适合全面调查,此选项错误;B.是具有破坏性的调查,因而不适用全面调查方式,此选项错误;C.市场上矿泉水数量太大,不适合全面调查,此选项错误;D.违禁物品必须全面调查,此选项正确.故选D.6.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【答案】B【解析】试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.由条形统计图可得,人数最多的一组是4~6小时,频数为22,考点:频数(率)分布直方图7.为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是()A.抽样调查,24 B.普查,24 C.抽样调查,26 D.普查,26【答案】A【解析】分析:因为普查是针对调查对象的全体,抽查是针对调查对象中抽取部分样本进行调查,求频数可根据频数=样本容量-已知频数之和.详解:因为为了解中学生获取信息的主要渠道, 先随机抽取50名中学生进行该问卷调查,所以属于抽样调查,因为样本容量是50,所以图中a=50-6-10-6-4=24,故选A.点睛:本题主要考查抽查的概念和频数的求解方法,解决本题的关键是要熟练掌握抽查的概念和频数的求解方法.8.改革开放40年以来,城乡居民生活水平持续快速提升.居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出.下图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图:说明:在统计学中,同比..是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比..是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误..的是().A.2017年第二季度环比有所提高B.2017年第四季度环比有所下降C.2018年第一季度同比有所提高D.2017和2018年支出最高的都是第三季度【答案】C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】解:2017年第二季度支出948元,第一季度支出859元,所以2017年第二季度环比有所提高,故A正确;2017年第四季度支出997元,第三季度支出1113元,所以2017年第四季度环比有所下降,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所下降,故C错误;2018年第三季度支出1134元在2018年全年最高,2017年第三季度支出1113元在2017年全年最高,故D正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义,能够从统计图中获取数据,按要求对比数据是解题的关键.9.中学生骑电动车上学给交通安全带来隐患,为了解某中学2 500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是 ( )A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度【答案】D【解析】试题解析:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误;B.在调查的400个家长中,有360个家长持反对态度,该校只有2500×360400=2250个家长持反对态度,故本项错误;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误;D.该校约有90%的家长持反对态度,本项正确,故选D.10.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.要反映某市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.以上均可【答案】C【解析】【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.由此即可解答.【详解】根据统计图的特点,要反映某市某一周每天的最高气温的变化趋势,应采用折线统计图.故选C.【点睛】本题考查了折线统计图的特点,熟知折线统计图表示的是事物的变化情况是解决问题的关键.12.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成()A.10组 B.9组 C.8组 D.7组【答案】A【解析】【分析】分析题意求组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1,故可以分成10组.故选:A.【点睛】本题考查的是组数的计算,属于基础题,掌握组数的计算方法是解答此题的关键,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.13.下列调查方式,你认为最合适的是()A.了解某地区饮用水矿物质含量的情况,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用全面调查方式【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解某地区饮用水矿物质含量的情况,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、调查某种品牌笔芯的使用寿命,抽样调查方式,故错误;D、调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用抽样调查方式,故错误;故选:A.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.14.图1是2020年3月26日全国新冠疫情数据表,图2是3月28日海外各国疫情统计表,图3是中国和海外的病死率趋势对比图,根据这些图表,选出下列说法中错误的一项()A.图1显示每天现有确诊数的增加量=累计确诊增加量-治愈人数增加量-死亡人数增加量.B.图2显示美国累计确诊人数虽然约是德国的两倍,但每百万人口的确诊人数大约只有德国的一半.C.图2显示意大利当前的治愈率高于西班牙.D.图3显示大约从3月16日开始海外的病死率开始高于中国的病死率【答案】C【解析】【分析】A中,读图1,将数据代入公式验证;B中,直接读图2比较即可;C中,治愈率=治愈人数÷患病人数,需要计算分析;D中,直接读图3可得出【详解】A中,现有确诊增加量为:-297,累计确诊增加量为:114,治愈增加量为:405,死亡增加量为:6,代入A中的公式,成立,A正确;B中,美国累计确诊人数为:104661,百万人口确诊:318,德国累计确诊人数为:50871,百万人口确诊:625,美国累计确诊人数约是德国的2倍,正确.德国百万人口确诊数约是美国的2倍,正确.故B正确.;C中,意大利治愈人数为:10950,患病人数为:86498,治愈率为0.127;西班牙治愈人数为:9357,患病人数为:65719,治愈率为:0.142.故西班牙治愈率更高,C错误;D中,从图3知,从3月16日开始,海外的病死率曲线比中国高,即高出中国,D正确故选:C【点睛】本题考查图表数据的分析能力,在解题过程中需要注意,有些数据是需要计算分析的,如治愈率,切不可仅观察表面数据15.如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为( )A.180人B.200人C.210人D.220人【答案】B【解析】【分析】根据扇形统计图先求出5班所占的百分比,再用5班的人数除以5班所占的百分比即可得出答案.【详解】解:根据题意得:42÷(1-20%-18%-21%-20%)=200(人),答:该校八年级学生总数为200人;故选B.【点睛】本题考查扇形统计图,掌握频数、频率和总数之间的关系是解题关键.16.下列调查中,最适合采用抽样调查的是()A.调查我市居民对汽车废气污染环境的看法B.对全班同学的身高情况进行调查C.乘坐高铁对旅客的行李的检查D.对学校的卫生死角进行调查【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查我市居民对汽车废气污染环境的看法,适宜抽样调查;B、对全班同学的身高情况进行调查,调查范围小,适宜普查;C、乘坐高铁对旅客的行李的检查,调查范围小,适宜普查;D、对学校的卫生死角进行调查,必须普查,故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.17.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.18.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量【答案】B【解析】【分析】根据总体、个体、样本、样本容量的定义逐个判断即可.【详解】解:抽出的500名考生的数学成绩是样本,故选B.【点睛】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.19.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是()A.310B.16C.35D.12【答案】A【解析】【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数进行计算即可.【详解】∵连续抛了10次,共抛出了3次“6”向上∴出现“6”向上的频率是:310,故选A.【点睛】本题考查频数与频率,频率=频数÷数据总数,理解并熟记公式是解题关键.20.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】【分析】根据2014年1月至2016年12月期间月接待游客量的数据,逐一分析给定四个结论的正误,可得答案.【详解】月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D 正确;故选A.【点睛】本题主要考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.。
2020-2021初中数学数据的收集与整理分类汇编附答案解析
