高考数学数列的通项与前n项和测试
数列专题训练包括通项公式求法和前n项和求法 的方法和习题
数列专题1、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).2、等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;3、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 4、等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 5、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.常用数列不等式证明中的裂项形式:(1)(1111n n =-+n(n+1)1111()1k n k =-+n(n+k);(2) 211111()1211k k k <=---+2k (3)211111111(1)(1)1kk k k k k k k k-=<<=-++-- (4)1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦; (5)()()111!!1!n n n n =-++(6)=<<=1(1)n n >+)一.数列的通项公式的求法1.定义法:①等差数列通项公式;②等比数列通项公式。
例.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=2.公式法:已知n S (即12()n a a a f n +++=L )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
高考文科数学数列专题复习(附答案及解析)
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考数学二轮复习专题突破练15 求数列的通项及前n项和 (2)
专题突破练15求数列的通项及前n项和1.已知等差数列{a n}的前n项和为S n,且a1=1,S3+S4=S5.(1)求数列{a n}的通项公式;(2)令b n=(-1)n-1a n,求数列{b n}的前n项和T n.2.(2020山东滨州二模,18)已知{a n}为等差数列,a3+a6=25,a8=23,{b n}为等比数列,且a1=2b1,b2b5=a11.(1)求{a n},{b n}的通项公式;(2)记c n=a n·b n,求数列{c n}的前n项和T n.3.(2020全国Ⅲ,理17)设数列{a n}满足a1=3,a n+1=3a n-4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.4.(2020山东聊城二模,17)已知数列{a n}的各项均为正数,其前n项和为S n,且a n2+a n=2S n+3(n∈N*).4(1)求数列{a n}的通项公式;,求{b n}的前n项和T n.(2)若b n=1S n5.(2020山东青岛5月模拟,17)设数列{a n}的前n项和为S n,a1=1,,给出下列三个条件;条件①:数列{a n}为等比数列,数列{S n+a1}也为等比数列;条件②:点(S n,a n+1)在直线y=x+1上;条件③:2n a1+2n-1a2+…+2a n=na n+1.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答:(1)求{a n}的通项公式;(2)设b n=1,求数列{b n}的前n项和T n.log2a n+1·log2a n+36.(2020山东菏泽一模,18)已知数列{a n}满足na n+1-(n+1)a n=1(n∈N*),且a1=1.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=a n,求数列{b n}的前n项和S n.3n-17.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n }的通项公式; (2)令c n =(a n +1)n+1(b n +2)n ,求数列{c n }的前n 项和T n .8.(2020天津南开区一模,18)已知数列{a n }的前n 项和S n =n 2+n2,数列{b n }满足:b 1=b 2=2,b n+1b n =2n+1(n ∈N *).(1)求数列{a n },{b n }的通项公式; (2)求∑i=1na i (b 2i -1-1b 2i)(n ∈N *).专题突破练15 求数列的通项及前n 项和1.解 (1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5,∴3(1+d )=1+4d ,解得d=2. ∴a n =1+(n-1)×2=2n-1. (2)由(1)可得b n =(-1)n-1·(2n-1).∴T 2n =1-3+5-7+…+(2n-3)-(2n-1)=(-2)×n=-2n.∴当n 为偶数时,T n =-n ;当n 为奇数时,T n =T n-1+b n =-(n-1)+(-1)n-1a n =-(n-1)+(-1)n-1(2n-1)=-(n-1)+(2n-1)=n.综上,T n =(-1)n+1n. 2.解 (1)设等差数列{a n }的公差为d ,由题意得{2a 1+7d =25,a 1+7d =23,解得{a 1=2,d =3.所以数列{a n }的通项公式a n =3n-1.设等比数列{b n }的公比为q ,由a 1=2b 1,b 2b 5=a 11,得b 1=1,b 12q 5=32,解得q=2,所以数列{b n }的通项公式b n =2n-1.(2)由(1)知,c n =a n b n =(3n-1)×2n-1,则T n =c 1+c 2+c 3+…+c n-1+c n =2×20+5×21+8×22+…+(3n-4)×2n-2+(3n-1)×2n-1,2T n =2×21+5×22+8×23+…+(3n-4)×2n-1+(3n-1)×2n .两式相减得-T n =2+3(21+22+…+2n-1)-(3n-1)×2n=2+3×2-2n -1×21-2-(3n-1)×2n =-4+(4-3n )×2n ,所以T n =4+(3n-4)×2n . 3.解 (1)a 2=5,a 3=7.猜想a n =2n+1.由已知可得a n+1-(2n+3)=3[a n -(2n+1)], a n -(2n+1)=3[a n-1-(2n-1)], ……a 2-5=3(a 1-3).因为a 1=3,所以a n =2n+1.(2)由(1)得2n a n =(2n+1)2n ,所以S n =3×2+5×22+7×23+…+(2n+1)×2n . ①从而2S n =3×22+5×23+7×24+…+(2n+1)×2n+1.② ①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n+1)×2n+1. 所以S n =(2n-1)2n+1+2.4.解 (1)因为a n 2+a n =2S n +34(n ∈N *),①所以当n ≥2时,a n -12+a n-1=2S n-1+34, ②①-②得a n 2−a n -12+a n -a n-1=2(S n -S n-1), 即a n 2−a n -12-a n -a n-1=0, 所以(a n +a n-1)(a n -a n-1-1)=0. 因为a n >0,所以a n -a n-1=1,所以数列{a n }是公差为1的等差数列,当n=1时,由a 12+a 1=2S 1+34可得,a 1=32,所以a n =a 1+(n-1)d=32+(n-1)×1=n+12.(2)由(1)知S n =na 1+n (n -1)2d=n (n+2)2,所以b n =1S n=2n (n+2)=1n −1n+2,T n =b 1+b 2+b 3+…+b n-1+b n =(11-13)+(12-14)+13−15+…+(1n -1-1n+1)+(1n -1n+2)=32−1n+1−1n+2=3n 2+5n2n 2+6n+4.5.解 (1)方案一:选条件①.因为数列{S n +a 1}为等比数列, 所以(S 2+a 1)2=(S 1+a 1)(S 3+a 1), 即(2a 1+a 2)2=2a 1(2a 1+a 2+a 3).设等比数列{a n }的公比为q ,因为a 1=1,所以(2+q )2=2(2+q+q 2),解得q=2或q=0(舍).所以a n =a 1q n-1=2n-1(n ∈N *). 方案二:选条件②.因为点(S n ,a n+1)在直线y=x+1上, 所以a n+1=S n +1(n ∈N *), 所以a n =S n-1+1(n ≥2).两式相减得a n+1-a n =a n ,a n+1a n =2(n ≥2).因为a 1=1,a 2=S 1+1=a 1+1=2,a2a 1=2适合上式,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =a 1q n-1=2n-1(n ∈N *).方案三:选条件③.当n ≥2时,因为2n a 1+2n-1a 2+…+2a n =na n+1(n ∈N *), ①所以2n-1a 1+2n-2a 2+…+2a n-1=(n-1)a n . 所以2n a 1+2n-1a 2+…+22a n-1=2(n-1)a n . ②①-②得2a n =na n+1-2(n-1)a n ,即a n+1a n=2(n ≥2). 当n=1时,2a 1=a 2,a2a 1=2适合上式,所以数列{a n }是首项为1,公比为2的等比数列,所以a n =a 1q n-1=2n-1(n ∈N *). (2)由(1)得a n =2n-1(n ∈N *),所以b n =1log 2a n+1·log 2a n+3=1n (n+2)=12(1n -1n+2).所以T n =12(1-13)+(12-14)+13−15+…+(1n -1-1n+1)+1n −1n+2=1232−1n+1−1n+2=34−121n+1+1n+2=34−2n+32(n+1)(n+2).6.解 (1)因为na n+1-(n+1)a n =1,所以a n+1n+1−a n n =1n (n+1)=1n −1n+1, 所以a n n −a n -1n -1=1n -1−1n (n ≥2),a n -1n -1−a n -2n -2=1n -2−1n -1,…a 22−a 11=1-12,所以ann -a 1=1-1n (n ≥2). 又a 1=1,所以a n n =2n -1n ,所以a n =2n-1(n ≥2). 又a 1=1,也符合上式,所以对任意正整数n ,a n =2n-1. (2)结合(1)得b n =2n -13n -1,所以S n =130+331+532+733+…+2n -13n -1, ①13S n =13+332+533+…+2n -13n , ②①-②,得23S n =1+213+132+…+13n -1-2n -13n =2-2n+23n ,所以S n =3-n+13n -1. 7.解 (1)由题意知当n ≥2时,a n =S n -S n-1=6n+5,当n=1时,a 1=S 1=11,所以a n =6n+5.设数列{b n }的公差为d ,由{a 1=b 1+b 2,a 2=b 2+b 3,即{11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d=3,所以b n =3n+1.(2)由(1)知c n =(6n+6)n+1(3n+3)n=3(n+1)·2n+1,又T n =c 1+c 2+c 3+…+c n ,得T n =3×[2×22+3×23+4×24+…+(n+1)×2n+1],2T n =3×[2×23+3×24+4×25+…+(n+1)×2n+2],两式作差,得-T n =3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×4+4(2n -1)2-1-(n+1)×2n+2=-3n·2n+2,所以T n =3n·2n+2. 8.解 (1)当n ≥2时,a n =S n -S n-1=n 2+n 2−(n -1)2+(n -1)2=n ,n=1时,a 1=S 1=1,满足上式,∴a n =n.∵b n+1b n =2n+1,∴b n b n-1=2n (n ≥2), ∴b n+1=2b n-1(n ≥2),∴数列{b n }的奇数项和偶数项分别是2为首项,2为公比的等比数列,∴b n ={2n+12,n 为奇数,2n2,n 为偶数.(2)∑i=1na i (b 2i -1-1b 2i )=∑i=1ni2i-12i=∑n =1ni·2i-∑i=1ni2i , 设M n =1·x+2·x 2+3·x 3+…+(n-1)x n-1+nx n (x ≠0,1),①xM n =1·x 2+2·x 3+3·x 4+…+(n-1)x n +nx n+1, ②①-②得(1-x )M n =x+x 2+x 3+…+x n -nx n+1=x (1-x n )1-x -nx n+1,∴M n =x+(nx -n -1)x n+1(1-x )2.∴∑i=1ni·2i=2+(2n -n -1)·2n+1(1-2)2=(n-1)·2n+1+2,∑i=1ni2i =12+(n 2-n -1)·12n+1(1-12)2=2-n+22n ,从而∑i=1n a i (b 2i -1-1b 2i )=(n-1)·2n+1+n+22n .。
数列通项、数列前n项和的求法例题+练习
通项公式和前n 项和一、新课讲解:求数列前N 项和的办法 1. 公式法(1)等差数列前n 项和:特此外,当前n 项的个数为奇数时,211(21)k k S k a ++=+,即前n 项和为中央项乘以项数.这个公式在许多时刻可以简化运算. (2)等比数列前n 项和: q=1时,1n S na =()1111n n a q q S q-≠=-,,特别要留意对公比的评论辩论.(3)其他公式较罕有公式:1.)1(211+==∑=n n k S nk n 2.)12)(1(6112++==∑=n n n k S nk n3.213)]1(21[+==∑=n n k S n k n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.2. 错位相减法这种办法是在推导等比数列的前n 项和公式时所用的办法,这种办法重要用于求数列{a n ·b n }的前n 项和,个中{ a n }.{ b n }分离是等差数列和等比数列.[例3]乞降:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………① [例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和.演习:求:S n =1+5x+9x 2+······+(4n -3)xn-1答案:当x=1时,S n =1+5+9+······+(4n-3)=2n 2-n 当x ≠1时,S n = 1 1-x[4x(1-x n ) 1-x+1-(4n-3)x n ]3. 倒序相加法乞降这是推导等差数列的前n 项和公式时所用的办法,就是将一个数列倒过来分列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值 4. 分组法乞降有一类数列,既不是等差数列,也不是等比数列,若将这类数列恰当拆开,可分为几个等差.等比或罕有的数列,然后分离乞降,再将其归并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa an ,… 演习:求数列•••+•••),21(,,813,412,211nn 的前n 项和.5. 裂项法乞降这是分化与组合思惟在数列乞降中的具体运用. 裂项法的本质是将数列中的每项(通项)分化,然后从新组合,使之能消去一些项,最终达到乞降的目标. 通项分化(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+(裂项) ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项乞降)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立演习:求63135115131+++之和.6. 归并法乞降针对一些特别的数列,将某些项归并在一路就具有某种特别的性质,是以,在求数列的和时,可将这些项放在一路先乞降,然后再求S n .[例12]求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. [例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.7. 运用数列的通项乞降先依据数列的构造及特点进行剖析,找出数列的通项及其特点,然后再运用数列的通项揭示的纪律来求数列的前n 项和,是一个重要的办法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 演习:求5,55,555,…,的前n 项和.以上一个7种办法固然各有其特色,但总的原则是要擅长转变原数列的情势构造,使其能进行消项处理或能运用等差数列或等比数列的乞降公式以及其它已知的根本乞降公式来解决,只要很好地掌控这一纪律,就能使数列乞降化难为易,水到渠成.求数列通项公式的八种办法一.公式法(界说法)依据等差数列.等比数列的界说求通项 二.累加.累乘法1.累加法 实用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式.解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-2.累乘法 实用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯三.待定系数法 实用于1()n n a qa f n +=+剖析:经由过程凑配可转化为1121()[()]n n a f n a f n λλλ++=+; 解题根本步调: 1.肯定()f n2.设等比数列{}1()n a f n λ+,公比为2λ3.列出关系式1121()[()]n n a f n a f n λλλ++=+4.比较系数求1λ,2λ5.解得数列{}1()n a f n λ+的通项公式6.解得数列{}n a 的通项公式例4 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……例5 已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一:设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n n a --⋅是首项为111435a --⋅=-,公比为2的等比数列, 所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二: 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略留意:例 6 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.留意:形如21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例7 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅四.迭代法例8 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 五.变性转化法1.对数变换法 实用于指数关系的递推公式例9 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.2.倒数变换法 实用于分式关系的递推公式,分子只有一项 例10 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 3.换元法 实用于含根式的递推关系 例11 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.六.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例12 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 七.阶差法1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例13 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式. 解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a =当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --= 当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去 所以32n a n =-2.对无限递推数列例14 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =八.不动点法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例 15 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=--- (2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例16 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.。
高考数学《数列》大题训练50题含答案解析整理版
高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
数列的通项公式及前n项和例题及练习
求数列的通项公式:•公式法:项公式。
•累加法:适用于:a n 1 a n f(n)1.等差数列a n是递减数列,且a2 a3 a4=48, a2 a3 a4=12,求数列的通2. 若在数列a n中,a13, a n 1 a n求通项a n。
练习:已知数列{a n}满足a n1 a n 2n, a1 1,求数列{a n}的通项公式。
三.累乘法:适用于: a n 1 f(n)a n3•在数列a n中,a1a n 1 2a n ( n N ),求通项a n。
练习:在数列a n中, a i 1,a n 1n--- a nn 1(n N ),求通项a n。
四、倒数变换法 适用于分式关系的递推公式,分子只有一项 4..设数列{a n }满足a 12, a . 1六、S n 与a n 之间的关系练习:设数列a n 的前n 项和S n =n 2 n 2,求a n 。
练习:已知数列{a n }满足a nia 1 1,求数列{a n }的通项公式。
五、待定系数法适用于a n 1 qa n f(n)5.已知数列{a n }中,a 1 1,a n1(n 2),求数列a n 的通项公式。
练习:已知数列{a n }满足a n 12a n4 3n1, a i 1,求数列a n 的通项公式。
6.设数列a n 的前n 项和S n =|a n3,求 a n 。
求数列的前n项和:、公式法1.求x x2的前n项和.分组法求和1 1 12 .求数列12,24,38,???,(n *),???的前n项和。
练习1:求数列的前n项和:1 1,- 4,丄7,a a13n 2 a练习2:求1 11 111111n个1 1之和.错位相减法3.求和:S n 1 3x 5x2 7x3(2n 1)x n 1四、倒序相加法求和练习:设f(x)= 一,求 f(- 5)+f(- 4)+ I 1 I f(6)的值。
2X42I 门1 1 1———练习2: 求 12 12 3练习:求数列2,昇 笋前n项的和.4.求 sin 21 sin 2 2 sin 2 3sin 288 sin 289 的值五、 裂项法求和 5.在数列{a n }中,a--- ,求数列{a n }的前n 项和。
2023-2024学年高考数学数列专项练习题(含答案)
