传送带木板滑块专题
专题(19)动力学中三种典型物理模型(解析版)
2021年高考物理一轮复习考点全攻关专题(19)动力学中三种典型物理模型(解析版)命题热点一:“传送带”模型【例1】(多选)如图所示,x 轴与水平传送带重合,坐标原点O 在传动带的左端,传送带右端A 点坐标为X A =8m ,匀速运动的速度V 0=5m/s ,一质量m =1kg 的小物块,轻轻放在传送带上OA 的中点位置,小物块随传动带运动到A 点后,冲上光滑斜面且刚好能够到达N 点处无机械能损失,小物块与传送带间的动摩擦因数μ=0.5,斜面上M 点为AN 的中点,重力加速度g =10m/s 2。
则下列说法正确的是( )A .N 点纵坐标为y N =1.25mB .小物块第一次冲上斜面前,在传送带上运动产生的热量为12.5JC .小物块第二次冲上斜面,刚好能够到达M 点D .在x =2m 位置释放小物块,小物块可以滑动到N 点上方 【答案】AB【解析】小物块在传送带上匀加速运动的加速度a=μg =5 m/s 2 ,小物块与传送带共速时,所用的时间,运动的位移,故小物块与传送带达到相同速度后以v 0=5 m/s 的速度匀速运动到Q ,然后冲上光滑斜面到达N 点,由机械能守恒定律得,解得 y N =1.25 m ,选项A 正确;小物块与传送带速度相等时,传送带的位移x=v 0t =5×1=5m ,传送带受摩擦力的作用,小物块在传送带上运动产生的热量Q =f (x -△x )=μmg (x -△x )=0.5×10×2.5=12.5J ,选项B 正确;物块从斜面上再次回到A 点时的速度为5m/s ,滑上传送带后加速度仍为5m/s 2,经过2.5m 后速度减为零,然后反向向右加速,回到A 点时速度仍为5m/s ,则仍可到达斜面上的N 点,选项C 错误;在x =2m位置释放05s 1s 5v t a ===202512.5m 4m 2522A v x X a ====⨯<2012N mv mgy =小物块,则小滑块在传送带上仍滑动2.5m 后与传送带相对静止,则到达A 点时的速度等于5m/s ,则小物块仍可以滑动到N 点,选项D 错误。
传送带与滑块问题
传送带与滑块专题1.如图,质量为m 的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端距离为L ,稳定时绳与水平方向的夹角为θ,当传送带分别以v 1、v 2的速度做逆时针转动时(v 1<v 2),绳中的拉力分别为F 1、F 2;若剪断细绳时,物体到达左端的时间分别为t 1、t 2,则下列说法正确的是( )A .F 1、F 2B .F 1=F 2C .t 1>t 2D .t 1<t 22.如图所示,一水平方向足够长的传送带以恒定的速率v 1沿顺时针方向运动,传送带右端有一与传送带等高的光滑水平面,物体以恒定的速率v 2沿直线向左滑上传送带后,经过一段时间又返回光滑水平面上,这时速率为'2v ,则下列说法中正确的是( )A .若v 1<v 2,则'2v =v 1B .若v 1>v 2,则'2v =v 2C .不管v 2多大,总有'2v =v 2D .只有v 1=v2时,才有2=v 13.如图甲所示为车站使用的水平传送带的模型,传送带长L =8m ,以速度v =4m/s 沿顺时针方向匀速转动,现有一个质量为m =10kg 的旅行包以速度V 0=10m/s 的初速度水平地滑上水平传送带.已知旅行包与皮带间的动摩擦因数为μ=0.6 ,(g =10m/s 2,且可将旅行包视为质点.)(1)则旅行包从传送带的A 端到B 端所需要的时间是多少?(2)若旅行包静置于传送带上,旅行包要以最短的时间运送到B 端,传送带的速度至少 为多少?最短时间是多少?4.一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。
初始时,传送带与煤块都是静止。
现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。
经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。
求此黑色痕迹的长度。
V 25.如图,传送带与水平方向夹37°角,AB 长为L =16m 的传送带以恒定速度v =10m/s 运动,在传送带上端A 处无初速释放质量为m =0.5kg 的物块,物块与带面间的动摩擦因数μ=0.5,(sin37°=0.6,cos37°=0.8,取g =10 m/s 2)求:(1)当传送带顺时针转动时,物块从A 到B 所经历的时间为多少?(2)当传送带逆时针转动时,物块从A 到B 所经历的时间为多少?6.如图所示,皮带轮带动传送带沿逆时针方向以速度v 0=2m / s 匀速运动,两皮带轮之间的距离L=3.2 m ,皮带绷紧与水平方向的夹角θ=37°。
专题强化4 动力学中两个典型物理模型
专题强化四动力学中两个典型物理模型【专题解读】1.本专题是动力学方法在两个典型模型问题中的应用,传送带模型和滑块—木板模型常以选择题或计算题压轴题的形式命题。
2.通过本专题的学习,可以培养同学们的审题能力、建模能力、分析推理能力和规范表达等物理学科素养,针对性的专题强化,通过题型特点和解题方法的分析,能帮助同学们迅速提高解题能力。
3.用到的相关知识有:匀变速直线运动规律、牛顿运动定律、相对运动的有关知识。
模型一传送带模型题型1水平传动带问题情景图示滑块可能的运动情况可能一直加速;可能先加速后匀速v0>v时,可能一直减速,也可能先减速再匀速;v0<v时,可能一直加速,也可能先加速再匀速传送带较短时,滑块一直减速到达左端;传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0【例1】(多选)如图1所示,水平传送带两端AB的距离是2.0 m,以恒定的速率2.0 m/s顺时针转动。
现将一质量为0.5 kg的小滑块轻放在A端,小物块与传送带之间的动摩擦因数为0.4,小物块可作为质点,小物块到达B端的时间t和速度v 是()图1A.t=1.0 sB.t=1.25 sC.v=4.0 m/sD.v=2.0 m/s答案BD解析小物块在水平传送带上在滑动摩擦力的作用下先做匀加速直线运动,当加速到与传送带速度相同后,与传送带一起匀速运动,有F f=μmg=ma,x1=v22a,代入数据解得x1=0.5 m<2 m,加速运动的时间t1=va=0.5 s,匀速运动的时间t2=L AB-x1v=0.75 s,则t=t1+t2=1.25 s,故选B、D。
题型2倾斜传送带模型情景图示滑块可能的运动情况可能一直加速;可能先加速后匀速可能一直加速;可能先加速后匀速;可能先以a1加速后再以a2加速可能一直加速;可能一直匀速;可能先加速后匀速;可能先减速后匀速;可能先以a1加速后再以a2加速;可能一直减速可能一直加速;可能一直匀速;可能先减速后反向加速;可能先减速,再反向加速,最后匀速;可能一直减速【例2】(多选)(2021·山东省实验中学模拟)如图2甲所示,一足够长的传送带倾斜放置,以恒定速率v=4 m/s顺时针转动。
热点专题系列3 动力学中三种典型物理模型
2.如图甲,若 0≤v0<v 且 μ<tanθ:物块以向下的加速度 a=gsinθ- μgcosθ 运动。
3.如图甲,若 v0>v 且 μ>tanθ: (1)传送带比较短时物块一直以 a=μgcosθ+gsinθ 向上匀减速运动。 (2)传送带足够长时物块先以 a=μgcosθ+gsinθ 向上匀减速运动再以速 度 v 向上匀速运动。 4.如图甲,若 v0>v 且 μ<tanθ: (1)传送带比较短时物块一直以 a=μgcosθ+gsinθ 向上匀减速运动。 (2)传送带足够长时物块先以 a=μgcosθ+gsinθ 向上匀减速运动,再以 a=gsinθ-μgcosθ 向上匀减速运动,最后以 a=gsinθ-μgcosθ 向下匀加速 运动。
4.如图乙,若 v0>v 且 μ<tanθ:物块一直以 a=gsinθ-μgcosθ 向下匀 加速运动。
总结:物块在倾斜传送带上的运动情形还有很多,但分析思路大体相 同:
(1)判断物块相对于传送带的运动方向,从而判断滑动摩擦力方向。 (2)列牛顿第二定律方程,判断 a 的方向和大小。 (3)根据临界条件 v 物=v 带确定临界状态的情况,根据 μ 与 tanθ 的关系 判断之后的运动情形。
C.0~t2时间内,小物块受到的摩擦力方向先向右后向左
D.0~t3时间内,小物块始终受到大小不变的摩擦力作用
答案
[解析] 小物块对地速度为零时,即t1时刻,向左离开A处最远;t2时 刻,小物块刚好与传送带共速,此后不再相对传送带滑动,所以t2时刻, 它相对传送带滑动的距离达到最大,A错误,B正确。0~t2时间内,小物块 受到的摩擦力为滑动摩擦力,方向始终向右,大小不变;t2时刻以后小物 块相对传送带静止,与传送带一起以速度v1匀速运动,不再受摩擦力作 用,C、D错误。
16第三章专题强化五“滑块—木板”模型传送-2025年高考物理大一轮复习课件
返回目30录
核心归纳
动力学中板块模型思维流程
2021[文件:中教联标彩.t]
返回目16录
2 斜面上的“滑块—木板”问题
返回目17录
典例 2 (多选)滑沙运动是小孩比较喜欢的一项运动,其运动过程可类比为 如图 Z53 所示的模型,倾角为 37°的斜坡上有长为 1 m 的滑板,滑板与
沙间的动摩擦因数为2410.小孩(可视为质点)坐在滑板上端,与滑板一起由静 止开始下滑,小孩与滑板之间20的21[文动件摩:中擦教因联标数彩取.t] 决于小孩的衣料,假设图中 小孩与滑板间的动摩擦因数为 0.4,小孩的质量与滑板的质量相等,斜坡 足够长,sin 37°=0.6,cos 37°=0.8,g 取 10 m/s2,则下列判断正确的 是( BC ).