2020-2021初中数学数据的收集与整理分类汇编附答案解析一、选择题1.观察市统计局公布的武汉市农村居民年人均收入每年比上年的增长率的统计图(如图所示),已知2004年农村居民年人均收入为8 000元,根据图中的信息判断:①农村居民年人均收入最多的是2005年;②2003年农村居民年人均收入为80001 6.8%+;③2006年农村居民年人均收入为8 000(1+13.6%)(1+12.1%);④从2002年到2006年武汉市农村居民的年人均收入在逐年增长.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】【详解】解:图示是增长率的折线图,由图可得从2002年到2006年武汉市农村居民的年人均收入在逐年增长;故农村居民年人均收入最多的是2006年;故①错误;2003年农村居民年人均收入为80001 5.4%+;故②错误;余下的③④都正确;故选:B.2.为了估计湖中有多少条鱼.先从湖中捕捞n条鱼作记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后再捕捞,第二次捕鱼共m条,有k条带记号,则估计湖里有鱼()A.mkn条B.mnk条C.kmn条D.nkm条【答案】B 【解析】【分析】第二次捕鱼m共条,有k条带记号,说明有记号的占到km,已知共有n条鱼作记号,由此即可解答.【详解】由题意可知:n÷km=mnk.故选B.【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.3.某校文学社成员的年龄分布如下表:对于不同的正整数,下列关于年龄的统计量不会发生改变的是()A.平均数B.众数C.方差D.中位数【答案】D【解析】【分析】由频数分布表可知后两组的频数和为15,即可得知总人数,结合前两组的频数知第15、16个数据的平均数,可得答案.【详解】解:∵14岁和15岁的频数之和为15﹣a+a=15,∴频数之和为6+9+15=30,则这组数据的中位数为第15、16个数据的平均数,即13+142=13.5,∴对于不同的正整数a,中位数不会发生改变,故选:D.【点睛】此题考查频数(率)分布表,加权平均数,中位数,众数,方差,看懂图中数据是解题关键4.下列调查中,适宜用全面调查方式的是()A.飞机起飞前,对其零部件进行检查B.调查一个条河流的水污染情况C.调查一批新型节能灯的使用寿命D.调查湖南省2015~2016学年度七年级学生的身高情况【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、飞机起飞前,对其零部件进行检查,意义重大,用全面调查,故此选项正确;B、调查一个条河流的水污染情况,意义不大,应采用抽样调查,故此选项错误;C、调查一批新型节能灯的使用寿命,破坏性较强,应采用抽样调查,故此选项错误;D、调查湖南省2015~2016学年度七年级学生的身高情况,人数众多,应采用抽样调查,故此选项错误;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】【分析】【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.6.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解深圳市居民日平均用水量,采用全面调查方式D.了解深圳市每天的平均用电量,采用抽样调查方式【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.据此作答.【详解】A.日光灯管厂要检測一批灯管的使用寿命,应用抽样调查,故A错误;B.旅客上飞机前的安检,采用普查方式,故B错误;C.了解深圳市居民日平均用水量,采用抽样调查方式,故C错误;D.了解深圳市每天的平均用电量,采用抽样调查方式,故D正确.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.如图是张亮、李娜两位同学零花钱全学期各项支出的统计图.根据统计图,下列对两位同学购买书籍支出占全学期总支出的百分比作出的判断中,正确的是()A.张亮的百分比比李娜的百分比大B.张娜的百分比比张亮的百分比大C.张亮的百分比与李娜的百分比一样大D.无法确定【答案】A【解析】【分析】由扇形统计图可知,李娜购买书籍支出占全学期总支出的百分比是32%,再求出张亮购买书籍支出占全学期总支出的百分比,进行比较即可解答.【详解】由扇形统计图可知,李娜购买书籍支出占全学期总支出的百分比是32%,张亮购买书籍支出占全学期总支出的百分比是200÷(150+200+100+100)≈36%,所以张亮的百分比比李娜的百分比大.故选A.【点睛】本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.8.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是().A.50°B.60°C.90°D.80°【答案】C【解析】由题意得35351284+++++×360°=90°;故选C .点睛:本题主要考查条形统计图和扇形统计图,计算扇形统计图中某一部分所对圆心角的度数,需要先求出占总体的百分比,然后用360°乘以这个百分比就可得.9.某校为了了解八年级800名学生期中数学考试情况,从中抽取了100名学生的数学成绩进行了统计.下面5个判断中正确的有()①这种调查方式是抽样调查②800名学生是总体③每名学生的数学成绩是个体④100名学生是总体的一个样本⑤100名学生是样本容量A.①②B.①②④C.①③D.①③④⑤【答案】C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:①这种调查方式是抽样调查,正确;②800名学生是总体,错误:③每名学生的数学成绩是个体,正确;④100名学生是总体的一个样本,错误;⑤100名学生是样本容量,错误;故选:C.【点睛】本题考查了抽样调查中总体、个体、样本、样本容量的定义,熟练掌握是解题的关键.10.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.下列调查中,最适合采用全面调查(普查)的是()A.某班学生对国家“一带一路”战略的知晓率B.鞋厂检测生产的鞋底能承受的弯曲次数C.检测某城市的空气质量D.了解电视栏目《朗读者》的收视率【答案】A【解析】【分析】按照全面调查(普查)和抽样调查的定义及适用范围,进行逐项分析即可得出答案.【详解】A.了解某班学生对国家”一带一路”战略的知晓率,人数不多,适合采用全面调查,故A选项正确;B.鞋厂检测生产的鞋底能承受的弯曲次数破坏性较大,适合抽样调查, 故B选项错误;C.检测某城市的空气质量做不了全面调查,故C选项错误;D.了解电视栏目《朗读者》的收视率人数众多,全面调查意义不大,适于抽样调查,故D 选项错误,故选:A.【点睛】本题考查全面调查和抽样调查.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,此时就应该选择抽样调查,而抽样调查得到的调查结果的准确性不如普查.12.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的14,且数据有160个,则中间一组的频数为()A.0.2B.0.25C.32D.40【答案】C【解析】【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1,x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.【详解】解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1, x=14 y,解得x=0.2∴中间一组的频数=160×0.2=32.故选C.【点睛】本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系13.下列调查中,适宜抽样调查的是()A.了解某班学生的身高情况B.选出某校短跑最快的学生参加全市比赛C.了解全班同学每周体育锻炼的时间D.调查某批次汽车的抗撞击能力【答案】D【解析】【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据此特征进行判断.【详解】A. 了解某班学生的身高情况,范围较小,容易操作,适合普查,故该选项错误;B. 选出某校短跑最快的学生参加全市比赛,要求比较严格,适合普查,故该选项错误;C. 了解全班同学每周体育锻炼的时间,范围较小,容易操作,适合普查,故该选项错误;D. 调查某批次汽车的抗撞击能力,破坏性大,适合抽样调查,故本选项正确.故选:D【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度高的调查、事关重大的调查往往选用普查.14.下列调查适合作普查的是()A.了解“嫦娥三号”卫星零部件的状况B.了解在校大学生的主要娱乐方式C.日光灯管厂要检测一批灯管的使用寿命D.了解某市居民对废电池的处理情况【答案】A【解析】【分析】【详解】解:A、了解“嫦娥三号”卫星零部件的状况调查需要精确,适合普查,故本选项正确;B、了解在校大学生的主要娱乐方式适合抽样调查,故本选项错误;C、日光灯管厂要检测一批灯管的使用寿命适合抽样调查,故本选项错误;D、了解某市居民对废电池的处理情况适合抽样调查,故本选项错误;故选A.【点睛】本题考查全面调查与抽样调查.15.12×1000=120,∴在总体1000个数据中,数据落在54.5~57.5之间的约有120个.故选A.【点睛】本题主要考查频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.16.在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有()个.A.120 B.60 C.12 D.6【答案】A【解析】【分析】根据频率的意义,每组的频率=小组的频数:样本容量,据此即可解答.【详解】17.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.18.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是()A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为8.5%D.5月到6月女生平均成绩比4月到5月的平均成绩增长快【答案】C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.19.某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤: ①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是( )A .②→③→①→④B .③→④→①→②C .①→②→④→③D .②→④→③→①【答案】D【解析】【分析】根据频数分布表、扇形统计图制作的步骤,可以解答本题.【详解】由题意可得:正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类.故选D .【点睛】本题考查了扇形统计图、频数分布表,解答本题的关键是明确制作频数分布表和扇形统计图的制作步骤.20.从一堆苹果中任取了20个,称得它们的质量(单位:克),其数据分布表如下.则这堆苹果中,质量不小于120克的苹果数约占苹果总数的( )A .80%B .70%C .40%D .35%【答案】B【解析】【分析】在样品中,质量不小于120克的苹果20个中有14个,通过计算在样本中所占比例来估计总体.【详解】103114123103120++=+++++ =70%,所以在整体中质量不小于120克的苹果数约占苹果总数的70%.故选:B.【点睛】此题考查通过样本去估计总体,解题关键在于只需将样本“成比例地放大”为总体即可.。
最新初中数学数据的收集与整理分类汇编附解析
