九年级数学一模试1

合集下载

2024年贵州省部分学校 九年级 一模考试数学试题

2024年贵州省部分学校 九年级 一模考试数学试题

2024年初中学业水平基础诊断卷(一)(本试卷满分150分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,共36分)1.下列各选项中的两个实数互为倒数的是 ( )A.2024与-2024B.2024与 −12024C.12024与2024D.12024 与 −120242.笛声,是一种清远悠扬的音乐,古人用“晚风拂柳笛声残,夕阳山外山”极其形象地道出了离别的伤感.贵州的玉屏竹笛是我国传统的民族管乐器,以音色清越优美、雕刻精致而著称.如图所示的一截竹竿正适合用来制作横笛,下列说法正确的是 ( )A.主视图与左视图相同B.俯视图与左视图相同C.主视图与俯视图相同D.三种视图都相同3.2023年中秋、国庆双节期间,贵州各大景区相继开启了“人从众”模式,据《贵州日报》报道,9月29日至10月4日,荔波古镇共接待游客11万人次,旅游综合收入1310万元.1310这个数用科学记数法表示正确的是 ( )A.0.131×10⁴B.1.31×10³C.1.31×10⁴D.13.1×10³4.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同.若从中任意摸出1个球,则 ( )A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大5.化简 x xy −x−y xy 结果正确的是 ( ) A.2x−y xy B.−2x−y xy C.−1x D. 1x 6.如图,有两个形状相同、大小不等的“中国梦”图片,依据图中标注的数据,可得x 的值为( ) A.15 B.12 C.10 D.87.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.人与车各几何? 其大意是:每车坐3人,2车空出来;每车坐2人,多出9人无车坐.人数和车数各多少? 设车数为x辆,根据题意,可列方程为 ( )A.3x-2=2x+9B.3(x-2)=2x+9C.x3+2=x2−9 D.3(x-2)=2(x+9)8.如图,A是平面直角坐标系xOy中y轴上一点,其坐标为(0,-5).现以点A为圆心、13为半径画圆,交x轴的负半轴于点B,则点B的坐标为 ( )A.(-6,0)B.(-12,0)C.(-9,0)D.(-5,0)9.已知二次函数y=(x+2)²−1向左平移h个单位长度,再向下平移k个单位长度,可得到二次函数y=(x+3)²−4,则h和k的值分别为 ( )A.1,3B.3,-4C.1,-3D.3,-310.已知x=2是方程. x²+bx−c=0的解,则-4b+2c的值为 ( )A.-8B.8C.-4D.411.将一副直角三角板作如图所示摆放,∠GEF=60°,∠MNP=45°,AB∥CD,则下列结论不正确的是( )A. GE∥MPB.∠EFN=150°C.∠BEF=60°D.∠AEG=∠PMN12.如图,在△ABC中,BC=2,AC=3,AB=4,BD平分∠ABC,AD⊥BD.按下列步骤作图:①以点C为圆心、适当长度为半径画弧,分别交直线AC,BC于点E,F;②分别以点E,F为圆心、大于12EF的长为半径画弧,两弧交于点G,作射线CG;③以点A为圆心、适当长度为半径画弧,交CG于点H,I;④分别以点H,I为圆心、大于12HI的长为半径画弧,两弧交于点J,作直线AJ,交CG于点K;⑤连接DK.则DK 的长是 ( )A. 12B.13C.23D.34二、填空题(本大题共4小题,每小题4分,共16分)13.因式分解:1−4m+4m²=.14.下图是贵州省部分城市在地图中的位置,若贵阳的位置坐标为(1,3),安顺的位置坐标为(0,1),请在图中建立适当的直角坐标系,写出遵义的坐标为 .15.甲、乙两个工程组同时挖掘成渝高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和y (m)与甲组挖掘时间x(天)之间的关系如图所示,则甲组挖掘的总长度比乙组挖掘的总长度多m.16.如图,在矩形ABCD中,AB=1,AD=2,点E在边AD上,点F在边BC上,且AE=CF,,连接CE, DF,则CE+DF的最小值为 .三、解答题(本大题共9小题,共98分)17.(12分)(1)计算:(−1)²×5−(−2)³÷4;(2)已知。

2024年北京东城区九年级初三一模数学试卷和答案

2024年北京东城区九年级初三一模数学试卷和答案

东城区2023—2024学年度第二学期初三年级统一测试(一)数学试卷考生须知1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和教育ID 号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在下列几何体中,俯视图是矩形的几何体是( )A .B .C .D .2.2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A .71.3310⨯B .513.310⨯C .61.3310⨯D .70.1310⨯3.在平面直角坐标系xOy 中,点()0,2A ,()1,0B -,()2,0C 为ABCD 的顶点,则顶点D 的坐标为( )A .()3,2-B .()2,2C .()3,2D .()2,34.若实数a ,b 在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A .a b <B .11a b +<+C .22a b <D .a b>-5.在平面直角坐标系xOy 中,点()1,2P 在反比例函数k y x =(k 是常数,0k ≠)的图象上.下列各点中,在该反比例函数图象上的是()A .()2,0-B .()1,2-C .()1,2--D .()1,2-6.如图,AB 是O 的弦,CD 是O 的直径,CD AB ⊥于点E .在下列结论中,不一定成立的是( )A .AE BE =B .90CBD ∠=︒C .2COB D∠=∠D .COB C ∠=∠7.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球后放回,摇匀后再随机摸出一个小球,两次摸出的小球标号相同的概率为()A .12B .13C .16D .198.2024年1月23日,国内在建规模最大塔式光热项目——甘肃省阿克塞汇东新能源“光热+光伏”试点项目,一万多面定日镜(如图1)全部安装完成.该项目建成后,年发电量将达17亿千瓦时.该项目采用塔式聚光热技术,使用国内首创的五边形巨蜥式定日镜,单块定日镜(如图2)的形状可近似看作正五边形,面积约为248m ,则该正五边形的边长大约是( )(结果保留一位小数,参考数据:tan 360.7︒≈,tan 54 1.4︒≈ 6.5≈ 4.6≈)A .5.2mB .4.8mC .3.7mD .2.6m二、填空题(本题共16分,每小题2分)9x 的取值范围是______.10.因式分解:2218xy x -=______.11.方程323x x =-的解为______.12.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则实数m 的取值范围是______.13.为了解某校初三年级500名学生每周在校的体育锻炼时间(单位:小时),随机抽取了50名学生进行调查,结果如下表所示:锻炼时间x56x ≤<67x ≤<78x ≤<8x ≥学生人数1016195以此估计该校初三年级500名学生一周在校的体育锻炼时间不低于7小时的约有______人.14.在Rt ABC △中,90A ∠=︒,点D 在AC 上,DE BC ⊥于点E ,且DE DA =,连接DB .若20C ∠=︒,则DBE ∠的度数为______°.15.阅读材料:如图,已知直线l 及直线l 外一点P .按如下步骤作图:①在直线l 上任取两点A ,B ,作射线AP ,以点P 为圆心,PA 长为半径画弧,交射线AP 于点C ;②连接BC ,分别以点B ,C 为圆心,大于12BC 的长为半径画弧,两弧分别交于点M ,N ,作直线MN ,交BC 于点Q ;③作直线PQ .回答问题:(1)由步骤②得到的直线MN 是线段BC 的______;(2)若CPQ △与CAB △的面积分别为1S ,2S ,则12:S S ______.16.简单多面体的顶点数(V )、面数(F )、棱数(E )之间存在一定的数量关系,称为欧拉公式.(1)四种简单多面体的顶点数、面数、棱数如下表:名称图形顶点数(V )面数(F )棱数(E )三棱锥446长方体8612五棱柱10715正八面体6812在简单多面体中,V ,F ,E 之间的数量关系是______;(2)数学节期间,老师布置了让同学们自制手工艺品进行展示的任务,小张同学计划做一个如图所示的简单多面体作品.该多面体满足以下两个条件:①每个面的形状是正三角形或正五边形;②每条棱都是正三角形和正五边形的公共边.小张同学需要准备正三角形和正五边形的材料共______个.三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17()02cos30π12-︒+---.18.解不等式组:26516132x x x +<⎧⎪+-⎨-≥⎪⎩.19.已知290x y --=,求代数式226344x y x xy y--+的值.20.如图,四边形ABCD 是菱形.延长BA 到点E ,使得AE AB =,延长DA 到点F ,使得AF AD =,连接BD ,DE ,EF ,FB .(1)求证:四边形BDEF 是矩形;(2)若120ADC ∠=︒,2EF =,求BF 的长.21.每当优美的“东方红”乐曲从北京站的钟楼响起时,会唤起很多人的回忆,也引起了同学们的关注.某数学兴趣小组测量北京站钟楼AB 的高度,同学们发现在钟楼下方有建筑物遮挡,不能直接到达钟楼底部点B 的位置,被遮挡部分的水平距离为BC 的长度.通过对示意图的分析讨论,制定了多种测量方案,其中一种方案的测量工具是皮尺和一根直杆.同学们在某两天的正午时刻测量了钟楼顶端A 的影子D 到点C 的距离,以及同一时刻直杆的高度与影长.设AB 的长为x 米,BC 的长为y米.测量数据(精确到0.1米)如表所示:直杆高度直杆影长CD 的长第一次1.00.615.8第二次 1.00.720.1(1)由第一次测量数据列出关于x ,y 的方程是______,由第二次测量数据列出关于x ,y 的方程是______;(2)该小组通过解上述方程组成的方程组,已经求得10y =,则钟楼的高度约为______米.22.在平面直角坐标系xOy 中,一次函数y kx b =+(k 为常数,0k ≠)的图象由函数13y x =的图象平移得到,且经过点()3,2A ,与x 轴交于点B .(1)求这个一次函数的解析式及点B 的坐标;(2)当3x >-时,对于x 的每一个值,函数y x m =+的值大于一次函数y kx b =+的值,直接写出m 的取值范围.23.某校初三年级两个班要举行韵律操比赛.两个班各选择8名选手,统计了他们的身高(单位:cm ),数据整理如下:a .1班 168 171 172 174 174 176 177 1792班 168 170 171 174 176 176 178 183b .每班8名选手身高的平均数、中位数、众数如下:班级平均数中位数众数1班173.8751741742班174.5m n 根据以上信息,回答下列问题:(1)写出表中m ,n 的值;(2)如果某班选手的身高的方差越小,则认为该班选手的身高比较整齐.据此推断:在1班和2班的选手中,身高比较整齐的是______班(填“1”或“2”);(3)1班的6位首发选手的身高分别为171,172,174,174,176,177.如果2班已经选出5位首发选手,身高分别为171,174,176,176,178,要使得2班6位首发选手的平均身高不低于1班6位首发选手的平均身高,且方差尽可能小,则第六位选手的身高是______cm .24.如图,AB 为O 的直径,点C 在O 上,EAC CAB ∠=∠,直线CD AE ⊥于点D ,交AB 的延长线于点F .(1)求证:直线CD 为O 的切线;(2)当1tan 2F =,4CD =时,求BF 的长.25.小明是一位羽毛球爱好者,在一次单打训练中,小明对“挑球”这种击球方式进行路线分析,球被击出后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系xOy ,击球点P 到球网AB 的水平距离 1.5m OB =.小明在同一击球点练习两次,球均过网,且落在界内.第一次练习时,小明击出的羽毛球的飞行高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()20.2 2.5 2.35y x =--+.第二次练习时,小明击出的羽毛球的飞行高度y (单位:m )与水平距离x (单位:m )的几组数据如下:水平距离x /m01234飞行高度y /m 1.1 1.6 1.92 1.9根据上述信息,回答下列问题:(1)直接写出击球点的高度;(2)求小明第二次练习时,羽毛球的飞行高度y 与水平距离x 满足的函数关系式;(3)设第一次、第二次练习时,羽毛球落地点与球网的距离分别为1d ,2d ,则1d ______2d (填“>”,“<”或“=”).26.在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 是抛物线()210y ax bx a =++>上任意两点,设抛物线的对称轴为直线x t =.(1)若点()2,1在该抛物线上,求t 的值;(2)当0t ≤时,对于22x >,都有12y y <,求1x 的取值范围.27.在Rt ABC △中,90BAC ∠=︒,AB AC =,点D ,E 是BC 边上的点,12DE BC =,连接AD .过点D 作AD 的垂线,过点E 作BC 的垂线,两垂线交于点F .连接AF 交BC 于点G .(1)如图1,当点D 与点B 重合时,直接写出DAF ∠与BAC ∠之间的数量关系;(2)如图2,当点D 与点B 不重合(点D 在点E 的左侧)时,①补全图形;②DAF ∠与BAC ∠在(1)中的数量关系是否仍然成立?若成立,加以证明;若不成立,请说明理由.(3)在(2)的条件下,直接用等式表示线段BD ,DG ,CG 之间的数量关系.28.在平面直角坐标系xOy 中,已知线段PQ 和直线1l ,2l ,线段PQ 关于直线1l ,2l 的“垂点距离”定义如下:过点P 作1PM l ⊥于点M ,过点Q 作2QN l ⊥于点N ,连接MN ,称MN 的长为线段PQ 关于直线1l 和2l 的“垂点距离”,记作d .(1)已知点()2,1P ,()1,2Q ,则线段PQ 关于x 轴和y 轴的“垂点距离”d 为______;(2)如图1,线段PQ 在直线3y x =-+上运动(点P 的横坐标大于点Q 的横坐标),若PQ =段PQ 关于x 轴和y 轴的“垂点距离”d 的最小值为______;(3)如图2,已知点(0,A ,A 的半径为1,直线y x b =+与A 交于P ,Q 两点(点P 的横坐标大于点Q 的横坐标),直接写出线段PQ 关于x 轴和直线y =的“垂点距离”d 的取值范围.。