向相反,两者加速度不同,最后 要判断两者是否有相对运动,以及
分离或相对静止,Δx=x 块+x 板
木板与地面是否有相对运动
1 水平面上的“滑块—木板”模型
返回目6录
典例 1 [“滑块—木板”模型与 v-t 图像综合](2024·湖北黄冈质检)一长木 板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁, 木板右端与墙壁的距离为 4.5 m,如图 Z51(a)所示.t=0 时刻开始,小物块 与木板一起以共同速度向右运20动21[文,件直:至中教t联=标1彩s.t]时木板与墙壁碰撞(碰撞时间 极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未 离开木板.已知碰撞后 1 s 时间内小物块的 v-t 图像如图 Z51(b)所示.木板的 质量是小物块质量的 15 倍,重力加速度 g 取 10 m/s2.求:
大小为
a1=mgsin
37°-μ1mgcos m
统考版高考物理总复习 专题三 动力学中的“传送带”和“滑块—滑板”模型
系为xB=xA+L
物块A带动长为L的木板B,物块恰好不
从木板上掉下的临界条件是物块恰好滑
到木板右端时二者速度相等,则位移关
系为xB+L=xA
例2. [2021·全国乙卷,21](多选)水平地面上有一质量为m1的长木板,
木板的左端上有一质量为m2的物块,如图(a)所示.用水平向右的拉力
专题三
动力学中的“传送带”和“滑块—滑板”模型
关键能力·分层突破
关键能力·分层突破
模型一
“传送带”模型
1.模型特点
传送带在运动过程中,会涉及很多的力,是传送带模型难点的原因,
例如物体与传送带之间是否存在摩擦力,是滑动摩擦力还是静摩擦力
等;该模型还涉及物体相对地面的运动以及相对传送带的运动等;该
F作用在物块上,F随时间t的变化关系如图(b)所示,其中F1、F2分别
为t1 、t2 时刻F的大小.木板的加速度a1 随时间t的变化关系如图(c)所
示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因
数为μ2.假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大
小为g.则(
)
A.F1=μ1m1g
央.空香皂盒的质量为m=20 g,香皂及香皂盒的总质量为M=100 g,香皂盒与
传送带之间的动摩擦因数为μ=0.4,风洞区域的宽度为L=0.6 m,风可以对香皂
盒产生水平方向上与传送带速度垂直的恒定作用力F=0.24 N,假设最大静摩擦
力等于滑动摩擦力,香皂盒可看作质点,取重力加速度g=10 2 ,试求:
跟进训练
1.如图所示,物块M在静止的足够长的传送带上以速度v0匀速下滑时,传送带突
然启动,方向如图中箭头所示,在此传送带的速度由0逐渐增加到2v0后匀速运动
板块传送带专项练习题
板块传送带专项练习题一、选择1.如图,质量为1m 的木板静止在光滑的水平面上,有一质量为2m 的小滑块以初速度0v 从左侧滑上木板,且恰能滑离木板,小滑块与木板间动摩擦因数为μ,下列说法正确的是 ( )A .若只减小2m ,则滑块滑离木板时木板获得的速度减少B .若只增大1m ,则滑块滑离木板时木板获得的速度减少C .若只减小μ,则滑块滑离木板过程中滑块对地的位移减小D .若只增大0v ,则滑块滑离木板过程中系统产生的热量增加2.如图所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m 的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的运动情况的是( )A .B .C .D .3.如图甲所示,沿顺时针方向运动的水平传送带AB ,零时刻将一个质量m=1kg 的物块轻放在A 处,6s 末恰好运动到B 处,物块6s 内的速度一时间图像如图乙所示,物块可视为质点,(重力加速度210m /s g =)则( )A .AB 长度为24m B .物块相对于传送带滑动的距离12mC .传送带因传送物块多消耗的电能16JD .物块与传送带之间的动摩擦因数为0.5 4.如图所示,一固定的四分之一光滑圆弧轨道与逆时针匀速传动的水平传送带平滑连接于N 点,圆弧轨道半径为R 。
质量为m 的小滑块自圆弧轨道最高点M 由静止释放,滑块在传送带上运动一段时间后返回圆弧轨道,上升到最高点时距N 点高度为4R 。
不计空气阻力,则以下说法错误的是( )A .传送带匀速传动的速度大小为2gR B .经过足够长的时间,滑块最终静止于N 点 C .滑块第一次在传送带上运动的整个过程中产生的热量为94mgR D .滑块第三次在传送带上运动的整个过程中产生的热量为mgR5.如图所示,传送带与水平面间的夹角为30,其中A 、B 两点间的距离为3.5m ,传送带在电动机的带动下以2m /s v =的速度顺时针匀速转动。
新教材高中物理精品课件 动力学和能量观点的综合应用(二)——“传送带”和“滑块—木板”模型
(1)小物块和长木板的加速度各为多大;
(2)长木板的长度;
图2
(3)通过计算说明:互为作用力与反作用力的摩擦力 0.5 m/s2 (2)3 m (3)见解析
解析 (1)长木板与小物块间摩擦力Ff=μmg=4 N
小物块的加速度 a1=F-mFf=2 m/s2 长木板的加速度 a2=FMf=0.5 m/s2。 (2)小木块对地位移 x1=21a1t2=4 m 长木板对地位移 x2=12a2t2=1 m 长木板长L=x1-x2=3 m。 (3)摩擦力对小物块做功W1=-Ffx1=-16 J
解得 h≥3.6 m。
题
干
答案 (1)4 m/s (2)h<3.0 m (3)x=2 h-3(m) h≥3.6 m
倾斜传送带问题
【例 2】 (多选)(2021·山东日照市模拟)如图 2 所示,现将一长
为 L、质量为 m 且分布均匀的金属链条通过装有传送带的
斜面输送到高处。斜面与传送带靠在一起连成一直线,与
水平方向夹角为 θ,斜面部分光滑,链条与传送带之间的动
摩擦因数为常数。传送带以较大的恒定速率顺时针转动。
已知链条处在斜面或者传送带上任意位置时,支持力都均
图2
匀作用在接触面上。将链条放在传送带和斜面上,当位于
传送带部分的长度为L4时,链条恰能保持静止。现将链条从位于传送带部分的长度
为L3的位置由静止释放,则下列说法正确的是(假设最大静摩擦力等于滑动摩擦
物块受到的摩擦力为Ff=ma3=1.6 N 此过程运动t2=t0-t1=1 s的位移为 x2=v1t2+12a3t22=(4×1+12×0.8×12) m=4.4 m
所以摩擦力做的功为 W=μmgx1+Ffx2=23.04 J。
滑块、木板模型和传送带模型课件
图3
传送带模型
1.问题的特点 (1)当物体与传送带相对静止时,物体与传送带间可能存在静摩擦力也可 能不存在摩擦力. (2)当物体与传送带相对滑动时,物体与传送带间有滑动摩擦力,这时物 体与传送带间会有相对滑动的位移. (3)若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将 受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同速度, 相对传送带静止为止,因此该摩擦力方向一定与物体运动方向相反.