最新初中数学数据的收集与整理分类汇编附解析一、选择题1.某同学为了解三月份疫情期间某超市每天的客流量,随机抽查了其中五天的客流量,所抽查的这五天中每天的客流量是这个问题的()A.总体B.个体C.样本D.以上都不对【答案】B【解析】【分析】根据总体、个体、样本、样本容量的定义进行解答.【详解】解:∵抽查的是三月份疫情期间某超市每天的客流量,∴所抽查的这五天中每天的客流量是个体.故选B.【点睛】此题主要考察样本的定义,熟知样本是总体所抽取的一部分个体是解题的关键.2.中学生骑电动车上学给交通安全带来隐患,为了解某中学2 500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是 ( )A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度【答案】D【解析】试题解析:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误;B.在调查的400个家长中,有360个家长持反对态度,该校只有2500×360400=2250个家长持反对态度,故本项错误;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误;D.该校约有90%的家长持反对态度,本项正确,故选D.3.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【答案】D【解析】【分析】①求出80元以上的人数,能确定可以判断此结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60−120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,30%左右的人有300人,根据图形可得乘坐地铁的月均花费达到100元的人有300人可以享受折扣.【详解】解:①超过月均花费80元的人数为:200+100+80+50+25+25+15+5=500,小明乘坐地铁的月均花费是75元,所调查的1000人中至少有一半以上的人月均花费超过小明;故①正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为①②③,故选:D.【点睛】本题主要考查了频数分布直方图及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.4.某校文学社成员的年龄分布如下表:对于不同的正整数,下列关于年龄的统计量不会发生改变的是()A.平均数B.众数C.方差D.中位数【答案】D【解析】【分析】由频数分布表可知后两组的频数和为15,即可得知总人数,结合前两组的频数知第15、16个数据的平均数,可得答案.【详解】解:∵14岁和15岁的频数之和为15﹣a+a=15,∴频数之和为6+9+15=30,则这组数据的中位数为第15、16个数据的平均数,即13+142=13.5,∴对于不同的正整数a,中位数不会发生改变,故选:D.【点睛】此题考查频数(率)分布表,加权平均数,中位数,众数,方差,看懂图中数据是解题关键5.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解深圳市居民日平均用水量,采用全面调查方式D.了解深圳市每天的平均用电量,采用抽样调查方式【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.据此作答.【详解】A.日光灯管厂要检測一批灯管的使用寿命,应用抽样调查,故A错误;B.旅客上飞机前的安检,采用普查方式,故B错误;C.了解深圳市居民日平均用水量,采用抽样调查方式,故C错误;D.了解深圳市每天的平均用电量,采用抽样调查方式,故D正确.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的14,且数据有160个,则中间一组的频数为()A.0.2B.0.25C.32D.40【答案】C【解析】【分析】由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1,x=14y,解得x=0.2∴中间一组的频数=160×0.2=32.解:设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,则有x+y=1, x=14 y,解得x=0.2∴中间一组的频数=160×0.2=32.故选C.【点睛】本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系8.从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【答案】B【解析】【分析】先计算出8条鱼的平均质量,然后乘以240即可.【详解】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选B.【点睛】本题考查了用样本平均数估计总体平均数的方法,这种方法在生活中常用.9.某校为了了解八年级800名学生期中数学考试情况,从中抽取了100名学生的数学成绩进行了统计.下面5个判断中正确的有()①这种调查方式是抽样调查②800名学生是总体③每名学生的数学成绩是个体④100名学生是总体的一个样本⑤100名学生是样本容量A.①②B.①②④C.①③D.①③④⑤【答案】C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:①这种调查方式是抽样调查,正确;②800名学生是总体,错误:③每名学生的数学成绩是个体,正确;④100名学生是总体的一个样本,错误;⑤100名学生是样本容量,错误;故选:C.【点睛】本题考查了抽样调查中总体、个体、样本、样本容量的定义,熟练掌握是解题的关键.10.为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是()A.抽样调查,24 B.普查,24 C.抽样调查,26 D.普查,26【答案】A【解析】分析:因为普查是针对调查对象的全体,抽查是针对调查对象中抽取部分样本进行调查,求频数可根据频数=样本容量-已知频数之和.详解:因为为了解中学生获取信息的主要渠道, 先随机抽取50名中学生进行该问卷调查,所以属于抽样调查,因为样本容量是50,所以图中a=50-6-10-6-4=24,故选A.点睛:本题主要考查抽查的概念和频数的求解方法,解决本题的关键是要熟练掌握抽查的概念和频数的求解方法.11.下列调查中,适宜采用普查方式的是()A.了解一批灯泡的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护环境的意识D.了解全国八年级学生的睡眠时间【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.解:A. 了解一批灯泡的寿命适宜采用抽样调查方式,A 错误;B. 检查一枚用于发射卫星的运载火箭的歌零部件适宜采用普查方式,B 正确;C. 考察人们保护环境的意识适宜采用抽样调查方式,C 错误;D. 了解全国八年级学生的睡眠时间适宜采用抽样调查方式,D 错误; 故选B. 【点睛】本题考查抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有( )A .24人B .10人C .14人D .29人【答案】A 【解析】 【分析】根据直方图给出的数据,把成绩在69.589.5~分范围内的学生人数相加即可得出答案. 【详解】解:成绩在69.589.5~分范围内的学生共有:101424(+=人), 故选A . 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.下列说法正确的是 ( )A .为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B .若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C .了解无锡市每天的流动人口数,采用抽查方式D .“掷一枚硬币,正面朝上”是必然事件 【答案】C【分析】【详解】A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50,故错误;B.若一个游戏的中奖率是1%,则做100次这样的游戏有可能中奖,故错误;C.了解无锡市每天的流动人口数,采用抽查方式,正确;D.因为一枚硬币有正反两面,所以“掷一枚硬币,正面朝上”是随机事件,故错误;故选C.14.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A型的有200人,那么该校血型为AB型的人数为()A.100B.50C.20D.8【答案】B【解析】【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB 型血所对应的百分比即可求解.【详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.15.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下统计图:建设前经济收入构成比例统计图建设后经济收入构成比例统计图则下面结论中不正确的是( )A.新农村建设后,养殖收入增加了一倍B.新农村建设后,种植收入减少C.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半D.新农村建设后,其他收入增加了一倍以上【答案】B【解析】【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.【详解】设建设前经济收入为a,建设后经济收入为2a.A、建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故A项正确;B、种植收入37%×2a-60%a=14%a>0,故建设后,种植收入增加,故B项错误;C、建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故C项正确;D、建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故D项正确,故选:B.【点睛】本题主要考查扇形统计图的应用,命题的真假的判断,考查发现问题解决问题的能力.16.如图是小明所在学校八年级各班学生人数分布图,则该校八年级学生总数为( )A.180人B.200人C.210人D.220人【答案】B【解析】【分析】根据扇形统计图先求出5班所占的百分比,再用5班的人数除以5班所占的百分比即可得出答案. 【详解】 解:根据题意得:42÷(1-20%-18%-21%-20%)=200(人), 答:该校八年级学生总数为200人; 故选B . 【点睛】本题考查扇形统计图,掌握频数、频率和总数之间的关系是解题关键.17.嘉嘉将100个数据分成①~⑧组,如下表所示,则第⑤组的频率( ) 组号 ① ② ③ ④ ⑤⑥ ⑦ ⑧ 频数38152218149A .11B .12C .0.11D .0.12【答案】C 【解析】 【分析】首先根据总数与表格的数据求出第⑤组的频数,由此进一步求出相应的频率即可. 【详解】 由题意得:第⑤组的频数为:()1003815221814911-++++++=, ∴其频率为:111000.11÷=, 故选:C. 【点睛】本题主要考查了频率的计算,熟练掌握相关概念是解题关键.18.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理...的是()A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份B.2019年的月接待旅游量的平均值超过300万人次C.2017年至2019年,年接待旅游量逐年增加D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳【答案】D【解析】【分析】根据折线统计图的反映数据的增减变化情况,这个进行判断即可.【详解】解:A、2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,故选项不符合题意;B、从2019年3月起,每个月的人数均超过300万人,并且整体超出的还很多,故选项不符合题意;C、从折线统计图的整体变化情况可得2017年至2019年,年接待旅游量逐年增加,故选项不符合题意;D、从统计图中可以看出2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性要大,故选项符合题意;故选:D.【点睛】本题考查折线统计图的意义和反映数据的增减变化情况,正确的识图是正确判断的前提.19.为了解某校八年级720名学生的体重情况,从中抽查了80名学生的体重进行统计分析,以下说法正确的是( )A.这80名学生是总体的一个样本B.80名学生是样本容量C.每名学生的体重是个体D.720名学生是总体【答案】C【解析】【分析】根据总体、样本、样本容量及个体的定义逐一判断即可得答案.【详解】A.80名学生的体重情况是样本,故该选项错误,B.样本容量是80,故该选项错误,C.每个学生的体重情况是个体,故该选项正确,D.720名学生的体重情况是总体,故该选项错误.故选:C.【点睛】本题考查总体、个体、样本、样本容量的定义,根据一定的目的和要求所确定的研究事物的全体,它是由客观存在的、具有某种共同性质构成的整体,我们把所要考察的对象的全体或整体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;某一个样本中的个体的数量就是样本容量;熟练掌握相关定义是解题关键.20.从一堆苹果中任取了20个,称得它们的质量(单位:克),其数据分布表如下.则这堆苹果中,质量不小于120克的苹果数约占苹果总数的()A.80% B.70% C.40% D.35%【答案】B【解析】【分析】在样品中,质量不小于120克的苹果20个中有14个,通过计算在样本中所占比例来估计总体.【详解】解:103114= 123103120+++++++=70%,所以在整体中质量不小于120克的苹果数约占苹果总数的70%.故选B.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.。