2023-2024学年高考数学数列小专题一、单选题1.已知等比数列的前项和为,且,则数列的前项和为( ){}n a n n S 11n n a S +=+{}2n a n A .B .413n -213n -C .D .41n-21n-2.已知函数在上的最小值为,最大值为,且在等差数列中,2log y x =[]16,256m M {}n a ,则( )24,a m a M ==10a =A .17B .18C .20D .243.数列满足,(),,若数列是递减数{}n a 18a =11nn n a a na +=+*n ∈N 112nn n b a λ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭{}n b 列,则实数的取值范围是( )λA .B .C .D .8,7⎛⎫-+∞ ⎪⎝⎭7,8⎛⎫-+∞ ⎪⎝⎭8,7⎛⎫+∞ ⎪⎝⎭7,8⎛⎫+∞ ⎪⎝⎭4.等差数列中的,是函数的极值点,则{}n a 2a 2024a ()32642024=-+-f x x x x ( )81013log =a A .B .C .3D .133-13-5.已知数列的前项和为,且等比数列满足,若,则{}n c n n S {}n a 2log n n c a =2364a a =( )9S =A .3B .4C .5D .66.已知数列是公比为q ()的正项等比数列,且,若,则{}n b 1q ≠10122ln 0b =()241f x x =+( )()()()122023f b f b f b +++=A .4069B .2023C .2024D .40467.已知等比数列的前项和为,若,则( ){}n a n n S 132n n S λ+=⨯+λ=A .B .C .D .33-66-8.已知数列的前4项分别为,,,,则该数列的一个通项公式可以为132-354+578-7916+( )n a =A .2121(1)2nn n n -++-B .12121(1)2n n n n +-++-C .12121(1)2n n n n--++-D .2121(1)2nnn n -++-二、多选题9.已知是等比数列的前项和,且,则下列说法正确的是( )n S {}n a n 11(2)n n S a -=+-A .2a =-B .中任意奇数项的值始终大于任意偶数项的值{}n S C .的最大项为,最小项为{}n S 13S =232S =D .12231011201612a a a a a a ⎛⎫+++=- ⎪⎝⎭ 10.数列中,,则( ){}n a 1112,1,n na a n a ++=+=∈N A .202412a =B .12320221011a a a a +++⋅⋅⋅+=C .12320242a a a a ⋅⋅⋅=-D .122334202220231011a a a a a a a a +++⋅⋅⋅+=-11.已知数列满足,,为的前项和,则( ){}n a 126a =132n n a a +=-n S {}n a n A .为等比数列{}1n a +B .的通项公式为{}n a 4131n n a -=-C .为递减数列{}n aD .当或时,取得最大值4n =5n =n S 12.等差数列的前n 项和为,若,,则( ){}n a n S 79a =443S a =A .的公差为1B .的公差为2{}n a {}n a C .D .418S =20232025a =三、填空题13.在等比数列中,,则.{}n a 12563,6a a a a +=+=910a a +=14.某网店统计了商品近30天的日销售量,日销售量依次构成数列,已知,且A {}n a 120a=,则商品近30天的总销量为 .()()111nn n a a n ++-=+-∈N A 15.在数列与中,已知,则{}n a {}n b ()1111112,2,2n n n n n n n n a b a b a b a b a b ++++==+=+=.2023202311a b +=16.已知数列满足.且,若,则{}n a 1265n n a a n ++=+13a =()1nn n b a =-.1232024b b b b ++++=答案:1.A【分析】根据关系得出等比数列求出,最后再根据等比数列前项和计算求解,n n a S 12n n a -=n 即可.【详解】因为,所以当时,,两式相减,得,11n n a S +=+2n ≥11n n a S -=+12n n a a +=所以数列从第2项起是公比为2的等比数列.又数列是等比数列,所以.{}n a {}n a 212a a =由,解得,所以数列是首项为1,公比为2的等比数列,所以21111a S a =+=+11a ={}n a ,12n n a -=所以,所以数列是首项为1,公比为4的等比数列,()212124n n n a --=={}2na 所以数列的前项和为.{}2n a n 1441143n n --=-故选:A .2.C【分析】利用对数函数单调性先求出函数最小值为,最大值为,再由等差数列通项公式m M 求解.【详解】因为函数在上单调递增,2log y x =[]16,256所以,,2log 164m ==2log 2568M ==所以,所以等差数列的公差,244,8a a =={}n a 42842422a a d --===-所以.()10210248220a a d =+-=+⨯=故选:C .3.D【分析】将取倒数结合累加法求得,再利用数列单调递减列不等式11nn n a a na +=+()22118n n a -=并分离参数,求出新数列的最大值即可求得答案【详解】由题意,,两边取倒数可化为,所以,11nn n a a na +=+1111n n n n na n a a a ++==+21111a a -=,,由累加法可得,,因为32112a a -=1111--=-n n n a a ()()11111212n n n n a a --=++⋅⋅⋅+-=,所以,18a =()()212111288n n n n a --=+=所以,因为数列是递减数列,故,即()221111282nn n n n b a λλ⎡⎤-⎛⎫⎛⎫⎛⎫=+=+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦{}n b 1n n b b -<,整理可得,()()2212123118282n n n n λλ-⎡⎤⎡⎤--⎛⎫⎛⎫+<+⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,因为,,所以2254842017288n n n λ⎛⎫--+ ⎪-+-⎝⎭>=2n ≥*n ∈N ,故.22max 5548428722888n ⎛⎫⎛⎫⎛⎫--+-⨯-+ ⎪⎪ ⎪⎝⎭⎝⎭ ⎪==⎪ ⎪⎝⎭7,8λ⎛⎫∈+∞ ⎪⎝⎭故选:D.4.A【分析】利用导数求出函数的两个极值点,再利用等差数列性质求出即可计算得解.()f x 1013a 【详解】由求导得:,()32642024=-+-f x x x x 2()3124f x x x '=-+有,即有两个不等实根,2124340∆=-⨯⨯>()0f x '=12,x x 显然是的变号零点,即函数的两个极值点,12,x x ()f x '()f x 依题意,,在等差数列中,,24122024a x a x ++=={}n a 22024101322a a a +==所以.38101321log log 23a ==故选:A 5.D【分析】设等比数列的公比为,根据题意,求得,结合对数运算性质有{}n a q 354a =,即可求解.9925log S a =【详解】设等比数列的公比为,{}n a q因为,()2235365524a a a a q a q ===所以9128212228299log log log log S c c a c c a a a =++++++=++ .()9321289252log log log 46a a a a a ==== 故选:D.6.D【分析】由等比数列的性质可得,由,可得1202322022202311b b b b b b ⋅=⋅==⋅= ()241f x x =+,故有,即可计()14f x f x ⎛⎫+= ⎪⎝⎭()()()()()()1202322022202314f b f b f b f b f b f b +=+==+= 算.()()()122023f b f b f b +++ 【详解】由数列是公比为q ()的正项等比数列,故,{}n b 1q ≠0n b >,故,()210121012120232ln ln ln 0b b b b ==⋅=120231b b ⋅=即有,1202322022202311b b b b b b ⋅=⋅==⋅= 由,则当时,()241f x x =+0x >有,()2222214444411111x f x f x x x x x ⎛⎫+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭故,()()()()()()1202322022202314f b f b f b f b f b f b +=+==+= 故()()()()()()()12202312023220222f b f b f b f b f b f b f b ⎡⎤⎡⎤⎡⎤+++=++++⎣⎦⎣⎦⎣⎦ ,()()()()202312023120238092f b f b f b f b ⎡⎤⎡⎤++=+=⎣⎦⎣⎦故.()()()1220234046f b f b f b +++= 故选:D.7.D【分析】根据题意,求得,结合等比数列的定义,得到,即可求解.12,2n na n a +=≥212a a =【详解】由,132n n S λ+=⨯+当时,,可得,2n ≥1132(32)32n n nn n n a S S λλ+--==⨯+-⨯+=⋅12,2n na n a +=≥当时,,1n =21132a S λ==⨯+因为数列为等比数列,可得,解得.{}n a 222132232a a λ⨯==⨯+6λ=-故选:D.8.D【分析】观察数列的项的特点,找到各项之间的规律,即可写出一个通项公式,结合选项,即得答案.【详解】观察可知,该数列的前面整数部分为奇数,后面分数部分正负相间,首项的分21n +数部分为负,分母为,分子为,2n 21n-故该数列的一个通项公式可以为,2121(1)2nn n n a n -=++-故选:D 9.BCD【分析】由等比数列的前项和公式可得,可判断选项A ;根据的解析式判断奇数项n 2a =n S 与偶数项的公式,从而判断BC ;由得到的通项公式,从而表示出的通项公式n S n a 1n n n b a a +=即可判断D.【详解】由题可知,此时等比数列的公比,所以设前项和公式应为:1q ≠n ,n n S A q A =-⋅+,A 错误;12,22nn S a a ⎛⎫=-⋅-+∴= ⎪⎝⎭因此,1112,1222122,2nn n n n S n --⎧+⎪⎪⎛⎫=-⋅-+=⎨⎪⎝⎭⎪-+⎪⎩为奇数为偶数可得中,奇数项递减,且始终大于2,最大值为,{}n S 13S =偶数项递增,且始终小于2,最小值为,因此BC 正确;232S =由可得,令,n S 23122n n a -⎛⎫=-- ⎪⎝⎭23121919422n n n n n b a a -+-⎛⎫==-=-⎪⎝⎭所以,故D 正确1012231011121020911124611214a a a a a a b b b ⎛⎫-- ⎪⎛⎫⎝⎭+++=+++==- ⎪⎝⎭- 故选:BCD 10.ABD【分析】根据递推公式可得数列是以3为周期的周期数列,再逐个选项判断即可.{}n a 【详解】由题意得:,234512341111111,11,12,1,22a a a a a a a a =-==-=-=-==-=⋅⋅⋅数列是以3为周期的周期数列.∴{}n a 对于A ,,A 正确;202467432212a a a ⨯+===对于B ,,B 正确;()1232022123367467410112a a a a a a a +++⋅⋅⋅+=++=⨯=对于C ,,C 错误;()6741232024123202320241a a a a a a a a a ⋅⋅⋅==对于D ,由递推关系式知:,11n n n a a a +=-()()()12233420222023122022111a a a a a a a a a a a ∴+++⋅⋅⋅+=-+-+⋅⋅⋅+-,D 正确.12320222022101120221011a a a a =+++⋅⋅⋅+-=-=-故选:ABD .11.AC【分析】利用构造法得,判断出为首项为,公比为的等比数列,()1311n n a a ++=+{}11n a ++2713判断A 选项;利用等比数列通项公式求出通项公式,判断B 选项;根据函数是减函数,1n a +判断C 选项;令,解得,判断D 选项.n a =4n =【详解】因为,所以,即,,132n n a a +=-1331n n a a ++=+()1311n n a a ++=+11113n na a ++=+又因为,所以,所以为首项为,公比为的等比数列,A 正确;126a =1127a +={}11n a ++2713B 错误;C 正确;D 错误.故选:AC 12.ACD【分析】列出方程组,求出等差数列的公差和首项,判断A ,B ;根据等差数列通项公式以及前n 项和公式即可判断C ,D.【详解】设的公差为d ,由,,得,{}n a 79a =443S a =111694639a d a d a d +=⎧⎨+=+⎩解得,故A 正确,B 错误;131a d =⎧⎨=⎩,,C ,D 正确.414618S a d =+=2023120222025a a d =+=故选:ACD 13.12【分析】根据等比数列的通项公式可得结果.【详解】设等比数列的公比为,,所以,{}n a q ()44561236a a q a a q +=+==42q =所以,()4910562612a a q a a +=+=⨯=故12.14.1020【分析】根据题目所给递推关系找到数列的规律,进而求和.【详解】当时,,当时,,21n k =-221k k a a -=2n k =2122k k a a +=+,∴21212k k a a +-=+中奇数项是公差为2,首项为20的等差数列,{}n a ∴∴1232930a a a a a +++++ ()135292a a a a =++++ .151421520210202⨯⎛⎫=⨯⨯+⨯= ⎪⎝⎭商品近30天的总销量为.∴A 1020故答案为.102015.1【分析】由已知计算可得为常数列,进而可得结果.1111n n a b +++11{}n n a b +【详解】由题意知,,()111111211112n n n n n n n n n n n n a b a b a b a b a b a b +++++++++===+所以为常数列,即,11{}n n a b +11111111122n n a b a b +=+=+=所以.20232023111a b +=故1.16.2024【分析】利用构造法与迭代法求得,从而利用并项求和法即可得解.21n a n =+【详解】因为,所以,1265n n a a n ++=+()12(1)1221n n a n a n +-+-=---又,则,13a =12113210a -⨯-=--=所以()[]12112(1)1(2)21(2)2(1)1n n n a n a n a n +--+-=---=----=,()1(2)2110n a =--⨯-=故,则,210n a n --=21n a n =+所以,()()11(21)nnn n b a n =-=-+则的各项分别为,{}n b 3,5,7,9,11,13,--- 所以()()()()12320243579111340474049b b b b ++++=-++-++-+++-+ .210122024=⨯=故2024关键点点睛:本题解决的关键在于将推递关系式化得,从而()12(1)1221n n a n a n +-+-=---求得,由此得解.n a。
新教材高考数学第一课时等差数列的前n项和公式及相关性质练习含解析选修2
第一课时 等差数列的前n 项和公式及相关性质课标要求素养要求1.探索并掌握等差数列的前n 项和公式.2.理解等差数列的通项公式与前n 项和公式的关系.在探索等差数列的前n 项和公式及相关性质的过程中,发展学生的数学运算和逻辑推理素养.新知探究在我国古代,9是数字之极,代表尊贵之意,所以中国古代皇帝建筑中包含许多与9相关的设计.例如,北京天坛圆丘的地面由扇环的石板铺成(如图),最高一层的中心是一块天心石,围绕它的第1圈有9块石板,从第2圈开始,每一圈比前一圈多9块,共有9圈.问题 文中所提到的最高一层的石板一共有多少块? 提示 9+2×9+3×9+…+8×9+9×9=405(块).1.等差数列的前n 项和公式求S n 的条件:已知n ,a 1,a n 或n ,a 1,d (1)等差数列的前n 项和公式已知量 首项、末项与项数首项、公差与项数求和公式S n =n (a 1+a n )2S n =na 1+n (n -1)d2(2)两个公式的关系:把a n =a 1+(n -1)d 代入S n =1n 2中,就可以得到S n =na 1+n (n -1)2d .2.等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.(2)若S m ,S 2m ,S 3m 分别为等差数列{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .(3)设两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.(4)若等差数列的项数为2n ,则S 2n =n (a n +a n +1),S 偶-S 奇=nd ,S 偶S 奇=a n +1a n(S 奇≠0).(5)若等差数列的项数为2n +1,则S 2n +1=(2n +1)a n +1(a n +1是数列的中间项),S 偶-S 奇=-a n +1,S 偶S 奇=n n +1(S 奇≠0).拓展深化[微判断]1.设等差数列{a n }的前n 项和为S n ,则S n 与a n 不可能相等.(×) 提示 当a n =0时,S n =a n .2.等差数列{a n }的前n 项和S n 是关于n 的二次函数.(×) 提示 当公差d =0时,S n =na 1不是关于n 的二次函数.3.等差数列{a n }的前n 项和S n =n (a m +a n +1-m )2.(√)[微训练]1.等差数列{a n }中a 1=2,a 2=3,则其前10项的和S 10=________. 解析 由a 1=2,a 2=3得d =1,故S 10=10a 1+12×10×9d =10×2+45=65.答案 652.等差数列{a n }中,若a 1=-1,S 25=30,则公差d =________. 解析 由S 25=-25+12×24×25×d =30,解得d =1160.答案11603.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是________. 解析 等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1. 答案 -1 [微思考]1.高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)=101×50迅速求出了等差数列前100项的和.如果是求1+2+3+…+n ,不知道共有奇数项还是偶数项怎么办?提示 不知共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题:设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1,∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1),∴2S n =n (n +1),∴S n =n (n +1)2.2.能否用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢? 提示 由上节课学到的性质:在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和,即a 1+a n =a 2+a n -1=a 3+a n -2=….“倒序相加法”可以推广到一般等差数列求前n 项和,其方法如下:S n =a 1+a 2+a 3+…+a n -1+a n=a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -2)d ]+[a 1+(n -1)d ];S n =a n +a n -1+a n -2+…+a 2+a 1=a n +(a n -d )+(a n -2d )+…+[a n -(n -2)d ]+[a n -(n -1)d ]. 两式相加,得2S n =(a 1+a n )·n ,由此可得等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2.根据等差数列的通项公式a n =a 1+(n -1)d , 代入上式可得S n =na 1+n (n -1)2d .题型一 等差数列前n 项和公式的基本运算 【例1】 在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10; (2)已知S 7=42,S n =510,a n -3=45,求n . 解 (1)法一 由已知条件得⎩⎪⎨⎪⎧a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧a 1=3,d =4.∴S 10=10a 1+10×(10-1)2d =10×3+10×92×4=210.法二 由已知条件得⎩⎪⎨⎪⎧a 5+a 10=(a 1+a 10)+4d =58,a 4+a 9=(a 1+a 10)+2d =50,∴a 1+a 10=42,∴S 10=10(a 1+a 10)2=5×42=210.(2)S 7=7(a 1+a 7)2=7a 4=42,∴a 4=6.∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510.∴n =20.规律方法 等差数列中基本计算的两个技巧 (1)利用基本量求值.(2)利用等差数列的性质解题.【训练1】 (1)设S n 是等差数列{a n }的前n 项和.若a 1=-2 018,S 6-2S 3=18,则S 2 020=( ) A.-2 018 B.2 018 C.2 019D.2 020(2)(多选题)设等差数列{a n }的前n 项和为S n (n ∈N *),当首项a 1和公差d 变化时,若a 1+a 8+a 15是定值,则下列各项中为定值的是( ) A.a 7 B.a 8 C.S 15D.S 16解析 (1)设等差数列{a n }的公差为d .∵a 1=-2 018,S 6-2S 3=18,∴6a 1+6×52·d -6a 1-2×3×22·d =18,整理可得9d =18,解得d =2.则S 2 020=2 020×(-2 018)+2 020×2 0192×2=2 020.故选D.(2)由a 1+a 15=2a 8,故a 1+a 8+a 15是定值可得a 8是定值,S 15=12×15×(a 1+a 15)=15a 8,故S 15为定值,故选BC. 答案 (1)D (2)BC题型二 等差数列前n 项和性质的应用【例2】 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ;(2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.解 (1)法一 在等差数列中, ∵S m ,S 2m -S m ,S 3m -S 2m 成等差数列, ∴30,70,S 3m -100成等差数列. ∴2×70=30+(S 3m -100),∴S 3m =210. 法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m成等差数列, ∴2S 2m 2m =S m m +S 3m3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210.(2)a 5b 5=12(a 1+a 9)12(b 1+b 9)=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=7×9+29+3=6512. 规律方法 等差数列前n 项和运算的几种思维方法 (1)整体思路:利用公式S n =n (a 1+a n )2,设法求出整体a 1+a n ,再代入求解.(2)待定系数法:利用当公差d ≠0时S n 是关于n 的二次函数,设S n =An 2+Bn (A ≠0),列出方程组求出A ,B 即可,或利用S nn 是关于n 的一次函数,设S n n=an +b (a ≠0)进行计算. (3)利用S n ,S 2n -S n ,S 3n -S 2n 成等差数列进行求解.【训练2】 (1)等差数列{a n }的前n 项和为S n ,若S 3=-6,S 18-S 15=18,则S 18等于( ) A.36 B.18 C.72D.9(2)已知等差数列{a n }和{b n }的前n 项和分别为S n 和S n ′,如果S n S n ′=7n +14n +27(n ∈N *),则a 11b 11的值是( ) A.74B.32C.43D.7871解析 (1)由S 3,S 6-S 3,…,S 18-S 15成等差数列知,S 18=S 3+(S 6-S 3)+(S 9-S 6)+…+(S 18-S 15)=6×(-6+18)2=36.(2)由等差数列前n 项和的性质,得 a 11b 11=2a 112b 11=a 1+a 21b 1+b 21=212(a 1+a 21)212(b 1+b 21)=S 21S 21′=7×21+14×21+27=43. 答案 (1)A (2)C题型三 求数列{|a n |}的前n 项和【例3】 若等差数列{a n }的首项a 1=13,d =-4,记T n =|a 1|+|a 2|+…+|a n |,求T n . 解 ∵a 1=13,d =-4,∴a n =17-4n . 当n ≤4时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n=na 1+n (n -1)2d =13n +n (n -1)2×(-4)=15n -2n 2;当n ≥5时,T n =|a 1|+|a 2|+…+|a n | =(a 1+a 2+a 3+a 4)-(a 5+a 6+…+a n ) =S 4-(S n -S 4)=2S 4-S n=2×(13+1)×42-(15n -2n 2)=56+2n 2-15n .∴T n =⎩⎪⎨⎪⎧15n -2n 2,n ≤4,n ∈N *,2n 2-15n +56,n ≥5,n ∈N *. 规律方法 已知{a n }为等差数列,求数列{|a n |}的前n 项和的步骤 第一步,解不等式a n ≥0(或a n ≤0)寻找{a n }的正负项分界点.第二步,求和:①若a n 各项均为正数(或均为负数),则{|a n |}各项的和等于{a n }的各项的和(或其相反数);②若a 1>0,d <0(或a 1<0,d >0),这时数列{a n }只有前面有限项为正数(或负数),可分段求和再相加.【训练3】 已知等差数列{a n }中,S n 为数列{a n }的前n 项和,若S 2=16,S 4=24,求数列{|a n |}的前n 项和T n .解 设等差数列{a n }的首项为a 1,公差为d , 由S 2=16,S 4=24,得⎩⎪⎨⎪⎧2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧2a 1+d =16,2a 1+3d =12, 解得⎩⎪⎨⎪⎧a 1=9,d =-2. 所以等差数列{a n }的通项公式为a n =11-2n (n ∈N *). 由a n ≥0,解得n ≤512,则①当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n . ②当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n=2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧-n 2+10n ,n ≤5且n ∈N *,n 2-10n +50,n ≥6且n ∈N *.一、素养落地1.通过学习等差数列前n 项和公式的推导过程及性质,提升逻辑推理和数学运算素养.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量.在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *),若m +n =2p ,则a n +a m =2a p . 