滑块—木板模型和传送带模型
滑块—木板模型
1.问题的特点 滑块—木板类问题涉及两个物体,并且物体间存在相对滑动. 2.常见的两种位移关系 滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运 动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反 方向运动,则滑块的位移和木板的位移之和等于木板的长度.
【答案】 (1)10 m/s2 (2)1 s 7 m (3)(2+2 2) s
分析传送带问题的三个步骤 (1)初始时刻,根据 v 物、v 带的关系,确定物体的受力情况,进而确定物 体的运动情况. (2)根据临界条件 v 物=v 带确定临界状态的情况,判断之后的运动形式. (3)运用相应规律,进行相关计算.
3.解题方法 此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动, 所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加 速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破 口.求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程 的初速度.
高考物理一轮总复习第3章专题强化4传送带模型和“滑块_木板”模型提能训练(含答案)
高考物理一轮总复习提能训练:第三章 专题强化四基础过关练题组一 传送带模型1.(多选)为保障市民安全出行,有关部门规定:对乘坐轨道交通的乘客所携带的物品实施安全检查。
如图甲所示为乘客在进入地铁站乘车前,将携带的物品放到水平传送带上通过检测仪接受检查时的情景。
如图乙所示为水平传送带装置示意图。
紧绷的传送带ab 始终以1 m/s 的恒定速率运行,乘客将一质量为1 kg 的小包(可视为质点)无初速度地放在传送带左端的a 点,设行李与传送带之间的动摩擦因数为0.1,a 、b 间的距离为2 m ,g 取10 m/s 2。
下列速度—时间(v -t )图像和位移—时间(x -t )图像中,可能正确反映行李在a 、b 之间的运动情况的有(除C 中0~1 s 为曲线外,其余均为直线段)( AC )[解析] 行李放到传送带上,由μmg =ma 可得a =1 m/s 2,则由v =at ,得t =1 s ,可知行李在0~1 s 内做匀加速直线运动,与传送带共速后做匀速直线运动,故A 正确,B 错误;行李在t =1 s 时的位移x =12at 2=0.5 m ,行李在0~1 s 内做匀加速直线运动,x -t图像为抛物线,之后做匀速直线运动,x -t 图像为直线,故C 正确,D 错误。
2.如图所示,水平传送带A 、B 两端相距s =3.5 m ,工件与传送带间的动摩擦因数μ=0.1。
工件滑上A 端瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B ,则下列说法不正确的是( D )A .若传送带不动,则vB =3 m/sB .若传送带以速度v =4 m/s 逆时针匀速转动,v B =3 m/sC .若传送带以速度v =2 m/s 顺时针匀速转动,v B =3 m/sD .若传送带以速度v =2 m/s 顺时针匀速转动,v B =2 m/s[解析] 若传动带不动或逆时针匀速转动,则工件水平方向受水平向左的滑动摩擦力作用,由牛顿第二定律,得μmg =ma ,由匀变速运动的规律可知v 2B -v 2A =-2as ,代入数据解得vB =3 m/s ,A 、B 正确;若传送带以速度v =2 m/s 顺时针匀速转动,假设工件在到达B 端前速度降至2 m/s ,则工件水平方向受水平向左的滑动摩擦力作用,设加速度大小为a ,由牛顿第二定律,得μmg =ma ,工件滑上传送带先做匀减速直线运动,当速度减小到2 m/s时所经过的位移x =v 2A -v22a =16-42m =6 m>3.5 m ,所以假设不成立,所以工件一直做匀减速运动,由匀变速运动的规律可知v 2B -v 2A =-2as ,代入数据解得vB =3 m/s ,D 错误,C 正确。
高中物理 专题五 传送带问题和滑块—木板问题
专题五传送带问题和滑块—木板问题课题任务传送带问题1.传送带问题涉及摩擦力的判断、物体运动状态的分析和动力学知识的运用,重点考查学生分析问题和解决问题的能力。
主要有如下两类:(1)水平传送带问题当传送带水平运动时,应特别注意摩擦力的突变和物体运动状态的变化。
摩擦力的突变,常常导致物体的受力情况和运动性质的突变。
静摩擦力达到最大值,是物体和传送带恰好保持相对静止的临界状态;滑动摩擦力存在于发生相对运动的物体之间,因此两物体的速度达到相同时,滑动摩擦力要发生突变(滑动摩擦力为0或变为静摩擦力)。
(2)倾斜传送带问题当传送带倾斜时,除了要注意摩擦力的突变和物体运动状态的变化外,还要注意物体与传送带之间的动摩擦因数μ和传送带倾斜角度θ对受力的影响,从而正确判断物体的速度和传送带速度相等时物体的运动性质。
2.倾斜传送带问题的两种情况倾斜传送带问题可分为倾斜向上传送和倾斜向下传送两种情况(物体从静止开始,传送带匀速运动且足够长):例1如图所示,水平传送带两端相距x =8m,工件与传送带间的动摩擦因数μ=0.6,工件向左滑上A 端时速度v A =10m/s,设工件到达B 端时的速度为v B 。
(g 取10m/s 2)(1)若传送带静止不动,求v B 。
(2)若传送带顺时针转动,工件还能到达B 端吗?若不能,说明理由;若能,则求出到达B 点的速度v B 。
(3)若传送带以v =13m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。
[规范解答](1)根据牛顿第二定律可知μmg =ma ,则a =μg =6m/s 2,且v 2B -v 2A =-2ax ,故v B =2m/s。
(2)能。
当传送带顺时针转动时,工件受力不变,其加速度不发生变化,仍然始终减速,故工件到达B 端的速度v B =2m/s。
(3)开始时工件所受滑动摩擦力向左,加速度a =μmg m=μg =6m/s 2,假设工件能加速到13m/s,则工件速度达到13m/s 所用时间为t 1=v -v Aa=0.5s,匀加速运动的位移为x 1=v A t 1+12at 21=5.75m<8m,则工件在到达B 端前速度就达到了13m/s,此后工件与传送带相对静止,因此工件先加速后匀速。
物理一轮复习专题练习4动力学中的“木板_滑块”和“传送带”模型含解析
专题突破练习(四)(时间:40分钟)1.(多选)如图所示,质量M=2 kg的足够长木板静止在光滑水平地面上,质量m=1 kg的物块静止在长木板的左端,物块和长木板之间的动摩擦因数μ=0.1,最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s2。
现对物块施加一水平向右的恒力F=2 N,则下列说法正确的是()A.物块和长木板之间的摩擦力为1 NB.物块和长木板相对静止一起加速运动C.物块运动的加速度大小为1 m/s2D.拉力F越大,长木板的加速度越大AC[物块对长木板的摩擦力使木板运动,当M与m之间达到最大静摩擦力时,发生相对滑动,设此时水平恒力为F0,由牛顿第二定律有a=错误!=错误!=错误!,解得F0=1。
5 N.因F=2 N>F0=1。