最新初中数学数据的收集与整理分类汇编附答案(3)
最新初中数学数据的收集与整理分类汇编附答案(3)一、选择题1.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男73125304女82926328学段初中25364411高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【答案】C【解析】【分析】根据中位数与平均数的意义对每个选项逐一判断即可.【详解】解:①解这200名学生参加公益劳动时间的平均数:①(24.5×97+25.5×103)÷200=25.015,一定在24.5-25.5之间,正确;②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误【点睛】本题考查了中位数与平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量 B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量 D.调查一批显像管的使用寿命【答案】D【解析】【分析】根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.3.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】【分析】 【详解】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意; 故选D .4.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( ) A .90万元 B .450万元 C .3万元 D .15万元 【答案】A 【解析】1(3.4 2.9 3.0 3.1 2.6)35x =++++=.所以4月份营业额约为3×30=90(万元).5.从一堆苹果中任取了20个,称得它们的质量(单位:克),其数据分布表如下.则这堆苹果中,质量不小于120克的苹果数约占苹果总数的( ) A .80% B .70% C .40% D .35%【答案】B 【解析】 【分析】在样品中,质量不小于120克的苹果20个中有14个,通过计算在样本中所占比例来估计总体. 【详解】103114123103120++=+++++ =70%,所以在整体中质量不小于120克的苹果数约占苹果总数的70%. 故选:B . 【点睛】此题考查通过样本去估计总体,解题关键在于只需将样本“成比例地放大”为总体即可.6.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【答案】B【解析】【分析】先计算出8条鱼的平均质量,然后乘以240即可.【详解】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选B.【点睛】本题考查了用样本平均数估计总体平均数的方法,这种方法在生活中常用.8.从一堆苹果中任取了20个,称得它们的质量(单位:克),其数据分布表如下.则这堆苹果中,质量不小于120克的苹果数约占苹果总数的()A.80% B.70% C.40% D.35%【答案】B【解析】【分析】在样品中,质量不小于120克的苹果20个中有14个,通过计算在样本中所占比例来估计总体.【详解】解:103114= 123103120+++++++=70%,所以在整体中质量不小于120克的苹果数约占苹果总数的70%.故选B.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.9.某牧场为估计该地区山羊的只数,先捕捉20只山羊给它们分别做上标志,然后放回,待有标志的山羊完全混合于山羊群后,第二次捕捉80只山羊,发现其中2只有标志,从而估计该地区有山羊()A.400只B.600只C.800只D.1000只【答案】C【解析】【分析】捕捉80只山羊,发现其中2只有标志,说明有标志的占到280,而有标记的共有20只,根据所占比例列式计算即可.【详解】解:该地区有山羊有:20÷280=800(只);故选:C.【点睛】本题考查了用样本估计总体的思想,熟练掌握是解题的关键.10.12×1000=120,∴在总体1000个数据中,数据落在54.5~57.5之间的约有120个. 故选A . 【点睛】本题主要考查频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量. 同时考查统计的基本思想即用样本估计总体的应用.11.如图是北京2017年3月1日﹣7日的 2.5PM 浓度(单位:3/g m μ)和空气质量指数(简称AQI )的统计图,当AQI 不大于50时称空气质量为“优”,由统计图得到下列说法:①3月4日的 2.5PM 浓度最高②这七天的 2.5PM 浓度的平均数是330/g m μ ③这七天中有5天的空气质量为“优” ④空气质量指数AQI 与 2.5PM 浓度有关 其中说法正确的是( ) A .②④ B .①③④C .①③D .①④【答案】D 【解析】 【分析】根据 2.5PM 浓度统计图可判断①;利用平均数公式可判断②;根据第二个图可判断③;综合分析一、二图,可判断④. 【详解】由第一个图的纵坐标,得①3月4日的 2.5PM 浓度最高,故①符合题意; ②373682831416634.85/7g m μ++++++=,故②不符合题意;③由第二个图得这七天中有4天的空气质量为“优”,故③不符合题意; ④空气质量指数AQI 与 2.5PM 浓度有关,故④符合题意; 故选:D . 【点睛】本题考查折线统计图的分析,熟练掌握折线统计图的分析是解题关键.12.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A型的有200人,那么该校血型为AB型的人数为()A.100B.50C.20D.8【答案】B【解析】【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB 型血所对应的百分比即可求解.【详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.13.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下统计图:建设前经济收入构成比例统计图建设后经济收入构成比例统计图则下面结论中不正确的是( )A.新农村建设后,养殖收入增加了一倍B.新农村建设后,种植收入减少C.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半D.新农村建设后,其他收入增加了一倍以上【答案】B【解析】【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.【详解】设建设前经济收入为a,建设后经济收入为2a.A、建设后,养殖收入为30%×2a=60%a,建设前,养殖收入为30%a,故60%a÷30%a=2,故A项正确;B、种植收入37%×2a-60%a=14%a>0,故建设后,种植收入增加,故B项错误;C、建设后,养殖收入与第三产业收入总和为(30%+28%)×2a=58%×2a,经济收入为2a,故(58%×2a)÷2a=58%>50%,故C项正确;D、建设后,其他收入为5%×2a=10%a,建设前,其他收入为4%a,故10%a÷4%a=2.5>2,故D项正确,故选:B.【点睛】本题主要考查扇形统计图的应用,命题的真假的判断,考查发现问题解决问题的能力.14.下列调查方式,你认为最合适的是()A.了解某地区饮用水矿物质含量的情况,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用全面调查方式【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解某地区饮用水矿物质含量的情况,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C、调查某种品牌笔芯的使用寿命,抽样调查方式,故错误;D、调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用抽样调查方式,故错误;故选:A.【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.15.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.16.如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是( )A .2010年至2014年间工业生产总值逐年增加B .2014年的工业生产总值比前一年增加了40亿元C .2012年与2013年每一年与前一年比,其增长额相同D .从2011年至2014年,每一年与前一年比,2014年的增长率最大【答案】D【解析】【分析】【详解】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D符合题意;故选D.【点睛】本题考查折线统计图.17.为了了解某地区七年级学生每天体育锻炼的时间,要进行抽样调查.以下是几个主要步骤:①随机选择该地区一部分七年级学生完成调查问卷:②设计调查问卷:③用样本估计总体:④整理数据:⑤分析数据.正确的顺序是()A.②①③④B.②①④③⑤C.①②④⑤③D.②①④⑤③【答案】D【解析】【分析】直接利用抽样调查收集数据的过程与方法分析排序即可.【详解】了解某地区七年级学生每天体育锻炼的时间所要经历的步骤顺序为:②设计调查问卷、①随机选择该地区一部分七年级学生完成调查问卷、④整理数据、⑤分析数据、③用样本估计总体,则正确顺序为:②①④⑤③,故选:D.18.下列说法中正确的是().A.“打开电视,正在播放《新闻联播》”是必然事件B.一组数据的波动越大,方差越小C.数据1,1,2,2,3的众数是3D.想了解某种饮料中含色素的情况,宜采用抽样调查【答案】D【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、“打开电视,正在播放《新闻联播》”是随机事件,故本选项错误;B、一组数据的波动越大,方差越大,故本选项错误;C、数据1,1,2,2,3的众数是1和2,故本选项错误;D、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确.故选D.考点:全面调查与抽样调查;众数;方差;随机事件.19.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是()A.310B.16C.35D.12【答案】A【解析】【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数进行计算即可.【详解】∵连续抛了10次,共抛出了3次“6”向上∴出现“6”向上的频率是:310,故选A.【点睛】本题考查频数与频率,频率=频数÷数据总数,理解并熟记公式是解题关键.20.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理的是()A.2017年至2019年,年接待旅游量逐年增加B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份C.2019年的月接待旅游量的平均值超过300万人次D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳【答案】D【解析】【分析】根据折线图,逐项判断即可得答案.【详解】由折线图可知:A.2017年至2019年,年接待旅游量逐年增加,正确,故该选项不符合题意,B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,正确,故该选项不符合题意,C.2019年的月接待旅游量的平均值超过300万人次,正确,故该选项不符合题意,D.2017年至2019年,各年1月至6月的折线相对于7月至12月比较平缓,即波动性更小,变化比较平稳,故该选项错误,符合题意,故选:D.【点睛】本题考查频率分布折线图,正确理解图中信息是解题关键.。
