大一高数之函数
大一高数函数极限知识点
大一高数函数极限知识点函数极限是高等数学中的重要概念之一,它是分析函数性质和求解各种数学问题的基础。
在大一高数课程中,函数极限是必修内容,下面将介绍几个常见的函数极限知识点。
一、基本极限公式在求解函数极限的过程中,常用的基本极限公式有以下几个:1. 当n趋向于无穷大时,$\lim_{n \to \infty}\frac{1}{n^p} = 0$,其中p是大于0的实数。
2. 当x趋向于无穷大时,$\lim_{x \to \infty}\frac{1}{x^p} = 0$,其中p是大于0的实数。
3. $\lim_{x \to 0}\frac{sinx}{x} = 1$。
4. $\lim_{x \to \infty}(1+\frac{1}{x})^x = e$,其中e是自然对数的底数。
这些基本极限公式在求解各种函数极限时非常常用,熟练掌握它们可以简化计算过程。
二、函数极限的性质函数极限具有一些重要的性质,下面介绍两个常用的性质。
1. 函数极限的唯一性:如果$\lim_{x \to x_0}f(x) = A$,且$\lim_{x \to x_0}f(x) = B$,那么A=B。
即函数在某一点的极限存在时,它的极限值是唯一确定的。
2. 函数极限的四则运算法则:设$\lim_{x \to x_0}f(x) = A$,$\lim_{x \to x_0}g(x) = B$,其中A、B都存在,则有以下四则运算法则:(1)$\lim_{x \to x_0}[f(x) \pm g(x)] = A \pm B$(2)$\lim_{x \to x_0}[f(x) \cdot g(x)] = A \cdot B$(3)$\lim_{x \to x_0}\frac{f(x)}{g(x)} = \frac{A}{B}$,其中B不等于0。
这些性质在计算复杂函数极限时非常有用,可以简化计算步骤。
三、函数极限的求解方法对于一些特殊函数,我们需要使用一些特殊的求解方法来计算其极限。
高数大一最全知识点
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
高数大一知识点总结基础
高数大一知识点总结基础一、函数与极限1. 函数的定义与性质:函数是一种对应关系,将一个自变量的取值映射到一个因变量的取值上。
函数具有定义域、值域、奇偶性、周期性等性质。
2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋近值。
极限的存在性与唯一性可以通过数列极限的定义来判定。
3. 函数的连续性:连续性是指函数在定义域内没有突变、间断点的性质。
连续函数具有局部性质及整体性质。
4. 导数与函数的凸凹性:导数是函数在某一点的切线斜率,可以表示函数的变化率。
凸凹性指函数图像在某一区间上的弯曲程度。
二、微分学1. 微分的定义与性质:微分是函数局部线性逼近的结果,是函数在某一点的变化量。
微分的计算可以使用导数。
2. 高阶导数:高阶导数是导数的导数,表示函数变化的快慢程度。
高阶导数的计算可以使用导数的性质和公式。
3. 微分中值定理:微分中值定理包括拉格朗日中值定理、柯西中值定理等,用于描述函数在某一区间的特性。
4. 泰勒展开:泰勒展开是将函数在某一点附近用无穷多项式逼近的结果,用于求函数的近似值。
三、积分学1. 定积分的定义与性质:定积分是函数在某一区间上的面积或有向长度,可以用无穷小分割与极限的思想进行计算。
2. 不定积分与积分常数:不定积分是求解函数的原函数过程,不定积分的结果存在积分常数。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式将定积分与不定积分联系起来,描述了两者的关系。
4. 微积分基本定理:微积分基本定理包括第一类与第二类,用于计算定积分与不定积分。
四、级数1. 数项级数的收敛性:数项级数是由无穷多个数相加而成的表达式,根据其通项的性质可以判断级数的收敛性。
2. 常用级数:常用级数包括等比级数、调和级数等,可以通过特定的方法求解其和。
3. 幂级数:幂级数是一种特殊的级数,具有收敛域与求解方法。
幂级数常用于函数展开与近似计算。
五、常微分方程1. 常微分方程的基本概念:常微分方程是描述未知函数的导数与自变量之间关系的方程。
大一数学函数定义域知识点
大一数学函数定义域知识点函数是数学中一个非常重要的概念,它描述了一种特定的输入与输出之间的关系。
函数的定义域是指所有可能的输入值集合,也就是函数可接受的自变量的取值范围。
在大一数学中,我们需要掌握一些与函数定义域相关的知识点。
本文将介绍一些常见的数学函数及其定义域的情况。
一、一次函数一次函数也称为线性函数,其定义域为全体实数集合R。
一次函数的一般形式为:f(x) = ax + b,其中a和b是常数,a ≠ 0。
例如,函数f(x) = 2x + 1的定义域为全体实数。
二、二次函数二次函数的定义域也是全体实数集合R。
二次函数的一般形式为:f(x) = ax^2 + bx + c,其中a、b和c是常数,a ≠ 0。
例如,函数f(x) = x^2 - 4x + 3的定义域为全体实数。
三、指数函数指数函数的定义域是全体实数集合R。
指数函数的一般形式为:f(x) = a^x,其中a是正实数且a ≠ 1。
例如,函数f(x) = 2^x的定义域是全体实数。
四、对数函数对数函数的定义域是正实数集合R+。
对数函数的一般形式为:f(x) = loga(x),其中a是正实数且a ≠ 1。
例如,函数f(x) = log2(x)的定义域是正实数。
五、三角函数常见的三角函数包括正弦函数、余弦函数和正切函数。
这些三角函数的定义域是全体实数集合R。
例如,函数f(x) = sin(x)的定义域为全体实数。
六、有理函数有理函数是指可以表示为两个多项式相除的函数。
有理函数的定义域由多项式的零点和分母不为零的点组成。
例如,函数f(x) = (x + 1)/(x - 2)的定义域是除了x = 2以外的所有实数。
七、根式函数根式函数是指带有根号的函数,例如平方根函数、立方根函数等。
根式函数的定义域由根号内的表达式决定,使得根号内的表达式大于等于0。
例如,函数f(x) = √(x + 2)的定义域是x + 2大于等于0,即x大于等于-2。
以上是一些常见函数的定义域知识点,希望能帮助大家理解函数的性质和范围。
大一高数之函数
……
……
t 年后人口为p=9.6259×(1+12‰) t
即
p 9.6259 1.012t
到2005年底,即27年后, 我国人口为 p 9.6259 1.012 .
27
两边取常用对数, lg p lg 9.6259 27 lg1.012 4.9835 27 0.0051 5.1212, 查反对数表, p 13.22(亿).
即根据1978年的数据,可推算出2005年底 我国人口为13.22亿.
人口模型 : 设某地某年人口为p0,人口自然 增长率为r,那么t 年后的人口p为 p p0 (1 r ) .
t
马尔萨斯(malthus,英,1776 — 1834) 根据上述模型提出了他的人口理论,这一模 型只适用于生物种群的生存环境较为优雅宽 松的情况.当生物种群数量增长到一定值时, 恶化的生态环境将抑制种群数量的增长,进 而出现负增长,此时马尔萨斯人口模型就不 适用了.
A1 A(1 r )t ;
r 若每期结算m次,则每次利率为 , m t期内共结算mt次,t期后的本利和为
r mt Am A(1 ) . m 如果,即按照每个瞬间“即存即算” 来计算本利和,则归结为求极限
r mt lim A(1 ) m m
这个求极限问题将在第二章的应用中 介绍.
y cos x
正切函数
y tan x
π π 定义域 : ( kπ , kπ ), k Z; 值域( , ), 2 2 π π 以π 为周期, 在每个开区间( kπ , kπ )上 2 2 递增.
余切函数
y cot x
定义域 : kπ ,( k 1)π ), k Z;值域( , ), ( 以π 为周期, 在每个开区间( π ,( k 1)π ) k 上 递减.