5 N,故两者有相对滑动,物块和长木板之间为滑动摩擦力,有F f=μmg=1 N,故A正确,B错误;对物块,由牛顿第二定律F-μmg=ma1,可得a1=1 m/s2,故C正确;拉力F 越大,物块的合力越大,则加速度越大,但长木板受到的滑动摩擦力为1 N,保持恒定,则相对滑动时木板的加速度恒定为a2=错误!=0.5 m/s2,故D错误。
]2.(多选)机场使用的货物安检装置如图所示,绷紧的传送带始终保持v=1 m/s的恒定速率运动,AB为传送带水平部分且长度L=2 m,现有一质量为m=1 kg的背包(可视为质点)无初速度地放在水平传送带的A端,可从B端沿斜面滑到地面.已知背包与传送带间的动摩擦因数μ=0。
5,g=10 m/s2,下列说法正确的是()A.背包从A运动到B所用的时间为2.1 sB.背包从A运动到B所用的时间为2.3 sC.背包与传送带之间的相对位移为0。
3 mD.背包与传送带之间的相对位移为0。
1 mAD[背包在水平传送带上由滑动摩擦力产生加速度,μmg =ma,得a=5 m/s2,背包达到速度v=1 m/s所用时间t1=错误!=0.2 s,此过程背包相对地面位移x1=v2t1=错误!×0。
高考物理总复习 第三单元 牛顿运动定律 微专题3 滑块木板模型、传送带模型(含解析)
微专题3 滑块木板模型、传送带模型一传送带模型传送带问题为高中动力学问题中的难点,需要考生对传送带问题准确地做出动力学过程分析。
1.抓住一个关键:在确定研究对象并进行受力分析之后,首先判定摩擦力的突变(含大小和方向)点,给运动分段。
传送带传送的物体所受摩擦力,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。
物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻,v物与v传相同的时刻是运动分段的关键点。
判定运动中的速度变化(相对运动方向和对地速度变化)的关键是v物与v传的大小与方向,二者的大小和方向决定了此后的运动过程和状态。
2.注意三个状态的分析——初态、共速、末态3.传送带思维模板模型1水平传送带模型水平传送带又分为三种情况:物体的初速度与传送带速度同向(含物体初速度为0)或反向。
情景图示滑块可能的运动情况情景1 (1)可能一直加速(2)可能先加速后匀速情景2 (1)v0=v时,一直匀速(2)v0>v时,可能一直减速,也可能先减速再匀速(3)v0<v时,可能一直加速,也可能先加速再匀速情景3 (1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端。
当v0>v时,返回时速度为v,当v0<v时,返回时速度为v0例1如图甲所示,水平方向的传送带顺时针转动,传送带速度大小v=2 m/s 不变,两端A、B间距离为 3 m。
一物块从B端以v0=4 m/s滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g=10 m/s2。
物块从滑上传送带至离开传送带的过程中,速度随时间变化的图象是图乙中的( )。
甲乙解析物块B刚滑上传送带时,速度向左,由于物块与传送带间的摩擦作用,使得它做匀减速运动,加速度大小a=μg=4 m/s2,当物块的速度减小到零时,物块前进的距离s=m=2 m,其值小于AB的长3 m,故物块减速到零后仍在传送带上,所以它会随传送带向右运动,其加速度的大小与减速时是相等的,当其速度与传送带的速度相等时物块向右滑行的距离s'= m=0.5 m,其值小于物块向左前进的距离,说明物块仍在传送带上,以后物块相对于传送带静止,其速度等于传送带的速度,所以B项正确。
专题三滑块——木板模型和传送带模型-高一物理精品课件(人教版必修第一册)
(1)加速度关系:如果滑块与木板之间没有发生相对运动,可以用“整体
法”求出它们一起运动的加速度;如果滑块与木板之间发生相对运动,
应采用“隔离法”求出滑块与木板运动的加速度。应注意找出滑块与木
板是否发生相对运动等隐含条件。
(2)速度关系:滑块与木板之间发生相对运动时,明确滑块与木板的速
水平恒定推力F=8 N,当长木板向右运动的速度达到1.5 m/s 时,在长木板前端轻轻地
放上一个大小不计、质量为m=2 kg的小物块,物块与长木板间的动摩擦因数μ=0.2,
长木板足够长。(g取10 m/s2)
(1)小物块放在长木板上后,小物块及长木板的加速度各为多大?
(2)经多长时间两者达到相同的速度?
由图(b)可知,木板与墙壁碰前瞬间的速度v1=4 m/s,由运动学公式得
v1=v0+a1t1 ②
s0=v0t1+ a1t 2 ③
式中t1=1 s,s0=4.5 m是木板与墙壁碰前瞬间的位移,v0是小物块和木板开始运动时的速度.联立
①②③式并结合题给条件得μ1=0.1.④
在木板与墙壁碰撞后,木板以-v1的初速度向左做匀变速运动,小物块以v1的初速度向右做匀变速
牛顿第二定律及运动学公式得
μ2mg+μ1(M+m)g=Ma3 ⑧
v3=-v1+a3Δt
⑨
v3=v1+a2Δt ⑩
碰撞后至木板和小物块刚好达到共同速度的过程中,木板的位移为
-+
+
s1 =
Δt
⑪小物块的位移为s2=
Δt
⑫
小物块相对木板的位移为Δs=s2-s1
⑬
联立⑥⑧~⑬式,并代入数据得Δs=6.0 m.
高中物理传送带与板块模型专题讲解
传送带与板-块模型
高三物理专题
模型:滑块——滑板模型 (含传送带模型)
情形1:动力学中的传送带模型 情形2:能量中的传送带模型 情形3:动力学中的滑块——滑板模型 情形4:能量、动量中的滑块——滑板模型
模型1 传送带模型
对于传送带问题,分析清楚物体在传送带上的运动情况是解题关键,分析思路 是:
(1)小物体运动到 B 点时的速度 v 的大小;
(2)小物体与运输带间的动摩擦因数μ; (3)小物体从 A 点运动到 C 点所经历的时间 t.
模型1 传送带模型
[审题指导]
型1 传送带模型
[解析] (1)设小物体在斜面上的加速度为 a1,运动到 B 点的速 度为 v,由牛顿第二定律得
mgsin θ+ μ1mgcos θ=ma1 由运动学公式知 v2=2a1L,联立解得 v=3 m/s. (2)因为 v<v0,所以小物体在运输带上一直做匀加速运动,设加 速度为 a2,则由牛顿第二定律知 μmgcos α-mgsin α=ma2 又因为 v2=2a2x,联立解得 μ=78.
模型1 传送带模型
水平传送带
(1) 当传送带水平转动时,应特别注意摩擦力的突变和物体运动状态的变化。 (2) 求解的关键在于对物体所受的摩擦力进行正确的分析判断。静摩擦力达 到最大值,是物体恰好保持相对静止的临界状态;滑动摩擦力只存在于发 生相对运动的物体之间,因此两物体的速度相同时,滑动摩擦力要发生突 变(滑动摩擦力变为零或变为静摩擦力)。
题组巩固:“板块模型”和“传送带模型”
解析:由题意,小物块向上做匀减速运动,木板向上做匀加速 运动,当小物块运动到木板的上端时,恰好和木板共速.设小物块 的加速度为 a,由牛顿第二定律得,mgsin θ+μmgcos θ=ma,设木 板的加速度为 a′,由牛顿第二定律得,F+μmgcos θ-Mgsin θ= Ma′,设二者共速时的速度为 v,经历的时间为 t,由运动学公式得 v=v0-at,v=a′t;小物块的位移为 s,木板的位移为 s′,由运动 学公式得,s=v0t-12at2,s′=12a′t2;小物块恰好不从木板上端滑 下,有 s-s′=l,联立解得 l=0.5 m.