2020-2021初中数学数据的收集与整理分类汇编附解析
2020-2021初中数学数据的收集与整理分类汇编附解析一、选择题1.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有( )A .24人B .10人C .14人D .29人【答案】A 【解析】 【分析】根据直方图给出的数据,把成绩在69.589.5~分范围内的学生人数相加即可得出答案. 【详解】解:成绩在69.589.5~分范围内的学生共有:101424(+=人), 故选A . 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )A .0.1B .0.2C .0.3D .0.4【答案】B 【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.2.故选B.3.某公司生产的一种产品按照质量由高到低分为A,B,C,D四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息,下列推断合理的是()A.改进生产工艺后,A级产品的数量没有变化B.改进生产工艺后,B级产品的数量增加了不到一倍C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,D级产品的数量减少【答案】C【解析】【分析】设原生产总量为1,则改进后生产总量为2,所以原A、B、C、D等级的生产量为0.3、0.37、0.28、0.05,改进后四个等级的生产量为0.6、1.2、0.12、0.08,据此逐一判断即可得.【详解】设原生产总量为1,则改进后生产总量为2,所以原A、B、C、D等级的生产量为0.3、0.37、0.28、0.05,改进后四个等级的生产量为0.6、1.2、0.12、0.08,A.改进生产工艺后,A级产品的数量增加,此选项错误;B.改进生产工艺后,B级产品的数量增加超过三倍,此选项错误;C.改进生产工艺后,C级产品的数量减少,此选项正确;D.改进生产工艺后,D级产品的数量增加,此选项错误;故选:C.【点睛】本题考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.4.某校文学社成员的年龄分布如下表:年龄岁12131415频数69a15﹣a对于不同的正整数,下列关于年龄的统计量不会发生改变的是()A.平均数B.众数C.方差D.中位数【答案】D【解析】【分析】由频数分布表可知后两组的频数和为15,即可得知总人数,结合前两组的频数知第15、16个数据的平均数,可得答案.【详解】解:∵14岁和15岁的频数之和为15﹣a+a=15,∴频数之和为6+9+15=30,则这组数据的中位数为第15、16个数据的平均数,即13+142=13.5,∴对于不同的正整数a,中位数不会发生改变,故选:D.【点睛】此题考查频数(率)分布表,加权平均数,中位数,众数,方差,看懂图中数据是解题关键5.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是().A.50°B.60°C.90°D.80°【答案】C【解析】由题意得35351284+++++×360°=90°;故选C .点睛:本题主要考查条形统计图和扇形统计图,计算扇形统计图中某一部分所对圆心角的度数,需要先求出占总体的百分比,然后用360°乘以这个百分比就可得.6.以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高【答案】C【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.【详解】解: A.调查某班学生每周课前预习的时间,班级容量小,且要求精准度高,用全面调查B.调查某中学在职教师的身体健康状况,人数不多,容易调查,适合普查;C.调查全国中小学生课外阅读情况,中学生的人数比较多,适合采取抽样调查;D.调查某篮球队员的身高,此种情况数量不是很大,故必须普查;故选C7.为了解2019年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是500【答案】D【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】A. 2019年泰兴市八年级学生的视力情况是总体,故A错误;B. 每一名八年级学生的视力情况是个体,故B错误;C. 从中随机调查了500名学生的视力情况是一个样本,故C错误;D. 样本容量是500,故D正确;故选:D.【点睛】此题考查总体、个体、样本、样本容量,解题关键在于掌握它们的定义及区别.8.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是( ) A .①③ B .②④C .①②D .③④【答案】B 【解析】 【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断. 【详解】①了解某批种子的发芽率适合采取抽样 调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查; ③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查; 故选:B . 【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.某校在开展“节约每一滴水” 的活动中,从九年级300名学生家庭中任选20名学生家庭某个月的节水量x (单位:t ),汇总整理成如下表:估计这300名学生家庭中这个月节水量少于2.5t 的户数为( ) A .180户 B .120户C .60户D .80户【答案】B 【解析】 【分析】从图表中可得出20名学生家庭中这个月节水量少于2.5t 的人数是8人,所占比例为8100%40%20⨯=,再用总人数乘以所求比例即可得出答案. 【详解】解:估计这300名学生家庭中这个月节水量少于2.5t 的户数为: 62300100%30040%12020+⨯⨯=⨯=(户) 故选:B . 【点睛】本题考查的知识点是用样本估计总数,比较简单,易于掌握.10.我国正在逐步进入人口老龄化社会,某市老龄化社会研究机构经过抽样调查,发现当地老年人的日常休闲方式主要有A,B,C,D,E五种类型,抽样调查的统计结果如下表,则下列说法不正确的是()A.当地老年人选择A型休闲方式的人数最少B.当地老年人选择B型休闲方式的频率是7 30C.估计当地6万名老年人中约有1.8万人选择C型休闲方式D.这次抽样调查的样本容量是1500【答案】C【解析】【分析】首先直接通过表格数据即可得出选择A型休闲方式的人数最少,然后利用频率定义、样本估计总体与样本容量的概念逐一判断即可.【详解】A:选择A型休闲方式的人数为50,与其他方式相比最少,故选项正确;B:选择B型休闲方式的频率是3507150030=,故选项正确;C:当地选择C型休闲方式的老人大约人数为:6万4001.61500⨯=万,故选项错误;D:样本容量为503504002005001500+++=,故选项正确;故选:C.【点睛】本题主要考查了频率定义、样本估计总体与样本容量的概念,熟练掌握相关概念是解题关键.11.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是()A.310B.16C.35D.12【答案】A【解析】【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数进行计算即可.【详解】∵连续抛了10次,共抛出了3次“6”向上∴出现“6”向上的频率是:310,故选A.【点睛】本题考查频数与频率,频率=频数÷数据总数,理解并熟记公式是解题关键.12.12×1000=120,∴在总体1000个数据中,数据落在54.5~57.5之间的约有120个.故选A.【点睛】本题主要考查频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.13.下列说法正确的是()A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.了解无锡市每天的流动人口数,采用抽查方式D.“掷一枚硬币,正面朝上”是必然事件【答案】C【解析】【分析】【详解】A.为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50,故错误;B.若一个游戏的中奖率是1%,则做100次这样的游戏有可能中奖,故错误;C.了解无锡市每天的流动人口数,采用抽查方式,正确;D.因为一枚硬币有正反两面,所以“掷一枚硬币,正面朝上”是随机事件,故错误;故选C.14.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是()A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为8.5%D.5月到6月女生平均成绩比4月到5月的平均成绩增长快【答案】C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.15.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多【答案】C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.16.下列调查方式,你认为最合适的是()A.了解某地区饮用水矿物质含量的情况,采用抽样调查方式B.旅客上飞机前的安检,采用抽样调查方式C.调查某种品牌笔芯的使用寿命,采用全面调查方式D.调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用全面调查方式【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A. 了解某地区饮用水矿物质含量的情况,采用抽样调查方式,正确;B、旅客上飞机前的安检,采用全面调查方式,故错误;C 、调查某种品牌笔芯的使用寿命,抽样调查方式,故错误;D 、调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用抽样调查方式,故错误; 故选:A . 【点睛】此题考查全面调查与抽样调查,解题关键在于掌握调查方法.17.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.18.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理...的是( )A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份B.2019年的月接待旅游量的平均值超过300万人次C.2017年至2019年,年接待旅游量逐年增加D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳【答案】D【解析】【分析】根据折线统计图的反映数据的增减变化情况,这个进行判断即可.【详解】解:A、2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,故选项不符合题意;B、从2019年3月起,每个月的人数均超过300万人,并且整体超出的还很多,故选项不符合题意;C、从折线统计图的整体变化情况可得2017年至2019年,年接待旅游量逐年增加,故选项不符合题意;D、从统计图中可以看出2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性要大,故选项符合题意;故选:D.【点睛】本题考查折线统计图的意义和反映数据的增减变化情况,正确的识图是正确判断的前提.19.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.20.为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是()A.抽样调查,24 B.普查,24 C.抽样调查,26 D.普查,26【答案】A【解析】分析:因为普查是针对调查对象的全体,抽查是针对调查对象中抽取部分样本进行调查,求频数可根据频数=样本容量-已知频数之和.详解:因为为了解中学生获取信息的主要渠道, 先随机抽取50名中学生进行该问卷调查,所以属于抽样调查,因为样本容量是50,所以图中a=50-6-10-6-4=24,故选A.点睛:本题主要考查抽查的概念和频数的求解方法,解决本题的关键是要熟练掌握抽查的概念和频数的求解方法.。