3.求等差数列{a n }前n 项的绝对值之和,关键是找到{a n }的正负项的分界点. 二、素养训练1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( ) A.12 B.24 C.36D.48解析 S 10=10(a 1+a 10)2=5(a 1+a 10)=120,∴a 1+a 10=24. 答案 B2.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A.1 B.2 C.4D.8解析 设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧2a 1+7d =24,6a 1+15d =48,解得d =4. 答案 C3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=( )A.1B.-1C.2D.12解析 由于S 2n -1=(2n -1)a n ,则S 9S 5=9a 55a 3=95×59=1.答案 A4.设等差数列{a n }的前n 项和为S n ,且S 4=2,S 8=6,则S 12=________.解析 因为 S 4,S 8-S 4,S 12-S 8成等差数列,故2(S 8-S 4)=S 4+S 12-S 8,即2×4=2+S 12-6,得S 12=12. 答案 125.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)由S n =n ·32+⎝ ⎛⎭⎪⎫-12·n (n -1)2=-15,整理得n 2-7n -60=0,解之得n =12或n =-5(舍去). (2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d ,解之得d =-171.基础达标一、选择题1.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项和S 10=( ) A.138 B.135 C.95D.23解析 由a 2+a 4=2a 3=4得a 3=2,由a 3+a 5=2a 4=10得a 4=5,故公差d =3,所以a 1=-4,则S 10=10×(-4)+12×10×9×3=95.答案 C2.等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则数列{a n }的公差d 等于( ) A.2 B.3 C.6D.7解析 由S 2=a 1+a 2=4及S 4=a 1+a 2+a 3+a 4=20,得a 3+a 4=16,故(a 3+a 4)-(a 1+a 2)=4d ,即4d =12,d =3. 答案 B3.等差数列{a n }满足a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( ) A.160B.180C.200D.220解析 由a 1+a 2+a 3=3a 2=-24得a 2=-8,由a 18+a 19+a 20=3a 19=78得a 19=26,S 20=12×20×(a 1+a 20)=10(a 2+a 19)=10×18=180. 答案 B4.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( ) A.5 B.6 C.7D.8解析 由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,∴4(a 1+a n )=280,∴a 1+a n =70.又S n =n (a 1+a n )2=n2·70=210,∴n =6. 答案 B5.在公差不为零的等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 016,S k =S 2 008,则正整数k 为( ) A.2 017 B.2 018 C.2 019D.2 020解析 因为公差不为零的等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性质及S 2 011=S 2 016,S k =S 2 008,可得2 011+2 0162=2 008+k2,解得k =2 019.答案 C 二、填空题6.已知等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析 设等差数列{a n }的首项为a 1,公差为d ,由6S 5-5S 3=5,得3(a 1+3d )=1,所以a 4=13. 答案 137.《张邱建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织________尺布(不作近似计算).解析 由题意知,该女每天的织布尺数构成等差数列{a n },其中a 1=5,S 30=390,设其公差为d ,则S 30=30×5+30×292d =390,解得d =1629.故该女子织布每天增加1629尺.答案16298.等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n =2n 3n +1,则a 5b 5=________.解析 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=1828=914.答案914三、解答题9.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,求a 9. 解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2. 故a 9=a 1+8d =-1+8×2=15.10.已知S n 是等差数列{a n }的前n 项和,且S 10=100,S 100=10,求S 110. 解 法一 设等差数列{a n }的首项为a 1,公差为d , ∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧10a 1+10(10-1)2d =100,100a 1+100(100-1)2d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150.∴S 110=110a 1+110(110-1)2d=110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150=-110.法二 ∵S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100,…成等差数列,设公差为d ,∴该数列的前10项和为10×100+10×92d =S 100=10,解得d =-22,∴前11项和S 110=11×100+11×102×(-22)=-110. 能力提升11.已知等差数列{a n }的前n 项和为377,项数n 为奇数,且前n 项中,奇数项的和与偶数项的和之比为7∶6,则中间项为________.解析 因为n 为奇数,所以S 奇S 偶=n +1n -1=76,解得n =13,所以S 13=13a 7=377,所以a 7=29.故中间项为29.答案 2912.已知数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n .解 a 1=S 1=-32×12+2052×1=101.当n ≥2时,a n =S n -S n -1=⎝ ⎛⎭⎪⎫-32n 2+2052n -⎣⎢⎡⎦⎥⎤-32(n -1)2+2052(n -1)=-3n +104.∵n =1也适合上式,∴数列{a n }的通项公式为a n =-3n +104(n ∈N *).由a n =-3n +104≥0,得n ≤3423.即当n ≤34时,a n >0;当n ≥35时,a n <0.(1)当n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n=S n =-32n 2+2052n ;(2)当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=(a 1+a 2+…+a 34)-(a 35+a 36+…+a n )=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n=2⎝ ⎛⎭⎪⎫-32×342+2052×34-⎝ ⎛⎭⎪⎫-32n 2+2052n=32n 2-2052n +3 502.故T n =⎩⎪⎨⎪⎧-32n 2+2052n ,n ≤34且n ∈N *,32n 2-2052n +3 502,n ≥35且n ∈N *.创新猜想13.(多选题)已知S n 是等差数列{a n }的前n 项和,下列选项中可能是S n 的图象的是( )解析 因为S n 是等差数列{a n }的前n 项和,所以S n =an 2+bn (a ,b 为常数,n ∈N *),则其对应函数为y =ax 2+bx .当a =0时,该函数的图象是过原点的直线上一些孤立的点,如选项C ;当a ≠0时,该函数的图象是过原点的抛物线上一些孤立的点,如选项A ,B ;选项D 中的曲线不过原点,不符合题意.答案 ABC14.(多空题)若数列{a n }是正项数列,且a 1+a 2+…+a n =n 2+3n (n ∈N *),则a n =________,a 12+a 23+…+a n n +1=________. 解析 令n =1,得a 1=4,∴a 1=16.当n ≥2时,a 1+a 2+…+a n -1=(n -1)2+3(n -1). 与已知式相减,得a n =n 2+3n -(n -1)2-3(n -1)=2n +2.∴a n =4(n +1)2.又∵n =1时,a 1满足上式,∴a n =4(n +1)2(n ∈N *).∴a nn +1=4n +4,∴a 12+a 23+…+a n n +1=n (8+4n +4)2=2n 2+6n . 答案 4(n +1)2 2n 2+6n。
2023年高考数学(文科)一轮复习——等差数列及其前n项和
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.4.了解等差数列与一次函数的关系.1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).1.思考辨析(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0且关于n 的二次函数.( ) 答案 (1)√ (2)√ (3)× (4)×解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是n 的二次函数.2.(2022·南宁一模)记S n 为等差数列{a n }的前n 项和,若a 1=1,S 3=92,则数列{a n }的通项公式a n =( )A.nB.n +12C.2n -1D.3n -12答案 B解析 设等差数列{a n }的公差为d ,则S 3=3a 1+3×22d =3+3d =92,解得d =12,∴a n =1+(n -1)×12=n +12.3.(2021·宝鸡二模)已知{a n }是等差数列,满足3(a 1+a 5)+2(a 3+a 6+a 9)=18,则该数列的前8项和为( )A.36B.24C.16D.12答案 D解析 由等差数列性质可得a 1+a 5=2a 3,a 3+a 6+a 9=3a 6,所以3×2a 3+2×3a 6=18,即a 3+a 6=3,所以S 8=8(a 1+a 8)2=8(a 3+a 6)2=12. 4.在等差数列{a n }中,若a 1+a 2=5,a 3+a 4=15,则a 5+a 6=( )A.10B.20C.25D.30答案 C解析 等差数列{a n }中,每相邻2项的和仍然构成等差数列,设其公差为d ,若a 1+a 2=5,a 3+a 4=15,则d =15-5=10,因此a 5+a 6=(a 3+a 4)+d =15+10=25.5.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面.答案 20解析 设物体经过t 秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t +12t (t -1)×9.80=1 960,即4.90t 2=1 960,解得t =20.6.(易错题)在等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使数列{a n }的前n 项和S n 取最大值的正整数n 的值是________.答案 5或6解析 ∵|a 3|=|a 9|,∴|a 1+2d |=|a 1+8d |,可得a 1=-5d ,∴a 6=a 1+5d =0,且a 1>0,∴a 5>0,故S n 取最大值时n 的值为5或6.考点一 等差数列的基本运算1.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n答案 A解析 设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n . 2.(2022·太原调研)已知等差数列{a n }的前n 项和为S n ,若S 8=a 8=8,则公差d =( )A.14B.12C.1D.2 答案 D解析 ∵S 8=a 8=8,∴a 1+a 2+…+a 8=a 8,∴S 7=7a 4=0,则a 4=0.∴d =a 8-a 48-4=2. 3.(2020·全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.答案 25解析 设等差数列{a n }的公差为d ,则a 2+a 6=2a 1+6d =2×(-2)+6d =2.解得d =1.所以S 10=10×(-2)+10×92×1=25.4.(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 9=-a5.(1)若 a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.解 (1)设{a n }的公差为d .由S 9=-a 5可知9a 5=-a 5,所以a 5=0.因为a 3=4,所以d =a 5-a 32=0-42=-2,所以a n =a 3+(n -3)×(-2)=10-2n ,因此{a n }的通项公式为a n =10-2n .(2)由(1)得a 5=0,因为a 1>0,所以等差数列{a n }单调递减,即d <0,a 1=a 5-4d =-4d ,S n =n (n -9)d 2, a n =-4d +d (n -1)=dn -5d ,因为S n ≥a n ,所以nd (n -9)2≥dn -5d , 又因为d <0,所以1≤n ≤10.感悟提升 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.考点二 等差数列的判定与证明例1 (2021·全国甲卷)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1.注:若选择不同的组合分别解答,则按第一个解答计分.解 ①③⇒②.已知{a n }是等差数列,a 2=3a 1.设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1,所以S n =na 1+n (n -1)2d =n 2a 1. 因为数列{a n }的各项均为正数, 所以S n =n a 1, 所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列.设数列{a n }的公差为d ,则S n =na 1+n (n -1)2d =12n 2d +⎝ ⎛⎭⎪⎫a 1-d 2n . 因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a1-d2=0,即d=2a1,所以a2=a1+d=3a1.②③⇒①.已知数列{S n}是等差数列,a2=3a1,所以S1=a1,S2=a1+a2=4a1.设数列{S n}的公差为d,d>0,则S2-S1=4a1-a1=d,得a1=d2,所以S n=S1+(n -1)d=nd,所以S n=n2d2,所以n≥2时,a n=S n-S n-1=n2d2-(n-1)2d2=2d2n-d2,对n=1也适合,所以a n=2d2n-d2,所以a n+1-a n=2d2(n+1)-d2-(2d2n-d2)=2d2(常数),所以数列{a n}是等差数列.感悟提升 1.证明数列是等差数列的主要方法:(1)定义法:对于n≥2的任意自然数,验证a n-a n-1为同一常数.即作差法,将关于a n-1的a n代入a n-a n-1,再化简得到定值.(2)等差中项法:验证2a n-1=a n+a n-2(n≥3,n∈N*)都成立.2.判定一个数列是等差数列还常用到的结论:(1)通项公式:a n=pn+q(p,q为常数)⇔{a n}是等差数列.(2)前n项和公式:S n=An2+Bn(A,B为常数)⇔{a n}是等差数列.问题的最终判定还是利用定义.训练1 (2021·全国乙卷)设S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知2S n+1b n=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.(1)证明因为b n是数列{S n}的前n项积,所以n ≥2时,S n =b n b n -1, 代入2S n +1b n =2可得,2b n -1b n +1b n=2, 整理可得2b n -1+1=2b n ,即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =32+12(n -1)=n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1n (n +1). 故a n =⎩⎪⎨⎪⎧32,n =1,-1n (n +1),n ≥2. 考点三 等差数列的性质及应用角度1 等差数列项的性质例2 (1)设S n 为等差数列{a n }的前n 项和,且4+a 5=a 6+a 4,则S 9等于( )A.72B.36C.18D.9 (2)在等差数列{a n }中,若a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( )A.10B.20C.40D.2+log 25答案 (1)B (2)B解析 (1)∵a 6+a 4=2a 5,∴a 5=4,∴S 9=9(a 1+a 9)2=9a 5=36. (2)由等差数列的性质知a 1+a 10=a 2+a 9=a 3+a 8=a 4+a 7=a 5+a 6=a 4,则2a 1···2a 10=2a 1+a 2+…+a 10=25(a 5+a 6)=25×4,所以log 2(2a 1·2a 2·…·2a 10)=log 225×4=20. 角度2 等差数列前n 项和的性质例3 (1)已知等差数列{a n }的前n 项和为S n .若S 5=7,S 10=21,则S 15等于( )A.35B.42C.49D.63(2)(2020·全国Ⅱ卷)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块.向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( )A.3 699块B.3 474块C.3 402块D.3 339块答案 (1)B (2)C解析 (1)在等差数列{a n }中,S 5,S 10-S 5,S 15-S 10成等差数列,即7,14,S 15-21成等差数列,所以7+(S 15-21)=2×14,解得S 15=42.(2)设每一层有n 环,由题可知从内到外每环之间构成公差d =9,a 1=9的等差数列.由等差数列的性质知S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=n 2d ,则9n 2=729,得n =9,则三层共有扇面形石板S 3n =S 27=27×9+27×262×9=3 402(块).角度3 等差数列前n 项和的最值例4 等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 法一 设公差为d .由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0.故当n =7时,S n 最大.法二 易知S n =An 2+Bn 是关于n 的二次函数,由S 3=S 11,可知S n =An 2+Bn 的图象关于直线n =3+112=7对称. 由解法一可知A =-a 113<0,故当n =7时,S n 最大.法三 设公差为d .由解法一可知d =-213a 1.要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+(n -1)⎝ ⎛⎭⎪⎫-213a 1≥0,a 1+n ⎝ ⎛⎭⎪⎫-213a 1≤0, 解得6.5≤n ≤7.5,故当n =7时,S n 最大.法四 设公差为d .由S 3=S 11,可得2a 1+13d =0, 即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0, 又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.感悟提升 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .(3)依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.3.求等差数列前n 项和的最值,常用的方法:(1)利用等差数列的单调性,求出其正负转折项,或者利用性质求其正负转折项,便可求得和的最值;(2)利用公差不为零的等差数列的前n 项和S n =An 2+Bn (A ,B 为常数,A ≠0)为二次函数,通过二次函数的性质求最值.训练2 (1)(2021·洛阳质检)记等差数列{a n }的前n 项和为S n ,若S 17=272,则a 3+a 9+a 15=( )A.24B.36C.48D.64(2)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( )A.2 023B.-2 023C.4 046D.-4 046(3)设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是________. 答案 (1)C (2)C (3)121解析 (1)因为数列{a n }是等差数列,其前n 项和为S n ,所以S 17=272=a 1+a 172×17=2a 92×17=17a 9,∴a 9=16,所以a 3+a 9+a 15=3a 9=48.(2)∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′, 则S 2 020 2 020-S 2 0142 014=6d ′=6,∴d ′=1,首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2,∴S 2 023=2 023×2=4 046,故选C.(3)设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,∴22a 1+d =a 1+3a 1+3d ,把a 1=1代入求得d =2,∴a n =1+(n -1)×2=2n -1,S n =n +n (n -1)2×2=n 2,∴S n +10a 2n =(n +10)2(2n -1)2=⎝ ⎛⎭⎪⎪⎫n +102n -12=⎣⎢⎡⎦⎥⎤12(2n -1)+2122n -12=14⎝ ⎛⎭⎪⎫1+212n -12≤121.∴S n +10a 2n 的最大值是121.1.在等差数列{a n }中,3a 5=2a 7,则此数列中一定为0的是() A.a 1 B.a 3 C.a 8 D.a 10答案 A解析 设{a n }的公差为d (d ≠0),∵3a 5=2a 7,∴3(a 1+4d )=2(a 1+6d ),得a 1=0.2.(2021·重庆二模)已知公差不为0的等差数列{a n }中,a 2+a 4=a 6,a 9=a 26,则a 10=( )A.52B.5C.10D.40答案 A解析 设公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d +a 1+3d =a 1+5d ,a 1+8d =(a 1+5d )2,由于d ≠0,故a 1=d =14,所以a 10=14+14×9=52.3.已知数列{a n }满足5an +1=25·5an ,且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)=() A.-3 B.3 C.-13 D.13答案 A解析 数列{a n }满足5an +1=25·5an ,∴a n +1=a n +2,即a n +1-a n =2,∴数列{a n }是等差数列,公差为2.∵a 2+a 4+a 6=9,∴3a 4=9,a 4=3.∴a 1+3×2=3,解得a 1=-3.∴a 5+a 7+a 9=3a 7=3×(-3+6×2)=27,则log 13(a 5+a 7+a 9)=log 1333=-3.故选A.4.(2022·太原一模)在数列{a n }中,a 1=3,a m +n =a m +a n (m ,n ∈N *),若a 1+a 2+a 3+…+a k =135,则k =( )A.10B.9C.8D.7 答案 B解析 令m =1,由a m +n =a m +a n 可得a n +1=a 1+a n ,所以a n +1-a n =3, 所以{a n }是首项为a 1=3,公差为3的等差数列,a n =3+3(n -1)=3n ,所以a 1+a 2+a 3+…+a k =k (a 1+a k )2=k (3+3k )2=135. 整理可得k 2+k -90=0,解得k =9或k =-10(舍).5.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( )A.65B.176C.183D.184答案 D解析 根据题意可知每个孩子所得棉花的斤数构成一个等差数列{a n },其中d =17,n =8,S 8=996.由等差数列前n 项和公式可得8a 1+8×72×17=996,解得a 1=65.由等差数列通项公式得a 8=65+(8-1)×17=184.