大一高数上所有知识点总结
大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
大一高数函数知识点总结
大一高数函数知识点总结一、函数的定义与性质在数学中,函数是指两个集合之间的对应关系。
通常用符号f(x) 表示,其中 x 是自变量,f(x) 是对应的函数值或因变量。
函数的性质包括以下几个方面:1. 定义域与值域:函数的定义域是自变量可能取值的集合,而函数值域是所有可能的函数值所组成的集合。
2. 单调性:函数可以是递增的(单调增函数)或者递减的(单调减函数)。
3. 奇偶性:函数可以是奇函数(满足 f(-x) = -f(x))或偶函数(满足 f(-x) = f(x))。
4. 周期性:函数可以具有周期性,即存在一个正数 T,满足f(x+T) = f(x)。
5. 最大值与最小值:函数的最大值是函数值域中的最大元素,最小值是函数值域中的最小元素。
二、常见的函数类型1. 基本初等函数:包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
- 常数函数:f(x) = c,其中 c 是常数。
- 幂函数:f(x) = x^n,其中 n 是整数。
- 指数函数:f(x) = a^x,其中 a 是正实数且不等于 1。
- 对数函数:f(x) = log_a(x),其中 a 是正实数且不等于 1。
- 三角函数:包括正弦函数、余弦函数、正切函数等。
- 反三角函数:包括反正弦函数、反余弦函数、反正切函数等。
2. 反函数:如果两个函数 f(x) 和 g(x) 满足 f(g(x)) = x 和 g(f(x))= x,那么它们互为反函数。
3. 复合函数:复合函数是指将一个函数的输出作为另一个函数的输入得到的函数。
4. 无穷大与无穷小:在函数的极限中,可以存在无穷大或无穷小的情况。
5. 参数方程与极坐标方程:函数可以通过参数方程或极坐标方程来表示。
三、函数的运算函数之间可以进行多种运算,包括加法、减法、乘法和除法等。
1. 加法和减法:对于函数 f(x) 和 g(x),它们的和为 (f+g)(x) =f(x) + g(x),差为 (f-g)(x) = f(x) - g(x)。
大一高数第一章知识点笔记
大一高数第一章知识点笔记
大一高数第一章主要讲解了函数的基本概念和性质,包括函数的定义、分类、表达式、图像等。
首先,函数是一种数学模型,它描述了自变量与因变量之间的关系。
其中,自变量是函数的输入,因变量是函数的输出。
函数的定义可以用规则、集合、表达式等来表示。
函数可以分为一元函数和多元函数。
一元函数只有一个自变量,如y = 2x+1。
多元函数有多个自变量,如 z = 2x+3y。
函数的表达式可以用数学符号表示,如 y = 2x+1。
这里的y是因变量,x是
自变量,2和1是常数。
函数的表达式可以用图像来表示,在平面直角坐标系中,把自变量x作为横坐标,因变量y作为纵坐标,函数图像就是一条曲线。
函数还有其他性质,如单调性、导函数、单调递增/递减等。
其中单调性指函
数图像是单调递增或递减的,导函数是函数的导数,可以用来研究函数的变化率。
在学习本章内容时,需要注意基本概念和定义的理解,并结合练习题练习掌握相关知识。
同时,也要注意对相关定理和公式的掌握,以便在进行解题时能够灵活运用。
总之,大一高数第一章知识点是基础性且重要的,在学习这些知识时需要注重理解基本概念和定义,并结合练习题练习掌握相关知识。
此外,还要注意对相关定理和公式的掌握,以便在进行解题时能够灵活运用。
在学习过程中,可以通过分析例题和做习题来巩固所学知识。
在理解这些知识点后,就可以通过解决相关应用问题来检验自己的学习效果。
大学高数大一上册知识点
大学高数大一上册知识点【前言】大学高数作为大一学生的必修课程之一,是一门基础性很强、内容较多的数学课程。
大学高数的学习需要掌握一定的数学基础,旨在培养学生的数学思维能力和解决实际问题的能力。
本文将为大家梳理大学高数大一上册的知识点,希望能够帮助大家系统地掌握和理解这门课程。
【知识点一:函数与极限】1. 函数的概念和性质在大学高数中,函数是一个非常重要的概念。
函数的定义是由一个或多个变量决定的一个数值的集合,常用符号表示为f(x)。
函数的性质包括定义域、值域、单调性、奇偶性等。
2. 极限的概念和计算方法极限是函数中的一个重要概念,表示函数在某一点上的趋势或接近程度。
可以通过直接计算、夹逼定理、函数性质等方法来求解极限。
【知识点二:导数与微分】1. 导数的定义与计算法则导数是函数在某一点上的切线斜率,也表示函数的变化率。
导数的计算可以通过定义法、基本导数法则和导数的四则运算法则进行。
2. 微分与微分中值定理微分是导数的几何解释,表示函数在某一点上的变化量。
微分中值定理是导数在某一区间内取到特定值的重要定理。
【知识点三:高等代数】1. 行列式的概念与性质行列式是矩阵的一种特殊形式,具有一些重要的性质和计算方法。
行列式的计算可以通过代数余子式和拉普拉斯展开等方法进行。
2. 矩阵的基本概念与运算矩阵是一种特殊的数表,具有加法、数乘、乘法等基本运算。
矩阵的计算需要掌握矩阵的性质和运算法则。
【知识点四:一元函数的定积分】1. 定积分的概念和性质定积分是函数在一定区间上的面积,可以理解为累加的结果。
定积分的性质包括可加性、线性、区间可加等。
2. 定积分的计算方法定积分的计算可以通过牛顿-莱布尼茨公式、换元积分法、分部积分法等方法进行。
【知识点五:常微分方程】1. 常微分方程的基本概念常微分方程是描述一元函数变化规律的方程,包括一阶和高阶常微分方程。
常微分方程的解表示函数的解析解或近似解。
2. 常微分方程的求解方法常微分方程的求解可以通过分离变量、齐次方程、一阶线性方程等方法进行。
大学高等数学第一章函数
大学高等数学第一章函数函数是数学中的基础概念之一,广泛应用于各个学科领域。
本文将从函数的定义、分类和性质等方面进行论述,并探讨函数在现实生活和学术研究中的应用。
一、函数的定义函数是一种映射关系,将一个集合的每个元素都对应到另一个集合的唯一元素。
简单来说,函数就是一种输入和输出之间的关系。
数学上常用 f(x) 表示函数,其中 x 是自变量,f(x) 是函数的值。
二、函数的分类函数可以按照不同的变量类型进行分类,常见的分类包括:1. 数字函数:自变量和函数值都是实数的函数,如 f(x) = 2x + 1。
2. 向量函数:自变量是实数,函数值是向量的函数,如 f(t) = (cos t, sin t)。
3. 多元函数:自变量是多个实数,函数值是实数的函数,如 f(x, y) = x^2 + y^2。
4. 参数方程:自变量是参数,函数值是一组参数对应的点的坐标,如 x = 2t, y = 3t。
三、函数的性质函数具有以下一些重要性质:1. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数值的取值范围。
2. 奇偶性:如果对于定义域内的任意 x,满足 f(-x) = -f(x),则函数是奇函数;如果满足 f(-x) = f(x),则函数是偶函数。
3. 单调性:如果对于任意的 x1 和 x2,当 x1 < x2 时有 f(x1) < f(x2),则函数是递增函数;如果满足 f(x1) > f(x2),则函数是递减函数。
4. 对称轴和顶点:对于二次函数 y = ax^2 + bx + c,它的对称轴是 x = -b/2a,顶点坐标为 (-b/2a, f(-b/2a))。
四、函数的应用函数在现实生活和学术研究中有着广泛的应用。
以下是一些例子:1. 物理学:函数用于描述运动过程中的位移、速度和加速度等物理量的关系。
2. 经济学:函数被用于模拟经济行为和预测市场走势,如供求函数、收益函数等。
大一必考高数知识点
大一必考高数知识点在大一的学习生活中,高等数学是必修课程之一,对于学习理工科的同学来说,掌握好高数知识点非常重要。
下面将介绍一些大一必考的高数知识点,帮助同学们更好地应对高数考试。
一、函数与极限1. 函数的定义与性质:介绍函数的定义、定义域、值域等概念,以及奇函数和偶函数的性质。
2. 函数的极限:介绍函数极限的定义、左极限和右极限的概念,以及常见函数的极限计算方法。
3. 无穷大与无穷小:讲解无穷大和无穷小的定义,以及无穷小的判定方法。
二、导数与微分1. 导数的定义:介绍导数的定义,讨论导数存在的条件,并给出常见函数的导数计算方法。
2. 导数的应用:介绍导数在几何与物理问题中的应用,如切线与法线、相关变率、最值等。
3. 微分的概念:引入微分的概念,讨论微分与导数的关系,并解释微分的几何意义。
三、不定积分与定积分1. 不定积分的定义:介绍不定积分的定义,给出常见函数的不定积分计算方法,如幂函数、指数函数、三角函数等。
2. 定积分的概念:介绍定积分的定义,讨论定积分的性质,如线性性、区间可加性等。
3. 定积分的应用:介绍定积分在几何与物理问题中的应用,如曲线长度、平面面积、体积、质量等。
四、级数1. 数项级数:讲解数项级数的定义与判敛条件,介绍常见级数的性质,如正项级数、比较判别法、比值判别法等。
2. 幂级数:介绍幂级数的定义与收敛半径,讨论幂级数的收敛性以及幂函数展开。
五、微分方程1. 微分方程的基本概念:介绍常微分方程的分类,讲解微分方程的阶、线性与非线性等概念。
2. 一阶常微分方程:讨论一阶常微分方程的可分离变量、线性方程、齐次方程等特殊类型的解法。
总结:以上介绍了大一必考的高数知识点,包括函数与极限、导数与微分、不定积分与定积分、级数以及微分方程等内容。
希望同学们能够认真学习这些知识点,充分理解概念和原理,并进行大量的练习,以提高解题能力和应对考试的能力。
祝大家在高数考试中取得优异的成绩!。
大一第一学期高数知识点
大一第一学期高数知识点在大一的第一学期,高等数学(又称高数)是必修课程之一,对于理工科的学生来说,掌握高数知识点是十分重要的。
本文将介绍大一第一学期高数的主要知识点,包括函数与极限、导数与微分、高阶导数与泰勒展开、不定积分和定积分五个部分。
一、函数与极限1. 函数的概念:函数是两个集合之间的一种映射关系,常用符号表示为y=f(x)。
2. 极限的概念:极限是数列或函数逐渐趋近于某个值的过程,包括左极限、右极限和无穷极限。
3. 极限的性质:包括四则运算法则、绝对值法则、比较法则等。
4. 常见函数的极限:如幂函数、指数函数、对数函数等。