七年级数学专题06 数据的收集与整理(解析版)
专题6 数据的收集与整理考点解析考点1.调查收集数据的过程与方法(1)在统计调查中,我们利用调查问卷收集数据,利用表格整理数据,利用统计图描述数据,通过分析表和图来了解情况.(2)统计图通常有条形统计图,扇形统计图,折线统计图.(3)设计调查问卷分以下三步:①确定调查目的;②选择调查对象;③设计调查问题.(4)统计调查的一般过程:①问卷调查法﹣﹣﹣﹣﹣收集数据;②列统计表﹣﹣﹣﹣﹣整理数据;③画统计图﹣﹣﹣﹣﹣描述数据.考点2.全面调查与抽样调查1、统计调查的方法有全面调查(即普查)和抽样调查.2、全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.3、如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查.如:个体调查者无法对全国中小学生身高情况进行普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.如:某一天,全国人均讲话的次数,便无法进行普查.考点3.总体、个体、样本、样本容量(1)定义①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.(2)关于样本容量样本容量只是个数字,没有单位.考点4.抽样调查的可靠性(1)抽样调查是实际中经常采用的调查方式.(2)如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.(3)抽样调查除了具有花费少,省时的特点外,还适用一些不宜使用全面调查的情况(如具有破坏性的调查).(4)分层抽样获取的样本与直接进行简单的随机抽样相比一般能更好地反映总体.其特点是:通过划类分层,增大了各类型中单位间的共同性,容易抽出具有代表性的调查样本,该方法适用于总体情况复杂,各单位之间差异较大,单位较多的情况.考点5.用样本估计总体用样本估计总体是统计的基本思想.1、用样本的频率分布估计总体分布:从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.考点6.频数与频率(1)频数是指每个对象出现的次数.(2)频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.考点7.频数(率)分布表1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.2、列频率分布表的步骤:(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)将数据分组.(4)列频率分布表.考点8.频数(率)分布直方图画频率分布直方图的步骤:(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×频率=频率.②各组频率的和等于1,即所有长方形面积的和等于1.③频率分布表在数量表示上比较确组距切,但不够直观、形象,不利于分析数据分布的总体态势.④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.考点9.频数(率)分布折线图一般利用直方图画频数分布折线图,在频数分布直方图中,把每个小长方形上面的一条边的中点顺次连接起来,得到频数折线图.注意:折线图要与横轴相交,方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到假想组中点,它主要显示数据的变化趋势.考点10.统计表统计表可以将大量数据的分类结果清晰,一目了然地表达出来.统计调查所得的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.统计表是表现数字资料整理结果的最常用的一种表格.统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.考点11.扇形统计图(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.(3)制作扇形图的步骤①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°.②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.考点12.条形统计图(1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.(2)特点:从条形图可以很容易看出数据的大小,便于比较.(3)制作条形图的一般步骤:①根据图纸的大小,画出两条互相垂直的射线.②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔.③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.④按照数据大小,画出长短不同的直条,并注明数量.考点13.折线统计图(1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.(2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.(3)绘制折线图的步骤①根据统计资料整理数据.②先画纵轴,后画横轴,纵、横都要有单位,按纸面的大小来确定用一定单位表示一定的数量.③根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来.考点14.统计图的选择统计图的选择:即根据常用的几种统计图反映数据的不同特征结合实际来选择.(1)扇形统计图的特点:①用扇形的面积表示部分在总体中所占的百分比.②易于显示每组数据相对于总数的大小.(2)条形统计图的特点:①条形统计图能清楚地表示出每个项目中的具体数目.②易于比较数据之间的差别.(3)折线统计图的特点:①能清楚地反映事物的变化情况.②显示数据变化趋势.根据具体问题选择合适的统计图,可以使数据变得清晰直观.不恰当的图不仅难以达到期望的效果,有时还会给人们以误导.因此要想准确地反映数据的不同特征,就要选择合适的统计图.实战演练一、精心选一选1.(淄博)下面是四位同学对他们学习小组将要共同进行的一次统计活动分别设计的活动程序,其中正确的是()A.B.C.D.【点拨】根据统计调查的步骤即可设计成C的方案.数据处理应该是属于整理数据,数据表示应该属于描述数据.【解答】解:统计调查一般分为以下几步:收集数据、整理数据、描述数据、分析数据故选:C.【点睛】掌握统计调查的一般步骤.2.(2019•辽阳)下列调查适合采用抽样调查的是()A.某公司招聘人员,对应聘人员进行面试B.调查一批节能灯泡的使用寿命C.为保证火箭的成功发射,对其零部件进行检查D.对乘坐某次航班的乘客进行安全检查【点拨】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、某公司招聘人员,对应聘人员进行面试适合采用全面调查;B、调查一批节能灯泡的使用寿命适合采用抽样调查;C、为保证火箭的成功发射,对其零部件进行检查适合采用全面调查;D、对乘坐某次航班的乘客进行安全检查适合采用全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.(2018•重庆)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【点拨】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:为调查某大型企业员工对企业的满意程度,根据样本要随机,不能抽查特定人群,所以选取要最具代表性的样本.A、选取企业男员工为样本进行抽查,对抽取的对象划定了性别范围,不具有代表性,故A错误;B、选取企业年满50岁及以上的员工为样本进行抽查,对抽取的对象划定了年龄范围,不具有代表性,故B错误;C、用企业人员名册,随机抽取三分之一的员工进行调查具有代表性,故C正确;D、选取企业新进员工为样本进行抽查,对抽取的对象进行限制,只抽查新员工,未抽查老员工,不具有代表性,故D错误;故选:C.【点睛】此题主要考查了抽样调查的可靠性,注意抽样必须具有代表性以及随机性.4.(丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是( )组别A 型B 型 AB 型 O 型 频率0.4 0.35 0.1 0.15 A .16人 B .14人 C .4人 D .6人【点拨】根据频数和频率的定义求解即可.【解答】解:本班A 型血的人数为:40×0.4=16.故选:A .【点睛】本题考查了频数和频率的知识,属于基础题,掌握频数和频率的概念是解答本题的关键.5.(苏州)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x /min0<x ≤5 5<x ≤10 10<x ≤15 15<x ≤20 频数(通话次数) 20 16 9 5则通话时间不超过15min 的频率为( )A .0.1B .0.4C .0.5D .0.9【点拨】用不超过15分钟的通话时间除以所有的通话时间即可求得通话时间不超过15分钟的频率.【解答】解:∵不超过15分钟的通话次数为20+16+9=45次,通话总次数为20+16+9+5=50次, ∴通话时间不超过15min 的频率为4550=0.9,故选:D .【点睛】本题考查了频数分布表的知识,解题的关键是了解频率=频数÷样本容量,难度不大.6.(2018•江西)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )A .最喜欢篮球的人数最多B .最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10%【点拨】根据频数分布直方图中的数据逐一判断可得.【解答】解:A、最喜欢足球的人数最多,此选项错误;B、最喜欢羽毛球的人数是最喜欢田径人数的两倍,此选项错误;C、全班学生总人数为12+20+8+4+6=50名,此选项正确;D、最喜欢田径的人数占总人数的450×100%=8%,此选项错误故选:C.【点睛】本题主要考查频数分布直方图,解题的关键是根据频数分布直方图得出各分组的具体数据.7.(2019•遂宁)某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()A.100B.被抽取的100名学生家长C.被抽取的100名学生家长的意见D.全校学生家长的意见【点拨】总体是指考察的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考察的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是:被抽取的100名学生家长的意见.