九年级中考数学一模考试试卷及答案

九年级中考数学一模考试试卷及答案

九年级数学试卷第1页(共10页)九年级数学试卷第2页(共10页)学校________________班级________________姓名_________________密封线内不能答题初中学业水平考试模拟测试九 年 级 数 学考生须知1.本试卷共10页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的三视图,该几何体是(A )三棱柱(B )长方体(C )圆锥(D )圆柱2.2021年我国加大农村义务教育薄弱环节建设力度,提高学生营养改善计划补助标准,约37000000学生受益.将37000000用科学计数法表示应为(A )603710.⨯(B )63710.⨯(C )73710.⨯(D )63710⨯3.实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是(A )0b c -<(B )2b >-(C )0+ac >(D )b c>4.下列多边形中,内角和为720°的是(A )(B )(C )(D )5.下列图形中,既是中心对称图形也是轴对称图形的是(A )平行四边形(B )等腰三角形(C )正五边形(D )矩形6.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕AB 的长是(A )3cm (B )3cm (C)cm (D )4cm7.2022年2月4日晚,举世瞩目的北京第二十四届冬季奥林匹克运动会开幕式在国家体育场隆重举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是(A )正比例函数关系(B )一次函数关系(C )反比例函数关系(D )二次函数关系二、填空题(共16分,每题2分)9.若代数式11x -有意义,则实数x 的取值范围是.10.如图,在△ABC 中,ABAC =,AB 的垂直平分线MN交AC于D 点.若BD 平分ABC ∠,则A ∠=°.11.已知关于x 的一元二次方程22210()x a x a +-+=有两个不相等的实数根,则a 的取值范围是.124小的无理数.高山滑雪速度滑冰冰球单板滑雪冰壶2022.4九年级数学试卷第3页(共10页)九年级英语试卷第4页(共10页)密封线内不能答题13.如图,点A ,B ,C 在⊙O 上,若20∠OCB =°,则∠A 的度数为_________.14.已知点A (1,2),B 在反比例函数()0ky x x=>的图象上,若OA=OB ,则点B 的坐标为_________.15.下表记录了甲、乙、丙三名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙平均数9.359.359.34方差6.66.96.7根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.16.某市为进一步加快文明城市的建设,园林局尝试种植A 、B 两种树种.经过试种后发现,种植A 种树苗a 棵,种下后成活了()棵,种植B 种树苗b 棵,种下后成活了棵.第一阶段两种树苗共种植了40棵,且两种树苗的成活棵树相同,则种植A 种树苗_________棵.第二阶段,该园林局又种植A 种树苗m 棵,B 种树苗n 棵,若,在第一阶段的基础上进行统计,则这两个阶段种植A 种树苗成活棵数_________种植B 种树苗成活棵数(填“>”“<”或“=”).三、解答题(共68分,第17—20题,每题5分,第21—22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()2012cos3022+-⎛⎫︒-π-- ⎪⎝⎭.18.解不等式组:21115≤,x . x x ⎧⎪⎨⎪⎩-+<-19.已知230m m +-=,求代数式2211+m m m m m +⎛⎫+÷ ⎪⎝⎭的值.20.已知:如图,点M 为锐角∠APB 的边PA 上一点.求作:∠AMD ,使得点D 在边PB 上,且∠AMD =2∠P .作法:①以点M 为圆心,MP 长为半径画圆,交PA 于另一点C ,交PB 于点D ;②作射线MD .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点P ,C ,D 都在⊙M 上,∠P 为 CD所对的圆周角,∠CMD 为 CD 所对的圆心角,∴∠P =12∠CMD ()(填推理依据).∴∠AMD =2∠P .九年级数学试卷第5页(共10页)九年级数学试卷第6页(共10页)学校________________班级________________姓名_________________密封线内不能答题21.如图,一个单向隧道的断面,隧道顶是一条抛物线的一部分,经测量,隧道顶的跨度为4米,最高处到地面的距离为4米,两侧墙高均为3米,距左侧墙壁1米和3米时,隧道高度均为3.75米.设距左侧墙壁水平距离为x 米的地点,隧道高度为y 米.请解决以下问题:(1)在下边网格中建立适当的平面直角坐标系,根据题中数据描点,并用平滑的曲线连接;(2)请结合所画图象,写出抛物线的对称轴;(3)今有宽为2.4米的卡车在隧道中间行驶,如果卡车载物后的高度为3.2米,要求卡车从隧道中间通过时,为保证安全,要求卡车载物后最高点到隧道顶面对应的点的距离均不小于0.6米,结合所画图象,试判断该卡车能否通过隧道.22.如图,在□ABCD 中,过点B 作BE ⊥CD 交CD 的延长线于点E ,过点C 作C F//EB交AB 的延长线于点F.(1)求证:四边形BFCE 是矩形;(2)连接AC ,若AB =BE =2,tan ∠FBC =12,求AC 的长.23.如图,一次函数y =kx +4k (k ≠0)的图象与x 轴交于点A ,与y 轴交于点B ,且经过点C (2,m ).(1)当92m =时,求一次函数的解析式并求出点A 的坐标;(2)当x >-1时,对于x 的每一个值,函数y =x 的值大于一次函数y =kx+4k (k ≠0)的值,求k 的取值范围.24.如图,BE 是⊙O 直径,点A 是⊙O 外一点,OA ⊥OB ,AP 切⊙O 于点P ,连接BP交AO 于点C .(1)求证:∠PAO =2∠PBO ;(2)若⊙O 的半径为5,tan ∠PAO 34=,求BP 的长.九年级数学试卷第7页(共10页)九年级英语试卷第8页(共10页)密封线内不能答题25.为庆祝中国共产党建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党100周年知识测试.该校七、八年级各有300名学生参加,从中各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:a.八年级的频数分布直方图如下(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100);b.八年级学生成绩在80≤x<90的这一组是:808182838383.583.58484858686.587888989c.七、八年级学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七年级87.28591八年级85.3m90根据以上信息,回答下列问题:(1)表中m的值为;(2)在随机抽样的学生中,建党知识成绩为84分的学生,在年级抽样学生中排名更靠前,理由是;(3)若成绩85分及以上为“优秀”,请估计八年级达到“优秀”的人数.26.已知二次函数2y x bx c=++(b,c为常数)的图象经过点A(1,0)与点C(0,-3),其顶点为P.(1)求二次函数的解析式及P点坐标;(2)当m≤x≤m+1时,y的取值范围是-4≤y≤2m,求m的值.27.已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC ,BD,BP之间的数量关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.l备用图l图1九年级数学试卷第9页(共10页)九年级数学试卷第10页(共10页)学校________________班级________________姓名_________________密封线内不能答题28.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P ,Q两点(Q 在P ,H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ ·PH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4),半径为1的⊙O 与两坐标轴交于点A ,B ,C ,D .①过点E 作垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点(填“A ”,“B ”,“C ”或“D ”),⊙O 关于直线m 的“特征数”为;②若直线n 的函数表达式为y =3x +4,求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点M (1,4),点F 是坐标平面内一点,以F 为圆心,3为半径作⊙F .若⊙F 与直线l 相离,点N (-1,0)是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是66,直接写出直线l 的函数解析式.图1图2初中学业水平考试模拟测试九年级数学学科参考答案一、 选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.A 、2.C 、3.B 、4.D 、5.D 、6.B 、7.B 、8.D二、 填空题(共16分,每题2分)9.x ≠1 10. 36 11.a <1412.答案不唯一13.70°14.(2,1) 15.甲16.22,>三、解答题(共68分,第17—20题,每题5分,第21—22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:()2012cos30+224+1−⎛⎫︒−π− ⎪⎝⎭−− …………………………………………4分=3…………………………………………5分18.解:21115x x x ⎧⎪⎨⎪⎩−+<−≤②①x 由①得:≤3…………………………………………2分15546x x x +<−−<−由②得:32x >…………………………………………4分 32x ∴不等式组的解集为≤3.<……………………………………… 5分19.解:()()2222221+121+11+1+1m m m m m m m m m m m m m m m m +⎛⎫+÷ ⎪⎝⎭++=⨯+=⨯=2=m m+ …………………………………………3分230m m +−=23m m ∴+=…………………………………………4分 =3 3.∴∴原式代数式的值为 …………………………………………5分20.(1) 补全图形,如图所示 ……………………3分 (2)一条弧所对的圆周角等于它所对的圆心角的一半…………………………………………5分21.解:略…………………………………………6分22.(1)证明:∵四边形ABCD 是平行四边形,∴AB CD ∥∵//CF EB∴四边形BFCE 是平行四边形∵BE CD ⊥∴90E ∠=︒∴四边形BFCE 是矩形…………………………………………3分 (2)解:∵四边形BFCE 是矩形∴90F ∠=︒,CF EB =∵2AB BE ==∴2CF =……………………………………………4分∵1tan 2FBC ∠=ECD FA B∴4BF =∴6AF = ……………………………………………5分在Rt AFC △中,90F ∠=︒,AC == …………………6分23.解:(1)∵92m =∴将点9(2)2C ,代入4y kx k =+,得34k = ……………………………1分∴一次函数表达式为334y x =+,点A 的坐标为(4,0)−. ……………………………3分 (2)∵当1x −>时,对于x 的每一个值,函数y x =的值大于一次函数40y kx k k =+≠()的值 结合函数图象可知,当=1x −时,41kx k +−≤即可,解得13k −≤∴13k −≤………………………………………………5分24.(1)证明: 连接PO∵AP 切⊙O 于点P ∴OP AP ⊥∴90A AOP ∠+∠=︒ ∵OA OB ⊥∴90POE AOP ∠+∠=︒ ∴=A POE ∠∠∵2POE PBO ∠=∠ ∴2PAO PBO∠=∠……………………………………………3分(2)解:过点P 作PM EB ⊥于点M∵3tan 4PAO ∠=∴3tan 4POM ∠=∴设3,4PM k MO k ==∴5OP k =∵⊙O 半径为5 ∴5OB OP ==∴1k =∴3,4PM MO ==∴9BM BO MO =+=∴在Rt PMB △中,=90PMB ∠︒PB == ……………………………………………6分25.解:(1)83……………………………………………1分 (2)八 该学生的成绩大于八年级样本数据的中位数83,在八年级成绩中排名21名;该学生成绩小于七年级样本数据的中位数,在七年级排名在后25名 ………………………………………3分(3)20300=12050⨯(人)答:估计八年级达到“优秀”的人数是120人. ………………………5分 26.解:(1)∵二次函数的2y x bx c =++图象经过点(1,0)A 与点(0.3)C −∴103b c c ++=⎧⎨=−⎩解得23b c =⎧⎨=−⎩∴二次函数的表达式是223y x x =+−…………………………………………2分顶点P 的坐标为14−−(,)…………………………………………3分 (2)∵二次函数的顶点P 的坐标为14−−(,) ∴当1x =−时,y 有最小值是4−∵当1m x m +≤≤时,y 的取值范围是y m -4≤≤2 ∴21m −−≤≤① 当322m −−≤≤时,当x m =时,=2y m 即2232m m m +−=解得,m =∴m =②当312m −<≤-时,当1x m =+时,=2y m即212132m m m+++−=()()解得,12=0,2m m =−(不合题意)综上所述,m =……………………………………………………6分27.(1)①补全图形如图所示,…………………………………………………1分证明:设PD 交BC 于点E ∵ABC △是等边三角形∴60BAC ABC ACB ∠=∠=∠=︒∵将射线PC 绕点P 顺时针旋转60° ∴60DPC ∠=︒ ∵//l AC∴60DBE ACB ∠=∠=︒ ∴60DBE CPE ∠=∠=︒ ∵BED PEC ∠=∠ ∴BDP PCB ∠=∠……………………………………………………3分 ②BC BD BP=+在BC 上取一点Q 使得BQ =BP ,连接PQ ∵60ABC ∠=︒∴PBQ △是等边三角形 ∴PB =PQ ,∠BPQ =60° ∴BPD CPQ ∠=∠ 又∵BDP PCB ∠=∠ ∴PBD PQC △≌△ ∴BD QC =∵BC BQ QC =+∴BC BD BP =+ …………………………………………………5分(2)BC BD BP =− …………………………………………………7分28(1)①D,10 …………………………………………2分 ②∵直线n 的函数表达式为y =3x +4∴E (0,4),F(3−,0)∴tan 3OF FEO OE ∠== ∴30FEO ∠=︒ OM ME ⊥2OM ∴=∵⊙O 的半径为16PM PN ∴⋅=即⊙O 关于直线n 的“特征数”为6. ………………………………5分(2)直线l 的函数解析式为12977y x =−+或5y x =−+. ……………7分。

2024年北京西城区九年级初三一模数学试卷及答案

2024年北京西城区九年级初三一模数学试卷及答案

北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数 学 2024.4考生须知1. 本试卷共7页,共两部分, 28道题。

满分 100分。

考试时间120分钟。

2. 在试卷和草稿纸上准确填写姓名、准考证号、考场号和座位号。

3. 试题答案一律填涂或书写在答题卡上, 在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束, 将本试卷、答题卡和草稿纸一并交回。