二、导数与微分1. 导数的概念:导数描述了函数在某一点的变化率,也可以理解为函数曲线在该点的切线斜率。
2. 导数的计算方法:使用极限定义、基本导数法则、求导公式等方法计算导数。
3. 常见函数的导数:如幂函数、指数函数、对数函数、三角函数等。
4. 微分的概念:微分是导数的一种近似表示,表示函数在某一点附近的增量。
5. 微分的计算方法:使用微分公式和微分运算法则等方法计算微分。
三、高阶导数与泰勒展开1. 高阶导数的概念:高阶导数表示导数的导数,如二阶导数、三阶导数等。
2. 高阶导数的计算方法:通过对原函数多次求导来计算高阶导数。
3. 泰勒展开的概念:泰勒展开是一种使用多项式逼近函数的方法,可将函数在某点附近展开成幂级数。
4. 泰勒展开的计算方法:使用公式对函数进行泰勒展开。
四、不定积分1. 不定积分的概念:不定积分是求解函数的原函数的过程,表示为∫f(x)dx。
2. 基本积分公式:包括幂函数积分、三角函数积分、指数函数积分等基本公式。
3. 换元积分法:使用换元法将原函数转化为容易求解的形式。
4. 分部积分法:使用分部积分公式对复杂函数进行求积分。
五、定积分1. 定积分的概念:定积分是计算曲线下面的面积的方法,表示为∫[a,b]f(x)dx。
2. 定积分的性质:包括线性性质、区间可加性、积分中值定理等性质。
(完整版)大一高数第一章函数、极限与连续
(完整版)⼤⼀⾼数第⼀章函数、极限与连续第⼀章函数、极限与连续由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为⾃然科学的中⼼问题.与之相适应,数学在经历了两千多年的发展之后进⼊了⼀个被称为“⾼等数学时期”的新时代,这⼀时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究⽐“形”更重要,以积极的态度开展对“⽆限”的研究,由常量数学发展为变量数学,微积分的创⽴更是这⼀时期最突出的成就之⼀.微积分研究的基本对象是定义在实数集上的函数.极限是研究函数的⼀种基本⽅法,⽽连续性则是函数的⼀种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍⾼等数学的⼀些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作⽤的⽆穷⼩量的概念和性质.此外,还给出了两个极其重要的极限.随后,运⽤极限的概念引⼊函数的连续性概念,它是客观世界中⼴泛存在的连续变化这⼀现象的数学描述.第⼀节变量与函数⼀、变量及其变化范围的常⽤表⽰法在⾃然现象或⼯程技术中,常常会遇到各种各样的量.有⼀种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这⼀类量叫做变量;另⼀类量在考察过程中保持不变,它取同样的数值,我们把这⼀类量叫做常量.变量的变化有跳跃性的,如⾃然数由⼩到⼤变化、数列的变化等,⽽更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何⼀个数.变量取值范围常⽤区间来表⽰.满⾜不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ,即 ,{|}a b x a x b =≤≤;满⾜不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即(,){|}a b x a x b =<<;满⾜不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即(,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤左开右闭区间与右开左闭区间统称为半开半闭区间,实数a ,b 称为区间的端点.以上这些区间都称为有限区间.数b a -称为区间的长度.此外还有⽆限区间:(){|}x x -∞+∞=-∞<<+∞=R ,,(,{|}b x x b -∞=-∞<≤??,(,){|}b x x b -∞=-∞<<, ){|}a x a x +∞=≤<+∞??,, (){|}a x a x +∞=<<+∞,,等等. 这⾥记号“-∞”与“+∞”分别表⽰“负⽆穷⼤”与“正⽆穷⼤”.邻域也是常⽤的⼀类区间.设0x 是⼀个给定的实数,δ是某⼀正数,称数集:{}00|x x δxx δ-<<+为点0x 的δ邻域,记作0(,)U x δ.即(){}000,|U x δx x δx x δ=-<<+称点0x 为该邻域的中⼼,δ为该邻域的半径(见图1-1).称{}00(,)U x δx -为0x 的去⼼δ邻域,记作0(,)x δoU ,即{}00(,)|0U x δx x x δ?=<-<图1-1下⾯两个数集(){}000,|U x δx x δx x ?-=-<<,(){}000,|U x δx xx x δ?+=<<+,分别称为0x 的左δ邻域和右δ邻域.当不需要指出邻域的半径时,我们⽤0()U x ,0()x oU 分别表⽰0x 的某邻域和0x 的某去⼼邻域,(),x δ-oU ,(),U x δ?+分别表⽰0x 的某左邻域和0x 的某右邻域.⼆、函数的概念在⾼等数学中除了考察变量的取值范围之外,我们还要研究在同⼀个过程中出现的各种彼此相互依赖的变量,例如质点的移动距离与移动时间.曲线上点的纵坐标与该点的横坐标,弹簧的恢复⼒与它的形变,等等.我们关⼼的是变量与变量之间的相互依赖关系,最常见的⼀类依赖关系,称为函数关系.定义 1 设A ,B 是两个实数集,如果有某⼀法则f ,使得对于每个数x A ∈,均有⼀个确定的数y B ∈与之对应,则称f 是从A 到B 内的函数.习惯上,就说y 是x 的函数,记作()y f x = ()x A ∈其中,x 称为⾃变量,y 称为因变量,()f x 表⽰函数f 在x 处的函数值.数集A 称为函数f 的定义域,记为()D f ;数集{}()|(),f A y y f x x A B ==∈?称为函数f 的值域,记作()R f .从上述概念可知,通常函数是指对应法则f ,但习惯上⽤“() ,y f x x A =∈”表⽰函数,此时应理解为“由对应关系()y f x =所确定的函数f ”.确定⼀个函数有两个基本要素,即定义域和对应法则.如果没有特别规定,我们约定:定义域表⽰使函数有意义的范围,即⾃变量的取值范围.在实际问题中,定义域可根据函数的实际意义来确定.例如,在时间t 的函数()f t 中,t 通常取⾮负实数.在理论研究中,若函数关系由数学公式给出,函数的定义域就是使数学表达式有意义的⾃变量x 的所有可以取得的值构成的数集.对应法则是函数的具体表现,它表⽰两个变量之间的⼀种对应关系.例如,⽓温曲线给出了⽓温与时间的对应关系,三⾓函数表列出了⾓度与三⾓函数值的对应关系.因此,⽓温曲线和三⾓函数表表⽰的都是函数关系.这种⽤曲线和列表给出函数的⽅法,分别称为图⽰法和列表法.但在理论研究中,所遇到的函数多数由数学公式给出,称为公式法.例如,初等数学中所学过的幂函数、指数函数、对数函数、三⾓函数与反三⾓函数都是⽤公式法表⽰的函数.从⼏何上看,在平⾯直⾓坐标系中,点集()(){(,)|,}x y y f x x D f =∈称为函数()y f x =的图像(如图1-2所⽰).函数()y f x =的图像通常是⼀条曲线,()y f x =也称为这条曲线的⽅程.这样,函数的⼀些特性常常可借助于⼏何直观来发现;相反,⼀些⼏何问题,有时也可借助于函数来作理论探讨.现在我们举⼀个具体函数的例⼦.图1-2例1求函数y . 解要使数学式⼦有意义,x 必须满⾜> ,240,10x x ?-≥??-??即 >2,1.x x ?≤由此有 12x <≤,因此函数的定义域为(12??,.有时⼀个函数在其定义域的不同⼦集上要⽤不同的表达式来表⽰对应法则,称这种函数为分段函数.下⾯给出⼀些今后常⽤的分段函数.例2 绝对值函数<,0,,0.x x y x x x ≥?==?-? 的定义域()()D f =-∞+∞,,值域()[0,)R f =+∞,如图1-3所⽰. 例3 符号函数<>1,0,sgn 0,0,1,0x y x x x -??===的定义域()()D f =-∞+∞,,值域()11{0}R f =-,,,如图1-4所⽰.图1-3 图1-4例4 最⼤取整函数y x =,其中x 表⽰不超过x 的最⼤整数.例如,113??-=-,00=,12??=??,π3=等等.函数y x =的定义域()()D f =-∞+∞,,值域(){}R f =整数.⼀般地,y x n ==,1n x n ≤<+,120,,n =±±L ,,如图1-5所⽰.图1-5在函数的定义中,对每个()x D f ∈,对应的函数值y 总是唯⼀的,这样定义的函数称为单值函数.若给定⼀个对应法则g ,对每个()x D g ∈,总有确定的y 值与之对应,但这个y 不总是唯⼀的,我们称这种法则g 确定了⼀个多值函数.例如,设变量x 与y之间的对应法则由⽅程2225x y +=给出,显然,对每个55[,]x ∈-,由⽅程2225x y +=可确定出对应的y 值,当5x =或5-时,对应0y =⼀个值;当55(,)x ∈-时,对应的y 有两个值.所以这个⽅程确定了⼀个多值函数.对于多值函数,往往只要附加⼀些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分⽀.例如,由⽅程2225x y +=给出的对应法则中,附加“0y ≥”的条件,即以“2225x y +=且0y ≥”作为对应法则,就可以得到⼀个单值分⽀()2125y g x x ==-;附加“0y ≤”的条件,即以“2225x y +=且0y ≤” 作为对应法则,就可以得到⼀个单值分⽀22()25y g x x ==--.关系的,如⾼度为⼀定值的圆柱体的体积与其底⾯圆半径r 的关系,就是通过另外⼀个变量其底⾯圆⾯积S 建⽴起来的对应关系.这就得到复合函数的概念.定义2 设函数()y f u =的定义域为()D f ,函数()u g x =在D 上有定义,且()()g D D f ?.则由下式确定的函数()()y f g x =,x D ∈称为由函数()y f u =与函数()u g x =构成的复合函数,记作()()()()y f g x f g x =?=,x D ∈,它的定义域为D ,变量u 称为中间变量.这⾥值得注意的是,D 不⼀定是函数()u g x =的定义域()D g ,但()D D g ?.D 是()D g 中所有使得()()g x D f ∈的实数x 的全体的集合.