板—块”+“传送带”问题
由运动学公式有 v1=v0+a1t1② 1 2 s0=v0t1+ a1t1③ 2 式中,t1=1 s,s0=4.5 m 是木板碰撞前的位移,v0 是小物块 和木板开始运动时的速度. 联立①②③式和题给条件得 μ1=0.1④
在木板与墙壁碰撞后,木板以-v1 的初速度向左做匀变速运 动,小物块以 v1 的初速度向右做匀变速运动.设小物块的加速度 为 a2,由牛顿第二定律有 -μ2mg=ma2⑤ 由题图 b 可得 v2-v1 a2 = ⑥ t2-t1 式中,t2=2 s,v2=0,联立⑤⑥式和题给条件得 μ2=0.4⑦
[典例 1]
(2017· 山东德州质检)长为 L=1.5 m 的长木板 B 静
止放在水平冰面上, 小物块 A 以某一初速度 v0 从木板 B 的左端滑 上长木板 B,直到 A、B 的速度达到相同,此时 A、B 的速度为 v =0.4 m/s,然后 A、B 又一起在水平冰面上滑行了 s=8.0 cm 后停 下.若小物块 A 可视为质点,它与长木板 B 的质量相同,A、B 间的动摩擦因数 μ1=0.25,取 g=10 m/s2.求:
(2)小物块相对木板滑动时受木板对它的滑动摩擦力,做匀减 速运动,其加速度 a1=μ1g=2.5 m/s2 小物块在木板上滑动,木板受小物块的滑动摩擦力和冰面的 滑动摩擦力,做匀加速运动,则有 μ1mg-μ2(2m)g=ma2 解得 a2=0.50 m/s2.
高中物理必修一【传送带模型和滑块—木板模型】专题训练习题
高中物理必修一【传送带模型和滑块—木板模型】专题训练习题1.(多选)如图所示,一足够长的水平传送带以恒定的速度顺时针运行。
将一物体轻轻放在传送带的左端,以v、a、x、F f表示物体速度大小、加速度大小、位移大小和所受摩擦力的大小。
下列选项可能正确的是()解析:物体在传送带上先做匀加速运动,当达到与传送带相同的速度后,开始做匀速运动,A、B正确。
答案:AB2.(多选)如图所示,一足够长的木板静止在光滑水平地面上,一物块静止在木板上,木板和物块间有摩擦。
现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平地面的运动情况为()A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零解析:对于物块,由于运动过程中与木板存在相对滑动,且始终相对木板向左运动,因此木板对物块的摩擦力向右,所以物块相对地面向右运动,且速度不断增大,直至相对木板静止而做匀速直线运动,A错误,B正确;对于木板,由作用力与反作用力可知,受到物块给它的向左的摩擦力作用,则木板的速度不断减小,直到二者相对静止,而做匀速运动,C正确;由于水平地面光滑,所以木板和物块的速度不会为零,D错误。
答案:BC3.如图所示,在一条倾斜的、静止不动的传送带上,有一个滑块能够自由地向下滑动,该滑块由上端自由地滑到底端所用时间为t1,如果传送带向上以速度v0运动起来,保持其他条件不变,该滑块由上端滑到底端所用的时间为t2,那么()A.t1=t2B.t1>t2C.t1<t2D.不能确定解析:滑块受重力、支持力、滑动摩擦力,当传送带向上以速度v0运动起来,保持其他条件不变时,支持力不变,摩擦力大小和方向都不变,根据牛顿第二定律可知两种情况下,加速度相等,而两种情况下位移也相等,根据x=12可知,2at两种情况下运动的时间相等,即t1=t2,选项A正确。
2023年高考总复习物理-专题限时集训3:应用动力学解决“滑块-木板”“传送带”模型
专题限时集训(三)应用动力学解决“滑块-木板”“传送带”模型1.(多选)如图所示,传送带以速率v顺时针匀速转动,在其水平部分的右端B点正上方有一竖直弹性挡板。
一定质量的小物块以初速度v0(v0大于v)从左端A点滑上传送带,恰好能返回A点,运动过程中的v-t图像如图乙实线所示,下列说法正确的是()甲乙A.v0和v大小满足关系:v0=2vB.若只增大v0,其他条件不变,物块将从传送带左端滑下C.若v0=v,其他条件不变,物块将在传送带上往复运动D.若只减小v0,其他条件不变,物块有可能不会返回A点BC[物块与挡板的碰撞是弹性的,结合v-t图像可知,小物块恰好减速到与传送带速度相等时与挡板碰撞,向左减速至A点速度为0,向右减速有μmg =ma1,v 20-v2=2a1x,向左减速有μmg=ma2,v2=2a2x,可得v0=2v,A项错误;若只增大v0,其他条件不变,物块与挡板碰后速度将大于v,物块必从传送带左端滑下,当v0=v时,物块碰后速度为v,恰好能回到A点,后向右加速,出现往复运动,B、C项正确;若只减小v0,当减为0时,加速到达挡板处应该恰好为v,故物块一定能返回A点,D项错误。
]2.(情境题)(2022·北京市四中高三上学期期中)如图所示,将一盒未开封的香皂置于桌面上的一张纸板上,用水平向右的拉力将纸板迅速抽出,香皂盒的位移很小,几乎观察不到,这就是大家熟悉的惯性演示实验(示意图如图所示),若香皂盒和纸板的质量分别为m 1和m 2,各接触面间的动摩擦因数均为μ,重力加速度为g 。
若本实验中,m 1=100 g ,m 2=5 g ,μ=0.2,香皂盒与纸板左端的距离d =0.1 m ,香皂盒移动的距离超过l =0.002 m ,人眼就能感知,忽略香皂盒的体积因素影响,g 取10 m/s 2。
为确保香皂盒移动不被人感知,纸板所需的拉力至少是( )A .1.42 NB .2.24 NC .22.4 ND .1 420 N A [香皂盒的加速度a 1=μm 1g m 1=μg =2 m/s 2,纸板的加速度a 2=F -μm 1g -μ(m 1+m 2)g m 2,对香皂盒x 1=12a 1 t 21 ,对纸板x 1 + d = 12a 2 t 21 ,纸板抽出后香皂盒运动的距离x 2=12a 3t 22,a 3=a 1,由题意知a 1t 1=a 3t 2,l =x 1+x 2,解得F =1.42 N 。
2024届全国高考复习物理历年好题专项(传送带模型和“滑块—木板”模型)练习(附答案)
2024届全国高考复习物理历年好题专项(传送带模型和“滑块—木板”模型)练习1.如图所示,水平传送带A、B两端相距s=3.5 m,工件与传送带间的动摩擦因数μ=0.1.工件滑上A端瞬时速度v A=4 m/s,到达B端的瞬时速度设为v B,则不正确的是()A.若传送带不动,则v B=3 m/sB.若传送带以速度v=4 m/s逆时针匀速转动,v B=3 m/sC.若传送带以速度v=2 m/s顺时针匀速转动,v B=3 m/sD.若传送带以速度v=2 m/s顺时针匀速转动,v B=2 m/s2.[2023ꞏ河北廊坊模拟](多选)如图所示,绷紧的水平传送带足够长,且以v1=2 m/s的恒定速率运行.初速度大小v2=3 m/s的小墨块从与传送带等高的光滑水平地面(图中未画出)上的A处滑上传送带,墨块可视为质点.若从墨块滑上传送带开始计时,墨块在传送带上运动5 s后与传送带的速度相同,则()A.墨块与传送带速度相同之前,受到传送带的摩擦力方向水平向右B.墨块在传送带上滑行的加速度大小a=0.2 m/s2C.墨块在传送带上留下的痕迹长度为4.5 mD.墨块在传送带上留下的痕迹长度为12.5 m3.(多选)水平地面上有一质量为m1的长木板,木板的左端上有一质量为m2的物块,如图(a)所示.用水平向右的拉力F作用在物块上,F随时间t的变化关系如图(b)所示,其中F1、F2分别为t1、t2时刻F的大小.木板的加速度a1随时间t的变化关系如图(c)所示.已知木板与地面间的动摩擦因数为μ1,物块与木板间的动摩擦因数为μ2.假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g.则()A.F1=μ1m1gB.F2=(μ2-μ1)gC.μ2>μ1D.在0~t2时间段物块与木板加速度相等4.(多选)如图甲所示,小车B紧靠平台边缘静止在光滑水平面上,物体A(可视为质点)以初速度v0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v - t图像如图乙所示,取重力加速度g=10 m/s2,则以下说法正确的是()A.物体A与小车B间的动摩擦因数为0.3B.物体A与小车B的质量之比为1∶2C.小车B的最小长度为2 mD.