第一部分 选择题一、选择题 (共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的展开图,该几何体是 (A) 圆锥 (B)三棱柱 (C)三棱锥 (D)四棱锥2. 2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit)的数据. 将 10000000000用科学记数法表示应为(A )0.1×10¹¹ (B )1×10¹⁰ (C )1×10¹¹ (D) 10×10⁹3.下列图形中,既是中心对称图形也是轴对称图形的是4. 直尺和三角板如图摆放,若∠1=55°,则∠2的大小为 (A)35° (B)55° (C) 135° (D) 145°北京市西城区九年级统一测试试卷 数学2024.4 第1页 (共7页)15.如图,两个边长相等的正六边形的公共边为BD,点A,B,C在同一直线上, 点O₁, O₂分别为两个正六边形的中心. 则tan∠O₂AC的值为.16. 将1, 2, 3, 4, 5, …, 37这37个连续整数不重不漏地填入37个空格中. 要求: 从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第 1 个空格填入 37,则第 2 个空格所填入的数为,第 37 个空格所填入的数为 .37三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:|−3|−+2sin60∘−12.18.解不等式组: 2(+1)<x+5, x+23≥x−12.19. 已知x²−x−4=0,求代数式 (x−2)²+(x−1)(x+3)的值.20. 如图,点E在▱ABCD的对角线DB的延长线上,AE=AD.AF⊥BD于点F,EG∥BC交AF的延长线于点G, 连接DG.(1) 求证: 四边形AEGD是菱形;(2)若AF=BF,tan∠AEF=12,AB=4,求菱形AEGD的面积.21.某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22. 在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(3,5), B(-2,0), 且与y轴交于点 C.(1)求该函数的解析式及点C的坐标;(2)当x<2时, 对于x的每一个值, 函数y=-3x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.北京市西城区九年级统一测试试卷 数学2024.4 第3页 (共7页)24. 如图, AB 为⊙O 的直径, 弦CD⊥AB 于点H, OO 的切线CE 与BA 的延长线交于点E, AF∥CE, AF 与⊙O 的交点为F.(1) 求证: AF=CD;(2) 若⊙O 的半径为6, AH=2OH,求AE 的长.25. 如图,点O 为边长为1的等边三角形ABC 的外心. 线段PQ 经过点O,交边AB 于点P, 交边AC 于点Q. 若 AP =x,AQ =y 1,S APQ :S ABC =y 2,下表给出了x, y ₁, y ₂的一些数据 (近似值精确到0.0001).x 0.50.550.60.650.70.750.80.850.90.951y ₁10.84620.750.68420.63640.60.57140.54840.52940.51350.5y ₂0.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy 中描出了部分点( x ,y ₁,x ,y ₂..请补全表格中数据的对应点,并分别画出y ₁与y ₂关于x 的函数图象;(3)结合函数图象,解决下列问题:①当△APQ 是等腰三角形时, y ₁关于x 的函数图象上的对应点记为(a ,b),请在x轴上标出横坐标为a 的点;C ②当y ₂取最大值时,x 的值为 .北京市西城区九年级统一测试试卷 数学2024.4 第5页 (共7页)5.不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为(A) 14(B) 13(C) 12(D)236. 已知-2<a<-1, 则下列结论正确的是(A) a<1<-a<2 (B) 1<a<-a<2 (C) 1<-a<2<a (D) -a<1<a<27.若关于x 的一元二次方程 lnx²+x−2=0有两个实数根,则实数k 的取值范围是(A )k ≤−18 (B )k >−18且k≠0 (C )k ≥−18且k≠0 (D )k ≥−14且k≠08. 如图, 在Rt△ABC 中, ∠ACB=90°, BC=a, AC=b(其中a<b). CD⊥AB 于点D,点E 在边AB 上, BE=BC. 设CD=h, AD=m, BD=n, 给出下面三个结论:①n²+h²<(m+n)²;②2h²>m²+n²;③AE 的长是关于 x 的方程 x²+2ax−b²=0的一个实数根.上述结论中,所有正确结论的序号是(A)① (B) ①③ (C) ②③ (D) ①②③第二部分 非选择题二、填空题 (共16分,每题2分)9. 若 x−3在实数范围内有意义,则实数x 的取值范围是 .10. 分解因式:x²y-12xy+36y= .11. 方程43x−1=3x−2的解为 .12.在平面直角坐标系xOy 中,若函数 y =kx(k ≠0)的图象经过点(-1,8)和(2,n), 则n 的值为.13. 如图, 在▱ABCD 中, 点E 在边AD 上, BA, CE 的延长线交于点F. 若AF=1, AB=2, 则 AEED =¯.14. 如图, 在⊙O 的内接四边形ABCD 中, 点A 是 ⌢BD 的中点,连接AC, 若∠DAB=130°, 则∠ACB= °.北京市西城区九年级统一测试试卷 数学2024.4 第2页 (共7页)23.某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8, 8.8, 8.9, 9.4, 9.4, 9.4, 9.6, 9.6, 9.6, 9.8, 10, 10, 10, 10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m9.2乙9.59.6n根据以上信息,回答下列问题:(1)写出表中m, n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的 10颗山楂中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为和 ;(3)估计这些山楂共能制作多少串冰糖葫芦.北京市西城区九年级统一测试试卷 数学2024.4 第4页 (共7页)26. 在平面直角坐标系xOy中,点A−2y₁,B2y₂,C m y₃在抛物线y=ax²+bx+3(a⟩0)上.设抛物线的对称轴为直线x=t.(1)若y₁=3,,求t的值;(2) 若当t+1<m<t+2时,都有y₁>y₃>y₂,求t的取值范围.27. 在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点 (不与点 A, B重合), 点 E 在射线 AC 上且满足.AE=AD,,过点D 作直线 BE 的垂线交直线BC于点F, 垂足为点 G, 直线BE交射线AM于点P.(1) 如图1, 若点D在线段AB上, 当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP, AB的数量关系, 并证明.北京市西城区九年级统一测试试卷 数学2024.4第6页 (共7页)28.在平面直角坐标系xOy 中,已知⊙O 的半径为1.对于⊙O 上的点 P 和平面内的直线l:y =ax 给出如下定义:点P 关于直线l 的对称点记为 P¹,,若射线OP 上的点Q 满足 OQ =PP ′,则称点Q 为点P 关于直线l 的“衍生点”.(1)当a=0时,已知⊙O 上两点 PP 2−22,在点Q ₁(1,2), QQ 3(−1,−1),Q 4(−2,−2)中,点P ₁关于直线l 的“衍生点”是 ,点P ₂关于直线l 的“衍生点”是 ;(2) P 为⊙O 上任意一点, 直线y=x+m (m≠0)与x 轴, y 轴的交点分别为点 A,B.若线段AB 上存在点S ,T ,使得点S 是点P 关于直线l 的“衍生点”,点T 不是点P 关于直线l 的“衍生点”,直接写出m 的取值范围;(3) 当-1≤a≤1时,若过原点的直线s 上存在线段 MN,对于线段 MN 上任意一点R,都存在⊙O 上的点P 和直线l ,使得点R 是点P 关于直线l 的“衍生点”. 