例如,()y f u u ==, ()21u g x x ==-.显然,u 的定义域为(),-∞+∞,⽽()(0,)D f =+∞.因此,11,D -=,⽽此时1()0,R f g =.两个函数的复合也可推⼴到多个函数复合的情形.例如, log a µxu y x a ==()10a a >≠且可看成由指数函数u y a =与log a u µx =复合⽽成.⼜形如()log ()()()a v x u x v x y u x a ==()0u x >()10a a >≠且的函数称为幂指函数,它可看成由wy a =与()log ()a w v x u x =复合⽽成. ⽽y =可看成由y =sin u v =,2v x =复合⽽成.例5 设()1xf x x =+()1x ≠-,求()()()f f f x解令()y f w =,()w f u =,()u f x =,则()()()f f f x 是通过两个中间变量w 和u 复合⽽成的复合函数,因为()111121x x x x uxw f u u x ++====+++,12x ≠-;()2121,1131x x x x wxy f w w x ++====+++13x ≠-,所以 ()()()31x f f f x x =+,111,,23x ≠---.定义3 设给定函数()y f x =,其值域为()R f .如果对于()R f 中的每⼀个y 值,都有只从关系式()y f x =中唯⼀确定的x 值与之对应,则得到⼀个定义在()R f 上的以y 为⾃变量,x 为因变量的函数,称为函数()y f x =的反函数,记为()1x fy -=.从⼏何上看,函数()y f x =与其反函数()1x f y -=有同⼀图像.但⼈们习惯上⽤x 表⽰⾃变量,y 表⽰因变量,因此反函数()1xf y -=常改写成()1y f x -=.今后,我们称()1y f x -=为()y f x =的反函数. 此时,由于对应关系1f-未变,只是⾃变量与因变量交换了记号,因此反函数()1y fx -=与直接函数()y f x =的图像关于直线y x =对称,如图 1 - 6所⽰.图1-6值得注意的是,并不是所有函数都存在反函数,例如函数2y x =的定义域为()-∞+∞,,值域为,但)0+∞??,对每⼀个()0y ∈+∞,,有两个x 值即1x =和2x =因此x 不是y 的函数,从⽽2y x =不存在反函数.事实上,由逆映射存在定理知,若f 是从()D f 到()R f 的⼀⼀映射,则f 才存在反函数1f -.例6 设函数(1)1xf x x +=+ ()1x ≠-,求()11f x -+.解函数()1y f x =+可看成由()y f u =,1u x =+复合⽽成.所求的反函数()11y f x -=+可看成由()1y fu -=,1u x =+复合⽽成.因为()11x u f u x u-==+,0u ≠,即1u y u -=,从⽽,()11u y -=-, 11u y=-,所以 ()111y f u u-==-,因此 ()1111,01(1)f x x x x-+==-≠-+.三、函数的⼏种特性1. 函数的有界性设函数()f x 在数集D 上有定义,若存在某个常数L ,使得对任⼀x D ∈有()f x L ≤(或()f x L ≥),则称函数()f x 在D 上有上界(或有下界),常数L 称为()f x 在D 上的⼀个上界(或下界);否则,称()f x 在D 上⽆上界(或⽆下界).若函数()f x 在D 上既有上界⼜有下界,则称()f x 在D 上有界;否则,称()f x 在D 上⽆界.若()f x 在其定义域D f ()上有界,则称()f x 为有界函数.容易看出,函数()f x 在D 上有界的充要条件是:存在常数M>0,使得对任⼀x D ∈,都有()f x M ≤.例如,函数sin y x =在其定义域()-∞+∞,内是有界的,因为对任⼀()x ∈-∞+∞,都有sin 1x ≤,函数1y x=在()10,内⽆上界,但有下界. 从⼏何上看,有界函数的图像界于直线y M =±之间.2. 函数的单调性设函数()f x 在数集D 上有定义,若对D 中的任意两数12,x x 12()x x <,恒有()()12f x f x ≤ [或()()12f x f x ≥],则称函数()f x 在D 上是单调增加(或单调减少)的.若上述不等式中的不等号为严格不等号,则称为严格单调增加(或严格单调减少)的.在定义域上单调增加或单调减少的函数统称为单调函数;严格单调增加或严格单调减少的函数统称为严格单调函数.如图1-7所⽰.图1-7例如,函数()3f x x =在其定义域()-∞+∞,内是严格单调增加的;函数()cos f x x =在π0,()内是严格单调减少的.从⼏何上看,若()y f x =是严格单调函数,则任意⼀条平⾏于x 轴的直线与它的图像最多交于⼀点,因此()y f x =有反函数.3. 函数的奇偶性设函数()f x 的定义域()D f 关于原点对称(即若()x D f ∈,则必有()x D f -∈.若对任意的()x D f ∈,都有()()f x f x -=-[或()()f x f x -=],则称()f x 是()D f 上的奇函数(或偶函数).奇函数的图像对称于坐标原点,偶函数的图像对称于y 轴,如图1-11所⽰.图1-8例7 讨论函数()(ln f x x =的奇偶性. 解函数()f x 的定义域()-∞+∞,是对称区间,因为()(lnln f x x ??-=-= (()ln x f x =-+=-所以,()f x 是()-∞+∞,上的奇函数. 4. 函数的周期性设函数()f x 的定义域为()D f ,若存在⼀个不为零的常数T ,使得对任意()x D f ∈,有x T D f ±∈()(),且f x T f x +=()(),则称()f x 为周期函数,其中使上式成⽴的常数T 称为()f x 的周期,通常,函数的周期是指它的最⼩正周期,即:使上式成⽴的最⼩正数T T (如果存在的话).例如,函数sin f x x =()的周期为π2;()tan f x x =的周期是π. 并不是所有函数都有最⼩正周期,例如,狄利克雷(Dirichlet )函数为数为⽆数10 ,) (,x D x x ?=??有理,理.任意正有理数都是它的周期,但此函数没有最⼩正周期.四、函数应⽤举例下⾯通过⼏个具体的问题,说明如何建⽴函数关系式.例8 ⽕车站收取⾏李费的规定如下:当⾏李不超过50千克时,按基本运费计算.如从上海到某地每千克以0.15元计算基本运费,当超过50千克时,超重部分按每千克0.25元收费.试求上海到该地的⾏李费y (元)与重量x (千克)之间的函数关系式,并画出函数的图像.解当500x <≤时,150.y x =;当50x >时,1552550.00.(0)y x =?+-. 所以函数关系式为:0.15, 050;7.50.25(50),50.x x y x x <≤?=?+->?这是⼀个分段函数,其图像如图1-9所⽰.图1-9例9 某⼈每天上午到培训基地A 学习,下午到超市B ⼯作,晚饭后再到酒店C 服务,早、晚饭在宿舍吃,中午带饭在学习或⼯作的地⽅吃.A B C ,,位于⼀条平直的马路⼀侧,且酒店在基地与超市之间,基地与酒店相距3km ,酒店与超市相距5km ,问该打⼯者在这条马路的A 与B 之间何处找⼀宿舍(设随处可找到),才能使每天往返的路程最短. 解如图1-10所⽰,设所找宿舍D 距基地A 为x (km ),⽤f x ()表⽰每天往返的路程函数.图1-10当D 位于A 与C 之间,即30x ≤≤时,易知()()8823222f x x x x x =++-+-=-(),当D 位于C 与B 之间,即38x ≤≤时,则()882312()()0.f x x x x x =++-+-=+ 所以22,03;()102,38.x x f x x x -≤≤?=?+≤≤?这是⼀个分段函数,如图1-11所⽰,在30,上,()f x 是单调减少,在38,上,()f x 是单调增加.从图像可知,在3x =处,函数值最⼩.这说明,打⼯者在酒店C 处找宿舍,每天⾛的路程最短.图1-11五、基本初等函数初等数学⾥已详细介绍了幂函数、指数函数、对数函数、三⾓函数、反三⾓函数,以上我们统称为基本初等函数.它们是研究各种函数的基础.为了读者学习的⽅便,下⾯我们再对这⼏类函数作⼀简单介绍.1. 幂函数函数µy x = (µ是常数)称为幂函数.幂函数µy x =的定义域随µ的不同⽽异,但⽆论µ为何值,函数在()0+∞,内总是有定义的. 当0µ>时,µy x =在)0+∞??,上是单调增加的,其图像过点0,0()及点()1,1,图1-12列出了12µ=,1µ=,2µ=时幂函数在第⼀象限的图像. 当0µ<时,µy x =在()0+∞,上是单调减少的,其图像通过点()1,1,图1-13列出了12µ=-,1µ=-,2µ=-时幂函数在第⼀象限的图像.图1-12 图1-132. 指数函数函数x y a =(a 是常数且10a a >≠,)称为指数函数.指数函数x y a =的定义域是()-∞+∞,,图像通过点()10,,且总在x 轴上⽅. 当时1a >,x y a =是单调增加的;当10a <<时,x y a =是单调减少的,如图1-14所⽰.以常数e 271828182.=L 为底的指数函数e x y =是科技中常⽤的指数函数.图1-143. 对数函数指数函数x y a =的反函数,记作log a y x =(a 是常数且10,a a >≠),称为对数函数.对数函数log a y x =的定义域为()0+∞,,图像过点()1,0.当1a >时,log a y x =单调增加;当10a <<时,log a y x =单调减少,如图1-15所⽰.科学技术中常⽤以e 为底的对数函数e log y x =,图1-15它被称为⾃然对数函数,简记作ln y x =.另外以10为底的对数函数1log 0y x =,也是常⽤的对数函数,简记作g l y x =.4. 三⾓函数常⽤的三⾓函数有正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =,余切函数 cot y x =,其中⾃变量x 以弧度作单位来表⽰.它们的图形如图1-16,图1-17,图1-18和图1-19所⽰,分别称为正弦曲线,余弦曲线,正切曲线和余切曲线.图1-16图1-17正弦函数和余弦函数都是以π2为周期的周期函数,它们的定义域都为(),-∞+∞,值域都为1,1-.