则第八个孩子分得斤数为184.6.(2021·全国大联考)在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n 的最大值是( )A.15B.16C.17D.14答案 C解析 ∵等差数列{a n }的前n 项和有最大值,∴等差数列{a n }为递减数列, 又a 10a 9<-1,∴a 9>0,a 10<0, ∴a 9+a 10<0,又S 18=18(a 1+a 18)2=9(a 9+a 10)<0, 且S 17=17(a 1+a 17)2=17a 9>0. 故使得S n >0成立的正整数n 的最大值为17.7.设S n 为等差数列{a n }的前n 项和,若S 6=1,S 12=4,则S 18=________. 答案 9解析 在等差数列中,S 6,S 12-S 6,S 18-S 12成等差数列,∵S 6=1,S 12=4,∴1,3,S 18-4成公差为2的等差数列,即S 18-4=5,S 18=9.8.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于________. 答案 3727解析 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 9.(2021·西安一模)已知数列{a n }的前n 项和为S n ,满足a 1=32,a 2=2,2(S n +2+S n )=4S n +1+1,则数列{a n }的前16项和S 16=________.答案 84解析 将2(S n +2+S n )=4S n +1+1变形为(S n +2-S n +1)-(S n +1-S n )=12,即a n +2-a n+1=12,又a 1=32,a 2=2,∴a 2-a 1=12符合上式,∴{a n }是首项a 1=32,公差d =12的等差数列,∴S 16=16×32+16×152×12=84.10.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 2a 4=65,a 1+a 5=18.(1)求数列{a n }的通项公式;(2)是否存在常数k ,使得数列{S n +kn }为等差数列?若存在,求出常数k ;若不存在,请说明理由.解 (1)设公差为d .∵{a n }为等差数列,∴a 1+a 5=a 2+a 4=18,又a 2a 4=65,∴a 2,a 4是方程x 2-18x +65=0的两个根,又公差d >0,∴a 2<a 4,∴a 2=5,a 4=13.∴⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3. (2)由(1)知,S n =n +n (n -1)2×4=2n 2-n , 假设存在常数k ,使数列{S n +kn }为等差数列. 由S 1+k +S 3+3k =2S 2+2k , 得1+k +15+3k =26+2k ,解得k =1. ∴S n +kn =2n 2=2n ,当n ≥2时,2n -2(n -1)=2,为常数,∴数列{S n +kn }为等差数列.故存在常数k =1,使得数列{S n +kn }为等差数列. 11.设数列{a n }的各项都为正数,其前n 项和为S n ,已知对任意n ∈N *,S n 是a 2n 和a n 的等差中项.(1)证明:数列{a n }为等差数列;(2)若b n =-n +5,求{a n ·b n }的最大项的值并求出取最大值时n 的值.(1)证明 由已知可得2S n =a 2n +a n ,且a n >0,当n =1时,2a 1=a 21+a 1,解得a 1=1.当n ≥2时,有2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n -a 2n -1+a n -a n -1,所以a 2n -a 2n -1=a n +a n -1,即(a n +a n -1)(a n -a n -1)=a n +a n -1,因为a n +a n -1>0,所以a n -a n -1=1(n ≥2).故数列{a n }是首项为1,公差为1的等差数列.(2)解 由(1)可知a n =n ,设c n =a n ·b n ,则c n =n (-n +5)=-n 2+5n=-⎝ ⎛⎭⎪⎫n -522+254, 因为n ∈N *,所以n =2或3,c 2=c 3=6,因此当n =2或n =3时,{a n ·b n }取最大项,且最大项的值为6.12.(2020·新高考山东卷)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为__________.答案 3n 2-2n解析 法一(观察归纳法) 数列{}2n -1的各项为1,3,5,7,9,11,13,…;数列{3n -2}的各项为1,4,7,10,13,….现观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5.故其前n 项和为S n =n (a 1+a n )2=n (1+6n -5)2=3n 2-2n . 法二(引入参变量法) 令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数.令m =2t -1,则n =3t -2(t =1,2,3,…).a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5.以下同法一.13.(2022·衡水模拟)已知在数列{a n }中,a 6=11,且na n -(n -1)a n +1=1,则a n =______;a 2n +143n 的最小值为________.答案 2n -1 44解析 na n -(n -1)a n +1=1,∴(n +1)a n +1-na n +2=1,两式相减得na n -2na n +1+na n +2=0,∴a n +a n +2=2a n +1,∴数列{a n }为等差数列.当n =1时,由na n -(n -1)a n +1=1得a 1=1,由a 6=11,得公差d =2,∴a n =1+2(n -1)=2n -1,∴a 2n +143n =(2n -1)2+143n=4n +144n -4≥24n ·144n -4=44, 当且仅当4n =144n ,即n =6时等号成立.14.等差数列{a n }中,公差d <0,a 2+a 6=-8,a 3a 5=7.(1)求{a n }的通项公式;(2)记T n 为数列{b n }前n 项的和,其中b n =|a n |,n ∈N *,若T n ≥1 464,求n 的最小值.解 (1)∵等差数列{a n }中,公差d <0,a 2+a 6=-8, ∴a 2+a 6=a 3+a 5=-8,又∵a 3a 5=7,∴a 3,a 5是一元二次方程x 2+8x +7=0的两个根,且a 3>a 5, 解方程x 2+8x +7=0,得a 3=-1,a 5=-7,∴⎩⎪⎨⎪⎧a 1+2d =-1,a 1+4d =-7,解得a 1=5,d =-3. ∴a n =5+(n -1)×(-3)=-3n +8.(2)由(1)知{a n }的前n 项和S n =5n +n (n -1)2×(-3)=-32n 2+132n . ∵b n =|a n |,∴b 1=5,b 2=2,b 3=|-1|=1,b 4=|-4|=4, 当n ≥3时,b n =|a n |=3n -8.当n <3时,T 1=5,T 2=7;当n ≥3时,T n =-S n +2S 2=3n 22-13n 2+14.∵T n ≥1 464,∴T n =3n 22-13n 2+14≥1 464,即(3n-100)(n+29)≥0,解得n≥100,3∴n的最小值为34.。
高考数学复习专题训练—求数列的通项及前n项和(含解析)
高考数学复习专题训练—求数列的通项及前n项和1.(2021·湖南长郡中学月考)已知等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列{a n}的通项公式;(2)设b n=log3a1+log3a2+…+log3a n,求数列{1b n}的前n项和T n.2.(2021·山东威海期末)已知等差数列{a n}的前n项和为S n,且满足a3=8,S5=2a7.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=a n cos nπ+2n+1,求数列{b n}的前2n项和T2n.3.(2021·东北三省四市联考)已知等差数列{a n}的前n项和为S n,S5=25,且a3-1,a4+1,a7+3成等比数列.(1)求数列{a n}的通项公式;(2)若b n=(-1)n a n+1,T n是数列{b n}的前n项和,求T2n.4.(2021·陕西西安铁一中月考)已知数列{a n}是公差不为0的等差数列,且a2=3,a1,a2,a5成等比数列.(1)求数列{a n}的通项公式;(2)设S n为数列{a n+2}的前n项和,b n=1S n,求数列{b n}的前n项和T n.5.(2021·广东揭阳检测)已知等差数列{a n}与正项等比数列{b n}满足a1=b1=3,且b3-a3,20,a5+b2既是等差数列,又是等比数列.(1)求数列{a n}和{b n}的通项公式;(2)在①c n=1a n·a n+1+(-1)nb n,②c n=a n·b n,③c n=2(a n+3)a n a n+1b n+1这三个条件中任选一个,补充在下面问题中,并完成求解.若,求数列{c n}的前n项和S n.6.(2021·山东菏泽一模)已知等比数列{a n}的前n项和为S n,且a n+1=2S n+2,数列{b n}满足b1=2,(n+2)b n=nb n+1.(1)求数列{a n}和{b n}的通项公式;(2)在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为c n的等差数列,求数列{b n c n}的前n项和T n.7.(2021·广东广州检测)已知数列{a n}满足a1=1,a n+1=3a n+3n+1.(1)求证:数列{a n3n}是等差数列;(2)求数列{a n}的通项公式;(3)设数列{a n}的前n项和为S n,求证:S n3n >3n2−74.答案及解析1.解 (1)设等比数列{a n }的公比为q (q>0),由a 32=9a 2a 6,得a 32=9a 42,所以q 2=19,所以q=13.由2a 1+3a 2=1,得2a 1+3a 1·13=1,所以a 1=13. 故数列{a n }的通项公式为a n =13n .(2)因为b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n+1)2,所以1b n =-2n (n+1)=-2(1n-1n+1). 所以T n =1b 1+1b 2+…+1b n =-2(1-12)+(12-13)+…+(1n -1n+1)=-2nn+1.所以数列{1b n}的前n 项和T n =-2nn+1.2.解 (1)设{a n }的公差为d ,依题意,{a 1+2d =8,5a 1+5×42d =2(a 1+6d ),解得{a 1=2,d =3.所以a n =2+3(n-1)=3n-1.(2)因为b n =a n cos n π+2n+1=(-1)n a n +2n+1=(-1)n ·(3n-1)+2n+1, 所以T 2n =(a 2-a 1)+(a 4-a 3)+…+(a 2n -a 2n-1)+(22+23+…+22n+1)=3n+22(1-22n )1-2=3n+22n+2-4.3.解 (1)由题意可知S 5=5(a 1+a 5)2=5a 3=25,所以a 3=5. 设等差数列{a n }的公差为d ,由a 3-1,a 4+1,a 7+3成等比数列, 可得(6+d )2=4(8+4d ),整理得d 2-4d+4=0,解得d=2. 所以a n =a 3+(n-3)d=2n-1.(2)因为b n =(-1)n a n +1=(-1)n (2n-1)+1,所以T 2n =(-1+1)+(3+1)+(-5+1)+(7+1)+…+[-(4n-3)+1]+(4n-1+1)=4n. 4.解 (1)设等差数列{a n }的公差为d (d ≠0),则由题意,可知{a 1+d =3,(a 1+d )2=a 1(a 1+4d ),解得{a 1=1,d =2.∴a n =1+2(n-1)=2n-1.(2)由(1)得a n +2=2n+1,∴S n =(a 1+2)+(a 2+2)+(a 3+2)+…+(a n-1+2)+(a n +2)=3+5+7+…+(2n-1)+(2n+1)=(2n+1+3)n 2=n 2+2n.∴b n=1S n =1n2+2n=1n(n+2)=12(1n-1n+2).∴T n=b1+b2+b3+…+b n-1+b n=12(1-13)+(12-14)+(13-15)+…+(1n-1-1n+1)+1n−1n+2=1 2(1+12-1n+1-1n+2)=34−2n+32(n+1)(n+2).5.解(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q(q>0),由已知得20=b3-a3=a5+b2,即20=3q2-(3+2d),20=(3+4d)+3q,解得d=2,q=3,所以a n=2n+1,b n=3n.(2)若选择①,则c n=1a n·a n+1+(-1)nb n=1(2n+1)(2n+3)+(-3)n=12(12n+1-12n+3)+(-3)n,所以S n=c1+c2+…+c n=12×(13-15)+(-3)1+12×(15-17)+(-3)2+…+12(12n+1-12n+3)+(-3)n=12(13-12n+3)+-3[1-(-3)n]1+3=n3(2n+3)−3[1-(-3)n]4.若选择②,则c n=a n·b n=(2n+1)3n,所以S n=c1+c2+…+c n=3×3+5×32+…+(2n+1)3n,3S n=3×32+5×33+…+(2n+1)3n+1,两式相减得-2S n=32+2×32+2×33+…+2×3n-(2n+1)3n+1=-2n·3n+1,所以S n=n·3n+1.若选择③,则c n=2(a n+3)a n a n+1b n+1=2(2n+4)(2n+1)(2n+3)3n+1=1(2n+1)3n−1(2n+3)3n+1,所以S n=c1+c2+…+c n=(13×3-15×32)+15×32−17×33+…+[1(2n+1)3n-1(2n+3)3n+1]=1 9−1(2n+3)3n+1.6.解(1)设等比数列{a n}的公比为q,由a n+1=2S n+2,可得a n=2S n-1+2(n≥2),两式相减得a n+1-a n=2S n-2S n-1=2a n,整理得a n+1=3a n,可知q=3.令n=1,则a2=2a1+2,即3a1=2a1+2,解得a1=2.故a n=2·3n-1.由b1=2,(n+2)b n=nb n+1,得b n+1b n =n+2n,则当n≥2时,b n=b nb n-1·b n-1b n-2·…·b2b1·b1=n+1n-1·nn-2 (3)1×2=n(n+1).又b1=2满足上式,所以b n=n(n+1).(2)若在a n与a n+1之间插入n个数,使这n+2个数组成一个公差为c n的等差数列,则a n+1-a n =(n+1)c n ,即2·3n -2·3n-1=(n+1)c n ,整理得c n =4·3n -1n+1,所以b n c n =4n·3n-1,所以T n =b 1c 1+b 2c 2+b 3c 3+…+b n-1c n-1+b n c n =4×1×30+4×2×31+4×3×32+…+4·(n-1)3n-2+4·n·3n-1=4[1×30+2×31+3×32+…+(n-1)3n-2+n·3n-1],3T n =4[1×31+2×32+…+(n-1)3n-1+n·3n ],两式相减得-2T n =4(30+31+32+…+3n-1-n·3n)=4(1-3n1-3-n ·3n )=(2-4n )·3n -2,所以T n =(2n-1)3n +1.7.(1)证明 由a n+1=3a n +3n+1,得a n+13n+1=a n 3n +1,即a n+13n+1−a n3n =1. 又a13=13,所以数列{an 3n }是以13为首项,1为公差的等差数列.(2)解 由(1)得a n 3n=13+(n-1)×1=n-23,所以a n =(n -23)·3n .(3)证明 由(2)得S n =(1-23)×31+(2-23)×32+…+[(n -1)-23]×3n-1+(n -23)×3n ,3S n =(1-23)×32+(2-23)×33+…+(n-1)-23×3n +(n -23)×3n+1, 两式相减得2S n =(n -23)×3n+1-3n+1-92-1=n-76×3n+1+72, 故S n =(n 2-712)3n+1+74,从而S n3n=(n 2-712)3n+13n+74×3n=(3n 2-74)+74×3n>3n 2−74.。
数学基础训练11 数列的通项与前n项和
数学基础训练11 数列的通项与前n 项和●训练指要掌握等差、等比数列前n 项和的公式,了解推导公式的思想方法,会解已知a 1,d (q )n ,a n ,S n 中某三个量,求另外量的基本问题.一、选择题1.数列通项为a n =n n ++11,当前n 项和为9时,项数n 是 A.9B.99C.10D.100 2.(2003年安徽春季高考题)等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于A.7B.9C.17D.19 3.等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于 A.15 B.16 C.17D.18 二、填空题4.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则1020a a =_________. 5.已知等差数列{a n }中,a 1、a 3、a 9成等比数列,则1042931a a a a a a ++++=_________. 三、解答题6.已知等差数列{a n } 中,a 5=a 14,a 2+a 9=31,求前10项的和.7.(2000年全国高考题)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n }的前n 项和,求T n . 8.(2002年江苏高考题)设{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 2+a 4=b 3,b 2b 4=a 3. 分别求出{a n }及{b n }的前10项和S 10及T 10.数学基础训练11答案一、1.B 2.C 3.A二、4.1613.52332或 三、6.155 7.T n =n n 49412- 8.S 10=-)22(323185510±=T。
2025高考数学二轮复习数列解答题
解 (1)设数列{an}的公差为 d,数列{bn}的公比为 q(q>0).
1 + 2 = 21 ,
2 + 2 = 2,
= 2,
由题意得
5×4
3 即 10 + 10 = + 3 ,解得 = 3.
51 + 2 = 1 + 1 ,
∴an=2+2(n-1)=2n,bn=1×3n-1=3n-1.
,为偶数,
和.
2.错位相减法
一般地,数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,
可采用错位相减法,一般是和式两边同乘等比数列{bn}的公比,然后作差求
解.
3.裂项相消法
实质是将数列的通项分解为两项之差,求和时能消去中间的一些项,最终达
到求和的目的,其解题的关键是准确地裂项和消项.
3 + 2, = 2,∈N* ,
所以bn+1=a2n+1=3a2n+2=3(2a2n-1+1)+2=6a2n-1+5=6bn+5.
因为b1+1=a1+1=2≠0,且bn+1+1=6(bn+1),所以数列{bn+1}是首项为2,公比
为6的等比数列.
所以bn+1=2·
6n-1,则bn=2·
6n-1-1.
3
1
①Sn= +m(m∈R),②Sn= an+1+m(m∈R),且 a1=1.请在这两个条件中选一个
2
2
补充在下面的横线上并解答.
若
,
(1)求m的值及数列{an}的通项公式;
高考数学常考试题 第15讲 等比数列的通项及前n项和性质7大题型总结 (解析版)
第15讲等比数列的通项及前n 项和性质7大题型总结【考点分析】考点一:等比数列的基本概念及公式①等比数列的定义:q a a n n =-1(或者q a ann =+1).②等比数列的通项公式:m n m n n q a q a a --⋅=⋅=11.③等比中项:若三个数a ,A ,b 成等比数列,则A 叫做a 与b 的等比中项,且有ab A =2(Aba A =).④等比数列的前n 项和公式:()()⎪⎩⎪⎨⎧≠--=--==1111)1(111q q q a a qqa q na S n nn 考点二:等比数列的性质①通项下标和性质:在等比数列{}n a 中,当+=+m n p q 时,则q p n m a a a a ⋅=⋅.特别地,当t n m 2=+时,则2t n m a a a =⋅.②等比数列通项的性质:11-=n n qa a ,所以等比数列的通项为指数型函数.③等比数列前n 项和的常用性质:()qaq q a q q a S n n n -+--=--=1111111,即r kq S n n +=,其中0=+r k 【题型目录】题型一:等比数列的基本运算题型二:等比中项及性质题型三:等比数列通项下标的性质及应用题型四:等比数列前n 项片段和的性质及应用题型五:等比数列前n 项和的特点题型六:等比数列的单调性题型七:等比数列新文化试题【典型例题】题型一:等比数列的基本运算【例1】在各项为正的递增等比数列{}n a 中,1261356421a a a a a a =++=,,则n a =()A .12n +B .12n -C .132n -⨯D .123n -⨯【例2】数列{}n a 中,12,m n m n a a a a +==,若177121022k k k a a a ++++++=- ,则k =()A .5B .6C .7D .17所以1111772222k k ++-=-,故6k =.故选:B.【例3】已知等比数列{}n a 的各项均为正数,且133520,5a a a a +=+=,则使得121n a a a < 成立的正整数n 的最小值为()A .8B .9C .10D .11【例4】各项为正数且公比为q 的等比数列{}n a 中,2a ,32a ,1a 成等差数列,则54a 的值为()A B C D 【例5】已知等比数列{}n a 的前n 项和为n S ,若0n a >,公比1q >,3520a a +=,2664a a =,则6S =()A .31B .36C .48D .63【例6】若数列{}n a 满足121n n a a +=-,则称{}n a 为“对奇数列”.已知正项数列{}1n b +为“对奇数列”,且12b =,则n b =()A .123n -⨯B .12n -C .12n +D .2n【答案】D【分析】根据题意可得()11211n n b b ++=+-,进而可得{}n b 为等比数列,再求得通项公式即可.【详解】由题意得()11211n n b b ++=+-,所以12n n b b +=,又12b =,所以{}n b 是首项为2,公比为2的等比数列,所以1222n nn b -=⨯=.故选:D .【例7】已知等比数列{}n a :1-,2,4-,8,…,若取此数列的偶数项246,,a a a ,…组成新的数列{}n b ,则8b 等于()A .102B .102-C .152D .82【答案】C【分析】由题可得()12n n a -=--,进而即得.【详解】由题可得()()11122n n n a --=-⨯-=--,所以()151516822a b =--==.故选:C.【例8】已知{}n a 是首项为1的等比数列,n S 是{}n a 的前n 项和,且3698S S =,则5S =()A .31B .3116C .31或5D .3116或5【例9】已知数列{}n a 满足12a =,21n n a a +=,则数列{}n a 的通项公式为n a =()A .21n -B .12n -C .122n -D .2n 【答案】C【分析】将21n n a a +=两边同时取常用对数,即可得数列{}lg n a 是以lg 2为首项,2为公比的等比数列,从而求得数列{}n a 的通项公式.【例10】已知各项都为正数的等比数列{}n a 满足7652a a a =+,存在两项m a ,n a 14a =,则122n m n+++的最小值为()A .118+B.2615C .74D .2815【答案】B 【解析】【分析】根据等比数列的知识求得,m n 的关系式,结合基本不等式求得122n m n+++的最小值.【详解】因为7652a a a =+,所以2q =或1q =-,又0n a >,所以2q =.14a =14a =,所以6m n +=,则()28m n ++=,()2121212112282m n n m n m n m n +++⎛⎫+=++=⋅++ ⎪+++⎝⎭()22121822m m n n m nm n +⎡⎤+=+++⎢⎥++⎣⎦()22113131828m n m n ⎛+⎛⎫ =+++≥++ ⎪ +⎝⎭⎝118+=,由()222m nm n+=+可得取等号时)2n m =+,但,m n *∈N ,无解;又6m n +=,经检验1m =且5n =时有最小值2615.故选:B【例11】设等比数列{}n a 的前n 项和为n S ,且29a =,3136S a -=.(1)求{}n a 的通项公式;(2)若3log n n n b a a =+,求数列{}n b 的前n 项和n T .【例12】已知等差数列{}n a 的前n 项和为510,9,100n S a S ==.(1)求{}n a 的通项n a ;(2)设数列{}n b 满足:{}2,n an n b b =的前n 项和为n T ,求使200n T <成立的最大正整数n 的值.【答案】(1)21n a n =-;(2)4.【分析】(1)利用1,a d 表示题干条件,求解即可得解;(2)先证明{}n b 是等比数列,利用等比数列求和公式求解n T ,解不等式即可.(1)由题意,设等差数列{}n a 的首项为1a ,公差为d ,又5109,100a S ==,【题型专练】1.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若1418a a +=,2312a a +=,则下列说法错误的是()A .=2q B .数列{}+2n S 是等比数列C .