故选:C.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考察的对象.总体、个体与样本的考察对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.(2019•阜新)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为()A.12B.10C.8D.6【点拨】根据题意,可以计算出袋子中红球的个数,本题得以解决.【解答】解:由题意可得,袋子中红球的个数约为:20×30100=6,故选:D.【点睛】本题考查用样本估计总体,解答本题的关键是明确题意,求出相应的红球的个数.9.(2017•株洲)株洲市展览馆某天四个时间段进出馆人数统计如下,则馆内人数变化最大时间段为()9:00﹣10:0010:00﹣11:0014:00﹣15:0015:00﹣16:00进馆人数50245532出馆人数30652845A.9:00﹣10:00B.10:00﹣11:00C.14:00﹣15:00D.15:00﹣16:00【点拨】直接利用统计表中人数的变化范围得出馆内人数变化最大时间段.【解答】解:由统计表可得:10:00﹣11:00,进馆24人,出馆65人,差值最大,故选:B.【点睛】此题主要考查了统计表,正确利用表格获取正确信息是解题关键.10.(2019•南充)在2019年南充市初中毕业升学体育与健康考试中,某校九年级(1)班体育委员对本班50名同学参加球类自选项目做了统计,制作出扇形统计图(如图),则该班选考乒乓球人数比羽毛球人数多()A.5人B.10人C.15人D.20人【点拨】先根据扇形统计图中的数据,求出选考乒乓球人数和羽毛球人数,即可得出结论.【解答】解:∵选考乒乓球人数为50×40%=20人,选考羽毛球人数为50×72°360°=10人,∴选考乒乓球人数比羽毛球人数多20﹣10=10人,故选:B.【点睛】此题主要考查了扇形统计图的应用,求出选考乒乓球人数和羽毛球人数是解本题的关键.二、细心填一填11.(2019•贺州)调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适.(填“全面调查”或“抽样调查”)【点拨】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:调查我市一批药品的质量是否符合国家标准.采用抽样调查方式更合适,故答案为:抽样调查.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.(2019•温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有90人.【点拨】根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.13.(郴州)小亮同学为了估计全县九年级学生的人数,他对自己所在乡的人口和全乡九年级学生人数做了调查:全乡人口约2万,九年级学生人数为300.全县人口约35万,由此他推断全县九年级人数约为5250,但县教育局提供的全县九年级学生人数为3000,与估计数据有很大偏差,根据所学的统计知识,你认为产生偏差的原因是样本选取不合理.【点拨】总体与样本之间的差别较大,因而样本不能代表总体,产生偏差的原因是:样本选取不合理.【解答】解:产生偏差的原因是:样本选取不合理.【点睛】本题主要考查了总体与样本的关系,在选取样本是要注意代表性.14.(2018•贵阳)某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为10人.【点拨】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.【解答】解:∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10.故答案为:10.【点睛】此题主要考查了频数与频率,利用频率求法得出是解题关键.15.(2018•常德)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x<5.2605.2≤x<5.510【点拨】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:7020+40+70+60+10=0.35.故答案为:0.35.【点睛】此题主要考查了频率求法,正确把握频率的定义是解题关键.16.(湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b=12.【点拨】根据折线图即可求得a、b的值,从而求得代数式的值.【解答】解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.【点睛】本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.17.(自贡)为配合全国人口普查,平安村村委会对该村所有的360户家庭人数做了个统计,结果如下:家庭数(户)家庭人口数(人)6021803604405206请你根据所学的统计知识提出问题,并填在下面的横线上(不需要解答,也不要解释,但提出的问题应该是利用表中提供数据能求解的,否则视为错误答案).例:多少人口的家庭最多?(1)多少人口的家庭最少?(2)该村家庭人口平均数是多少?(3)该村家庭人口的众数是多少?(4)该村家庭人口中位数是多少?.【点拨】先根据统计表获取有关信息,再根据统计知识提出相关问题即可.【解答】解:根据题意得:(1)多少人口的家庭最少?(2)该村家庭人口平均数是多少?(3)该村家庭人口的众数是多少?(4)该村家庭人口中位数是多少?故答案为:多少人口的家庭最少?,该村家庭人口平均数是多少?,该村家庭人口的众数是多少?,该村家庭人口中位数是多少?【点睛】此题考查了统计表,解题的关键是根据统计表获取有关信息,根据统计知识提出相关问题.18.(2019•沈阳)一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有70次摸到红球.请你估计这个口袋中有3个白球.【点拨】从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.【解答】解:由题意可得,红球的概率为70%.则白球的概率为30%,这个口袋中白球的个数:10×30%=3(个),故答案为3.【点睛】本题考查了用样本估计总体,正确理解概率的意义是解题的关键.19.(2017•柳州)某校为了了解本届初三学生体质健康情况,从全校初三学生中随进抽取46名学生进行调查,上述抽取的样本容量为46.【点拨】根据样本容量是指一个样本包括的个体数量叫做样本容量即可求解.【解答】解:由题意,可知本题随机抽查46名同学,所以样本容量是46.故答案为46.【点睛】本题考查了样本容量,样本容量是指抽查部分的数量,注意:样本容量只是个数字,没有单位.20.(2018•长沙)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如图扇形统计图,则“世界之窗”对应扇形的圆心角为90度.【点拨】根据圆心角=360°×百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°×(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.【点睛】本题考查的是扇形统计图的综合运用,读懂统计图是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.三、耐心做一做21.(2019•淮安)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有40人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【点拨】(1)用B级人数除以它所占的百分比得到调查的总人数;(2)计算出C级人数,然后补全条形统计图;(3)用800乘以样本中A级人数所占的百分比即可.【解答】解:(1)20÷50%=40,所以该企业员工中参加本次安全生产知识测试共有40人;故答案为40;(2)C等级的人数为40﹣8﹣20﹣4=8(人),补全条形统计图为:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学数据的收集与整理分类汇编附解析(2)一、选择题1.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【答案】B【解析】试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.由条形统计图可得,人数最多的一组是4~6小时,频数为22,考点:频数(率)分布直方图2.甲校男生占全校总人数的50%,乙校女生占全校总人数的50%,则甲乙两校女生人数相比()A.甲校多于乙校B.甲校少于乙校C.甲乙两校一样多D.不能确定【答案】D【解析】【分析】根据总人数×女生所占百分比=女生人数进行计算比较即可.【详解】因为甲乙两校总人数不知道,无法计算出各校男女生人数,因此不能确定甲乙两校女生人数的多少,故选:D.【点睛】此题主要考查了频数与频率,关键是掌握总人数×女生所占百分比=女生人数.3.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.4【答案】B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.2.故选B.4.某公司生产的一种产品按照质量由高到低分为A,B,C,D四级,为了增加产量、提高质量,该公司改进了一次生产工艺,使得生产总量增加了一倍.为了解新生产工艺的效果,对改进生产工艺前、后的四级产品的占比情况进行了统计,绘制了如下扇形图:根据以上信息,下列推断合理的是()A.改进生产工艺后,A级产品的数量没有变化B.改进生产工艺后,B级产品的数量增加了不到一倍C.改进生产工艺后,C级产品的数量减少D.改进生产工艺后,D级产品的数量减少【答案】C【解析】【分析】设原生产总量为1,则改进后生产总量为2,所以原A、B、C、D等级的生产量为0.3、0.37、0.28、0.05,改进后四个等级的生产量为0.6、1.2、0.12、0.08,据此逐一判断即可得.【详解】设原生产总量为1,则改进后生产总量为2,所以原A、B、C、D等级的生产量为0.3、0.37、0.28、0.05,改进后四个等级的生产量为0.6、1.2、0.12、0.08,A.改进生产工艺后,A级产品的数量增加,此选项错误;B.改进生产工艺后,B级产品的数量增加超过三倍,此选项错误;C.改进生产工艺后,C级产品的数量减少,此选项正确;D.改进生产工艺后,D级产品的数量增加,此选项错误;故选:C.【点睛】本题考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.5.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式B.旅客上飞机前的安检,采用抽样调查方式C.了解深圳市居民日平均用水量,采用全面调查方式D.了解深圳市每天的平均用电量,采用抽样调查方式【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.据此作答.【详解】A.日光灯管厂要检測一批灯管的使用寿命,应用抽样调查,故A错误;B.旅客上飞机前的安检,采用普查方式,故B错误;C.了解深圳市居民日平均用水量,采用抽样调查方式,故C错误;D.了解深圳市每天的平均用电量,采用抽样调查方式,故D正确.故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.如图是张亮、李娜两位同学零花钱全学期各项支出的统计图.根据统计图,下列对两位同学购买书籍支出占全学期总支出的百分比作出的判断中,正确的是()A.张亮的百分比比李娜的百分比大B.