正弦函数是奇函数,余弦函数是偶函数.图1-18 图1-19由于πcos sin 2x x ??=+ ??,所以,把正弦曲线sin y x =沿x 轴向左移动π2个单位,就获得余弦曲线cos y x =.正切函数sin tan cos xy x x==的定义域为()21{|(),}D f x x x n n =∈≠+R ,整为数. 余切函数cos cot sin xy x x==的定义域为 ()π{,}D f x x x n n =∈≠R |,整为数.正切函数和余切函数的值域都是()-∞+∞,,且它们都是以π为周期的函数,且都是奇函数.另外,常⽤的三⾓函数还有正割函数sec y x =;余割函数cscy x =.它们都是以π2为周期的周期函数,且1sec cos x x=; 1csc sin x x =.5. 反三⾓函数常⽤的反三⾓函数有反正弦函数 arcsin y x = (如图1-20);反余弦函数 arccos y x = (如图1-21);反正切函数 arctan y x = (如图1-22);反余切函数arccot y x = (如图1-23).它们分别称为三⾓函数sin y x =,cos y x =,tan y x =和cot y x =的反函数.这四个函数都是多值函数.严格来说,根据反函数的概念,三⾓函数sin y x =,cos y x =,tan y x =和cot y x =在其定义域内不存在反函数,因为对每⼀个值域中的数y ,有多个x 与之对应.但这些函数在其定义域的每⼀个单调增加(或减少)的⼦区间上存在反函数.例如,sin y x=在闭区间,22ππ??-上单调增加,从⽽存在反函数,称此反函数为反正弦函数arcsin x 的主值,记作y =arcsin x .通常我们称arcsin y x =为反正弦函数.其定义域为11,-,值域为,22ππ??-.反正弦函数arcsin y x =在11,-上是单调增加的,它的图像如图1-20中实线部分所⽰. 类似地,可以定义其他三个反三⾓函数的主值arccos arctan ,y x y x ==和arccot y x =,它们分别简称为反余弦函数,反正切函数和反余切函数.反余弦函数arccos y x =的定义域为1,1-,值域为π0,,在1,1-上是单调减少的,其图像如图1-21中实线部分所⽰.反正切函数arctan y x =的定义域为(),-∞+∞,值域为ππ22??-,,在()-∞+∞,上是单调增加的,其图像如图1-22中实线部分所⽰.反余切函数arccot y x =的定义域为()-∞+∞,,值域为π0,(),在()-∞+∞,上是单调减少的,其图像如图1-23中实线部分所⽰.图1-20 图1-21图1-22 图1-23六、初等函数由常数和基本初等函数经有限次四则运算和复合运算得到并且能⽤⼀个式⼦表⽰的函数,称为初等函数.例如,23sin4y x x =+,(ln y x =+,3arctan22sin 1xy x x =+等等都是初等函数.分段函数是按照定义域的不同⼦集⽤不同表达式来表⽰对应关系的,有些分段函数也可以不分段⽽表⽰出来,分段只是为了更加明确函数关系⽽已.例如,绝对值函数也可以表⽰成y x =1,,()0,x a f x x a ? 也可表⽰成1()12f x ? = ??.这两个函数也是初等函数.七、双曲函数与反双曲函数1. 双曲函数双曲函数是⼯程和物理问题中很有⽤的⼀类初等函数.定义如下:双曲正弦 sh e e 2x xx --= ()x -∞<<+∞,双曲余弦 ch e e 2x xx -+= ()x -∞<<+∞,双曲正切 th e e e e sh ch x xx x+ ()x -∞<<+∞,其图像如图1-24和图1-25所⽰图1-24 图1-25.双曲正弦函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内单调增加.双曲余弦函数的定义域为()x -∞<<+∞,它是偶函数,其图像通过点()10,且关于y 轴对称,在(),0-∞内单调减少;在()0+∞,内单调增加. 双曲正切函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内是单调增加的.由双曲函数的定义,容易验证下列基本公式成⽴.()sh sh ch ch sh x y x y x y ±=±,()ch ch ch sh sh x y x y x y ±=±,sh22sh ch x x x =,2222ch2ch sh 12sh 2ch 1x x x x x =+=+=-,22ch sh 1x x -=.2. 反双曲函数双曲函数的反函数称为反双曲函数,sh y x =,ch y x =和th y x =的反函数,依次记为反双曲正弦函数 a rsh y x =,反双曲余弦函数 arch y x =,反双曲正切函数 a rth y x =.反双曲正弦函数a rsh y x =的定义域为()-∞+∞,,它是奇函数,在()-∞+∞,内单调增加,由sh y x =的图像,根据反函数作图法,可得a rsh y x =的图像,如图1-26所⽰.利⽤求反函数的⽅法,不难得到(a rsh ln y x x ==+.反双曲余弦函数arch y x =的定义域为)1+∞??,,在)1+∞??,上单调增加,如图1-27所⽰,利⽤求反函数的⽅法,不难得到(arch ln y x x ==.图1-26 图1-27反双曲正切函数a rtanh y x =的定义域为11()-,,它在11()-,内是单调增加的.它是奇函数,其图像关于原点(00),对称,如图1-28所⽰.容易求得a rth 1ln 1xy x x+==-.第⼆节数列的极限⼀、数列极限的定义定义1 如果函数f 的定义域()*{}D f N ==L ,,,123,则函数f 的值域()(){}**|f N f n n N =∈中的元素按⾃变量增⼤的次序依次排列出来,就称之为⼀个⽆穷数列,简称数列,即()()()12,,f f f n L L ,,.通常数列也写成12,n x x x L L ,,,,并简记为{}n x ,其中数列中的每个数称为⼀项,⽽()n x f n =称为⼀般项.对于⼀个数列,我们感兴趣的是当n ⽆限增⼤时,n x 的变化趋势.我们看下列例⼦:数列 12,,,,231nn +L L (1-2-1) 的项随n 增⼤时,其值越来越接近1;数列 2462 n L L ,,,,, (1-2-2)的项随n 增⼤时,其值越来越⼤,且⽆限增⼤;数列 1111(1)0,n n-+-L L ,,,, (1-2-3)的各项值交替地取1与0;数列 ()11111,,,,,23n n---LL (1-2-4) 的各项值在数0的两边跳动,且越来越接近0;数列 2222L L ,,,,, (1-2-5)各项的值均相同.在中学教材中,我们已知道极限的描述性定义,即“如果当项数n ⽆限增⼤时,⽆穷数列{}n x 的⼀般项n x ⽆限地趋近于某⼀个常数a (即n x a -⽆限地接近于0),那么就说a 是数列{}n x 的极限”.于是我们⽤观察法可以判断数列{}1n n -,1(1)n n -??-,{}2都有极限,其极限分别为1,20,.但什么叫做“n x ⽆限地接近a ”呢?在中学教材中没有进⾏理论上的说明.我们知道,两个数a 与b 之间的接近程度可以⽤这两个数之差的绝对值b a -来度量.在数轴上b a -表⽰点a 与点b 之间的距离,b a -越⼩,则a 与b 就越接近,就数列(1-2-1)来说,因为111n x n n-=-=,我们知道,当n 越来越⼤时,1n 越来越⼩,从⽽n x 越来越接近1.因为只要n ⾜够⼤, 11n x n-=就可以⼩于任意给定的正数,如现在给出⼀个很⼩的正数1100,只要n 100>即可得11100n x -<,11120,0,n =L如果给定110000,则从10001项起,都有下⾯不等式1110000n x -<成⽴.这就是数列1n n x n-=12 (,,)n =L ,当n →∞时⽆限接近于1的实质.⼀般地,对数列{}n x 有以下定义.定义2 设{}n x 为⼀数列,若存在常数a 对任意给定的正数ε(⽆论多么⼩),总存在正整数N ,当n N >时,有不等式n x a ε-<即(,)n x U a ε∈,则称数列{}n x 收敛,a 称为数列{}n x 当n →∞时的极限,记为lim n n x a →∞=或n x a →()n →+∞.若数列{}n x 不收敛,则称该数列发散.定义中的正整数N 与ε有关,⼀般说来,N 将随ε减⼩⽽增⼤,这样的N 也不是唯⼀的.显然,如果已经证明了符合要求的N 存在,则⽐这个N ⼤的任何正整数均符合要求,在以后有关数列极限的叙述中,如⽆特殊声明,N 均表⽰正整数.此外,由邻域的定义可知,()n x U a ε∈,等价于n x a ε-<.我们给“数列{}n x 的极限为a ”⼀个⼏何解释:将常数a 及数列123,,,,,n x x x x L L 在数轴上⽤它们的对应点表⽰出来,再在数轴上作点a 的ε邻域,即开区间(,)a εa ε-+,如图1-29所⽰图1-29因两个不等式 ||n x a ε-<, n a εx a ε-<<+等价,所以当n N >时,所有的点n x 都落在开区间(,)a εa ε-+内,⽽只有有限个点(⾄多只有N 个点)在这区间以外.为了以后叙述的⽅便,我们这⾥介绍⼏个符号,符号“?”表⽰“对于任意的”、“对于所有的”或“对于每⼀个”;符号“?”表⽰“存在”;符号“{}ax m X ”表⽰数集X 中的最⼤数;符号“{}min X ”表⽰数集X 中的最⼩数.数列极限lim n n x a →∞=的定义可表达为:lim n n x a →∞=0ε??>,?正整数N ,当n N >时,有n x a ε-<.例1 证明 1lim 02n n →∞=.证 0ε?>(不防设1ε<),要使11022nn ε-=<,只要21nε>,即ln ln21/n ε>(). 因此,0ε?>,取ln /ln21N ε= ???,则当n N >时,有102n ε-<.由极限定义可知1lim 02n n →∞=. 例2 证明π1lim cos04n n n →∞=. 证由于ππ111cos 0cos 44n n n n n -=≤,故0ε?>,要使π1cos 04n εn -<,只要1εn <,即1n ε>.因此,0ε?>,取1N ε??=,则当n N >时,有π1cos 04n εn -<.