将线段MN 长度的最大值记为D(s),对于所有的直线s ,直接写出D(s)的最小值.北京市西城区九年级统一测试试卷 数学2024.4 第7页 (共7页)北 京 市 西 城 区 九 年 级 统 一 测 试 试 卷数学答案及评分参考 2024.4一、选择题(共16分,每题2分)题号12345678答案C B D D A A C B二、填空题(共16分,每题2分)9. x≥3 10.y(x−6)² 11. x=-1 12. -413.1214. 25 15.3516. 1, 19三、解答题(共68分, 第17-22题, 每题5分, 第23-26题, 每题6分, 第27-28题,每题7分)17. 解: |−3|−+2sin60∘−12=3−5+2×32−23 4分 =-5 . 5分18.解:原不等式组为2(x+1)<x+5, x+23≥x−12.解不等式①, 得x<3. ·2分 解不等式②, 得x≤7. 4分 ∴ 原不等式组的解集为x<3. 5分19. 解: (x−2)²+(x−1)(x+3)=(x²−4x+4)+(x²+2x−3)=2x²−2x+1.…… 3分∵x²−x−4=0,∴x²−x=4.∴原式=2(x²−x)+1=9. ·5分20. (1) 证明: 如图1.∵ AE=AD, AF⊥BD于点F,∴ ∠EAG=∠DAG, EF=DF.∵ 四边形 ABCD 是平行四边形,北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第1页(共6页)①②∴ AD∥BC.∵ EG∥BC,∴ AD∥EG.∴ ∠AGE=∠DAG.∴ ∠EAG=∠AGE.∴ AE=EG.∴ AD=EG.∴ 四边形AEGD 是平行四边形.又∵ AE=AD,∴四边形AEGD是菱形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2) 解: 在Rt△ABF中, ∠AFB=90°, AF=BF, AB=4,∴ ∠ABF=45° , AF=AB·sin45°=22.在Rt△AEF中,∠AFE=90∘,tan∠AEF=12,AF=22,∴EF=AFtan∠AEF=4 2.∵ 四边形 AEGD 是菱形,∴AG=2AF=42,DE=2EF=8 2.∴S差πAEGD =12AG×DE=12×42×82=32. …5分21.解:设购买x套围棋,y套象棋 (1)假设所购买围棋的套数能是所购买象棋套数的2倍,①则40x+30y=1000,x=2y.② 3分解得y=10011. 4分此时 y不为正整数,不合题意.答:所购买围棋的套数不能是所购买象棋套数的2倍.⋯⋯⋯⋯⋯⋯⋯⋯5分22. 解: (1) ∵ 函数y=kx+b (k≠0) 的图象经过点 A(3,5), B(-2,0),∴3k+b=5,−2k+b=0.解得k=1,b=2.∴该函数的解析式为y=x+2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分点C的坐标为C(0,2).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分(2)n≥10.……………………………………………………………………………5分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第2页 (共6页)23.解:(1)9.4,10;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)①甲;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分②9.3,9.6;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分(3)76009.5×5=160(串).答:估计这些山楂共能制作160串糖葫芦.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分24. (1) 证明: 如图2, 连接OC, OC与AF交于点 G.∵ CE 与⊙O 相切, 切点为C,∴CE⊥OC.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1分∴ ∠OCE=90° .∵ AF∥CE,∴ ∠OGA=∠OCE=90° .∴ OC⊥AF于点 G.∴ AF=2AG.∵ CD⊥AB 于点 H,∴ ∠OHC=90° , CD=2CH .∴ ∠OGA=∠OHC.又∵ ∠AOG=∠COH, OA=OC,∴ △OAG≌△OCH.∴ AG=CH.∴AF=CD.…………………………………………………… 3分(2) 解: ∵ ⊙O的半径为6, AH=2OH,∴ OH=2, AH=4.在Rt△OCH中,∠OHC=90∘,cos∠COH=OHOC =13.在Rt△OCE中,∠OCE=90∘,cos∠COE=13,OC=6,∴OE=OCcos∠COE=18.∴AE=OE-OA=18-6=12.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第3页(共6页)25. 解: (1)0.5; ……………………… 1分(2)3分(3)①见图3; ·4分 ②0.5, 1. …6分26. 解: (1) 抛物线 y =ax²+bx +3与y 轴的交点的坐标为(0,3).∵ 抛物线. y =ax²+bx +3过A(-2,y ₁), y ₁=3,∴ A(-2,3)与(0,3)关于直线x=t 对称.∴t =−2+02=−1. 2分(2) ∵ a>0,∴ 当x≤t 时, y 随x 的增大而减小; 当x≥t 时, y 随x 的增大而增大.A(-2,y ₁), B(2,y ₂), C(m,y ₃).①当t≤-2时,∵ t≤-2<2,|.y₁<y₂,不合题意.②当-2<t<2时, A(-2,y ₁)关于对称轴x=t 的对称点为 A ′(2t +2,y ₁).∵ 当t+1<m<t+2时, 都有 y₁>y₃>y₂,∴t +1≥2,t +2≤2t +2.解得 t≥1.∴ 1≤t<2.③当t≥2时,A(-2,y ₁),B(2,y ₂)关于对称轴x=t 的对称点分别为 A ′(2t +2,y ₁), B ′(2t−2,y ₂).北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第4页(共6页)∵当t+1<m<t+2时, 都有. y₁>y₃>y₂,∴t +1≥2t−2,t +2≤2t +2.解得 0≤t≤3.∴ 2≤t≤3.综上所述,t 的取值范围是1≤t≤3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分27. 解: (1) 如图4.∵在△ABC 中, ∠ABC=∠ACB=45° ,∴ AB=AC, ∠BAC=90° , ∠1+∠2=90°.∵ AM⊥BC 于点 M,∴∠3=∠BAC 2=45∘,BM =CM.∵ AP=AE, ∴∠2=180∘−∠32=180∘−45∘2=67.5∘.∵ DF⊥BE 于点 G,∴ ∠1+∠BDF=90°.∴∠BDF=∠2=67.5°.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分(2)补全图形见图5.CF =2MP +2AB.证明: 如图4, 作 CQ∥AP 交BE 于点 Q.∵ CQ∥AP, BM=CM, AM⊥BC, ∴MP CQ =BM BC =12,∠BCQ =∠AMC =90∘ ∴CQ =2MP,∠5=180°−∠ACB−∠BCQ =45°.∵∠4=∠ABC =45°,∴ ∠4=∠5.北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第5页 (共6页)∵∠DBG=∠ABE,DG⊥BE于点 G,∠BAC=90°,∴ ∠D=∠E.∵AD=AE,AB=AC,∴AD−AB=AE−AC, 即BD=CE.∴△BDF≅△CEQ.:.BF=CQ.∵CF=BF+BC,BC=2AB,∴CF=CQ+2AB=2MP+2AB. ……………… 7分28. 解: (1)Q₂,Q₃; · ·2分(2)−22≤m≤−2或 2≤m≤22; ·5分(3)2−2. 7分北京市西城区九年级统一测试试卷 数学答案及评分参考 2024.4 第6页(共6页)。