数列{}lg n a 是公差为2等差数列D .8510S =2.已知数列{}n a 中,11a =,12nn n a a +=⋅,*N n ∈,则下列说法正确的是()A .22a =B .434a a -=C .{}2n a 是等比数列D .12122n n n a a +-+=3.(2022·福建省龙岩第一中学高二阶段练习)在正项等比数列{}n a 中,若存在两项,(,N*)m n a a m n ∈,使得14a =,且3212a a a =+,则19m n+的最小值为()A .114B .83C .103D .1454.(2022·全国·模拟预测(文))设{}n a 是等比数列,且123a a +=,236+=a a ,则56a a +=()A .12B .24C .32D .48【答案】D【分析】根据{}n a 是等比数列,且满足123a a +=,236+=a a ,计算出其通项公式n a ,然后代入56a a +计算即可.【详解】{}n a 是等比数列,设其公比为q ,则由123a a +=,236+=a a 得:121232(1)3(1)6a a a q a a a q +=+=⎧⎨+=+=⎩,解得112a q =⎧⎨=⎩,12n n a -\=,45562248a a ∴+=+=.故选:D.5.(2022·山东泰安·三模)已知数列{}n a 满足:对任意的m ,*n ∈N ,都有m n m n a a a +=,且23a =,则20a =()A .203B .153C .103D .53【答案】C 【解析】【分析】由递推关系判断数列{}n a 为等比数列,再由等比数列通项公式求20a .【详解】因为对任意的m ,*n ∈N ,都有m n m n a a a +=,所以112a a a =,11n n a a a +=,又23a =,所以1a =,所以11n na a a +=,所以数列{}n a 是首项为1a ,公比为1a 的等比数列,所以()()1111n nn a a a a -=⋅=,所以()2010201=3a a =,故选:C.6.(2022·河南省叶县高级中学模拟预测(文))已知数列{}n a 为等比数列,1272a a +=,2336a a +=,则4a =______.7.已知等比数列{}n a 的公比1q >,4a a +=,3a =2n a =___________.8.设等比数列{}n a 的前n 项各为n S ,已知11a =,23S =,则3S =___________.9.已知等比数列{}n a 的前n 项和为n S ,132a a +=,244a a +=,则5S =______.10.已知在正项等比数列{}n a 中1323,,22a a a 成等差数列,则20222021a a =+__________.故答案为:9.11.正项等比数列{}n a 中,1=1a ,534a a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【答案】(1)12n n a -=,(2)=6m 【分析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.根据534a a =列方程,解出q 即可得出结果.(2)由(1)的结果可求出n S ,将63m S =代入求解即可.(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =或=2q ,{}n a 为正项等比数列,所以=2q .故12n n a -=.(2)由(1)得=2q ,∴则21n n S =-. 63m S =,∴264m =,解得=6m .12.已知公比小于1的等比数列{}n a 满足2420a a +=,38a =.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和,若100n n S a >,求n 的最小值.题型二:等比中项及性质【例1】三个实数成等差数列,首项是9,若将第二项加2、第三项加20可使得这三个数依次构成等比数列{}n a ,则3a 的所有取值中的最小值是()A .49B .36C .4D .1【答案】D【分析】设原来的三个数为9、9d +、92d +,根据题意可得出关于d 的等式,解出d 的值,即可得解.【详解】设原来的三个数为9、9d +、92d +,由题意可知,19a =,211a d =+,3292a d =+,且2213a a a =,所以,()()2119229d d +=+,即241400d d +-=,解得10d =或14-.则3a 的所有取值中的最小值是292141-⨯=.故选:D.【例2】若a ,b ,c 为实数,数列1,,,,25--a b c 是等比数列,则b 的值为()A .5B .5-C .5±D .13-【答案】B【分析】根据等比数列的性质求得b 的值.【详解】设等比数列的公比为q ,所以()210b q =-⋅<,根据等比数列的性质可知()()212525b =-⨯-=,解得5b =-.故选:B【例3】已知等差数列{}n a 的公差是2,若1a ,3a ,4a 成等比数列,则2a 等于()A .6-B .4-C .8-D .10-【答案】A【分析】利用等比中项,结合等差数列通项公式列方程求解即可.【详解】解:因为等差数列{}n a 的公差为2,且1a ,3a ,4a 成等比数列,所以2314a a a =,即()()()2222224a a a +=-+,解得26a =-,故选:A【例4】已知等比数列{}n a 满足10a >,公比1q >,且1220211220221,1a a a a a a <> ,则()A .20221a >B .当2021n =时,12n a a a 最小C .当1011n =时,12n a a a 最小D .存在1011n <,使得12n n n a a a ++=【例5】设2log3,lg x,81log2三个数成等比数列,则实数x=______.【例6】已知公差不为0的等差数列{}n a中,11a=,4a是2a和8a的等比中项.(1)求数列{}n a的通项公式:(2)保持数列{}n a中各项先后顺序不变,在k a与1(1,2,)ka k+= 之间插入2k,使它们和原数列的项构成一个新的数列{}n b,记{}n b的前n项和为n T,求20T的值.【答案】(1)n a n=,(2)2101【分析】(1)设数列{}n a的公差为d,根据等比中项列出方程求得d即可得到通项公式.(2)由题意计算出k a在{}n b中对应的项数,然后利用分组求和即可.(1)设数列{}n a的公差为d,因为4a是2a和8a的等比中项,则()()()2242811137a a a a d a d a d=⋅⇒+=++且11a=则1d=或0d=(舍)【题型专练】11-1+的等比中项是()A B .C .D .2±2.若四个正数a b c d ,,,成等差数列,x 是a 和d 的等差中项,是b 和c 的等比中项,则x 和的大小关系为()A .x y >B .x y≥C .x y<D .x y≤3.若不为1的正数a ,b ,c 依次成公比大于1的等比数列,则当1x >时,log a x ,log b x ,log c x ().A .依次成等差数列B .依次成等比数列C .各项的倒数依次成等差数列D .各项的倒数依次成等比数列4.已知等差数列{}n a 的前n 项利为n S ,若9S ,5a ,1成等比数列,且20400S ≥,则{}n a 的公差d 的取值范围为______.5.已知等差数列{}n a 的公差为3-,且3a 是1a 和4a 的等比中项,则15a =__________.【答案】30-【分析】将1a 和公差代入等式,求解1a ,写出通项公式n a ,代入15n =,可求出结果.【详解】解:因为3a 是1a 和4a 的等比中项,且公差为3-,所以21111(6)(9)12a a a a -=-⇒=,所以1515330n a n a =-⇒=-.故答案为:30-.6.已知1,,4a --成等差数列,1,,4b --成等比数列,则ab =____________.又由1,,4b --成等比数列,可得2(1)(4)4b =-⨯-=,解得2b =±,所以5ab =±.故答案为:5±.7.若依次成等差数列的三个实数a ,b ,c 之和为12,而a ,b ,2c +又依次成等比数列,则a =______.【答案】2或8【分析】由题意列出方程组,即可求得答案.【详解】由题意可得2212(2)b a c a b c b a c =+⎧⎪++=⎨⎪=+⎩,整理得210160a a -+=,解得2a =或8a =,故答案为:2或88.在3和9之间插入两个正数后,使前三个数成等比数列,后三个数成等差数列,则这两个正数之和为()A .1132B .1114C .1102D .10【答案】B【解析】不妨设插入两个正数为,a b ,即3,,,9a b ∵3,,a b 成等比数列,则23a b=,,9a b 成等差数列,则92a b+=即2392a b a b ⎧=⎨+=⎩,解得92274ab ⎧=⎪⎪⎨⎪=⎪⎩或33a b =-⎧⎨=⎩(舍去)则4511144a b +==故选:B .题型三:等比数列通项下标的性质及应用【例1】已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1b ba a +-⋅的值是()A .B .1-C .D【例2】已知{}n a 为等比数列,47562,8a a a a +==-,则10a =()A .1或8B .1-或8C .1或8-D .1-或8-【例3】设{}n a 是由正数组成的等比数列,公比2q =,且30123302a a a a ⋅= ,那么36930a a a a = ()A .102B .202C .162D .152【答案】B【分析】根据等比数列的性质,设14728A a a a a = ,25829B a a a a = ,36930C a a a a = ,则A ,B ,C 成等比数列,然后利用等比中项的性质可求得答案【详解】设14728A a a a a = ,25829B a a a a = ,36930C a a a a = ,则A ,B ,C 成等比数列,公比为10102q =,且2B A C =⋅,由条件得302A B C ⋅⋅=,所以3302B =,所以102B =,所以102022C B =⋅=.故选:B【例4】等比数列{}n a 满足*0,n a n N >∈且23233(2)nn a a n -⋅=≥,则当1n ≥时,logn a-+++=1221L ()A .(21)2n n -B .()222n n-C .22n D .22n n-【例5】在各项均为正数的等比数列{}n a 中,11168313225a a a a a a ++=,则113a a 的最大值是__.【例6】已知等比数列{}n a 各项均为正数,且满足:101a <<,1718171812a a a a +<+<,记n n a a a T 21=,则使得1n T >的最小正数n 为()A .36B .35C .34D .33【例7】在正项等比数列{}n a 中,44a =,则()A .358a a +≥B .3514a a +的最小值为1C .2611242aa-⎛⎫⎛⎫⋅≥ ⎪ ⎪⎝⎭⎝⎭D 4【答案】AB【分析】AB 选项,先根据等比数列的性质得到432516a a a ==,再利用基本不等式进行求解,C 选项,先得到226416a a a ==,结合指数运算及指数函数单调性和基本不等式进行求解;D 选项,平方后利用基本不等式,【例8】在等比数列{}n a 中,1234516a a a a a ++++=,314a =,则a a a a a ++++=______.【题型专练】1.已知递增等比数列{}n a ,10a >,2464a a =,1534a a +=,则6a =()A .8B .16C .32D .642.在等比数列{}n a 中,472a a +=,298a a =-,则110a a +=()A .5B .7C .-5D .-7当4724a a =-⎧⎨=⎩时,解得1312a q =⎧⎨=-⎩,()1039111112187a a a q a =+=+⨯-=-=-+;故选:D3.等比数列{}n a 中,0n a >且243546225a a a a a a ++=,则35a a +=_______【答案】5【解析】利用等比数列下标和的性质可知22243465,a a a a a a ==,再进行化简即可求解出结果.【详解】2435462a a a a a a ++ ()222335535225a a a a a a =++=+=,又 等比数列{}n a 中,0n a >,355a a ∴+=,故答案为:5.【点睛】本题考查等比数列下标和性质的运用,难度一般.已知{}n a 是等比数列,若()*2,,,,m n p q t m n p q t N +=+=∈,则有2m n p q t a a a a a ⋅=⋅=.4.若等比数列{}n a 中的5a ,2019a 是方程2430x x -+=的两个根,则31323332023log log log log a a a a ++++ 等于()A .20243B .1011C.20232D .10125.已知等比数列{}n a 的公比为q ,其前n 项之积为n T ,且满足11a >,2021202210a a ->,2021202201a <-,则()A .1q >B .2020202210a a -<C .2021T 的值是n T 中最大的D .使1n T <成立的最小正整数n 的值为40426.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552b =,则99B =()A .512B .32C .8D .2【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2)等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a = ,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项.7.已知数列{}n a 为等差数列,{}n b 为等比数列,{}n a 的前n 项和为n S ,若16113a a a π++=,1598b b b =,则()A .1111S π=B .210461sin2a ab b +=C .3783a a a π++=D .374b b +≥8.若等比数列{}n a 的各项均为正数,且210101013101110122e a a a a ⋅+⋅=,则122022ln ln ln a a a +++= ___________.【答案】2022【分析】根据等比数列的性质化简得到210111012e a a =,由对数的运算即可求解.【详解】因为{}n a 是等比数列,所以210101013101110121011101222e a a a a a a ⋅+⋅=⋅=,即210111012e a a ⋅=,所以()1011202212202212202210111012ln ln ln ln ln 2022a a a a a a a a lne ++⋅⋅⋅+====故答案为:20228.在正项等比数列{}n a 中,若35727a a a =,则931log i i a ==∑___________.【答案】9【解析】先由35727a a a =,利用性质计算出53a =,然后利用对数的运算性质计算931log i i a =∑即可.【详解】∵{}n a 为正项等比数列,∴若m n p q +=+都有m n p qa a a a =∴2192837465==a a a a a a a a a ==又35727a a a =,∴3527,a =即53a =,∴2192837465==9a a a a a a a a a ===∴93333311289log log log log log i i a a a a a =++++=∑ ()()()()31932833734635log log log log log a a a a a a a a a =++++33333log 9log 9log 9log 9log 3=++++=2+2+2+2+1=9故答案为:9【点睛】等差(比)数列问题解决的基本方法:基本量代换和灵活运用性质.题型四:等比数列前n 项片段和的性质及应用【例1】已知等比数列{}n a 的前n 项和为n S ,110=S ,1330=S ,=40S ()A .﹣51B .﹣20C .27D .40【答案】D【分析】由{an }是等比数列可得S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,列方程组,从而即可求出S 40的值.【详解】由{an }是等比数列,且S 10=1>0,S 30=13>0,得S 20>0,S 40>0,且1<S 20<13,S 40>13所以S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,即1,S 20﹣1,13﹣S 20,S 40﹣13构成等比数列,∴(S 20﹣1)2=1×(13﹣S 20),解得S 20=4或S 20=﹣3(舍去),∴(13﹣S 20)2=(S 20﹣1)(S 40﹣13),即92=3×(S 40﹣13),解得S 40=40.故选:D .【例2】设等比数列{}n a 中,前n 项和为n S ,已知83=S ,67S =,则789a a a ++等于()A .18B .18-C .578D .558【例3】若等比数列{}n a 的前n 项和为n S ,22S =46S =+,则78a a +=()A .32+B .32+C .16+D .16+【例4】已知各项均为正数的等比数列{}n a 的前n 项和为n S ,若2-,10S ,20S 成等差数列,则20102S S -=______,3020S S -最小值为______.【答案】28【分析】根据等差中项可求出201022S S -=;利用10S ,1200S S -,3020S S -成等比数列,结合基本不等式可得3020S S -最小值.【详解】因为2-,10S ,20S 成等差数列,所以102022S S =-+,所以201022S S -=,【例5】(2022·全国·高二课时练习)关于等差数列和等比数列,下列四个选项中正确的有()A .若数列{}n a 的前n 项和2n S an bn c =++(a ,b ,c 为常数),则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,…仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,…仍为等比数列【答案】BC【分析】由n S 得n a ,进而可判断A 和B ;由等差数列的性质判断C ;举反例判断D.【详解】根据题意,依次分析选项:对于选项A :因为2n S an bn c =++,11a S a b c ==++,当2n ≥时,()()()221112n n n a S S an bn c a n b n c a n b a -⎡⎤=-=++--+-+=⋅+-⎣⎦,所以()(),12,2n a b c n a a n b a n ⎧++=⎪=⎨⋅+-≥⎪⎩,所以只有当0c =时,数列{}n a 成等差数列,故A 错误;对于选项B :因为122n n S +=-,112a S ==,当2n ≥时,()()1122222n n n n n n a S S +-=-=---=,当1n =时,1122a ==,符合上式,所以2n n a =,则数列{}n a 成等比数列,故B 正确;对于选项C :数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,L 是公差为2n d (d 为{}n a 的公差)的等差数列,故C 正确;对于选项D :令()1nn a =-,则2S ,42S S -,64S S -,L 是常数列0,0,0, ,显然不是等比数列,故D 错误.故选:BC.【题型专练】1.等比数列{}n a 的前n 项和为n S ,若812S =,2436S =,则16S =()A .24B .12C .24或-12D .-24或12【答案】A【分析】根据等比数列片段和性质得到方程,求出16S ,再检验即可;【详解】解:因为等比数列{}n a 的前n 项和为n S ,所以8S ,168S S -,2416S S -成等比数列,因为812S =,2436S =,所以()()21616121236S S -=⨯-,解得1624S =或1612S =-,因为816880S S q S -=>,所以160S >,则1624S =.故选:A2.已知各项为正的等比数列的前5项和为3,前15项和为39,则该数列的前10项和为()A .B .C .12D .15【答案】C【分析】利用等比数列的性质可得()()210551510S S S S S -=×-,代入数据即可得到答案【详解】解:由等比数列的性质可得51051510,,S S S S S --也为等比数列,又5153,39S S ==,故可得()()210551510S S S S S -=×-即()()210103339S S -=-,解得1012S =或109S=-,因为等比数列各项为正,所以1012S =,故选:C3.若等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则()A .AB C+=B .2B AC=C .()22A B C A B +=+D .()()A C AB B A -=-4.设等比数列{}n a 的前n 项和为n S ,若23S =,621S =,则84S =()A .83B .133C .5D .75.设n S 是等比数列{}n a 的前n 项和,若33S =,则3S S =+______.题型五:等比数列前项和的特点【例1】在数列{}n a 中,1n n a ca +=(c 为非零常数),且其前n 项和23n n S k -=+,则实数k 的值为()A .1-B .13-C .19D .19-【例2】已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是A .4B .2C .2-D .4-【例3】已知等比数列{}n a 的前n 项和为13n n S t +=+,则数列的通项公式n a =______________.【题型专练】1.一个等比数列的前n 项和为(12)2nn S λλ=-+⋅,则λ=()A .1-B .1C .2D .32.等比数列{}n a 的前n 项和23nn S m =+⨯,则m =()A .2-B .2C .1D .1-【答案】A【分析】求出数列的通项公式,根据通项公式确定参数的值.【详解】116a S m ==+,当2n ≥时,1143n n n n a S S --=-=⨯,因为{}n a 是等比数列,所以11436m -⨯=+,得2m =-,所以A 正确.故选:A.3.记n S 为等比数列{}n a 的前n 项和,已知11a =,1n n S a t +=+,则t =_______.题型六:等比数列的单调性【例1】等比数列满足如下条件:①10a <;②数列{}n a 单调递增,试写出满足上述所有条件的一个数列的通项公式n a =________.【例2】设{}n a 是公比为q 的等比数列,则“1q >”是“20222023a a <”的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】D【例3】已知等比数列{}n a ,下列选项能判断{}n a 为递增数列的是()A .10a >,01q <<B .10a >,0q <C .10a <,1q =D .10a <,01q <<【例4】(2022·全国·高二课时练习多选题)关于递增等比数列{}n a ,下列说法正确的是().A .当10a >时,1q >B .当10a >时,0q <C .当10a <时,01q <<D .11nn a a +<【答案】AC【题型专练】1.设等比数列{}n a 的首项为1a ,公比为q ,则{}n a 为递增数列的充要条件是()A .10a >,1q >B .10a <,01q <<C .1lg 0a q >D .1lg 0a q <【答案】C【分析】分析可知0q >,分10a <、10a >两种情况讨论,结合递增数列的定义求出对应的q 的取值范围,即可得出结论.【详解】因为11n n a a q -=,若0q <,则数列{}n a 为摆动数列,与题意不符,所以,0q >.①若10a <,则对任意的N n *∈,0n a <,由1n n n a a a q +<=可得1q <,即01q <<;②若10a >,则对任意的N n *∈,0n a >,由1n n n a a a q +<=可得1q >,此时1q >.所以,{}n a 为递增数列的充要条件是10a >,1q >或10a <,01q <<,当10a >,1q >时,lg 0q >,则1lg 0a q >;当10a <,01q <<时,lg 0q <,则1lg 0a q >.因此,数列{}n a 为递增数列的充要条件是1lg 0a q >.故选:C.2.在等比数列{}n a 中,公比是q ,则“1q >”是“()*1N n n a a n +>∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D【分析】根据等比数列的单调性举出反例,如11a =-,再根据充分条件和必要条件的定义即可得出答案.【详解】解:当11a =-时,则1n n a q -=-,因为1q >,所以1n n q q ->,所以1n n q q --<-,故()*1N n n a a n +<∈,所以1q >不能推出()*1N n n a a n +>∈,当11a =-时,则1n n a q -=-,由()*1N n n a a n +>∈,得1n n q q -->-,则1n n q q -<,所以01q <<,所以()*1N n n a a n +>∈不能推出1q >,所以“1q >”是“()*1N n n a a n +>∈”的既不充分也不必要条件.故选:D.3.(2022·河南·新蔡县第一高级中学高二阶段练习(理))已知等比数列{}n a 的公比为q .若{}n a 为递增数列且10a <,则()A .1q <-B .10q -<<C .01q <<D .1q >【答案】C【分析】根据题设等比数列的性质,结合等比数列通项公式确定公比q 的范围即可.【详解】由题意,11n n a a q -=,又10a <,∴要使{}n a 为递增数列,则0q >,当01q <<时,{}n a 为递增数列,符合题设;当1q >时,{}n a 为递减数列,符合题设;故选:C.