张娜的百分比比张亮的百分比大C.张亮的百分比与李娜的百分比一样大D.无法确定【答案】A【解析】【分析】由扇形统计图可知,李娜购买书籍支出占全学期总支出的百分比是32%,再求出张亮购买书籍支出占全学期总支出的百分比,进行比较即可解答.【详解】由扇形统计图可知,李娜购买书籍支出占全学期总支出的百分比是32%,张亮购买书籍支出占全学期总支出的百分比是200÷(150+200+100+100)≈36%,所以张亮的百分比比李娜的百分比大.故选A.【点睛】本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.7.下列调查:①了解某批种子的发芽率②了解某班学生对“社会主义核心价值观”的知晓率③了解某地区地下水水质④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查的是()A.①③B.②④C.①②D.③④【答案】B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.【详解】①了解某批种子的发芽率适合采取抽样调查;②了解某班学生对“社会主义核心价值观”的知晓率适合采取全面调查;③了解某地区地下水水质适合采取抽样调查;④了解七年级(1)班学生参加“开放性科学实践活动”完成次数适合采取全面调查;故选:B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.下列调查适合作普查的是()A.了解“嫦娥三号”卫星零部件的状况B.了解在校大学生的主要娱乐方式C.日光灯管厂要检测一批灯管的使用寿命D.了解某市居民对废电池的处理情况【答案】A【解析】【分析】【详解】解:A、了解“嫦娥三号”卫星零部件的状况调查需要精确,适合普查,故本选项正确;B、了解在校大学生的主要娱乐方式适合抽样调查,故本选项错误;C、日光灯管厂要检测一批灯管的使用寿命适合抽样调查,故本选项错误;D、了解某市居民对废电池的处理情况适合抽样调查,故本选项错误;故选A.【点睛】本题考查全面调查与抽样调查.9.某校在开展“节约每一滴水” 的活动中,从九年级300名学生家庭中任选20名学生家庭某个月的节水量x(单位:t),汇总整理成如下表:估计这300名学生家庭中这个月节水量少于2.5t的户数为()A.180户B.120户C.60户D.80户【答案】B【解析】【分析】从图表中可得出20名学生家庭中这个月节水量少于2.5t的人数是8人,所占比例为8100%40%⨯=,再用总人数乘以所求比例即可得出答案.20【详解】解:估计这300名学生家庭中这个月节水量少于2.5t 的户数为: 62300100%30040%12020+⨯⨯=⨯=(户) 故选:B .【点睛】 本题考查的知识点是用样本估计总数,比较简单,易于掌握.10.在“校园读书月”活动中,小华调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.下面有四个推断:①这次调查获取的样本数据的众数是30元②这次调查获取的样本数据的中位数是40元③若该校共有学生1200人,根据样本数据,估计本学期计划购买课外书花费50元的学生有300人④花费不超过50元的同学共有18人.其中合理的是( )A .①②B .②④C .①③D .①④【答案】C【解析】【分析】 根据众数、中位数的定义及样本估计总体的思想解答可得.【详解】解:由条形图知30出现次数最多,即众数为30,故①正确;由于共有40个数据,则中位数为第20、21个数据的平均数,即中位数为50+502=50,故估计本学期计划购买课外书花费50元的学生有1200×1040=300(人),故③正确;花费不超过50元的同学共有6+12+10=28人,故④错误;故选:C.【点睛】本题主要考查众数、中位数及样本估计总体,熟练掌握众数、中位数的定义及样本估计总体的思想是解题的关键.11.为了了解某地区七年级学生每天体育锻炼的时间,要进行抽样调查.以下是几个主要步骤:①随机选择该地区一部分七年级学生完成调查问卷:②设计调查问卷:③用样本估计总体:④整理数据:⑤分析数据.正确的顺序是()A.②①③④B.②①④③⑤C.①②④⑤③D.②①④⑤③【答案】D【解析】【分析】直接利用抽样调查收集数据的过程与方法分析排序即可.【详解】了解某地区七年级学生每天体育锻炼的时间所要经历的步骤顺序为:②设计调查问卷、①随机选择该地区一部分七年级学生完成调查问卷、④整理数据、⑤分析数据、③用样本估计总体,则正确顺序为:②①④⑤③,故选:D.12.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数,“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( )A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80 km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80 km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80 km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升【答案】D【解析】【详解】解:A. 以相同速度行驶相同路程,三辆车中,甲车燃油效率最高,甲车消耗汽油最少,此选项错误;B. 以低于80km/h的速度行驶时,行驶相同路程,三辆车中,甲车燃油效率最高,甲车消耗汽油最少,此选项错误;C. 以高于80km/h的速度行驶时,行驶相同路程,乙车燃油效率大于丙车燃油效率,乙车比丙车省油,此选项错误;D. 由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1L,行驶100km时耗油10L,此选项正确;故选D.【点睛】本题主要考查折线统计图,理解燃油效率的定义并从折线统计图中得出解题所需要的数据时解题的关键.13.某同学为了解三月份疫情期间某超市每天的客流量,随机抽查了其中五天的客流量,所抽查的这五天中每天的客流量是这个问题的()A.总体B.个体C.样本D.以上都不对【答案】B【解析】【分析】根据总体、个体、样本、样本容量的定义进行解答.【详解】解:∵抽查的是三月份疫情期间某超市每天的客流量,∴所抽查的这五天中每天的客流量是个体.故选B.【点睛】此题主要考察样本的定义,熟知样本是总体所抽取的一部分个体是解题的关键.14.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有()A.24人B.10人C.14人D.29人【解析】【分析】根据直方图给出的数据,把成绩在69.589.5~分范围内的学生人数相加即可得出答案.【详解】解:成绩在69.589.5~分范围内的学生共有:101424(+=人),故选A .【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.从江岸区某初中九年级1200名学生中随机选取一部分学生进行调查,调查情况:A 、上网时间≤1小时;B 、1小时<上网时间≤4小时;C 、4小时<上网时间≤7小时;D 、上网时间>7小时.统计结果制成了如图统计图:以下结论中正确的个数是( )①参加调查的学生有200人;②估计校上网不超过7小时的学生人数是900;③C 的人数是60人;④D 所对的圆心角是72°.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】①A 类学生人数除以A 类学生的占比即可求解出参加调查的总人数;②九年级总人数乘以上网不超过7小时的学生人数的占比即可;③总人数减去A 、B 、D 的人数即可求解C 的人数;④根据圆心角公式求解即可.【详解】解:①参加调查的学生有20÷36360=200(人),正确; ②1200×208060200++=960(人),故错误; ③C 的人数是:200﹣20﹣80﹣40=60(人),正确; ④40200×360°=72°,正确; 正确的有3个,【点睛】本题考查了概率统计的问题,掌握饼状图的性质、条形图的性质、圆心角公式是解题的关键.16.如图,王老师将某班近三个月跳跃类项目的训练情况做了统计,并绘制了折线统计图,则根据图中信息以下判断错误的是()A.男女生5月份的平均成绩一样B.4月到6月,女生平均成绩一直在进步C.4月到5月,女生平均成绩的增长率约为8.5%D.5月到6月女生平均成绩比4月到5月的平均成绩增长快【答案】C【解析】【分析】男女生5月份的平均成绩均为8.9,据此判断A选项;4月到6月,女生平均成绩依次为8.8、8.9、9.2,据此可判断B选项;根据增长率的概念,结合折线图的数据计算,从而判断C选项;根据女生平均成绩两端折线的上升趋势可判断D选项.【详解】解:A.男女生5月份的平均成绩一样,都是8.9,此选项正确,不符合题意;B.4月到6月,女生平均成绩依次为8.8、8.9、9.2,其平均成绩一直在进步,此选项正确,不符合题意;C.4月到5月,女生平均成绩的增长率为8.98.8100% 1.14%8.8-⨯≈,此选项错误,符合题意;D.5月到6月女生平均成绩比4月到5月的平均成绩增长快,此选项正确,不符合题意;故选:C.【点睛】本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,解题的关键是根据折线图得出解题所需的数据及增长率的概念.17.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A型的有200人,那么该校血型为AB型的人数为()A.100B.50C.20D.8【答案】B【解析】【分析】根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB 型血所对应的百分比即可求解.【详解】∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1-(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.【点睛】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.19.下列调查中,最适合采用抽样调查的是()A.调查我市居民对汽车废气污染环境的看法B.对全班同学的身高情况进行调查C.乘坐高铁对旅客的行李的检查D.对学校的卫生死角进行调查【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查我市居民对汽车废气污染环境的看法,适宜抽样调查;B、对全班同学的身高情况进行调查,调查范围小,适宜普查;C、乘坐高铁对旅客的行李的检查,调查范围小,适宜普查;D、对学校的卫生死角进行调查,必须普查,故选:A.【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.20.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理的是()A.2017年至2019年,年接待旅游量逐年增加B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份C.2019年的月接待旅游量的平均值超过300万人次D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳【答案】D【解析】【分析】根据折线图,逐项判断即可得答案.【详解】由折线图可知:A.2017年至2019年,年接待旅游量逐年增加,正确,故该选项不符合题意,B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,正确,故该选项不符合题意,C.2019年的月接待旅游量的平均值超过300万人次,正确,故该选项不符合题意,D.2017年至2019年,各年1月至6月的折线相对于7月至12月比较平缓,即波动性更小,变化比较平稳,故该选项错误,符合题意,故选:D.【点睛】本题考查频率分布折线图,正确理解图中信息是解题关键.。