新疆多校联考2023届九年级下学期中考一模数学试卷(含答案)

新疆多校联考2023届九年级下学期中考一模数学试卷(含答案)

2023年新疆多校联考中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分第I卷(选择题)一、选择题(本大题共9小题,共45.0分。

在每小题列出的选项中,选出符合题目的一项)1. ―2023的绝对值是( )A. 2023B. ―12023C. ―2023 D. 120232. 下列立体图形中,俯视图与主视图完全相同的是( )A. B. C. D.3.如图,直线a,b被直线c所截,且a//b,∠1=55°,则∠2等于( )A. 55°B. 65°C. 125°D. 135°4. 下列各式正确的是( )A. 5x―5=xB. 2x2+3x2=5x4C. x6÷x3=x2D. (―2xy2)2=4x2y45. 某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A. 562.5元B. 875元C. 550元D. 750元6.“宫商角徵羽”是中国古乐的五个基本音阶(相当于西乐的1,2,3,5,6),是采用“三分损益法”通过数学方法获得.现有一款“一起听古音”的音乐玩具,音乐小球从A处沿轨道进入小洞就可以发出相应的声音,且小球进入每个小洞中可能性大小相同.现有一个音乐小球从A处先后两次进入小洞,先发出“商”音,再发出“羽”音的概率是( )A. 125B. 120C. 110D. 157.如图,将△ABC绕顶点A顺时针旋转60°后得到△AB′C′,且C′为BC的中点,B′C′与AB相交于点D,若BC=6,则B′D=( )A. 5B. 4.5C. 4D. 328. 某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11,12两个月营业额的月平均增长率.设该公司11,12两个月营业额的月平均增长率为x,则可列方程为( )A. 2500(1+x)2=9100B. 2500(1+x)(1+2x)=9100C. 2500+2500(1+x)+2500(1+2x)=9100D. 2500+2500(1+x)+2500(1+x)2=91009. 如图,反比例函数y=k(k≠0,x>0)经过△ABO边AB的中x点C,与边AO交于点D,且OD=2AD,连接OC,若△AOC的,则k=( )面积为78A. 74B. 2C. 94D. 52第II卷(非选择题)二、填空题(本大题共6小题,共30.0分)10. 历经183天,2022年4月16日,太空“出差”三人组顺利凯旋,平安降落在内蒙古东风着陆场.这也意味着,我国将进入空间站工程的建进阶段.中国空间站离地球有400000米远.400000米用科学记数法表示为米.11. 2021年6月17日,中国第7艘载人航天飞船“神州12号”圆满发射成功,激励更多的年轻人投身航天事业.现有甲、乙两名学员要进行招飞前的考核,按照4:3:2:1的比例确定成绩,甲、乙两人成绩(百分制)如表:候选人心理素质身体素质科学头脑应变能力甲86858890乙90828190选择1名学员,最后应选______.12.如图,在△ABC中,AB=AC,∠CAB<90°.按如下步骤作图:BC长为半径作弧,两弧交于①分别以点B,C为圆心,以大于12P2两点;②作直线PQ,交BC于点O;③以点O为圆心,线段OC长为半径作圆,交AC于点D;④连结BD.若∠CAB=50°,则∠CBD的大小为.13. 若m,n是方程x2+x―4=0的两个实数根,则m2+2m+n的值为.14. 如图,从一块半径是2的圆形铁片上剪出一个圆心角为90°的扇形,将剪下来的扇形围成一个圆锥,那么这个圆锥的侧面积为______.15.如图,在矩形ABCD中,AD=26,AB=48,点E是边AB上的一个动点,将△CBE沿CE折叠,得到△CB′E连接AB′,DB′,若△ADB′为等腰三角形,则BE的长为.三、解答题(本大题共8小题,共75.0分。

2024年江苏省扬州市广陵区树人学校中考数学一模试卷(含答案)

2024年江苏省扬州市广陵区树人学校中考数学一模试卷(含答案)