题型七:等比数列新文化试题【例1】十九世纪下半叶,集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]平均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,1 33⎡⎤⎡⎤⎢⎢⎥⎣⎦⎣⎦分别平均分为三段,并各自去掉中间的区间段,记为第二次操作:…;如此这样.每次在上一次操作的基础上,将剩下的各个区间分别平均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”,若去掉的各区间长度之和不小于45,则需要操作的次数n 的最小值为()(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .7【答案】A 【解析】【分析】利用题中的条件,分别计算出每一次操作去掉的区间的长度,结合对数不等式即可解出.【详解】第一次操作去掉的区间长度为13,第二次操作去掉两个长度为19的区间,长度和为29,第三次操作去掉四个长度为127的区间,长度和为427, ,第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=+++=-⎪⎝⎭,由题意可知,24135n⎛⎫-≥ ⎪⎝⎭,即21lg lg 35n ≤,解得 3.97n =,又n 为整数,所以需要操作的次数n 的最小值为4.故选:A.【例2】北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【例3】1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成三段,去掉中间的一段,剩下两个闭区间1 [0,] 3和2[,1]3;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:1 [0, 9,21 [,] 93,27[,] 39,8[,1]9;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历n步构造后,20212022不属于剩下的闭区间,则n 的最小值是().A .7B .8C .9D .10【答案】A 【解析】20212022不属于剩下的闭区间,20212022属于去掉的开区间经历第1步,剩下的最后一个区间为2[,1]3,经历第2步,剩下的最后一个区间为8,19⎡⎤⎢⎥⎣⎦,……,经历第n 步,剩下的最后一个区间为1113n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,,去掉的最后开区间为1112,133n n ⎛⎫⎛⎫⎛⎫-⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由120111121320223n n⎛⎫⎛⎫-⨯<<- ⎪ ⎪⎝⎭⎝⎭化简得4044320223n n ⎧>⎨<⎩,解得7n =故选:A【例4】我国古代数学著作《九章算术》中有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织出的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天织布多少?”这个问题体现了古代对数列问题的研究.某数学爱好者对于这道题作了以下改编:有甲、乙两位女子,需要合作织出40尺布.两人第一天都织出一尺,以后几天中,甲女子每天织出的布都是前一天的2倍,乙女子每天织出的布都比前一天多半尺,则两人完成织布任务至少需要()A .2天B .3天C .4天D .5天因为22()32n f n n n ++=+在0n >上单调递增,当5n =时,7(5)25152168164f =++=>,而6(4)1612292164f =++=<,故2232()164n n n f n +++=≥的解为5,N n n ≥∈,故至少需要5天,故选:D .【例5】费马数是以法国数学家费马命名的一组自然数,具有形式为221(n+记做)n F ,其中n 为非负数.费马对0n =,1,2,3,4的情形做了检验,发现这组费马公式得到的数都是素数,便提出猜想:费马数是质数.直到1732年,数学家欧拉发现52521F =+为合数,宣布费马猜想不成立.数列{}n a 满足()2log 1n n a F =-,则数列{}n a 的前n 项和n S 满足2020n S >的最小自然数是()A .9B .10C .11D .12【题型专练】1.已知一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了4个伙伴;第2天,5只蜜蜂飞出去,各自找回了4个伙伴,……按照这个规律继续下去,第20天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂()A .420只B .520只C .20554-只D .21443-只【答案】B【解析】第一天一共有5只蜜蜂,第二天一共有2555⨯=只蜜蜂,……按照这个规律每天的蜜蜂数构成以为5首项,公比为5的等比数列则第n 天的蜜蜂数1555n nn a -=⨯=第20天蜜蜂都归巢后,蜂巢中共有蜜蜂数205故选:B .2.数学源于生活,数学在生活中无处不在!学习数学就是要学会用数学的眼光看现实世界!1906年瑞典数学家科赫构造了能够描述雪花形状的图案,他的做法如下:从一个边长为2的正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边,分别向外作正三角形,再去掉底边(如图①、②、③等).反复进行这一过程,就得到雪花曲线.不妨记第(1,2,3,)n n =⋅⋅⋅个图中的图形的周长为n a ,则5a =()A .2569B .25627C .51227D .51281【答案】C 【解析】【分析】根据题图规律确定第n 个图边的条数及其边长,并写出其通项公式,再求第5个图的周长.【详解】由图知:第一个图有3条边,各边长为2,故周长132a =⨯;第二个图有12条边,各边长为23,故周长22123a =⨯;第三个图有48条边,各边长为29,故周长32489a =⨯;……所以边的条数是首项为3,公比为4的等比数列,则第n 个图的边有134n -⋅条,边长是首项为2,公比为13的等比数列,则第n 个图的边长为112(3n -⋅,故4451512342()327a =⨯⨯⨯=.故选:C3.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则下列说法正确的是()A .该人第五天走的路程为14里B .该人第三天走的路程为42里C .该人前三天共走的路程为330里D .该人最后三天共走的路程为42里4.北京2022年冬奥会开幕式用“一朵雨花”的故事连接中国与世界,传递了“人类命运共同体”的理念.“雪花曲线”也叫“科赫雪花”,它是由等边三角形三边生成的科赫曲线组成的,是一种分形几何.图1是长度为1的线段,将图1中的线段三等分,以中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉得到图2,这称为“一次分形”;用同样的方法把图2中的每条线段重复上述操作,得到图3,这称为“二次分形”;L .依次进行“n 次分形()*n ∈N ”.规定:一个分形图中所有线段的长度之和为该分形图的长度.若要得到一个长度不小于40的分形图,则n 的最小值是()(参考数据lg 30.477≈,lg20.301≈)A .11B .12C .13D .14【答案】C 【解析】【分析】分析可知“n 次分形”后线段的长度为43n⎛⎫⎪⎝⎭,可得出关于n 的不等式,解出n 的取值范围即可得解.【详解】图1的线段长度为1,图2的线段长度为43,图3的线段长度为243⎛⎫⎪⎝⎭,L ,“n 次分形”后线段的长度为43n⎛⎫⎪⎝⎭,所以要得到一个长度不小于40的分形图,只需满足4403n⎛⎫⎪⎝≥⎭,则4lg lg4012lg23n ≥=+,即()2lg2lg312lg2n -≥+,解得12lg210.60212.82lg2lg30.6020.477n ++≥≈--,所以至少需要13次分形.故选:C.5.十九世纪下半叶,集合论的创立奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]平均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别平均分为三段,并各自去掉中间的区间段,记为第二次操作:…;如此这样.每次在上一次操作的基础上,将剩下的各个区间分别平均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”,若去掉的各区间长度之和不小于45,则需要操作的次数n的最小值为()(参考数据:lg20.3010=,lg30.4771=)A.4B.5C.6D.76.毕达哥拉斯树是由古希腊数学家毕达哥拉斯根据勾股定理画出来的一个可以无限重复的图形,因为重复数次后的形状好似一棵树,所以被成为毕达哥拉斯树,也叫“勾股树”.毕达哥拉斯树的生长方式如下:以边长为1的正方形的一边作为斜边,向外做等腰直角三角形,再以等腰直角三角形的两直角边为边向外作正方形,得到2个新的小正方形,实现了一次生长,再将这两个小正方形各按照上述方式生长,如此重复下去,设第n次生长得到的小正方形的个数为na,则数列{}n a的前n项和n S=___________.【答案】122n +-##122n +-+【分析】分析可知数列{}n a 为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得n S .【详解】由题意可得12n n a a +=且12a =,所以,数列{}n a 为等比数列,且该数列的首项和公比均为2,因此,()12122212n n n S +-==--.故答案为:122n +-.7.(多选题)如图,1P 是一块半径为1的圆形纸板,在1P 的左下端前去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个前掉半圆的半径)得图形3P ,4,,,n P P ,记纸板n P 的周长为n L ,面积为n S ,则下列说法正确的是()A .37142L π=+B .31132S π=C .1111222n n n L π-+⎡⎤⎛⎫⎛⎫=-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦D .1212n n n S S π++=-【答案】ABD 【解析】【分析】观察图形,分析剪掉的半圆的变化,纸板n P 相较于纸板1n P -()2n ≥剪掉了半径为112n -的半圆,再分别写出nL 和n S 的递推公式,从而累加得到通项公式再逐个判断即可【详解】根据题意可得纸板n P 相较于纸板1n P -()2n ≥剪掉了半径为112n -的半圆,故1111122222n n n n L L π---=-⨯+⨯,即112122n n n n L L π----=-,故12L π=+,2110122L L π-=-,3221122L L π-=-,4332122L L π-=- (1121)22n n n n L L π----=-,累加可得1210121112......222222n n n L ππππ--⎛⎫⎛⎫=+++++-++ ⎪ ⎪⎝⎭⎝⎭1111112222111122n n ππ--⎛⎫-- ⎪⎝⎭=++---1211222n n π--⎛⎫=-+ ⎝⎭,所以132171421222L ππ⎛⎫=-+ ⎪⎝⎭=+,故A 正确,C 错误;又1211122n n n S S π--⎛⎫=- ⎪⎝⎭,故1212n n n S S π---=-,即1212n n n S S π++=-,故D 正确;又12S π=,2132S S π-=-,3252S S π-=-…1212n n n S S π---=-,累加可得3521 (2222)n n S ππππ-=----111841214n ππ-⎛⎫-⎪⎝⎭=--211132n π-⎛⎫=+ ⎪⎝⎭,故31132S π=正确,故B 正确;故选:ABD。
专题9 数列通项公式和前n项和(解析版)-2021年高考冲刺之二轮专题精讲精析
专题9通项公式和数列求和一、单选题1.正项数列{a n }的前n 项和为S n ,且满足22nn a S n =-,则a 5=( ) A .8 B .5 C .6 D .7【答案】B 【分析】根据22nn a S n =-,1n =时,得到11a =,当2n ≥时,根据1n n n a S S -=-得到11n n a a -=-或者11n n a a -=-,再求5a 即可. 【详解】正项数列{}n a ,22nn a S n =-, 当1n =时,21112121a S a =-=-,()221112110a a a -+=-=,所以11a =.当2n ≥时,221122121n n n n n a a S S a ---=--=-,222121(1)n n n n a a a a -=-+=-,所以11n n a a -=-或者11n n a a -=-.当11n n a a -=-时,{}n a 是首项为1,公差为1的等差数列, 所以n a n =,55a =;当11n n a a -=-时,20a =与{}n a 是正项数列矛盾,所以舍去. 故选:B.2.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩【答案】B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题. 3.在数列{}n a 中,11a =,且11nn na a na +=+,则其通项公式为n a =( )A .211n n -+B .212n n -+C .221n n -+D .222n n -+ 【答案】D 【分析】先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出2122n n n a -+=,进而求出n a .【详解】 解:11nn na a na +=+,()11n n n a na a ++=∴,化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:111n nn a a +-=, 即21111a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --=-≥∈, 将上述1n -个式子相加得:213243111111+a a a a a a --+-+ (1)11123n n a a -+-=+++…1n +-, 即111(1)2n n n a a --=, 2111(1)(1)2=1(2,)222n n n n n n n n n z a a ---+∴=++=≥∈, 又111a =也满足上式, 212()2n n n n z a -+∴=∈, 22()2n a n z n n ∴=∈-+.故选:D. 【点睛】易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 4.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-【答案】C 【分析】根据选项进行逐一验证,可得答案. 【详解】 选项A. ()11n a n n =-,当1n =时,无意义.所以A 不正确.选项B. ()1221n a n n =-,当2n =时,()211122221126a ==≠⨯⨯⨯-,故B 不正确. 选项C.11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯所以111n a n n =-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 1111012a =-=≠,故D 不正确.故选:C5.已知数列1,2a a +,234a a a ++,3456a a a a +++,…,则数列的第k 项是( ) A .12k k k a a a ++++ B .121k k k a a a --++ C .12k k k a a a -+++D .122k k k a a a --+++【答案】D 【分析】根据已知中数列的前4项,分析数列的项数及起始项的变化规律,进而可得答案 【详解】解:由已知数列的前4项:1,2a a +,234a a a ++,3456a a a a +++,归纳可知该数列的第k 项是一个以1为首项,以a 为公比的等比数列第k 项开始的连续k 项和, 所以数列的第k 项为:122k k k a a a --+++故选:D6.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92 B .102C .8182D .112【答案】B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=.令1n n n a b a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭.∴1211322aa ⎛⎫= ⎪⎝⎭, 2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭2115(1)221122n n n---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-. ∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;7.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m B .21m +C .22m +D .23m +【答案】C 【分析】首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++==+,()()()1232322323<02m m m m a a S m a +++++==+, ()()()()1222212211>02m m m m m a a S m a a ++++++==++.故选:C.【点睛】关键点睛:本题的第一个关键是根据公式11,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负.8.已知数列{}n a 的前n 项和221n S n n =+-,则13525a a a a ++++=( )A .350B .351C .674D .675【答案】A 【分析】先利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列{}n a 的通项公式,再利用通项公式求出13525a a a a ++++的值. 【详解】当1n =时,21112112a S ==+⨯-=;当2n ≥时,()()()22121121121n n n a S S n n n n n -⎡⎤=-=+---+--=+⎣⎦.12a =不适合上式,2,121,2n n a n n =⎧∴=⎨+≥⎩.因此,()()3251352512127512235022a a a a a a ⨯+⨯+++++=+=+=;故选:A. 【点睛】易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,但需要验证1a 是否满足()2n a n ≥.9.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( ) A .12020B .12019C .11010D .11009【答案】C 【分析】由累乘法可求得2n a n=,即可求出. 【详解】11n n n a a n +=+,即11n na n a n +=+, 12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==. 故选:C.10.已知数列{}n a 的前n 项和为n S ,15a =,且满足122527n na a n n +-=--,若p ,*q ∈N ,p q >,则p qS S -的最小值为( ) A .6- B .2-C .1-D .0【答案】A 【分析】 转化条件为122527n n a an n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.【详解】 因为122527n n a a n n +-=--,所以122527n na a n n +-=--, 又1127a =--,所以数列27n a n ⎧⎫⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以()1212327na n n n =-+-=--,所以()()2327n a n n =--,令()()23270n a n n =--≤,解得3722n ≤≤,所以230,0a a <<,其余各项均大于0, 所以()()()3123min13316p q S S a a S S =-=+=⨯-+--⨯=-.故选:A. 【点睛】解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 11.若数列{}n a 的前n 项和为n S ,nn S b n=,则称数列{}n b 是数列{}n a 的“均值数列”.已知数列{}n b 是数列{}n a 的“均值数列”且通项公式为n b n =,设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若2112n T m m <--对一切*n ∈N 恒成立,则实数m 的取值范围为( )A .()1,3-B .[]1,3-C .()(),13,-∞-+∞D .(][),13,-∞-+∞【答案】D 【分析】根据题意,求得2n S n =,进而求得数列的通项公式为21n a n =-,结合裂项法求得数列的前n 和n T ,得出不等式211122m m --≥,即可求得实数m 的取值范围. 【详解】由题意,数列{}n a 的前n 项和为n S ,由“均值数列”的定义可得nS n n=,所以2n S n =, 当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-,11a =也满足21n a n =-,所以21n a n =-,所以()()111111212122121n n a a n n n n +⎛⎫==- ⎪⋅-+-+⎝⎭,所以11111111111233521212212n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-< ⎪ ⎪-++⎝⎭⎝⎭, 又2112n T m m <--对一切*n ∈N 恒成立, 所以211122m m --≥,整理得2230m m --≥,解得1m ≤-或3m ≥. 即实数m 的取值范围为(][),13,-∞-+∞.故选:D. 【点睛】数列与函数、不等式综合问题的求解策略:1、已知数列的条件,解决函数问题,解决此类问题一把要利用数列的通项公式,前n 项和公式,求和方法等对于式子化简变形,注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性;2、解决数列与不等式的综合问题时,若是证明题中,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等,若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决. 12.已知单调递增数列{}n a 的前n 项和n S 满足()()*21n n n S a a n =+∈N ,且0nS>,记数列{}2n n a ⋅的前n 项和为n T ,则使得2020n T >成立的n 的最小值为( ) A .7 B .8 C .10 D .11【答案】B 【分析】由数列n a 与n S 的关系转化条件可得11n n a a -=+,结合等差数列的性质可得n a n =,再由错位相减法可得()1122n n T n +=-⋅+,即可得解.【详解】由题意,()()*21n n n S a a n N=+∈,当2n ≥时,()11121n n n S a a ---=+,所以()()11122211n n n n n n n a S S a a a a ---=-=+-+, 整理得()()1110n n n n a a a a --+--=,因为数列{}n a 单调递增且0n S >,所以110,10n n n n a a a a --+≠--=,即11n n a a -=+,当1n =时,()11121S a a =+,所以11a =, 所以数列{}n a 是以1为首项,公差为1的等差数列, 所以n a n =,所以1231222322n n T n =⋅+⋅+⋅+⋅⋅⋅+⋅,()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅+⋅,所以()()234111212222222212212n nn n n n T n n n +++--=++++⋅⋅⋅+-⋅=-⋅=-⋅--,所以()1122n n T n +=-⋅+,所以876221538T =⨯+=,987223586T =⨯+=,所以2020n T >成立的n 的最小值为8. 故选:B. 【点睛】关键点点睛:解决本题的关键是数列n a 与n S 关系的应用及错位相减法的应用. 二、填空题13.已知首项为1的数列{}n a 的前n 项和为S n ,且当n 为偶数时,11n n a a --=,当n 为奇数且n >1时,121n n a a --=.若4000m S >,则m 的最小值为___________.【答案】18 【分析】根据已知条件求出n 为偶数和奇数时的通项公式121423k k a --=⋅-,12422k k a -=⋅-,再求得前2k 项的和得解 【详解】由题意得,2211k k a a -=+,21221k k a a +=+,*k N ∈,∴2121212(1)123k k k a a a +--=++=+,即212132(3)k k a a +-+=+.又134a +=, ∴数列{}213k a -+是以4为首项,2为公比的等比数列,∴121423k k a --=⋅-,12422k k a -=⋅-,∴奇数项的和为()213521412=...+324312k k k S a a a a k k +--+++=-=---偶数项的和为22462=...+242k k T a a a a k ++++=--∴32=285k k S S T k +=+--∴1218=2845=4043S --,17=3021S∴使得4000m S >的最小整数m 的值为18. 