如果仅增大物体A的质量,物体A有可能冲出去5.(多选)如图所示,在山体下的水平地面上有一静止长木板,某次山体滑坡,有石块从山坡上滑下后,恰好以速度v1滑上长木板,石块与长木板、长木板与水平地面之间都存在摩擦.设最大静摩擦力大小等于滑动摩擦力的大小,且石块始终未滑出长木板.下面给出了石块在长木板上滑行的v - t图像,其中可能正确的是()[答题区]题号1234 5答案6.某兴趣小组对老师演示惯性的一个实验进行了深入的研究,如图甲所示,长方形硬纸板放在水平桌面上,纸板一端稍稍伸出桌外,将一块橡皮擦置于纸板的中间,用手指将纸板水平弹出,如果弹的力度合适,橡皮擦将脱离纸板,已知橡皮擦可视为质点,质量为m1=20 g,硬纸板的质量为m2=10 g,长度为l=5 cm,橡皮擦与纸板、桌面间的动摩擦因数均为μ1=0.2,纸板与桌面间的动摩擦因数为μ2=0.3,认为最大静摩擦力等于滑动摩擦力,重力加速度为g.(1)手指对纸板的作用力与时间的关系如图乙所示,要使橡皮擦相对纸板滑动,F0至少多大?(2)若要求橡皮擦移动的时间最长,求纸板被弹出的最小速度?7.[2023ꞏ上海市市西中学二模]如图所示,以恒定速率v1=0.5 m/s运行的传送带与水平面间的夹角α=37°,转轴间距L=4 m.工作人员沿传送方向以速度v2=1.5 m/s从传送带顶端推下一件m=2 kg的小包裹(可视为质点).小包裹与传送带间的动摩擦因数μ=0.8.取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小包裹相对传送带滑动时加速度a的大小.(2)小包裹在传送带上减速运动的时间t和位移s的大小.(3)小包裹与传送带之间的摩擦力对小包裹做的功.参考答案1.答案:C答案解析:以C 为圆心,BC 为半径作圆,如图根据“等时圆”原理可知,从圆上各点沿弦到最低点经过的时间相等,则t a >t b >t c ,选项C 正确.2.答案:B答案解析:假设经过切点的板两端点分别在圆1、圆2上,板与竖直方向的夹角为α,圆1的半径为r ,圆2的半径为R ,则圆内轨道的长度s =2(r +R )cos α,下滑时小球的加速度α=g cos α,根据位移时间公式得s =12 at 2,则t =2sa =4(r +R )cos αg cos α=4(r +R )g,即当板的端点在圆上时,沿不同板下滑到底端所用的时间相同;由题意可知,A 在圆上,B 在圆内,C 在圆外,可知从B 处释放的球下滑的时间最短,故选B.3.答案:C答案解析:由图可知,当倾角为90°时,最大上升高度为54 m ,此时为竖直上抛运动,则有-2gx 1=0-v 20 ,解得v 0=5 m/s ,故A 不符合题意;由图可知,当倾角为零时,此时物体水平滑行距离最大为54 3 m ,根据动能定理有-μmgx 2=0-12 m v 20 ,解得μ=33 ,故B 不符合题意;由牛顿第二定律有mg sin θ+μmg cos θ=ma 最大位移x 与倾角θ满足-2ax=0-v 20 ,代入得2gx (sin θ+μcos θ)=v 20 ,要使x 最小,则应sin θ+μcos θ最大,由数学知识可知sin θ+μcos θ=1+μ2 sin (θ+α),当sin (θ+α)=1时有最大阻值,此时位移最小,即x min =v 20 2g (sin θ+μcos θ) =v 20 2g 1+μ2 =58 3 m ,此时sin (θ+α)=1,即sin α=μ1+μ2 =12 ,此时则α=30°,θ=60°,故C 符合题意;当θ=45°时,物体运动至最大位移处有mg sin θ>μmg cos θ,则物体将下滑,不能够维持静止,故D 不符合题意.4.答案:(1)t AB =t AC (2) 3Rg答案解析:(1)设AB 与水平方向夹角为θ,小朋友沿AB 下滑时的加速度a =g sin θ,又x AB =12 at 2AB ,AB 间的距离为x AB =2R sin θ,解得t AB =4R g 与角度无关,同理可知t AC = 4Rg ,故t AB =t AC .(2)根据第一问的结论,画出以P 点为最高点的半径为r 的等时圆,如图所示,当两圆相切时,运动的时间最短,由几何关系知(R +r )2=(R -r )2+(3 R )2,解得r =34 R ,最短时间t = 3Rg .5.答案:(1)3 m/s 2 (2)72 N 36 N答案解析:(1)设刚开始时弹簧的压缩量为x 0,在沿斜面方向上有(m 1+m 2)g sin θ=kx 0,因为在前0.2 s 内,F 为变力,0.2 s 以后,F 为恒力,所以在0.2 s 时,P 对Q 的作用力为零,设0.2 s 时,弹簧的压缩量为x 1,对P ,沿斜面方向上有kx 1-m 1g sin θ=m 1a ,前0.2 s 内P 、Q 向上运动的距离为x 0-x 1=12 at 2,解得a =3 m/s 2.(2)当P 、Q 开始运动时拉力最小,此时,对P 、Q 整体有F min +kx 0-(m 1+m 2)g sin θ=(m 1+m 2)a ,解得F min =36 N ,当P 、Q 分离时拉力最大,此时对Q 有F max =m 2(a +g sin θ)=72 N .6.答案:(1)43 m/s 2 (2)2 m/s 2 4 m答案解析:(1)从O 点到A 点,由运动公式:0-v 2=2ax 0解得a =0-v 22x 0=-422×6 m/s 2=-43 m/s 2 机器人在此过程加速度a 的大小43 m/s 2.(2)要想用时间最短,则机器人先以最大加速度加速,然后匀速一段时间,再以最大加速度做减速到零.最大加速度由牛顿第二定律有:a m =μg =2m/s 2加速的位移为x 加=v 22a m=4 m . 考点19 传送带模型和“滑块—木板”模型——提能力1.答案:D答案解析:若传动带不动或逆时针匀速转动,则工件水平方向受水平向左的滑动摩擦力作用,由牛顿第二定律,设加速度大小为a ,得ma =μmg 由匀变速规律可知v 2B -v 2A =2as代入数据解得v B =3 m/s ,A 、B 正确;若传送带以速度v =2 m/s 顺时针匀速转动,而且v <v A ,则工件水平方向受水平向左的滑动摩擦力作用,由牛顿第二定律,设加速度大小为a ,得ma =μmg 由匀变速规律可知v 2B -v 2A =2as 代入数据解得v B =3 m/s ,D 错误,C 正确.2.答案:AD答案解析:墨块与传送带速度相同之前,相对传送带向左运动,受到传送带的摩擦力方向水平向右,选项A 正确;墨块在摩擦力的作用下匀变速滑行,t =5 s 后与传送带速度相同,则墨块加速度大小a =v 1-(-v 2)t=1 m/s 2,选项B 错误;墨块向左匀减速运动过程,对墨块有0=v 2-at 1,x 1=0+v 22 t 1,解得该过程用时t 1=3 s ,墨块的路程x 1=4.5 m ,t 1时间内传送带的路程x 2=v 1t 1=6 m ,墨块向右匀加速运动过程,对墨块有v 1=at 2,x ′1=0+v 12 t 2,解得该过程用时t 2=2 s ,墨块的路程x ′1=2 m ,t 2时间内传送带的路程x ′2=v 1t 2=4 m ,则墨块在传送带上留下的痕迹长度x =x 1+x 2+x ′2-x ′1=12.5 m ,选项C 错误,D 正确.3.答案:BCD答案解析:由图(c)可知,在0~t 1时间段物块和木板均静止,在t 1时刻木板与地面的静摩擦力达到最大值,对物块和木板整体分析可知F 1=μ1(m 1+m 2)g ,A 错误;由图(c)可知,t 1~t 2时间段物块和木板一起加速运动,在t 2时刻物块和木板开始相对运动,此时物块和木板间的静摩擦力达到最大值,根据牛顿第二定律,有对物块和木板F 2-μ1(m 1+m 2)g =(m 1+m 2)a m ,对木板μ2m 2g -μ1(m 1+m 2)g =m 1a m ,整理可得F 2=(μ2-μ1)g ,B 正确;由图(c)可知,对木板μ2m 2g -μ1(m 1+m 2)g =m 1a m ,故μ2m 2g >μ1(m 1+m 2)g ,即μ2>μ1,C 正确;由上述分析可知,在0~t 1时间段物块和木板均静止,t 1~t 2时间段物块和木板一起以共同加速度运动,故在0~t 2时间段物块与木板加速度相等,D 正确.4.