由极限定义可知π1lim cos 04n n n →∞=. ⽤极限的定义来求极限是不太⽅便的,在本章的以后篇幅中,将逐步介绍其他求极限的⽅法.⼆、数列极限的性质定理1(惟⼀性)若数列收敛,则其极限惟⼀. 证设数列{}n x 收敛,反设极限不惟⼀:即lim n n x a →∞=,lim n n x b →∞=,且a b ≠,不妨设a b <,由极限定义,取2b a ε-=,则10N ?>,当1n N >时,2n b ax a --<,即 322n a b a bx -+<<,(1-2-6) 20N ?>,当2n N >时,2n b ax b --<,即322n a b b ax +-<<, (1-2-7) 取{}12m ,N ax N N =,则当n N >时,(1-3-6),(1-3-7)两式应同时成⽴,显然⽭盾.该⽭盾证明了收敛数列{}n x 的极限必惟⼀.定义3 设有数列{}n x ,若存在正数M ,使对⼀切12,,n =L ,有n x M ≤,则称数列{}n x 是有界的,否则称它是⽆界的.对于数列{}n x ,若存在常数M ,使对12n =L ,,,有n x M ≤,则称数列{}n x 有上界;若存在常数M ,使对12,,n =L ,有n x M ≥,则称数列{}n x 有下界.显然,数列{}n x 有界的充要条件是{}n x 既有上界⼜有下界. 例3 数列{}211n +有界;数列{}2n 有下界⽽⽆上界;数列{}2n -有上界⽽⽆下界;数列{}11nn --()既⽆上界⼜⽆下界.定理2(有界性)若数列{}n x 收敛,则数列{}n x 有界.证设lim n n x a →∞=,由极限定义,0ε?>,且1ε<,0N ?>,当n N >时,1||n x a ε-<<,从⽽<1n x a +.取{}12m 1,,,,N M ax a x x x =+?,则有n x M ≤,对⼀切123,,,n =L ,成⽴,即{}n x 有界.定理2 的逆命题不成⽴,例如数列{}1()n -有界,但它不收敛.定理3(保号性)若lim n n x a →∞=,0a >(或0a <),则0N ?>,当n N >时,0n x >(或0n x <).证由极限定义,对02aε=>,0N ?>,当n N >时,2n a x a -<,即322n a x a <<,故当n N >时,02n ax >>.类似可证0a <的情形.推论设有数列{}n x ,0N ?> ,当n N >时,0n x > (或0n x <),若lim n n x a →∞=,则必有0a ≥ (或0a ≤).在推论中,我们只能推出0a ≥ (或0a ≤),⽽不能由0n x > (或0n x <)推出其极限(若存在)也⼤于0(或⼩于0).例如10n x n=>,但1lim lim 0n n n x n →∞→∞==.下⾯我们给出数列的⼦列的概念.定义4 在数列{}n x 中保持原有的次序⾃左向右任意选取⽆穷多个项构成⼀个新的数列,称它为{}n x 的⼀个⼦列.在选出的⼦列中,记第1项为1n x ,第2项为2n x ,…,第k 项为k n x ,…,则数列{}n x 的⼦列可记为{}k n x .k 表⽰k n x 在⼦列{}k n x 中是第k 项,k n 表⽰k n x 在原数列{}n x 中是第k n 项.显然,对每⼀个k ,有k n k ≥;对任意正整数h ,k ,如果h k ≥,则h k n n ≥;若h k n n ≥,则h k≥由于在⼦列{}k n x 中的下标是k ⽽不是k n ,因此{}k n x 收敛于a 的定义是:0ε?>,0K ?>,当k K >时,有k n x a ε-<.这时,记为lim k n k x a →+∞= .定理4 lim n k x a →∞=的充要条件是:{}n x 的任何⼦列{k n x }都收敛,且都以a 为极限. 证先证充分性.由于{}n x 本⾝也可看成是它的⼀个⼦列,故由条件得证. 下⾯证明必要性.由lim n k x a →∞=,0ε?>,0N ?>,当n N >时,有n x a ε-<.今取K N =,则当k K >时,有k K N n n n N >=≥,于是k n x a ε-<.故有lim k n k x a →∞=.定理4⽤来判别数列{}n x 发散有时是很⽅便的.如果在数列{}n x 中有⼀个⼦列发散,或者有两个⼦列不收敛于同⼀极限值,则可断⾔{}n x 是发散的.例4 判别数列{}*πsin ,8n n x n N =∈的收敛性.解在{}n x 中选取两个⼦列:{}*8πsin ,8k k N ∈,即{}πππ8168sin ,sin ,sin ,888k ; ()*164πsin ,8k k N +??∈,即()ππ16420sin ,sin ,88k ??+??. 显然,第⼀个⼦列收敛于0,⽽第⼆个⼦列收敛于1,因此原数列{}πsin 8n 发散.三、收敛准则定义5 数列{}n x 的项若满⾜121n n x x x x +≤≤≤≤≤L L ,则称数列{}n x 为单调增加数列;若满⾜121n n x x x x +≥≥≥≥≥L L ,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成⽴时,则分别称{}n x 是严格单调增加和严格单调减少数列.收敛准则单调增加有上界的数列必有极限;单调减少有下界的数列必有极限. 该准则的证明涉及较多的基础理论,在此略去证明.例5 证明数列11nn ??+?? ??收敛.证根据收敛准则,只需证明11nn ??+?? ??单调增加且有上界(或单调减少且有下界).由⼆项式定理,我们知道1221111(1)1n n n n n n nx C C C n n n n =+=++++L 11112112111(1)(1)(1)(1)(1)(1)2!3!!n n n n n n n n -=++-+--++---L L ,11211111211111(1)111(1)(1)n n n n n n n x C C C n n n n +++++++=+=++++++++L 1111211(1)(1)(1)2!13!11n n n =++-+--++++L1121(1)(1)(1)!111n n n n n -+--++-+++L 112(1)(1)(1)(1)!111n n n n n +--++-++++L ,逐项⽐较n x 与1n x +的每⼀项,有1n n x x +<,1,2,.n =L这说明数列{}n x 单调增加,⼜111112!3!!n x n <+++++L 211111222n <+++++L。
大一高数知识点总结
大一高数知识点总结XXX:大一高数知识点,重难点整理第一章基础知识部分1.1初等函数一、函数的概念1、函数的定义函数是从量的角度对运动变化的抽象表述,是一种刻画运动变化中变化量相依关系的数学模型。
设有两个变量x与y,如果对于变量x在实数集合D内的每一个值,变量y按照一定的法则都有唯一的值与之对应,那么就称x是自变量,y是x的函数,记作y=f(x),其中自变量x取值的集合D叫函数的定义域,函数值的集合叫做函数的值域。
2、函数的表示方法(1)解析法即用解析式(或称数学式)表示函数。
如y=2x+1,y=︱x︱,y=lg(x+1),y=sin3x等。
便于对函数进行精确地计算和深入分析。
(2)列表法即用表格形式给出两个变量之间函数关系的方法。
便于差的某一处的函数值。
(3)图像法即用图像来表示函数关系的方法非常形象直观,能从图像上看出函数的某些特性。
分段函数——即当自变量取不同值时,函数的表达式不一样,如1.2x?1.x?0?xsin。
f?xy。
x。
2x?1,x?00 x?0 x?0隐函数——相对于显函数而言的一种函数形式。
所谓显函数,即直接用含自变量的式子表示的函数,如y=x2+2x+3,这是常见的函数形式。
而隐函数是指变量x、y之间的函数关系式是由一个含x,y的方程F(x,y)=0给出的,如2x+y-3=0,e可得y=3-2x,即该隐函数可化为显函数。
参数式函数——若变量x,y之间的函数关系是通过参数式方程。
x?y而由2x+y-3=0?x?y?0等。
xt。
t?T?给出的。
y。
t?这样的函数称为由参数方程确定的函数,简称参数式方程,t称为参数。
反函数——如果在已给的函数y=f(x)中,把y看作自变量,x也是y的函数,则所确定的函数x=∮(y)叫做y=f(x)的反函数,记作x=fˉ1(y)或y=fˉ1(x)(以x表示自变量).2、函数常见的性子1、单调性(单调增加、单调减少)2、奇偶性(偶:关于原点对称,f(-x)=f(x);奇:关于y轴对称,f(-x)=-f(x).)3、周期性(T为不为零的常数,f(x+T)=f(x),T为周期)4、有界性(设存在常数M>,对任意x∈D,有f∣(x)∣≤M,则称f(x)在D上有界,如果不存在这样的常数M,则称f(x)在D上无界。
大学高等数学函数ppt
有界性
若函数在某点的极限存在,则该函数在该 点的值是有界的。
局部四则运算性质
若两个函数的极限都存在,则它们的和、 差、积、商的极限也存在,且分别等于它 们各自极限的和、差、积、商。
无穷小量与无穷大量
无穷小量
在自变量趋近某一值时,函数值无限趋近于0。
无穷大量
在自变量趋近某一值时,函数值无限增大。
无穷小量与无穷大量的关系
定积分的概念
定积分定义
定积分是积分的一种,是函数在 区间上积分和的极限。定积分实 际上是一个数,而不像不定积分 那样是一种函数。
几何意义
定积分的值可以看作是曲线与x轴 所夹的面积,即“以直代曲”的 思想。
计算方法
通过微积分基本定理,可以将定 积分转化为求解原函数在区间端 点处的值之差。
定积分的性质
根据函数的定义域,函数可以分为实数函数、复数函数、离散函数等;根据函数的值域,函数可以分为常数函数、 一次函数、二次函数等;根据函数的特性,函数可以分为连续函数、可导函数、有界函数等。
02
函数的极限
极限的定义
极限的描述性定义
当自变量趋近某一值时,函数值无限接 近于某一常数,称该常数为函数的极限 。
两者之间可以相互转化。例如,当$x to infty$时,$frac{1}{x}$由无穷小量转化为无穷大量;当$x to 0^+$时,$x^2$由无穷小量转化为无穷大量。
03
导数与微分
导数的定义
总结词
导数是描述函数在某一点附近的变化率的重要概念。
详细描述
导数定义为函数在某一点处的切线的斜率,表示函数在该点附近的小变化所引起的函数 值的大小的变化率。导数的计算公式为lim(x→0) [f(x+Δx)-f(x)]/Δx,其中Δx是自变量