扬州树人学校九年级第一次模拟考试数学试卷 2024.04(总分:150分 时间:120分钟)一、选择题(本大题共8小题,每题3分,合计24分)1.的相反数是( )A .B .C .D .2.下列图形既是轴对称又是中心对称的图形是()3.如图是由6个大小相同的小正方体组成的几何体,它的主视图是( )A .B .C .D .4.若a >b ,则下列说法正确的是( )A .a +b >0B .a -b >0C .ab <0D .a 2b >05.九章算术是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只两,燕每只两,则可列出方程组为( )A .B .C .D . 6.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .方差B .中位数C .众数D .平均数7.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠BED 的正切值等于( )A BC .2D .1202412024-20242024-《》16x y 561656x y x y y x+=⎧⎨+=+⎩561645x y x y y x +=⎧⎨+=+⎩651665x y x y y x +=⎧⎨+=+⎩651654x y x y y x+=⎧⎨+=+⎩1220248.平面直角坐标系中,直线与双曲线相交于A ,B 两点,其中点B 在第三象限.设为双曲线上一点(点M 异于点B ),直线,分别交x 轴于C ,D 两点,则C ,D 两点横坐标的和为( )A .0B .-1C .-1.5D .-2二.填空题(本大题共10小题,每题3分,合计30分)9.某种芯片每个探针单元的面积为,0.00000164用科学记数法可表示为 .10.当x 时,分式有意义.11.已知a ﹣2b =8,则代数式a 2﹣4ab +4b 2的值为 .12.小明用火柴棒按如图所示的规律摆放下列图形,则摆放第n 个图形共需要火柴棒 根.13.如图,在中,,以为直径作半圆,交于点,交于点,则弧的长为 .14.若用半径为12的半圆围成一个圆锥的侧面,则该圆锥的底面半径为 .15.如图,在菱形ABCD中,∠B=60°,E 在CD 上,将△ADE 沿AE 翻折至△AD ′E ,且AD ′刚好过BC 的中点P ,则∠D ′EC = °.16.如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若AB =12,BC =9,则EF 的长是 .17.若实数x ,y 满足关系式,则的最大值为 .第13题图 第15题图 第16题图 第18题图xOy 3=y x k k>0()=y x()1,n -M k k>0()=y xAM BM 20.00000164cm 132x -ABC 6cm,50AB AC BAC ==∠=︒AB BC D AC E DE cm 2236+=x y x 222+x y三、解答题(本大题共10小题,合计96分)19.计算:(1);(2)化简:21.随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了______名学生;(2)将条形统计图补充完整:在扇形统计图中,“”所对应的扇形的圆心角是______度;(3)若某校有2000名学生,试估计最喜欢用“微信”沟通的人数.22.小明和小红各自打算随机选择周日的上午、下午或者晚上去瘦西湖景区游玩.(1)用树状图或者列表法表示出所有等可能结果;(2)求他们两人中至少有一人选择晚上游玩的概率.23.在今年的3月12日第46个植树节期间,某校组织师生开展了植树活动.在活动之前,学校决定购买甲、乙两种树苗.已知用1200元购买甲种树苗的棵数与用900元购买乙种树苗的棵数相同,乙种树苗比甲种树苗每棵少5元.求甲种树苗每棵多少元?24.如图,点A 在∠MON 的边ON 上,AB ⊥OM 于B ,AE =OB ,DE ⊥ON 于E ,AD =AO ,DC ⊥OM 于C .(1)求证:四边形ABCD 是矩形;(2)若DE =3,OE =9,求AD 的长;25.如图,是的直径,点在上,,点在线段的延长线上,且.(1)求证:EF 与相切;1124cos 303-⎛⎫--+︒ ⎪⎝⎭2221-⎛⎫÷- ⎪⎝⎭x x x QQ AB O C E ,O 2CAB EAB ∠=∠F AB AFE ABC ∠=∠O(2)若,求△ABC 的面积.26.如图是由小正方形组成的7×7网格,每个小正方形的顶点叫做格点.的顶点在格点上,仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)作点A 关于BC 的对称点F ;(2)将线段AB 向右平移得到线段DE (A ,B 的对应点分别为D ,E ),DE 与BC 交于点M ,使;(3)在(1)(2)前提下,若线段DE 可以由线段BF 绕点O 顺时针旋转度而得到(B ,F 的对应点分别为D ,E),在图中画出点O .27.如图,平面直角坐标系中,抛物线y =ax 2-3ax -4a (a >0)与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,连接AC 、BC ,抛物线的顶点为D .(1)用a 的代数式表示C 、D 的坐标;(2)当四边形ABDC 的面积21时,求该函数解析式;(3)当△BCD 为直角三角形时,求a 的值.备用图28.如图,∠MON=90°,点A 、B 分别在OM 、ON 上运动(不与点O 重合),BC 是∠ABN 的平分线BC 的反向延长线交∠OAB 的平分线于点D 。