答案:AC答案解析:物体A 滑上小车B 后做匀减速直线运动,对物体分析有μm A g =m A a A ,由v- t 图像可得a A =Δv Δt =⎪⎪⎪⎪1-41 m/s 2=3 m/s 2联立解得μ=0.3,所以A 正确;对小车B 分析有μm A g =m B a B ,由v - t 图像可得a B =Δv Δt =⎪⎪⎪⎪1-01 m/s 2=1 m/s 2,联立解得m A m B=13 ,所以B 错误;小车B 的最小长度为物体A 在小车B 上的最大相对滑动位移,则有L min =s A -s B =4+12 ×1-0+12 ×1(m)=2 m ,所以C 正确;如果仅增大物体A 的质量,物体A 的加速度保持不变,但是小车B 加速度增大,所以两者达到共速的时间减小了,则物体A 在小车B 上的相对滑动位移减小,所以物体A 不可能冲出去,则D 错误.5.答案:BD答案解析:由于石块与长木板、长木板与地面之间都有摩擦,故石块不可能做匀速直线运动,故A 错误;设石块与长木板之间的动摩擦因数为μ1,长木板与地面之间的动摩擦因数为μ2,石块的质量为m ,长木板的质量为M ,当:μ1mg >μ2(M +m )g 最终石块与长木板将一起做匀减速直线运动,此时的加速度为μ2g ,由:μ1mg >μ2(M +m )g 可得:μ1mg >μ2mg ,即石块刚开始的加速度大于石块与长木板一起减速时的加速度,即μ1g >μ2g ,也就是说图像的斜率将变小,故C 错误,B 正确;若石块对长木板向右的滑动摩擦力小于地面对长木板的最大静摩擦力,则长木板将静止不动,石块将在长木板上做匀减速直线运动,故D 正确.6.答案:(1)F 0>0.15 N (2)0.866 m/s答案解析:(1)当橡皮擦在纸板上滑动时,橡皮擦的加速度a 1:μ1m 1g =m 1a 1,解得a 1=2m/s 2,硬纸板的加速度a 2:F 0-μ2(m 1+m 2)g -μ1m 1g =m 2a 2,要使橡皮擦在纸板上滑动,需使a 2>a 1,解得F 0>0.15 N.(2)纸板获得初速后做减速运动,令加速度为a ′2,则μ2(m 1+m 2)g +μ1m 1g =m 2a ′2,解得a ′2=13 m/s 2,假设橡皮擦一直在纸板上运动,令纸板被弹出后经时间t ,橡皮擦与纸板速度相同,则a 1t =v 0-a ′2t ,代入解得t =v 015 ,此过程橡皮擦的位移x 1,则有x 1=12 a 1t 2,纸板的位移x 2=v 0t -12 a ′2t 2,要使橡皮擦离开纸板,则需x 2>x 1+l 2 ,解得v 0≥3 m/s =0.866 m/s.7.答案:(1)0.4 m/s2(2)2.5 s 2.5 m(3)-50 J答案解析:(1)小包裹的速度v2大于传动带的速度v1,所以小包裹受到传送带的摩擦力沿传动带向上,受力分析如图所示根据牛顿第二定律可知mg sin α-μmg cos α=ma代入数据可得a=-0.4 m/s2所以加速度的大小为0.4 m/s2,方向为沿斜面向上;(2)由(1)可知小包裹先在传动带上做匀减速直线运动,至速度与v1相同,用时t=(v1-v2)a=0.5-1.5-0.4s=2.5 s相应的匀减速直线运动的距离为s=v2t+at22=⎝⎛⎭⎫1.5×2.5+(-0.4)×2.522m=2.5 m.(3)因为s<L,且mg sin α<μmg cos α因此小包裹与传动带共速后做匀速直线运动至传送带底端匀速直线运动阶段所受静摩擦力大小为F f2=mg sin α位移大小为s2=L-s所以小包裹与传送带之间的摩擦力对小包裹做的功为W f=-F f1s-F f2(L-s)=-μmgs cos α-mg(L-s)sin α代入数据可得W f=-50 J.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题动力学中的典型“模型”热点一滑块——长木板模型滑块——长木板模型是近几年来高考考查的热点,涉及摩擦力的分析判断、牛顿运动定律、匀变速直线运动等主干知识,能力要求较高.滑块和木板的位移关系、速度关系是解答滑块——长木板模型的切入点,前一运动阶段的末速度是下一运动阶段的初速度,解题过程中必须以地面为参考系.1.模型特点:滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:滑块由木板一端运动到另一端过程中,滑块和木板同向运动时,位移之差Δx=x2-x1=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L.考向一外力F作用下的滑块——长木板·兰州实战考试] 如图Z31所示,质量m=1 kg的物块A放在质量M=4 kg的木板B的左端,起初A、B静止在水平地面上.现用一水平向左的力F作用在木板B上,已知A、B之间的动摩擦因数为μ1=0.4,地面与B之间的动摩擦因数为μ2=0.1,假设最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求能使A、B发生相对滑动的F的最小值;(2)若F=30 N,作用1 s后撤去F,要使A不从B上滑落,则木板至少为多长?从开始到A、B均静止,A的总位移是多少?图Z31(多选)[2015·陕西宝鸡九校联考] 如图Z32所示,光滑水平面上放着质量为M的木板,木板左端有一个质量为m的木块.现对木块施加一个水平向右的恒力F,木块与木板由静止开始运动,经过时间t分离.下列说法正确的是( )图Z32A.若仅增大木板的质量M,则时间t增大B.若仅增大木块的质量m,则时间t增大C.若仅增大恒力F,则时间t增大D.若仅增大木块与木板间的动摩擦因数,则时间t增大考向二无外力F作用的滑块——长木板[2016·广州模拟] 在粗糙水平面上,一电动玩具小车以v0=4 m/s的速度做匀速直线运动,其正前方平铺一边长为L=0.6 m的正方形薄板,小车在到达薄板前某处立即关闭电源,靠惯性运动s=3 m的距离后沿薄板一边的中垂线平滑地冲上薄板.小车与水平面以及小车与薄板之间的动摩擦因数均为μ1=0.2,薄板与水平面之间的动摩擦因数μ2=0.1,小车质量M为薄板质量m的3倍,小车可看成质点,重力加速度g取10 m/s2,求:(1)小车冲上薄板时的速度大小;(2)小车从刚冲上薄板到停止时的位移大小.(多选)[2016·山西长治一模] 如图Z33所示,一足够长的木板静止在粗糙的水平面上,t=0时刻滑块从板的左端以速度v0水平向右滑行,木板与滑块之间存在摩擦,且最大静摩擦力等于滑动摩擦力,则滑块的vt图像可能是图Z34中的( )考向三斜面上的滑块——长木板[2016·武汉武昌区调研] 如图Z35所示,在倾角为θ=37°的固定长斜面上放置一质量M=1 kg、长度L1=3 m的极薄平板AB,薄平板的上表面光滑,其下端B与斜面底端C的距离为L2=16 m.在薄平板的上端A处放一质量m=0.6 kg的小滑块(视为质点),将小滑块和薄平板同时由静止释放.设薄平板与斜面之间、小滑块与斜面之间的动摩擦因数均为μ=0.5,求滑块与薄平板下端B到达斜面底端C的时间差Δt.(已知sin 37°=0.6,cos 37°=0.8,重力加速度g取10 m/s2)图Z35如图Z36所示,一质量为M 的斜面体静止在水平地面上,斜面倾角为θ,斜面上叠放着A 、B两物体,物体B 在沿斜面向上的力F 的作用下沿斜面匀速上滑.若A 、B 之间的动摩擦因数为μ,μ<tan θ,A 、B 质量均为m ,重力加速度为g ,则()图Z36A .A 、B 保持相对静止B .地面对斜面体的摩擦力等于F cos θC .地面受到的压力等于(M +2m )gD .B 与斜面间的动摩擦因数为F -mg sin θ-μmg cos θ2mg cos θ■ 建模点拨“滑块——长木板模型”解题思路:1.选取研究对象:隔离滑块、木板,对滑块和木板进行受力分析和运动分析.2.寻找临界点:根据牛顿第二定律和直线运动规律求解加速度,判断是否存在速度相等的“临界点”,注意“临界点”摩擦力的突变.3.分析运动结果:无临界速度时,滑块与木板分离,确定相等时间内的位移关系.有临界速度时,滑块与木板不分离,假设速度相等后加速度相同,由整体法求解系统的共同加速度,再由隔离法用牛顿第二定律求滑块与木板间的摩擦力,如果该摩擦力不大于最大静摩擦力,则说明假设成立,可对整体列式;如果该摩擦力大于最大静摩擦力,则说明假设不成立,可对两者分别列式,确定相等时间内的位移关系.