故答案为:18 【点睛】分奇偶项求得通项公式是解题关键.14.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.【答案】3288n n -+- 【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n nn na q S q -⎡⎤⎛⎫-⎢⎥ ⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-, 由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382nn S -=-,再结合数列{}32n-是以4为首项,12为公比的等比数列,再次求和即可. 15.已知数列{}n a 满足11a =,()*12141n n a a n N n+=+∈-,则10a =__________.【答案】1928【分析】利用已知条件得111122112+11n n n a n a +⎛⎫=- ⎪-⎝⎭-,运用叠加法先求得101a ,再求得10a . 【详解】依题意数列{}n a 满足11a =,()*12141n n a a n N n +=+∈-, 所以()()211111141212+1221211+1n n n n n a a n n +-⎛⎫==- ⎪--⎝=-⎭, 所以121112131a a ⎛⎫=- ⎪⎝⎭-,3211121351a a ⎛⎫=- ⎝-⎪⎭, ,1091112171911a a ⎛=-⎫- ⎪⎝⎭, 所以1011111111+++2335171119a a ⎡⎤⎛⎫⎛⎫⎛⎫=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣-⎦119121919⎛⎫=-= ⎪⎝⎭, 所以1011919128++1919119a a ===,所以101928a =, 故答案为:1928. 16.数列{}n a 的前n 项和为n S ,12a =,1112n n n S a +⎛⎫=- ⎪⎝⎭,2log nn b a =,则数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T =_____.【答案】1n n + 【分析】利用1n n n a S S -=-可得{}n a 为等比数列,即可求出n a ,进而得出n b ,利用裂项相消法即可求出. 【详解】 1112n n nS a +⎛⎫=- ⎪⎝⎭,2n ≥时,11112n n n S a --⎛⎫=- ⎪⎝⎭,两式作差,得()111111222n n n n n a a a n +-⎛⎫⎛⎫=---≥ ⎪ ⎪⎝⎭⎝⎭,, 化简得()122n na n a +=≥,,检验:当1n =时,112122S a a ==⨯=,24a =,212a a =,所以数列{}n a 是以2为首项,2为公比的等比数列;2nn a =,22l 2log og n n n b a n ===,令()1111111n n n c b b n n n n +===-++, 111111111122334111n n T n n n n =-+-+-++-=-=+++. 故答案为:1nn +.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n nn a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 三、解答题17.已知数列{}n a 的前n 项和n S 满足123n n a S +=+,且13a =. (1)求数列{}n a 的通项公式;(2)已知数列{}n b 满足n n b na =,求数列{}n b 的前n 项和n T .【答案】(1)3nn a =;(2)1213344n n n T +-⎛⎫=⋅+⎪⎝⎭. 【分析】(1)根据所给的递推关系,结合1(2,)n n n S S a n n N --=≥∈、等比数列的定义进行求解即可; (2)利用错位相减法进行求解即可. 【详解】(1)∵123n n a S +=+,∴2n ≥时,123n n a S -=+,∴112()2n n n n n a a S S a +-=-=-,∴()132n n a a n +=≥, 又∵21239a S =+=,∴213a a =,∴{}n a 是以3为首项,3为公比的等比数列,∴1333n n n a -=⨯=; (2)由(1)知,3n n a =,所以3nn b n =⋅, ∴213233n n T n =⨯+⨯++⋅①,∴231313233n n T n +=⨯+⨯++⋅②,由①-②得:231233333n n n T n +-=++++-⋅()11313132331322n n n n T n n ++-⎛⎫-=-⨯=-⋅- ⎪-⎝⎭1213344n n n T +-⎛⎫=⋅+ ⎪⎝⎭18.已知各项均为正数的数列{}n a 的前n 项和满足1n S >,且()()*612,n n n S a a n =++∈N .(1)求{}n a 的通项公式:(2)设数列{}n b 满足()211n bn a -=,并记n T 为{}n b 的前n 项和,求证:()*231log 3,n n T a n N +>+∈.【答案】(1)31n a n =-;(2)证明见解析. 【分析】(1)利用已知n S 与n a 的关系求{n a }的通项公式; (2)先根据(1)的结论求出23log 31n nb n =-,再求出{}n b 的前n 项和n T ,利用放缩法证明不等式. 【详解】(1)由()()11111126a S a a ==++,结合111a S =>,因此12a = 由()()()()111111121266n n n n n n n a S S a a a a ++++=-=++-++得()()1130n n n n a a a a +++--=, 又0n a >,得13n n a a +-=从而{}n a 是首项为2公差为3的等差数列,故{}n a 的通项公式为31n a n =-. (2)由(21)1n bn a -=可得23log 31n nb n =-, 从而2363log ()2531n nT n =⋅-323633log ()2531n n T n =⋅-∵3313231331n n n n n n ++>>-+, 3333132()3131331n n n n n n n n ++∴>⋅⋅--+ 于是33323633log 2531n n T n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅⎢⎥ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦234567833132log 23456731331n n n n n n ⎡⎤++⎛⎫⎛⎫⎛⎫>⋅⋅⋅⋅⋅⨯⨯ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦232log 2n += ∴()2231log (32)log 3n n T n a +>+=+. 【点睛】关键点点睛:本题考查了已知n S 与n a 的关系求{n a }的通项公式,根据3313231331n n n n n n ++>>-+利用放缩法得3333132()3131331n n n n n n n n ++>⋅⋅--+,证明不等式,属于较难题. 19.已知数列{}n a 的前n 项和为n S ,且237n S n n =-.(1)求数列{}n a 通项公式;(2)若数列{}n b 满足3nn n b a =⋅,求数列{}n b 的前n 项和n T .【答案】(1)610n a n =-;(2)113393322n n T n +⎛⎫=-⋅+ ⎪⎝⎭. 【分析】(1)利用()12n n n a S S n -=-≥即可求出; (2)利用错位相减法即可求出. 【详解】(1)当1n =时,则114a S ==-;当2n ≥时,()()221373171610n n n a S S n n n n n -=-=---+-=-,满足14a =-;∴610n a n =-;(2)依题意,()3610nn b n =⋅-,故()()1233432383610nn T n =⋅-+⋅+⋅+⋅⋅⋅+⋅-,故()()234133432383610n n T n +=⋅-+⋅+⋅+⋅⋅⋅+⋅-,两式相减可得,()12312343636363610nn n T n +-=-⋅+⋅+⋅+⋅⋅⋅+⋅-⋅-()()()111541312+610313633913n n n n n -++-=---⋅=-⋅--∴113393322n n T n +⎛⎫=-⋅+ ⎪⎝⎭.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n nn a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.20.设{}n a 是公比为正数的等比数列, 12a =,324a a =+. (1)求{}n a 的通项公式;(2)设{}n b 是首项为1,公差为2的等差数列,求数列{}n n a b +的前n 项和n S .【答案】(1)2nn a =;(2)1222n n S n +=+-.【分析】(1)利用等比数列的定义求出公比2q后,再根据11n n a a q -=可得结果;(2)根据等差数列的首项和公差求出n b 后再根据等差、等比数列的前n 项和公式,分组求和,即可得到结果.【详解】(1)由题意设等比数列{}n a 的公比为q ,0q >,12a =,324a a =+,∴2224q q =+,即()()120,0,q q q +-=>∴2q ,∴{}n a 的通项公式1222n n n a -=⨯=.(2){}n b 是首项为1,公差为2的等差数列,∴()12121n b n n =+-=-, ∴数列{}n n a b +的前n 项和()()1221212122122n n nn n S n +⨯-+-=+=+--.【点睛】本题考查了等差数列的通项公式和前n 项和公式,考查了等比数列的通项公式和前n 项和公式,关键是正确求得等比数列的基本量,并注意分组求和思想的应用,属于基础题. 21.已知数列{}n a 的前n 项和n S 满足()()*231n n S a n N =-∈.(1)求数列{}n a 的通项公式; (2)记()()111n n n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,不等式141n kT n >-+都成立,求实数k 的取值范围.【答案】(1)3nn a =;(2)1,8⎛⎫+∞ ⎪⎝⎭.【分析】(1)由1(2)n n n a S S n -=-≥得出n a 的递推关系,结合1a 得{}n a 等比数列,从而得通项公式; (2)用裂项相消法求得和n T ,不等式可变形为()11231n n k -+>-,令()11()231n n f n ++=-,再用作差法得出()f n 的单调性,得最大项,从而得k 的取值范围.【详解】(1)因为数列{}n a 的前n 项和n S 满足()()231n n S a n N*=-∈,所以当2n ≥时,()11231n n S a --=-, 两式相减得:1233n n n a a a -=-,即13(2)nn a a n,又1n =时,()11231S a =-,解得:130a =≠,所以数列{}n a 是以3为首项,3为公比的等比数列,从而3nn a =(2)由(1)知:()()()()113113131nn n n n n n a b a a ++==----111123131n n +⎛⎫=- ⎪--⎝⎭,所以,12n n T b b b =+++1223111111112313131313131n n +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥------⎝⎭⎝⎭⎝⎭⎣⎦11112231n +⎛⎫=- ⎪-⎝⎭, 对任意的n *∈N ,不等式141n kT n >-+都成立,即11111223141n k n +⎛⎫->- ⎪-+⎝⎭, 化简得:()11231n n k -+>-,令()11()231n n f n ++=-,因为()()()()1211221(21)31(1)()023*********n n n n n n n n f n f n +++++++--⋅-+-=-=<---⋅-, 故()f n 单调递减, 所以max 1[()](1)8f n f ==,故18k >,所以,实数k 的取值范围是1,8⎛⎫+∞ ⎪⎝⎭. 【点睛】方法点睛:本题考查求等比数列的通项公式,考查裂项相法法求和,数列不等式恒成立问题.数列求和方法有:公式法,错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等,用作差法确定数列的单调性求出数列的最大(小)项是求数列最值的常用方法.22.已知等差数列{}n a 中,前n 项和为n S ,11a =,{}n b 为等比数列且各项均为正数,11b =,且满足:22337,22b S b S +=+=.(1)求n a 与n b ;(2)记12n nn na cb -⋅=,求{}nc 的前项和;(3)若不等式1(1)2nn n nm T --⋅-<对一切n *∈N 恒成立,求实数m 的取值范围. 【答案】(1)n a n =,14n n b -= (2) 114(2)2n n T n -⎛⎫=-+⋅ ⎪⎝⎭(3)()2,3-【分析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为0q >,由11a =,11b =,且满足:227b S +=,3322b S +=.可得27q d ++=,23322q d ++=,联立解出即可得出.(2)1112142n n n n n c n ---⋅⎛⎫==⋅ ⎪⎝⎭,利用“错位相减法”与等比数列的求和公式即可得出.(2)不等式1(1)2nn n n m T --⋅-<,即111(1)4(2)22n n n n m n --⎛⎫-⋅-++⋅< ⎪⎝⎭,化为:()12142n n m --⋅<-.对n 分类讨论,利用数列的单调性即可得出. 【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为0q >,11a =,11b =,且满足:227b S +=,3322b S +=, 27q d ∴++=,23322q d ++=,联立解得4,1q d ==,1(1)n a n n ∴=+-=,14n n b -=;(2)111122142n n n n n n n a n c n b ----⋅⋅⎛⎫===⋅ ⎪⎝⎭,{}n c ∴的前n 项和21111123222n n T n -⎛⎫⎛⎫=+⨯+⨯+⋯+⋅ ⎪ ⎪⎝⎭⎝⎭,21111112(1)22222n n n T n n -⎛⎫⎛⎫⎛⎫∴=+⨯++-⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相减得2111111122222n n n T n -⎛⎫⎛⎫⎛⎫=++++-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11211212n n n ⎛⎫- ⎪⎛⎫⎝⎭=-⋅ ⎪⎝⎭-12(2)2n n ⎛⎫=-+⋅ ⎪⎝⎭, 114(2)2n n T n -⎛⎫∴=-+⋅ ⎪⎝⎭; (3)不等式1(1)2n n n n m T --⋅-<,即111(1)4(2)22n n n n m n --⎛⎫-⋅-++⋅< ⎪⎝⎭, 化为:()12142nn m --⋅<-, 当n 为偶数时,212432m -<-=, 当n 为奇数时,112422m --<-=,解得2m >-, 1(1)2n n n n m T --⋅-<对一切n *∈N 恒成立, 23m ∴-<<,∴实数m 的取值范围是()2,3-【点睛】关键点睛:本题考查求等差数列和等比数列的通项公式,利用错位相减法求和,数列不等式恒成立求参数范围,解答本题的关键是利用错位相减法求和,计算要准确,不等式1(1)2n n n n m T --⋅-<,即111(1)4(2)22n n n n m n --⎛⎫-⋅-++⋅< ⎪⎝⎭,化为:1(1)42n n m -⋅<-,再分n 的奇偶性分别求解即可.属于中档题.。
近6年来高考数列题分析(以全国卷课标Ⅰ为例)
近5年来高考数列题分析(以全国卷课标Ⅰ为例)单的裂项相消法和错位相减法求解数列求和即可。
纵观全国新课标Ⅰ卷、Ⅱ卷的数列试题,我们却发现,新课标卷的数列题更加注重基础,强调双基,讲究解题的通性通法。
尤其在选择、填空更加突出,常常以“找常数”、“找邻居”、“找配对”、“构函数”作为数列问题一大亮点.从2011年至2015年,全国新课标Ⅰ卷理科试题共考查了8道数列题,其中6道都是标准的等差或等比数列,主要考查等差或等比数列的定义、性质、通项、前n项和、某一项的值或某几项的和以及证明等差或等比数列等基础知识。
而文科试题共考查了9道数列题,其中7道也都是标准的等差或等比数列,主要考查数列的性质、求通项、求和、求数列有关基本量以及证明等差或等比数列等基础知识。
1.从试题命制角度看,重视对基础知识、基本技能和基本数学思想方法的考查。
2.从课程标准角度看,要求学生“探索并掌握等差数列、等比数列的通项公式与前n 项和的公式,能在具体问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题”。
3.从文理试卷角度看,尊重差异,文理有别,体现了《普通高中数学课程标准(实验)》的基本理念之一“不同的学生在数学上得到不同的发展”。
以全国新课标Ⅰ卷为例,近五年理科的数列试题难度整体上要比文科的难度大一些。
如2012年文科第12题“数列 满足 ,求的前60项和”是一道选择题,但在理科试卷里这道题就命成了一道填空题,对考生的要求自然提高了。
具体来看,全国新课标卷的数列试题呈现以下特点:●小题主要考查等差、等比数列的基本概念和性质以及它们的交叉运用,突出了“小、巧、活”的特点,难度多属中等偏易。
●大题则以数列为引线,与函数、方程、不等式、几何、导数、向量等知识编织综合性强,内涵丰富的能力型试题,考查综合素质,难度多属中等以上,有时甚至是压轴题,难度较大。
(一)全国新课标卷对数列基本知识的考查侧重点1.考查数列的基本运算,主要涉及等差、等比数列的通项公式与前项和公式。
专题18数列的通项公式及前n项和-高考数学(理)母题题源系列含解析
专题18数列的通项公式及前n 项和-高考数学(理)母题题源系列含解析【母题原题1】【2018天津,理18】设是等比数列,公比大于0,其前n 项和为,是等差数列. 已知,,,.{}n a ()n S n *∈N {}n b 11a =322a a =+435a b b =+5462a b b =+(I )求和的通项公式;{}n a {}n b(II )设数列的前n 项和为,{}n S ()n T n *∈N (i )求;n T(ii )证明.221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N 【考点分析】本小题主要考查等差数列的通项公式,等比数列的通项公式及前n 项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力.满分13分.【答案】(I );(II )(i ).(ii )证明见解析.12,n n n a b n -==122n n T n +=--【解析】试题分析:(I )由题意得到关于的方程,解方程可得,则.结合等差数列通q2q =12n n a -=设等差数列的公差为,由,可得由,{}n b d 435a b b =+13 4.b d +=5462a b b =+可得 从而 故 131316,b d +=11,1,b d ==.n b n =所以数列的通项公式为,数列的通项公式为{}n a 12n n a -={}n b .n b n = (II)(i)由(I),有,故.122112nn n S -==--1112(12)(21)22212n n n k k n n k k T n n n +==⨯-=-=-=-=---∑∑ (ii )证明:,()()()()()()()()1121222222212121221k k k k k k+k k k k T +b b k k k k k k k k k ++++--++⋅===-++++++++ ()()()32432122122222222123243212n n n nk k k k T b b k k n n n ++++=+⎛⎫⎛⎫⎛⎫∴=-+-++-=- ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭∑. 【名师点睛】本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.【母题原题2】【2017天津,理18】已知为等差数列,前n 项和为,是首项为2的等比数列,且公比大于0,{}n a ()n S n *∈N {}n b2312b b +=,,.3412b a a =-11411S b =(Ⅰ)求和的通项公式;{}n a {}n b(Ⅱ)求数列的前n 项和.221{}n n a b -()n *∈N【答案】(Ⅰ),;(Ⅱ).32n a n =-2n n b =1328433n n +-⨯+ 联立①②,解得,,由此可得.11a =3d =32n a n =-所以,数列的通项公式为,数列的通项公式为.{}n a 32n a n =-{}n b 2nn b =(Ⅱ)设数列的前项和为,由,,有,221{}n n a b -n n T 262n a n =-12124n n b --=⨯221(31)4n n n a b n -=-⨯故,23245484(31)4n n T n =⨯+⨯+⨯++-⨯23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得:23112(14)324343434(31)44(314n n n n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----111)4(32)48n n n ++⨯=--⨯-,得.1328433n n n T +-=⨯+ 所以,数列的前项和为.221{}n n a b -n 1328433n n +-⨯+ 【考点】等差数列、等比数列、数列求和【名师点睛】利用等差数列和等比数列通项公式及前项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和.n n【母题原题3】【2016天津,理18】已知是各项均为正数的等差数列,公差为,对任意的是和的等比中项.{}n a d n n N ,b *∈n a 1n a +(Ⅰ)设,求证:是等差数列;22*1,n n n c b b n N +=-∈{}n c (Ⅱ)设 ,求证:()22*11,1,nnn n k a d T b n N===-∈∑2111.2nk kT d =<∑ 【答案】(Ⅰ)详见解析(Ⅱ)详见解析()222111111111111212121nn n k k k kT d k k d k k d n ===⎛⎫⎛⎫==-=⋅- ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,易得结论. 试题解析:(I )证明:,为定值,∴为等差数列.22112112n n n n n n n n c b b a a a a d a +++++=-=-=⋅21212()2n n n n c c d a a d +++-=-={}n c(II)证明:(*)2213211(1)nk n k n k T b C C C -==-=++⋅⋅⋅+∑21(1)42n n nC d -=+⋅212(1)nC d n n =+- 由已知,将代入(*)式得,∴,得证.22212123122122()4C b b a a a a d a d a d d =-=-=⋅=+=214C d =22(1)n T d n n =+2111112(1)nnk k kT d k k ===+∑∑21111(1)2311221k k d ⋅=⋅⋅++--+-+212d <【名师点睛】分组转化法求和的常见类型(1)若an =bn±c n ,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n 项和.(2)通项公式为an =的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和. 【母题原题4】【2015天津,理18】已知数列满足,且成等差数列.{}n a 212()*,1,2n n a qa q q n N a a +=≠∈==为实数,且1,233445,,a a a a a a(I)求的值和的通项公式;q {}n a (II)设,求数列的前项和.*2221log ,nn n a b n N a -=∈n b n 【答案】(I) ; (II) .1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数1242n n n S -+=-当时,,2(*)n k n N =∈2222nkn k a a ===所以的通项公式为{}n a 1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数(II) 由(I)得,设数列的前项和为,则22121log 2n n n n a nb a --=={}n b n n S012111111232222n n S n -=⨯+⨯+⨯++⨯, 1231111112322222n n S n =⨯+⨯+⨯++⨯, 两式相减得,23111111112212122222222212n n n n n n n n n n S --=+++++-=-=--- 整理得,所以数列的前项和为.1242n n n S -+=-{}n b n 124,*2n n n N -+-∈【名师点睛】本题主要考查等差、等比数列定义与性质,求和公式以及错位相减法求和的问题,通过等差数列定义、等比数列性质,分为奇偶数讨论求通项公式,并用错位相减法基本思想求和.是中档题.n【命题意图】 高考对本部分内容的考查基础知识为主,重点考查求数列的通项公式和数列求和问题.【命题规律】 高考试题对该部分内容考查的主要角度有:其一求数列的通项公式,其二数列求和,其三证明数列成等差数列或成等比数列.