大一高数函数知识点
大一高数函数知识点函数是高等数学中的重要概念,它是描述数学关系的一种工具。
在大一的高等数学课程中,学生们会接触到许多与函数相关的知识点。
本文将介绍大一高数中的一些常见函数知识点,帮助读者更好地理解和掌握这些概念。
一、函数的定义与性质函数是一种映射关系,将一个集合中的每个元素都唯一地对应到另一个集合中的元素。
函数通常用符号表示,如f(x)或y=f(x)。
其中,x称为自变量,y称为因变量。
函数的定义包括定义域、值域和对应关系三个要素。
例如,对于函数y=x^2,其定义域为所有实数集R,值域为非负实数集R+,对应关系为x和x^2之间的关系。
函数的性质包括奇偶性、周期性等。
奇函数满足f(-x)=-f(x),即图像关于y轴对称;偶函数满足f(-x)=f(x),即图像关于原点对称。
周期函数具有在一定范围内重复出现的特点。
二、常见函数类型1. 线性函数线性函数是最简单的一类函数,其表达式为y=kx+b,其中k和b为常数。
线性函数的图像为斜率为k的直线,b为截距。
2. 幂函数幂函数是指以x为底的幂指数函数,其表达式为y=a*x^b,其中a和b为常数。
a决定了函数图像的纵向方向,b决定了函数图像的形状。
3. 指数函数指数函数是以常数e为底的指数函数,其表达式为y=a*e^x,其中a为常数。
指数函数的图像在x轴右侧呈现逐渐增大的趋势。
4. 对数函数对数函数是指数函数的反函数,其表达式为y=logₐ(x),其中a为常数。
对数函数的图像在x轴上仍然是逐渐增大的趋势,但增长速度逐渐减慢。
5. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们都是周期函数,具有一定的振荡特性。
三、函数的运算与复合函数函数之间可以进行加减乘除等运算,生成新的函数。
例如,两个函数f(x)和g(x)的和为h(x)=f(x)+g(x),差为j(x)=f(x)-g(x)。
函数的乘积与商的定义也类似。
复合函数是指将一个函数的输出作为另一个函数的输入,生成新的函数。
大一高等数学函数知识点
大一高等数学函数知识点在大一阶段的高等数学课程中,函数是一个非常重要的概念。
函数是一种数学工具,可以用来描述变量之间的关系。
学好函数的知识点对于理解数学的基本概念和解决实际问题都非常关键。
本文将介绍大一高等数学中常见的函数知识点。
1. 函数的定义函数是一种映射关系,将一个集合的元素映射到另一个集合的元素。
一般来说,函数可以用公式、图像或者表格来表示。
数学中常用的表示方式是函数的公式表示,即通过一个或多个自变量的输入,得到一个因变量的输出。
2. 函数的定义域和值域函数的定义域是指函数输入的值所在的集合,也就是自变量的取值范围。
而值域则是函数输出的值所在的集合,即因变量的取值范围。
定义域和值域的确定是确保函数定义合理性的重要因素。
3. 常见函数类型在高等数学中,常见的函数类型包括线性函数、二次函数、指数函数、对数函数、三角函数等。
这些函数类型具有不同的特征和性质,需要掌握它们的定义、图像、性质和应用领域。
4. 函数的性质函数具有很多重要的性质,例如奇偶性、单调性、周期性等。
奇偶性是指函数关于原点对称的性质,即满足$f(-x)=-f(x)$的函数为奇函数,满足$f(-x)=f(x)$的函数为偶函数。
单调性是指函数增减的趋势,可以通过导数的正负来判断。
周期性是指函数的图像在一定区间内重复出现。
5. 函数的图像函数的图像是通过自变量和因变量之间的映射关系绘制出来的。
图像可以帮助我们对函数进行可视化,更直观地理解函数的性质和变化规律。
对于线性函数、二次函数等常见函数,需要掌握它们的图像特征和变化规律。
6. 函数的运算函数之间可以进行多种运算,包括加减乘除、复合运算等。
函数的加减运算是将两个函数相应位置的值进行相加或相减。
函数的乘法是将两个函数相应位置的值相乘得到新的函数。
函数的除法是将一个函数的自变量值除以另一个函数的自变量值得到新的函数。
复合运算是将一个函数的输出作为另一个函数的输入,得到最终的输出。
7. 函数的应用函数在实际问题中具有广泛的应用。
大一高数基本知识点
大一高数基本知识点大一高等数学基本知识点一、函数与极限1. 函数的概念函数是一种特殊的关系,它将一个元素的集合(称为定义域)中的每个元素映射到另一个集合(称为值域)中的唯一元素。
函数可用符号表示为f(x)或y。
在数学中,函数是研究和描述数值之间关系的基本工具。
2. 极限的概念极限是描述函数在某一点上的表现趋势的概念。
当自变量x趋近于某个特定值a时,函数f(x)的取值趋近于一个确定的值L,我们称L为函数f(x)当x趋于a时的极限,表示为lim┬(x→a)〖f(x)。
〗3. 极限的性质极限具有一些重要的性质,包括极限的唯一性、四则运算法则、复合函数的极限等。
这些性质在计算极限的过程中十分有用,能够简化计算步骤。
4. 连续性与间断点函数的连续性描述了函数在某一点上的光滑程度。
如果函数在某一点a处的极限存在且与函数在该点的取值相等,则称函数在该点处连续。
而如果函数在某一点a处的极限存在但与函数在该点的取值不相等,则称函数在该点处存在间断点。
二、导数与微分1. 导数的定义函数f(x)在某一点x处的导数表示了函数在该点上的变化速度。
导数的定义为:f'(x) = lim┬(Δx→0)〖(f(x+Δx)-f(x))/Δx〗2. 导数的求法导数可以通过一系列的求导规则来计算。
常用的求导规则包括常数法则、幂函数法则、指数函数法则、对数函数法则、反函数法则、四则运算法则等。
3. 高阶导数一个函数的导数本身也是一个函数,我们可以对导函数再次求导,得到高阶导数。
高阶导数描述了函数的变化速度随着自变量变化的情况。
4. 微分的概念微分是导数的一种形式化表达方式。
微分的定义为:df(x) = f'(x)dx微分可以用来描述函数值的微小变化与自变量变化之间的关系。
三、定积分与不定积分1. 定积分的概念定积分是求解函数在某一区间上的面积的工具。
定积分由下面的极限定义:∫[a, b] f(x)dx = lim┬(n→∞)〖∑_(i=1)ⁿ▒f(xi)Δx〗其中,Δx = (b-a)/n,xi为[a+(i-1)Δx, a+iΔx]上的任意取值。
大一高数函数详细知识点
大一高数函数详细知识点函数是数学中的重要概念,是现实世界中各种关系的抽象表达。
在大一的高数课程中,函数是一个核心内容,掌握了函数的基本概念和性质,对于后续学习以及应用数学都具有重要的意义。
本文将详细介绍大一高数中函数的知识点,以帮助读者更好地理解和掌握这一内容。
一、函数的定义和性质1. 定义:函数是一个将自变量和因变量之间的对应关系表示出来的规则。
通常用符号y=f(x)表示,其中x是自变量,y是因变量,f表示函数的关系。
2. 定义域和值域:函数的定义域是自变量所有可能取值组成的集合,值域是因变量的所有可能取值组成的集合。
3. 一一对应:如果函数中的每一个x值对应唯一的y值,且每一个y值也对应唯一的x值,则称这个函数是一一对应的。
4. 奇偶性:如果函数满足f(-x)=-f(x)(对于定义域内的所有x),则称这个函数是奇函数;如果函数满足f(-x)=f(x)(对于定义域内的所有x),则称这个函数是偶函数。
5. 函数的增减性:如果对于定义域内的任意两个实数x1和x2,当x1<x2时有f(x1)<f(x2),则称函数是增函数;如果对于定义域内的任意两个实数x1和x2,当x1<x2时有f(x1)>f(x2),则称函数是减函数。
二、常见的基本函数类型1. 线性函数:线性函数的表达式为y=kx+b,其中k和b为常数。
线性函数的图像为一条直线,斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。
2. 幂函数:幂函数的表达式为y=x^a,其中a为常数。
幂函数的图像关于y轴对称,当a为正数时,函数是递增的;当a为负数时,函数是递减的。
3. 指数函数:指数函数的表达式为y=a^x,其中a为常数且大于0且不等于1。
指数函数的图像为一条曲线,当a大于1时,函数是递增的;当0<a<1时,函数是递减的。
4. 对数函数:对数函数的表达式为y=logₐx,其中a为常数且大于0且不等于1。
大一高等函数知识点总结
大一高等函数知识点总结高等函数是大一学生在数学课程中学习的一门重要内容。
掌握高等函数的知识对于理解和应用数学定理、解决实际问题等都具有重要意义。
下面将对大一高等函数的一些重要知识点进行总结,供大家参考。
一、函数的定义与性质1. 函数的定义:函数是一种关系,它把一个集合的每一个元素都对应到另一个集合的唯一元素上。
2. 函数的性质:a. 定义域和值域:函数的定义域是指函数可以取值的所有实数的集合,值域是指函数实际取到的所有值所组成的集合。
b. 单调性:函数在定义域上递增或递减的性质。
c. 奇偶性:奇函数是具有f(-x)=-f(x)的性质,而偶函数是具有f(-x)=f(x)的性质。
d. 周期性:函数在一个周期内具有相同的函数值。
二、常见函数类型1. 幂函数:幂函数是指形如y=x^n的函数,其中n为正整数。
它们的图像表现出不同的形状,如y=x^2对应抛物线,y=x^3对应双曲线等。
2. 指数函数:指数函数是指形如y=a^x的函数,其中a为任意正实数且不等于1。
它们的图像呈现出递增或递减的曲线。
3. 对数函数:对数函数是指形如y=log_a(x)的函数,其中a为正实数且不等于1。
它们是指数函数的反函数,图像呈现出递增或递减的曲线。
4. 三角函数:包括正弦函数、余弦函数、正切函数等,它们的图像具有周期性和振荡性。
5. 反三角函数:包括反正弦函数、反余弦函数、反正切函数等,它们是三角函数的反函数。
三、函数的运算与组合1. 四则运算:函数可以进行加、减、乘、除等运算。
两个函数相加减得到的结果仍为函数,而两个函数相乘除得到的结果不一定是函数。
2. 复合函数:将一个函数的输出作为另一个函数的输入,形成复合函数。
复合函数的定义域和值域由两个函数共同决定。
3. 反函数:如果一个函数的定义域和值域与另一个函数的相反,且它们的输出和输入可以相互对应,那么这两个函数互为反函数。
四、高等函数的应用1. 极值与最值:通过求解函数的极值点,即导函数为零的点,可以求得函数的最大值和最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y f [ ( x )]为复合函数.