热点二 涉及传送带的动力学问题传送带问题为高中动力学问题中的难点,主要表现在两方面:其一,传送带问题往往存在多种可能结论的判定,即需要分析确定到底哪一种可能情况会发生;其二,决定因素多,包括滑块与传送带间的动摩擦因数大小、斜面倾角、传送带速度、传送方向、滑块初速度的大小及方向等.这就需要考生对传送带问题能做出准确的动力学过程分析.下面是最常见的几种传送带问题模型.考向一 水平传送带模型如图Z37所示,水平方向的传送带顺时针转动,传送带速度大小恒为v=2 m/s,两端A、B间距离为3 m.一物块从B端以初速度v0=4 m/s滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g取10 m/s2.物块从滑上传送带至离开传送带的过程中,速度随时间变化的图像是图Z38中的( )图Z37图Z38如图Z39所示,足够长的水平传送带静止时在左端做标记点P,将工件放在P点.启动传送带,使其向右做匀加速运动,工件相对传送带发生滑动.经过t1=2 s时立即控制传送带,使其做匀减速运动,再经过t2=3 s传送带停止运行,测得标记点P通过的距离x0=15 m.(1)求传送带的最大速度;(2)已知工件与传送带间的动摩擦因数μ=0.2,重力加速度g取10 m/s2,求整个过程中工件运动的总距离.图Z39考向二 倾斜传送带模型度顺时针转动,质量为1 kg 的滑块从传送带顶端B 点由静止释放后下滑,到A 端时用时2 s ,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求滑块与传送带间的动摩擦因数;(2)若该滑块在传送带的底端 A 点,如图乙所示,现用一沿传送带向上的大小为6 N 的恒定拉力F 拉滑块,使其由静止开始沿传送带向上运动,当滑块速度与传送带速度相等时,撤去拉力,则当滑块到传送带顶端时,滑块速度为多大?图Z310如图Z311所示,传送带的倾角为θ=37°,传送带以10 m/s的速率运行,在传送带上端A 处无初速度地放上质量为0.5 kg的物体,它与传送带间的动摩擦因数为0.5.若传送带上A到B的长度为16 m,则物体从A运动到B的时间为多少?(g取10 m/s2,sin 37°=0.6,cos 37°=0.8.)图Z311■建模点拨(1)在确定研究对象并进行受力分析之后,首先判定摩擦力突变(含大小和方向)点,给运动分段.传送带传送的物体所受的摩擦力,不论是其大小突变,还是其方向突变,都发生在物体速度与传送带速度相等的时刻.物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻.v物与v传相等的时刻是运动分段的关键点,也是解题的突破口.(2)判定运动中的速度变化(即相对运动方向和对地速度变化)的关键是v物与v传的大小与方向,对二者的比较是决定解题方向的关键.(3)在倾斜传送带上需比较mg sinθ与f的大小与方向,判断f的突变情况.(4)由传送带的长度判定到达临界状态之前物体是否滑出,还要判断物体与传送带共速以后物体是否一定与传送带保持相对静止.高考模拟演练1.(多选)[2014·四川卷] 如图Z312所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带.不计定滑轮质量和滑轮与绳之间的摩擦,绳足够长.正确描述小物体P速度随时间变化的图像可能是Z313中的( )2.[2015·全国卷Ⅱ] 下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin 37°=35 )的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图Z314所示.假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为38,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2 s 末,B 的上表面突然变为光滑,μ2保持不变.已知A 开始运动时,A 离B 下边缘的距离l =27 m ,C 足够长,设最大静摩擦力等于滑动摩擦力.重力加速度大小g 取10 m/s 2.求:(1)在0~2 s 时间内A 和B 加速度的大小;(2)A 在B 上总的运动时间.图Z314精选模拟3.(多选)[2016·太原二模] 如图Z315所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小.这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为M 和m .各接触面间的动摩擦因数均为μ,砝码与纸板左端的距离及与桌面右端的距离均为d ,重力加速度为g .现用水平向右的恒定拉力F 拉动纸板,下列说法正确的是( )图Z315A .纸板相对砝码运动时,纸板所受摩擦力的大小为μ(M +m )gB .要使纸板相对砝码运动,F 一定要大于2μ(M +m )gC .若砝码与纸板分离时的速度小于μgd ,砝码不会从桌面上掉下D .当F =μ(2M +3m )g 时,砝码恰好到达桌面边缘4.[2016·郑州一检] 如图Z316甲所示,质量为m1=1 kg的物块叠放在质量为m2=3 kg的木板右端.木板足够长,放在光滑的水平地面上,木板与物块之间的动摩擦因数为μ1=0.2.整个系统开始时静止,重力加速度g取10 m/s2.(1)在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F至少应为多大?(2)在0~4 s内,若拉力F的变化如图乙所示,2 s后木板进入动摩擦因数为μ2=0.25的粗糙水平面,在图丙中画出0~4 s内木板和物块的vt图像.(3)求0~4 s内物块相对木板的位移大小.图Z3165.[2016·黄冈中学模拟] 如图Z317所示,工厂利用倾角θ=30°的皮带传输机依次将轻放在皮带底端的每包质量为m=50 kg的货物从地面运送到高出水平地面h=2.5 m的平台上,传输机的皮带以v=1m/s的速度顺时针转动且不打滑,货物无初速度放在皮带上.已知货物与皮带间的动摩擦因数均为μ=23 5.若最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求每包货物从地面运送到平台上所用的时间t.(2)若皮带传输机由电动机带动,每包货物从地面运送到平台上,求电动机需要多做的功.图Z3176.如图3-3-8所示,光滑水平面上静止放着长L=4 m,质量为M=3 kg的木板(厚度不计),一个质量为m=1 kg的小物体放在木板的最右端,m和M之间的动摩擦因数μ=0.1,今对木板施加一水平向右的拉力F,(g取10 m/s2)(1)为使两者保持相对静止,F不能超过多少?(2)如果F=10 N,求小物体离开木板时的速度?7. 如图3-3-9所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加速度为g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,求所需拉力的大小;(3)本实验中,m1=0.5 kg,m2=0.1 kg,μ=0.2,砝码与纸板左端的距离d=0.1 m,取g=10 m/s2.若砝码移动的距离超过l=0.002 m,人眼就能感知.为确保实验成功,纸板所需的拉力至少多大?8.如图21所示,在倾角为θ=30°的固定斜面上,跨过定滑轮的轻绳一端系在小车的前端,另一端被坐在小车上的人拉住.已知人的质量为60 kg,小车的质量为10 kg,绳及滑轮的质量、滑轮与绳间的摩擦均不计,斜面对小车的摩擦阻力为人和小车总重力的0.1倍,取重力加速度g=10 m/s2,当人以280 N 的力拉绳时,试求(斜面足够长):(1)人与车一起运动的加速度大小;(2)人所受摩擦力的大小和方向;(3)某时刻人和车沿斜面向上的速度为3 m/s,此时人松手,则人和车一起滑到最高点所用时间为多少?9. (2015·全国卷Ⅰ)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m,如图(a)所示。