【答题模板】解答本类题目,以2017年试题为例,一般考虑如下三步:第一步:求数列 的通项公式:本题从等比数列入手,由于,设公比为,表达出和,利用列方程求出,写出的通项公式;{}n b {}n b 12b =q 2b 3b 2312b b +=q {}n b第二步:求数列 的通项公式:借助第一步的结果,由于数列成等差数列,设公差为,结合,解方程组求出和,写出数列的通项公式.{}n a {}n a d 3411142,11b a a S b =-=1a d {}n a第三步:利用错位相减法求和: 列出数列的前n 项和,两边同乘以4,两式相减后求和.221{}n n a b -n T 【方法总结】1.数列中 与的关系:an ={}n a n a n S ⎩⎨⎧S1,n =1,Sn -Sn -1,n≥2.2. 等差数列(1)等差数列的有关概念①定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为为常数.*1(,n n a a d n N d +-=∈)②等差中项:数列成等差数列的充要条件是,其中叫做的等差中项.,,a A b 2a bA +=A ,a b (2)等差数列的有关公式 ①通项公式:.1(1)n a a n d =+-②前项和公式:.n 11()(1)22n n n a a n n S na d +-=+=(3)等差数列的性质已知数列是等差数列,是其前项和.{}n a n S n ①通项公式的推广:.*()(,)n m a a n m d n m N =+-∈ ②若,则.*(,,,)k l m n k l m n N +=+∈k l m n a a a a +=+③若的公差为,则也是等差数列,公差为.{}n a d {}n a 2d④若 是等差数列,则也是等差数列.{}n b {}n n pa qb + ⑤数列,…构成等差数列.232,,n n n n n S S S S S -- (4). 妙设等差数列中的项若奇数个数成等差数列,可设中间三项为;,,a d a a d -+若偶数个数成等差数列,可设中间两项为,其余各项再依据等差数列的定义进行对称设元.,a d a d -+(5)等差数列的四种判断方法①定义法:为常数⇔是等差数列.*1(,n n a a d n N d +-=∈{}n a ②等差中项法: (n ∈N*)⇔是等差数列.122n n n a a a ++=+{}n a ③通项公式: (为常数)⇔ 是等差数列.n a pn q =+,p q {}n a④前n 项和公式:( 为常数)⇔ 是等差数列.2n S An bn =+A B 、{}n a 3.等比数列(1)等比数列的有关概念 ①定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为.*1(0,)n na q q n N a +=≠∈ ②等比中项如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件.(2)等比数列的有关公式 ①通项公式:.11n n a a q -=②前项和公式: ;n 111,1,(1),111n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩(3)等比数列的性质已知数列是等比数列,是其前n 项和.(m ,n ,p ,q ,r ,k ∈N*){}n a n S ①若,则;2m n p q r +=+=2m n p q r a a a a a == ②数列…仍是等比数列;23,,,,m m k m k m k a a a a +++③数列,…仍是等比数列(此时{an}的公比).232,,n n n n n S S S S S --1q ≠-(4)等比数列的三种判定方法 (1)定义:⇔是等比数列.*1(0,)n na q q n N a +=≠∈{}n a (2)通项公式:均是不为零的常数, ⇔是等比数列.1(n n a cq c q -=、*)n N ∈{}n a(3)等比中项法:⇔是等比数列.2*1212(0,)n n n n n n a a a a a a n N ++++=⋅⋅≠∈{}n a(5)求解等比数列的基本量常用的思想方法①方程的思想:等比数列的通项公式、前n 项和公式中联系着五个量:,已知其中三个量,可以通过解方程(组)求出另外两个量;其中基本量是a1与q ,在解题中根据已知条件建立关于a1与q 的方程或者方程组,是解题的关键.1,,,,n na q n a S②分类讨论思想:在应用等比数列前n 项和公式时,必须分类求和,当时,;当时,;在判断等比数列单调性时,也必须对与分类讨论.1q =1n S na =1q ≠1(1)1n n a q S q-=-1a q 5.数列求和的常用方法(1)公式法:直接利用等差数列、等比数列的前n 项和公式求和 等差数列的前n 项和公式:Sn ==na1+d ; 等比数列的前n 项和公式:Sn =错误!(2)倒序相加法:如果一个数列{an}的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(4)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(5)分组转化求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如an =(-1)nf(n)类型,可采用两项合并求解.例如,.222222S=-+-++-=++++++=10099989721(10099)(9897)(21)5050 n1.【2018天津南开中学模拟】已知数列是首项的等差数列,设.(1)求证:是等比数列;(2)记,求数列的前项和;(3)在(2)的条件下,记,若对任意正整数,不等式恒成立,求整数的最大值.【答案】(1)证明见解析;(2);(3)11.详解:(1)由及,得,所以.因为,所以,即.则,所以数列是首项,公比的等比数列.(2)由(1),得,所以(3)因为,则问题转化为对任意正整数使不等式恒成立.设,则.所以,故的最小值是/.由,得整数可取最大值为11.【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有用定义证明等比数列,对数的运算,裂项相消法求和,恒成立问题求有关参数的取值范围和最值问题,在解题的过程中,注意对公式的正确使用以及对问题的正确理解.2.【2018天津河西区三模】已知数列的前项和为,数列是首项为1,公差为2的等差数列.(1)求数列的通项公式;(2)设数列满足,求数列的前项和.【答案】(1);(2).【解析】分析:(1)利用进行求解;(2)利用类似的方法求出,进而求出,再利用等比数列的求和公式进行求解.相减可得:,又,解得,时,对上式也成立,∴,∴,∴数列的前项和.【名师点睛】利用数列的通项公式和前项和公式的关系求通项时,要注意为分段函数,解题时容易忽视验证“”的通项是否满足的通项.3.【2018天津部分区二模】已知数列的奇数项依次成公比为2的等比数列,偶数项依次成公差为4的等差数列,数列的前项和为,且,.(1)求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2).【解析】分析:(I)设数列的奇数项的公比为,偶数项的公差为.由已知,,可得,为奇数时,,为偶数时,;(II)由(1)知.为偶数时,,为奇数时,.详解:(1)设数列的奇数项的公比为,偶数项的公差为.由已知,得.∵,∴,解得为奇数时,;为偶数时,,∴(2)由(1)知即为偶数时,为奇数时,,.【名师点睛】本题考查数列的性质和综合运用,分类讨论思想,难度较大.解题时要认真审题,仔细解答.4.【2018天津河东区二模】已知等比数列满足条件,,.(1)求数列的通项公式;(2)数列满足,,求的前项和.【答案】(1)(2)【解析】分析:第一问首先利用等比数列的通项公式得到数列的首项和公比所满足的条件,从而求得相关的值,得到该数列的通项公式;第二问利用和与项的关系,得到,,再将时的情况进行验证,得到,,之后应用错位相减法对数列求和即可得结果.详解:(1)设的通项公式为,综上,①②由①-②得到,【名师点睛】该题考查的是有关数列的通项公式与求和的问题,在求解的过程中,注意对等比数列的通项公式的应用,得到题中的数列的首项和公比所满足的条件,从而求得结果;再者就是利用和与项的关系求通项的时候,需要对首项进行验证,在应用错位相减法求和时,需要明确步骤应该怎么写.5.【2018天津河北区二模】已知等差数列{}中,=1,且,,成等比数列.(I)求数列{}的通项公式及前n项和;(II)设,求数列{}的前2n项和.【答案】(Ⅰ),(Ⅱ)【解析】分析:(Ⅰ)设等差数列{}的公差为d,由题意可求得,故可得数列的通项公式和前n项和公式.(Ⅱ)由(Ⅰ)可得,故选用分组求和的方法将数列{}的项分为计数项和偶数项两部分后再求和.详解:(I)设等差数列{}的公差为d,∵,且,,成等比数列,∴,∴当n为偶数时,,当n为奇数时,.∴数列{}的奇数项是以为首项,为公比的等比数列;偶数项是以8为首项,16为公比的等比数列.∴数列{}的前2n项的和.【名师点睛】(1)等差、等比数列的运算中,要注意五个量之间的关系,根据条件得到方程(或方程组),通过解方程(方程组)达到求解的目的.(2)数列求和应从通项入手,若通项符合等差数列或等比数列,则直接用公式求和;若通项不符合等差或等比数列,需要通过对通项变形,转化为等差或等比或可求数列前n项和的数列求解.当数列的通项中含有或的字样时,一般要分为n为奇数和n为偶数两种情况求解.6.【2018天津十二校二模】已知数列的前项和满足:,(为常数,,).(Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值;(Ⅲ)在满足条件(Ⅱ)的情形下,.若数列的前项和为,且对任意满足,求实数的取值范围.【答案】(1);(2);(3).详解:(1)且数列是以为首项,为公比的等比数列(2)由得,因为数列为等比数列,所以,,所以, 解得.【名师点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.7.【2018天津滨海新区七校模拟】已知数列的前项和为,满足 (),数列满足(),且{}n a n n S 21n n S a =-*n N ∈{}n b ()()111n n nb n b n n +-+=+*n N ∈11b =(1)证明数列为等差数列,并求数列和的通项公式;n b n ⎧⎫⎨⎬⎩⎭{}n a {}n b(2)若,求数列的前项和;()()()()122141132log 32log n n n n n c a a -++=-++{}n c n 2n T(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.n n n d a b ={}n d n n D *n N ∈n n D nS a ≤-a【答案】(1), ;(2);(3)12n n a -=2n b n =11343n -+0a ≤【解析】试题分析:(1)两边同除以,得,可求得.用公式,统一成,可求得.(2)由(1),代入得 ,由并项求和可得.(3)由(1)由错位相减法可求得,代入可求.11,2{,1n n n S S n a S n --≥==n a n a 12n n a -=n c ()11112123n n n -⎛⎫=-+ ⎪++⎝⎭2nT 12n n d a n -==n D当时, ,所以. =1n 11121=S a a =-1=1a 当时, , ,2n ≥21n n S a =--1-121n n S a =- 两式相减得,又,所以,12n n a a -=1=1a 12nn a a -= 从而数列为首项,公比的等比数列,{}n a 1=1a =2q 从而数列的通项公式为. {}n a 12n n a -=(2) ()()()41(2123n n c n n -⎛⎫+=⎪ ⎪++⎝⎭()11112123n n n -⎛⎫=-+ ⎪++⎝⎭2123212n n n T c c c c c -=++++=1111111135574143343n n n +--+--=-+++ (3)由(1)得, 12n n d a n -==()221112232122n n n D n n --=⨯+⨯+⨯+-+ ,()()2311212223212122n n n n D n n n --=⨯+⨯+⨯+-+-+因为 ,从而数列为递增数列()()1+121121n nn n d d n n +⎡⎤-=-+----⎣⎦210n =->{}n d 所以当时, 取最小值,于是.=1n n d 1=0d 0a ≤【名师点睛】本题考查知识较多,有递推公式求通项公式,及通项公式与前n 项和关系,裂项求和,并项求和,等差数列求和,错位相减法,数列与不等式交汇等,需要对数列基本知识,基本方法掌握非常好. 8.【2018天津十二模拟一】已知等比数列的前项和为,满足,,数列满足,,且.{}n a n n S 4212a a -=423+2S 3S S ={}n b ()()111n n nb n b n n +-+=+*n N ∈11b = (1)求数列,的通项公式;{}n a {}n b(2)设, 为的前项和,求.()22log 212{ 2nn na n k n n c n k=-+==,n T {}n c n 2n T【答案】(1), ;(2).2n n a ∴=2n b n =21166899221n n nn -+-+⨯+ 【解析】试题分析:(1)由,可推出, ,结合,即可求出数列的通项公式,再将两边同除以得,可推出数列为等差数列,从而可求出的通项公式;(2)由(1)知,利用分组求和,裂项相消法及错位相减法即可求出.423+2S 3S S =432a a =2q =4212a a -={}n a ()()111n n nb n b n n +-+=+()1n n +111n n b b n n +-=+n b n ⎧⎫⎨⎬⎩⎭{}n b ()22log 2,212{2,22nn n n k n n c nn k =-+==2n T(2)由(1)知()()2211log 2,21,2122{{2,2,222nn n n n n k n k n n n n c c nnn k n k -=-=-++=⇒===∴21232n nT c c c c =++++13521111111124622133521212222n n n n -⎛⎫⎡⎤=-+-++-+++++ ⎪⎢⎥-+⎝⎭⎣⎦135212462212222n n n n -⎡⎤=+++++⎢⎥+⎣⎦设, 则, 两式相减得, 整理得.1352124622222n n A -=++++357211246242222n nA +=++++35721213222221422222n n n A -+=++++-211668992n n A -+=-⨯ ∴. 221166899221n n n nT n -+=-+⨯+ 【名师点睛】(1)分组转化法求和的常见类型主要有分段型(如 ),符号型(如 ),周期型 (如 );(2)用错位相减法求和的注意事项:①要善于识别题目类型,特别是等比数列公比为负数的情形;②在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;③在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.,{2,n n n n a n =为奇数为偶数()21nn a n =-πsin3n n a =n S n qS n n S qS - 9.【2018天津十二模拟二】已知正项等比数列,等差数列满足,且是与的等比中项.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2).又,则:,解得或因为中各项均为正数,所以,进而. 故.(2)设设数列的前项和为,数列的前项和为,当为偶数时,, 当为奇数时, , 而 ①,则②,由①-②得:,,因此, 综上:.10.【2018天津部分区期末考】已知为等差数列,且,其前8项和为52, 是各项均为正数的等比数列,且满足, .{}n a 24a ={}n b 124b b a +=36b a = (1)求数列和的通项公式;{}n a {}n b(2)令,数列的前项和为,若对任意正整数,都有成立,求实数的取值范围.22log log n nn n nb ac a b =+{}n c n n T n 2n T n λ-<λ 【答案】(1), ;(2)2n a n =+2n n b =3λ≥ 【解析】试题分析:立,然后根据可得结果.1132312n n ⎛⎫-+< ⎪++⎝⎭试题解析:(1)设等差数列的公差为,{}n a d 由题意得,即,解得,114{82852a d a d +=+=1134{2713a d a d +=+=13{1a d ==所以.()312n a n n =+-=+设各项均为正数的等比数列的公比为,则有,解得,所以.{}n b q 124366{8b b a b a +====12{2b q ==2n n b =(2)由(1)可知 22224422n n n n n c n n n n +++=+=++1122.2n n ⎛⎫=+- ⎪+⎝⎭111111122132411n c n n n n n ⎛++=+⨯-+-++-+- -++⎝.11212n n ⎛⎫-+ ⎪++⎝⎭,因为对任意正整数,都有成立,即对任意正整数恒成立,n 2n T n λ-<113212n n λ⎛⎫>-+ ⎪++⎝⎭n又,所以.故实数的取值范围为.1132312n n ⎛⎫-+<⎪++⎝⎭3λ≥λ[)3,+∞ 11.【2018天津一中期中考】设数列的前项和为,满足, ,且. {}n a n n S 21234n n S na n n +=--*n N ∈13a = (Ⅰ)求、的值;2a 3a (Ⅱ)求数列的通项公式{}n a【答案】(Ⅰ), ; (Ⅱ)见解析.25a =37a =【解析】分析:(Ⅰ)分别令就可以求得, .1,2n n ==25a =37a = (Ⅱ)根据(Ⅰ)猜测,利用数学归纳可证明该猜测.21n a n =+详解:(Ⅰ) , .25a =37a = (Ⅱ)由题意得,13222n n S n a n +=++ 结合①②,由归纳原理知,对任意, .*n N ∈21n a n =+【名师点睛】与自然数有关的问题,可以用数学归纳法,在归纳假设中,我们一般设当时,命题成立,也可以假设时,命题成立,然后再证明, 也成立.n k =()P k 0n n k ≤≤()P n 1n k =+()1P k +12.【2018天津滨海新区模拟】已知数列的首项前项和为,且{}n a 15a =n n S ()*15n n S S n n N +=++∈(I )证明数列是等比数列;{}1n a +(II )令 求函数在点处的导数并比较 与的大小。
数列求通项与求前n项和公式高中数学解题方法含详解
D.
Sn
n(n 2
3)
23.已知数列an 的前 n 项和为 Sn ,且 an 0 ,2Sn an2 an ,著不等式 4Sn 11 1n kan
对任意的 n N * 恒成立,则下列结论正确的为( )
A. an n
B.
Sn
n n 1
2
C. k 的最大值为 23 2
D. k 的最小值为 15
A.2
B.3
C.4
D.5
5.数列an 中, a1 1, an1 an 2n ,则 an ( )
A. n2 n 1
B. n2 1
C. (n 1)2 1
D. 2n
6.已知数列an 的通项公式 an 2n (3n 13) ,则数列的前 n 项和 Sn 取最小值时,n 的值
是( )
A.3
B.4
C.5
D.6
7.已知数列an 的通项公式为 an
n
2 3
n
,则数列 an 中的最大项为(
)
A.
8 9
B. 2 3
C. 64 81
D. 125 243
8.已知数列 {an } 满足
an1
an 2an 1
, a1
1,数列{bn} 满足
b1
1 , bn
bn1
1 an
(n 2)
,则
b8 ( )
A.64
32.已知数列xn 满足 x1
1, x2
2 3
,且
1 xn1
1 xn1
2 xn
n
2 ,则 xn 等于__________.
33.已知数列an 的前 n 项和为 Sn ,且 Sn 2an 1(n N ) ,则 S10 等于___________.
高考数学数列的通项与前n项和测试.doc
高考攻略 黄冈第二轮复习新思维 数学专题五 数列的通项与前n 项和 命题人;董德松 易赏倍的数是上一行中数的个数表中下一行中的数的个一个正整数数表如下,等于的等差数列,则,公差为是首项为已知数列等于的等比数列,那么,公比为是首项为满足:数列整除的正整数之和是整除但不能被以内所有能被在等于项的和则此数列前且满足数列式是项公,则这个数列的一个通,,,,给定数列则中已知数列一、选择题2.72721.3105.765.495.||360}{.6)311(32.)311(32.)311(23.)311(23.311,,,,,}{.51368.1470.1473.1557.73100.410.6.211.29.21,1),(21}{.322.1332.55.132.16151413121110987654321.23.3.6.6.,,6,3}{.130111123121212123232220031221D C B A C C D C B A a a a a a a a a a D C B A D C B A S a N n a a a n n n a D n n n a C n n a B n n a A D C B A a a a a a a a i i n n n n n n n n n n n n n n n n n n n n ∑=---*+++--------=∈=+-+-=-+-=-+=-+=++++++++++++--=-=== 则第9行中的第4个数是 A.132 B.255C.259D.260的通项公式为则数列,记的直角边,直角三角形如图的值为的项和公式的方法,可求列前利用课本中推导等差数设!!!的通项公式为、则,,若、分别满足、数列二、填空题元元~元元~元元~元~介于年该地区农民人均收入元,根据以上数据,收入每年增加的年增长率增多,其他将以每年年内,农民的工资收入年起的,预计该地区自元元,其他收入为收入为其中工资元为年某地区农民人均收入,和其他收入两部分构成农民收入由工资性收入的值为,则项和为前的通项为已知数列等于则中,数列}{),8,,3,2,1(1)8,,3,2,1(7.14)6()5()0()4()5(,221)(.13)!1(433221.12}{}{,21)(,}{}{.1150004800.48004600.46004400.44004200.2008160%652004)13501880(31502003.107646.76.13.),34()1(}{.9254.41.72.52.)(lim ,,56,51}{.81111312215121111n i i i i i i x n n m n m n n m m n n n n n n n n n n n n n a i OA a A A i A OA f f f f f n x f n nb a b a N n m b b b a a a b a D C B A C B A S S S S n n x x D C B A a a a N n a a a a =====++++-+-+==+++++==∈=⋅=+--+-⋅-=+++∈=+=++*++-∞→*++的通项公式成等比数列,求数列使得满足时,若自然数当Ⅱ成等比数列,,,使得中找一项时,请在数列当Ⅰ是等差数列设数列江苏南通市调研三、解答题}{,,,,,,,5)(,,,,2)(}{3)(6}{)·2005.(152153212135335n nt n n t t m m n n a a a a a a n n n N t n n n a a a a a a a a a <<<<<∈===*家电实际花了多少钱?部货款付清后,买这件个月应该付多少钱?全问分期付款的第分期付款的第一个月,元后的第一个月开始算,若交付月利率为元,并加付欠款利息,交付元,以后每月这一天都元,购置当天先付家用电器一件,价格为用分期付款的方式购置求证:的通项公式为设数列;求记的通项公式求数列满足数列已知函数江苏四市连考10150%1501501150.1720,2361}{)()()1()2(}{)1(),1(,1}{,332)()·2005.(16211111≤⋅-=-=∈==+=∑=++*+n n n n n nm m m m n n nn n T b n b b ii T i a a T a N n a f a a a x x x f专题五 数列的通项与前n 项和 (答案)一、1.B 2.C 3.A 4.B 5.A 6.B 7.C 8.C 9.B 10.B 二、⎪⎪⎭⎫ ⎝⎛∈≤≤=+-==*N n n n a n b n a n nn n 81.1423.13)!1(11.122,.11三、.20,20,27520.,)6[]5,0()(624355.2435,027306)('.27306)('),0(27152)().27152(272)2361()32(94)()32(942)31435(34)(34)()()()1()()(3132)1(321}{.32,3213312)1(,332)().(16,3,2,1,23,432236342,42.,3,2,1,3,326,,,,,,.42)5(522,6,2)(,,9,6]23)3(3[3,,23236,2}{)(.15666558877665522112223232224212122534312121111115535535355395322533521≤⋅∴=⋅=⋅>>><<<∴∞+∴<+<+>>--=--=>-----=-⋅+-=⋅+-=++⋅-=++-=-++-+-=-=+=-+=∴=-+=⨯+⨯==∴+==+=+⋅=∴⋅=⋅=-∴-=⋅⋅⋅=⋅====-=-+=≥∴=-=∴====⨯-+=∴=-=+=+-+=+++++∑T b T b T b T b T b T b T b T b T b x g x x x x g x x x g x x x x x g n n n n n n T b ii n n n n a a a a a a a a a a a a a a T i n n a a a a a a a a f a x x x f t n n a n n a t a a a a q a a a a a n d n a a n a a d a a a a a m m a a a d d a a d a n n n n n n n m m nm m n n n n n nn na t t t t tt t t n t n n n n n m n t t t 又上单调递增,上单调递减,在在函数得由则设Ⅱ为等差数列,数列即Ⅰ即又于是成等比数列,则又时,当Ⅱ成等比数列。