2024届上海市宝山区初三一模数学试题及答案

2024届上海市宝山区初三一模数学试题及答案

图3上海市宝山区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列各组中的四条线段成比例的是().A 2cm ,3cm ,4cm ,5cm ;.B 2cm ,3cm ,4cm ,6cm ;.C 1cm ,2cm ,3cm ,2cm ;.D 3cm ,2cm ,6cm ,3cm .2.已知线段2AB ,点P 是线段AB 的黄金分割点,且AP BP ,则AP 的长是().A 3.50米,AB 与AC .A .50cos 24米.4.是().A 5.).A .D 第四象限.6.如图,在正方形网格中,、、、、M 、N 都是格点,从A 、B 、、四个格点中选取三个构成一个与AMN 相似的三角形,某同学得到两个三角形:①ABC ;②ABD .关于这两个三角形,下列判断正确..的是().A 只有①是;.B 只有②是;.C ①和②都是;.D ①和②都不是.二、填空题(本大题共12题,每题4分,满分48分)7.已知线段2a ,4b ,如果线段c 是a 和b 的比例中项,那么c =.8.比例尺为1:100000的地图上,A 、B 两地的距离为2cm ,那么A 、B 两地的实际距离为km .9.计算:sin 30sin 45cos 45.图22b x a10.二次函数2y ax bx c (0a )图像上部分点的坐标 ,x y 对应值如表1所示,那么该函数图像的对称轴是直线.表111.直径是2的圆,当半径增加x 时,面积的增加值s 与x 之间的函数关系式是.12.在ABC 中,90BAC ,点G 为重心,联结AG 并延长,交BC 于点F ,如果6BC ,那么GF 的长是.13.如图4,已知斜坡AB 的坡顶B 离地面的高度BC 为30m ,如果坡比1:3i ,那么这个斜坡的长度AB14.ABC 中,如果2BC,7AB ,AC 15.2y .16.6BC ,17.轴的“亲密点”的坐标是.18.AEC 与矩形的重叠部分是三角形ACF ,联结DE .如果6AB ,2BF ,那么BDE 的正切值是.x01234 y313图4三、解答题:(本大题共7题,满分78分)19.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图6,在ABC 中,90C ,4sin 5B ,10AB ,点D 是AB 边上一点,且BC BD .(1)求BD 的长;(2)求ACD 的余切值.20.如图7E .(1)(2)21.(1)求该二次函数的表达式;(2)如果点 4,E m 在该函数图像上,求ABE 的面积.图922.(本题满分10分)综合实践活动中,某小组利用木板和铅锤自制了一个简易测高仪测量塔高.测高仪ABCD 为矩形,CD30cm ,顶点D 处挂了一个铅锤H .图8是测量塔高的示意图,测高仪上的点C 、D 与塔顶G 在一条直线上,铅垂线DH 交BC 于点M .经测量,点D 距地面1.9m ,到塔EG 的距离13DF m ,20CM cm .求塔EG 的高度.(结果精确到1m )23.如图9AC 于点P 、Q .(1)(2)图1024.(本题满分12分,第(1)小题满分4分,第(2)题满分4分,第(3)题满分4分)如图10,在平面直角坐标系xOy 中,将抛物线212y x 平移,使平移后的抛物线仍经过原点O ,新抛物线的顶点为M (点M 在第四象限),对称轴与抛物线212y x 交于点N ,且4MN .(1)求平移后抛物线的表达式;(2)如果点N 平移后的对应点是点P ,判断以点O 、M 、N 、P 为顶点的四边形的形状,并说明理由;(3)抛物线212y x上的点A 平移后的对应点是点B ,BC MN ,垂足为点C ,如果ABC 是等腰三角形,求点A 的坐标.图1125.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知ABC 中,1AB AC ,D 是边AC 上一点,且BD AD ,过点C 作//CE AB ,并截取CE AD ,射线AE 与BD 的延长线交于点F .(1)求证:2AF DF BF ;(2)设AD x ,DF y ,求y 与x 的函数关系式;(3)如果ADF 是直角三角形,求DF 的长.2023学年第一学期期末考试九年级数学试卷评分参考一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.A ;4.D ;5.C ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)7.22;8.2;9.0;10.x =2;11.S =πx 2+2πx ;12.1;13.1030;14.37;15. ;16.2.417.),085( ;18.31或33.三、解答题:(本大题共7题,满分78分)19.解:(1)∵在Rt △ABC 中,sinB =ABAC ,又∵sinB =54,AB =10,∴AC =8,…………………………………………………………………………2分∵ C =90 ,∴,222AB BC AC ∴BC =6,…………………………………………………………………………2分∵BC =BD ,∴BD =6.…………………………………………………………………………1分(2)过点D 作DE ⊥AC ,垂足为点E .………………………………………………………1分又由 C =90 ,可得DE ∥BC ,∴,ABAD BC DE ∵BC =6,AD =4,AB =10,∴DE =2.4,………………………………………………………………………1分同理可得EC =4.8,………………………………………………………………1分∵在Rt △DEC 中,cot ACD =DE EC ,…………………………………………1分∴cot ACD = …………………………………………………………………1分20.解:(1)∵BD 平分∠ABC ,∴ 1= 2,∵DE ∥BC ,∴ 2= 3,∴ 1= 3,………………………………………………………………………1分∴DE =BE ,………………………………………………………………………1分设DE =BE =x ,则AE =5-x ,……………………………………………………1分∵DE ∥BC ,∴AB AE BC DE ,……………………………………………………1分∴554x x ………………………………………………………………………1分解得920 x ,所以,.920 DE …………………………………………………1分(2)BD =a b ,……………………………………………………………………2分BF =.149149a b …………………………………………………………………2分21.解:(1)由图像经过点B (0,3),可知c =3,………………………………………2分再由图像经过点A (1,0),可得0312b ,解得b =-4,……………………2分所以,该二次函数的表达式为.342x x y …………………………………1分(2)把x =4代入342x x y ,得y =3,……………………………………1分由B (0,3)、E (4,3)可知BE ∥x 轴,……………………………………………1分于是BE =4,BE 边上的高为3,…………………………………………………2分∴.63)04(21ABE S …………………………………………………1分22.解:在Rt △CDM 中,cot ∠CDM =CMCD ,……………………………………………1分又∵CD =30cm ,CM =20cm ,………………………………………………………1分∴cot ∠CDM =23,……………………………………………………………………1分∵DF ⊥EG ,∴∠DGF+∠GDF =90°,……………………………………………………………1分又由题意可得∠CDM+∠GDF =90°,∴∠CDM =∠DGF ,…………………………………………………………………1分在Rt △DGF 中,cot ∠DGF =DF GF ,…………………………………………………1分又∵DF =13m ,∴GF =m 239,………………………………………………………………………1分∴EG =GF+EF =m 219.1239 ,……………………………………………………2分答:塔EG 的高度约为21m .…………………………………………………………1分23.证明:(1)∵在正方形ABCD 中,∴CD =BC ,AD =CD ,∠ADE =∠DCF =90°,…………………………………1分又∵CE =BF ,∴CD -CE =BC -BF ,即DE =CF ,…………………………………………………………………………1分∴△ADE ≌△CDF ,∴∠1=∠2,…………………………………………………………………………1分∵∠ADE =90°∴∠1+∠3=90°,∴∠2+∠3=90°,……………………………………………………………………1分∵∠APQ =∠2+∠3,∴∠APQ =90°,………………………………………………………………………1分∴AE ⊥DF.(2)过点E 作EG ⊥AC ,垂足为点G .………………………………………………1分∵∠APQ =90°,∴∠APQ =∠AGE ,又∵∠PAQ =∠EAG ,∴△APQ ∽△AEG ,……………………………………………………………………1分∴EGAEPQ AQ,…………………………………………………………………………1分∵在正方形ABCD 中,∴ 45214 DCF ,在Rt △CDM 中,cot ∠4=22 CE EG ,∴CE EG 22 ,………………………………………………………………………1分∵CE =BF ,∴BF EG 22 ,………………………………………………………………………1分∵△ADE ≌△CDF ,∴AE =DF ,…………………………………………………………………………1分∴BF DF PQAQ 22,∴DF PQ BF AQ2.……………………………………………………………1分24.解:(1),,设)0)(21(2 t t t N )421(2t t M ,则,……………………………………………………1分于是平移后抛物线的表达式是421)(2122t t x y ,………………………………1分由平移后抛物线经过原点O (0,0),可得t =2(负值不合题意舍去),………………1分所以,平移后抛物线的表达式是2)2(212 x y .……………………………………1分(2)四边形OMPN 是正方形.根据题意可得O (0,0),M (2,-2),N (2,2),P (4,0),…………………………1分记MN 与OP 交于点G ,则G (2,0),∴OG =GP =2,MG =NP =2,MN =OP =4,22 NP NO ,∴四边形OMPN 是平行四边形,……………………………………………………1分∵MN =OP =4,∴四边形OMPN 是矩形,……………………………………………………………1分∵22 NP NO ,∴四边形OMPN 是正方形.……………………………………………………………1分(3),,设)21(2a a A ,,则)2212(2 a a B )2212(2a C ,,222,2)2(22a BC a AC AB ,可得,……………………………………1分;,(舍去①)84(),0,4,04,2)2(22,11222A a a a a a AC AB …………1分;,或,②)422()422(,22,22,22,112 A A a a a BC AB ………………1分;,,,③)22(2,2)2(222A a a a BC AC ……………………………………1分所以,点A 的坐标是)2,2()422()422()8,4(、,、,、 .25.(1)证明:∵CE ∥AB ,∴∠1=∠2,………………………………………………………………………………1分又∵AB =AC ,CE =AD ,∴△ABD ≌△AEC ,………………………………………………………………………1分∴∠3=∠4,又∵∠AFB =∠AFD ,∴△ABF ∽△ADF ,………………………………………………………………………1分∴AFBF DF AF ,∴BF DF AF 2.…………………………………………………………………………1分解:(2)过点D 作DG ∥AB ,交AE 于点G.………………………………………………1分又∵CE ∥AB ,∴DG ∥CE ,∴AC AD CE DG ,……………………………………………………………………………1分由AD =x ,则CE =x ,CD =1-x ,∴2x DG ,………………………………………………………………………………1分∵DG ∥AB ,∴BF DF AB DG ,……………………………………………………………………………1分∴y x y x 12,∴231x x y .……………………………………………………………………………1分(3)①∠DAF =ABD ≠90°,………………………………………………………………1分②如果∠AFD =90°,由∠1=∠3=∠4,∠1+∠3+∠4=90°,可得∠3=∠4=30°,……………………1分设DF =m ,则AD =BD =2m ,在Rt △ABF 中,cos ∠3=ABBF ,∴2312 m m ,63 m .………………………………………………………………1分③如果∠ADF =90°,由∠1=∠3=∠4,∠1+∠3=90°,可得∠3=∠4=45°,……………………………1分设DF =m ,AD =BD =m ,在Rt △ABF 中,cos ∠3=BFAB ,∴221 m m ,22 m .………………………………………………………………1分所以,当△ADF 是直角三角形时,DF 的长为63或22.。

2024年辽宁省大连市部分学校中考数学一模试卷+答案解析

2024年辽宁省大连市部分学校中考数学一模试卷+答案解析

2024年辽宁省大连市部分学校中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.甲袋大米的和乙袋大米的相比较( )A. 甲袋大米的重B. 乙袋大米的重C. 一样重D. 无法比较2.下列手机中的图标是轴对称图形的是( )A. B.C. D.3.如图是正方体的展开图,把展开图折叠成正方体后,与“学”字一面相对面上的字是( )A. 核B. 心C. 素D. 养4.下列运算正确的是( )A. B.C. D.5.一元二次方程根的情况是( )A. 有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根6.解方程去分母,两边同乘后的式子为( )A. B.C. D.7.一次函数当,时,它的图象大致为( )A. B. C. D.8.《四元玉鉴》是我国古代的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的总售价为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设6210文购买椽的数量为x株,则符合题意的方程是( )A. B. C. D.9.如图,线段DE交线段BC于点E,,若,,则等于( )A.B.C.D.10.如图,在中,分别以A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点D,E,连结DE,交BC于点若,的周长为10,则BC的长为( )A. 6B. 7C. 8D. 9二、填空题:本题共5小题,每小题3分,共15分。

11.计算的结果等于______.12.学习电学知识后,小婷同学用四个开关A、B、C、D,一个电源和一个灯泡设计了一个电路图,现任意闭合其中两个开关,则小灯泡发光的概率等于______.13.如图,已知点A的坐标为,点B在x轴上,把沿x轴向右平移到,若四边形AEFB 的面积为6,则点E的坐标为______.14.如图,在平面直角坐标系中,点A在第一象限,轴于点B,反比例函数的图象与线段AB交于点C,且,则的面积为______.15.如图,在四边形ABCD中,,,,,现给出以下结论:①可能是等腰三角形,②可能是等腰三角形,③可能是直角三角形,④线段AC,BD不可能互相垂直,其中正确的是______写出所有正确结论的序号三、解答题:本题共8小题,共75分。

吉林省长春市2024届九年级下学期中考一模数学试卷(含解析)

吉林省长春市2024届九年级下学期中考一模数学试卷(含解析)