自变量
2
中间变量
2
如, y 1 x 是由y u , u 1 x 复合 而得的.
基本初等函数
如, y e 是 指数函数 初等函数:由基本初等 u 函数经过有限次四则运 e , u v , v 1 x 2 由y 算和复合运算构成的函 复合而得的. 数并可用一个式子表示 多项式函数 幂函数 的函数.
y cos x
正切函数
y tan x
π π 定义域 : ( kπ , kπ ), k Z; 值域( , ), 2 2 π π 以π 为周期, 在每个开区间( kπ , kπ )上 2 2 递增.
余切函数
y cot x
定义域 : kπ ,( k 1)π ), k Z;值域( , ), ( 以π 为周期, 在每个开区间( π ,( k 1)π ) k 上 递减.
六、应用
例7 连续复利问题: 在银行存款所得利息的计算公式为: 利息 I =本金 A×存期 t×利率 r. 这是单利公式,如果计算复利,即到 期利息计入本金继续计息,那么应该 如何计算利息? 解 设有本金 A,计息期每期利息利率 r, 计息期数(存期)t .若每期结算1次, 则 t 期后的本利和为
1.不是任何两个函数都可以复合成一个复 合函数的.
例如 y arcsin u,
u 2 x ;
2Hale Waihona Puke y×arcsin(2 x )
2
2.复合函数可以由两个以上的函数经过复 合构成. 自变量 中间变量
x x 例如 y cot , y u , u cot v , v . 2 2 把一个复合函数分成不同层次的函数,叫做复合 中间变量 函数的分解.
例9 生物的繁衍 经过长时间的研究,生物学家测定某 地区鲸鱼数 y (头)和时间 t (年)的关系 y t 2 14t 220, 为 如果从1984年算起(t = 0),哪一年此 群鲸鱼数为100头? 解 已知y t 2 14t 220,
在t 0时,即1984年底,y 220 (头) 由题意,y 100 (头), 即有 t 2 14t 120 0 t 2 14t 120 0
y log a x (a 0, a 1)
y ln x是常用的对数函数
(1,0)
y log a x
y log 1 x
a
4、三角函数
正弦函数
y sin x
y= sinx,y =cos x 的定 义域是(-∞,+∞), 值域是[- 1,1],以2π为 最小周期,有界函数.
余弦函数
即根据1978年的数据,可推算出2005年底 我国人口为13.22亿.
人口模型 : 设某地某年人口为p0,人口自然 增长率为r,那么t 年后的人口p为 p p0 (1 r ) .
t
马尔萨斯(malthus,英,1776 — 1834) 根据上述模型提出了他的人口理论,这一模 型只适用于生物种群的生存环境较为优雅宽 松的情况.当生物种群数量增长到一定值时, 恶化的生态环境将抑制种群数量的增长,进 而出现负增长,此时马尔萨斯人口模型就不 适用了.
提示与分析: 所给函数是两个函数之和形式,所以 f ( x )的定义域是使两个函数同时有意 义的取值范围,即应是两个函数定义 域的交集.
解
x 1 1, x 2 25, x 1 5且 x 5 5 4 x 6且 5 x 5,
于是, 定义域是[
5 5 [ 4 0
三、基本初等函数
1、幂函数
y x
( 是常数),在(0, )内总有定义 y
y x
y x2
y x
x
o
1 y x
2、指数函数 x ya
1 x y( ) a 1 0 1 a
(a 0, a 1) x y e是常用的指数函数
x y a(a 1)
(0,1)
3、对数函数
五、MM 能力培养
数学模型方法简称MM方法.构建数学模型, 欣赏数学模型, 进而借鉴数学模型是解决实际 问题的能力. 构建函数模型的步骤与方法: 1)对实际问题的现实原型进行分析,判断所属 的系统,如:力学系统、电学系统、心理学系统 等.分析量的主要矛盾,屏弃次要矛盾,保留两 个主要变量及常量,考察是否有可借用的公 式、定理.如果没有,还须通过观察、实验等 科学方法探询有关量之间的关系.
2)采用数学符号,建立自变量和因变量以 及相关常量之间的等量关系,解出因变量, 并判明自变量有意义的变化范围,便得函 数模型. 3) 在模型上进行必要的逻辑推理和演算, 求得解答,再返回到实际问题进行检验.
例6 人口模型 已知1978年底我国人口为9.6259 亿,当年的自然增长率为12.00‰.若将次增长率 作为年均增长率计算,那么到2005年底我国人 口将是多少? 解 设 t 年后我国人口为p,那么 一年后人口为 9.6259+9.6259×12‰ = 9.6259×(1+12 ‰) 2年后人口为 9.6259 ×( 1+12‰ ) +9.6259×(1+12‰) × 12‰ = 9.6259×(1+12‰) 2
y x2 1 1 3 ln[1 arcsin( x )] cos 2 x 3
1 x 2
表面形式复杂,但依然 是初等函数.
分解复合函数原则: 观察各层函数是否 为基本初等函数或多 项式函数.
y arcsin u的定义域是[1,1],
注意:
而u 2 x 2 1, 这两个函数是 不能复合成一个函数的.
A1 A(1 r )t ;
r 若每期结算m次,则每次利率为 , m t期内共结算mt次,t期后的本利和为
r mt Am A(1 ) . m 如果,即按照每个瞬间“即存即算” 来计算本利和,则归结为求极限
r mt lim A(1 ) m m
这个求极限问题将在第二章的应用中 介绍.
,
).
)
5 6
两个函数和的定义域,是这两个函数定义 域公共部分.
四、复合函数
设y f ( u), u U ; u ( x ), x X
y f X 称为 由x ( u)确定的函数值u ( x )落在 ( x )称为 u 外层函数 函数y f ( u)的定义域U内, 则称里层函数
π π 定义域 : ( , ), 值域( , ), 2 2 单增函数, tan arctan x) x . (
渐近线
π y 2
π y 2
渐近线
把常数函数,幂函数,指数函 数,对数函数,三角函数和反三 角函数统称为 基本初等函数.
x 1 1 的定义域. 例5 讨论y arcsin 5 25 x 2
b a ct,c为常数, e
b 1 t 5570时,e , a 2
ct
ln 0.5 4 可得,c 1.244 10 , 5570 b 1.244104 t 即有 0.767 e , a
ln 0.767 t 2132(年). 4 1.244 10 因此推算出古墓是在2132年前建成的.
例8 用函数关系探测古墓的年代 考古人员研究了长沙马王堆一号古墓,发 现了棺盖板是由杉木做成的,并且盖板所含 的C14放射性物质和现代杉木的C14的比值为 76.7%,问此古墓是什么时候建的?
解
已知放射性物质C14的半衰期为5570 年,
并且生物体死亡后C14的含量b为原始含量 a随时间的变化满足下面的函数关系:
分段函数:不能用统一的代数式
表示的函数.如:
sin x f ( x) x 1 x0 0
须注意: ☆ 分段函数不是初等函数. ☆ 分段函数不可认为是若干函数的和, 也不是几个函数,而是一个函数.只是 随着自变量 x 取不同范围的值,函数的 表达式不同.
综上所论:
复合函数y f ( u), u ( x ) y f [ ( x )] 由基本初等函数经有限次四则 初等函数: 运算和有限次复合运算构成 指数函数y a x , y e x 初等函数的 对数函数y log a x,y ln x 结构关系 幂函数y x 基本初等函数 三角函数y sin x , y cos x , y tan x , y cot x , y sec x , y csc x 反三角函数 yc 反函数y f 1 ( x )
5、反三角函数
反正弦函数 y arcsin x
定义域 [1,1], sin arcsin x x . ( ) π π 值域[ , ] 2 2
反余弦函数 y arccos x
定义域 [1,1], 值域[0,π ] cos arccos x x . ( )
反正切函数 y arctan x
t 6或t 20
t 0时为1984年底,由此推算,在1964年底 和1990年底的鲸鱼数都是100头.
例10 反函数的应用 某人从美国到加拿大去度假,他把美元兑换成加 拿大元时,币面值增加12%,回美国后他发现,把 加拿大元兑换成美元时币面值减12%. 1)把这两个函数关系表示出来,并证明这两个函 数不互为反函数;2)同一时期,某人从美国到加 拿大旅游,他把10000美元兑换成加拿大元,但因 故未能成行,于是他又将加拿大元兑换成美元,问 他是否亏损? 解 设f1 ( x )表示将x美元兑换成加拿大元数,
……
……
t 年后人口为p=9.6259×(1+12‰) t
即
p 9.6259 1.012t