数学本试卷包括三道大题,共24道小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(本大题共8小题,每小题3分,共24分)1. 如图,数轴上表示数的点所在的线段是()A. B. C. D.答案:A解析:由数轴可知,数轴上表示数的点所在的线段是,故选:A.2. 三角形结构在生产实践中有着广泛的应用,如图所示的斜拉索桥结构稳固,其蕴含的数学道理是()A. 两点之间,线段最短B. 三角形的稳定性C. 三角形的任意两边之和大于第三边D. 三角形的内角和等于答案:B解析:如图所示的斜拉索桥结构稳固,其蕴含的数学道理是三角形的稳定性故选:B.3. 下图是几个小正方体组成的几何体的俯视图,小正方形内的数字是该位置小正方体的个数,则这个几何体的主视图是()A B. C. D.答案:A解析:由几何体的俯视图,可知从正面看这个几何体,左边有2个小正方形,右边有1个小正方形.故选A . 4. 已知,下列不等式一定成立的是( )A. B.C.D.答案:C 解析:A .,不一定成立,B .,则,不成立,C .,一定成立,D .即,不成立,故选:C .5. 如图,一束太阳光线平行照射在正六边形上.若,则的大小为( )A. B. C. D.答案:D解析:如图所示,作,则,∵正六边形的每个内角为∴则∵太阳光线是平行的,∴依题意,∴故选:D.6. 如图是一把遮阳伞的示意图,遮阳伞立柱垂直于,垂足为点D,米.当遮阳伞撑开至如图所示的位置时,,则此时伞内半径的长度为()A. 米B. 米C. 米D. 米答案:B解析:∵,∴米故选:B.7. 综合实践课上,数学兴趣小组给出了利用无刻度的直尺和圆规作等腰三角形的三种方案:①已知底边长和腰长;②已知底边长和一个底角;③已知底边长和底边上的高.图1、图2、图3分别对应以上三种方案中的一种,根据尺规作图痕迹,其对应顺序正确的是()A. ①②③B. ③①②C. ②③①D. ②①③答案:D解析:由作图方法可知,图2对应的是已知底边长和腰长;图1对应的是已知底边长和一个底角;图3对应的是已知底边长和底边上的高,故选:D.8. 在温度不变的条件下,通过多次对汽缸顶部的活塞加压,加压后气体对汽缸壁产生的压强与汽缸内气体的体积成反比例,p关于V的函数图象如图所示.若压强由增压至,则气缸内气体体积的变化情况是()A. 减小,减小了B. 增大,增大了C. 减小,减小了D. 增大,增大了答案:A解析:设,把代入中得:,解得,∴,当时,,当时,,∴若压强由增压至,则气缸内气体体积的变化情况是减少了,故选:A.二、填空题(本大题共6小题,每小题3分,共18分)9. 计算:= __________.答案:解析:原式= .10. 若抛物线(a为常数)与x轴有且只有一个公共点,则a的值为____________.答案:0解析:∵抛物线(a为常数)与x轴有且只有一个公共点,∴,∴.故答案为:011. 已知两组数据,甲组:、、、、,乙组:、、、、.若甲组数据的方差记为,乙组数据的方差记为,则____________.(填“>”、“<”或“=”)答案:<解析:甲组:、、、、,平均数为乙组:、、、、.平均数为∴.故答案为:<.12. 如图为风力发电机的示意图,叶片外端A到旋转中心O的距离为20米,叶片当前在塔筒左侧且与塔筒夹角为.当叶片从当前位置顺时针旋转到点A与塔筒底端B距离最大时,叶片扫过的面积至少为____________平方米.(结果保留)答案:解析:当A、O、B三点共线时,点A与塔筒底端B距离最大,∴叶片扫过的扇形圆心角度数最少为,∴叶片扫过的面积至少为平方米,故答案为:.13. 如图①,将三个边长为1的正方形并排放在直线l上,两侧正方形不动,把中间的正方形抽出并重新摆放,形成一个轴对称图形,如图②,则中间正方形的中心O到直线l的距离为____________.答案:解析:如图所示,连接,过点O作于E,交于D,∵图②是一个轴对称图形,∴一定共线,且,在中,,∴,由正方形的性质可得,∴,又∵(平行线间间距相等),∴,∴中间正方形的中心O到直线l的距离为,故答案为:.14. 如图,在矩形中,,.点E、F分别在边、上(点E不与A、D重合)且,于点P,交于点Q,于点M,交于点N.给出下面四个结论:①四边形是矩形;②平分四边形的周长;③;④当时,四边形的面积为2.上述结论中,所有正确结论的序号是____________.答案:①②④解析:,四边形是矩形,故①正确;矩形中,又,四边形是平行四边形,,如图,设分别交于点,,,又,四边形是矩形,平分四边形的周长故②正确;四边形是矩形,,同理可证,故③错误;在中,,,,,由题意可得,,,,,四边形的面积为.故④正确,故答案为:①②④三、解答题(本大题共10小题,共78分)15. 先化简,再求值:,其中.答案:,解析:,当时,原式.16. 小淇参加一个抽奖活动,活动规则是:抽奖者手里预先持有一张标有数字7的卡片,然后从分别标有数字6,7,8的三张卡片中随机抽取一张(卡片除数字不同外,其余均相同),记录数字后放回,再从中随机抽取一张,并记录数字,若两次抽取的数字与手中持有的数字能组成3个连续整数或者是3个相同的数字,则为中奖.用画树状图(或列表)的方法求小淇参加这个抽奖活动中奖的概率.答案:解析:画树状图如下:由树状图可知一共有9种等可能性的结果数,其中小淇中奖的结果数有3种,∴小淇参加这个抽奖活动中奖的概率为.17. 2024年10月1日,中华人民共和国将迎来75周岁的生日.为喜迎国庆,某学校举办了一场历史知识竞赛,竞赛共20道题,评分规则为:对于每一道题,答对得5分,答错或不答扣2分,其中九年级代表队最终得分为86分,求九年级代表队答对了多少道题?答案:九年级代表队答对了18道题解析:设九年级代表队答对了x到题,则答错或者不答了道题,由题意得,,解得,答:九年级代表队答对了18道题.18. 如图,在中,,是的角平分线,作交于点E,作交于点F.(1)求证:四边形是菱形;(2)若,则的值为 .答案:(1)见解析(2)【小问1详解】证明:,,,.四边形是平行四边形.,平分,.四边形是菱形.小问2详解】∵四边形是菱形,∴∴∵∴又∵,∴19. 图1、图2、图3均是的正方形网格.每个小正方形的顶点称为格点,点、、、均在格点上,点在上且不是格点.只用无刻度的直尺,分别在给定的网格中按下列要求作图,保留作图痕迹.(1)在图①中,画出线段的中点;(2)在图②中,在线段上确定一点,连接,使;(3)在图③中,在线段上确定一点,连接,使.答案:(1)见解析(2)见解析(3)见解析【小问1详解】如图所示,点即为所求;【小问2详解】如图所示,点即为所求;【小问3详解】如图所示,点即为所求;20. 加强青少年体育锻炼,促进青少年健康成长,是关系国家和民族未来的大事.某校八年级开展了两次体育综合水平测试,每次测试满分均为20分,从中随机抽取10名学生的成绩,整理如下:学生每周增加锻炼时间计划表两次平均成绩(分)每周增加时间(小时)42根据以上信息,回答下列问题:(1)图中圈出了甲、乙两名学生成绩对应的点,在甲、乙两名学生中,第一次成绩较高的学生是 ,两次平均成绩较低的学生是 ;(2)抽取的10名学生第二次成绩的中位数m所在的范围是 ;A.B.C.D.(3)在抽取的10名学生中,第二次成绩高于第一次成绩的学生有 人;(4)请根据学生每周增加锻炼时间计划表,利用样本估计该校八年级1000名学生每周共需增加多少小时锻炼时间?答案:(1)乙;乙(2)C(3)7 (4)估计该校八年级1000名学生每周共需增加2600小时锻炼时间【小问1详解】由统计图可知,第一次成绩较高的学生是乙;由统计图可知,甲同学的两次成绩和大于22分,则平均成绩大于11分,而乙同学的两次成绩和小于20分,则平均成绩小于10分,∴两次平均成绩较低的学生是乙故答案为:乙;乙;【小问2详解】把这10名学生第二次的成绩从低到高排列,处在第5和第6的成绩都在14分到16分之间,∴中位数在C租,故答案为:C.【小问3详解】由统计图可知,在抽取的10名学生中,第二次成绩高于第一次成绩的学生有7人,故答案为:7;【小问4详解】小时,∴估计该校八年级1000名学生每周共需增加2600小时锻炼时间.21. 甲、乙两个弹簧,在一定的弹性限度内,两个弹簧挂重物后可达到的最大长度均为a厘米,甲弹簧原长3厘米,每挂质量为1千克的重物弹簧伸长1厘米.两个弹簧各自的长度y(厘米)与所挂重物质量x(千克)之间的函数图象如图所示.(1) ;(2)求乙弹簧的长度y与x之间的函数关系式,并写出自变量x的取值范围;(3)在弹性限度内,把两个质量相同的重物分别挂在甲、乙两个弹簧上,发现弹簧的长度恰好相同.若把这两个重物同时挂在乙弹簧上,求此时乙弹簧的长度.答案:(1)(2)(3)厘米【小问1详解】∵甲弹簧原长3厘米,每挂质量为1千克的重物弹簧伸长1厘米.当时,,故答案为:.【小问2详解】设所求函数关系式为.将点代入,得解得所以,与之间的函数关系式为【小问3详解】根据题意,得,解得.因为(千克),所以,当时,.答:此时乙弹簧的长度为厘米.22. 【问题呈现】数学兴趣小组遇到这样一个问题:如图①,是的半径,.点P在上,将点P沿的方向平移到点Q,使.当点P在上运动一周时,试探究点Q的运动路径.【问题解决】经过讨论,小组同学想利用平行四边形的知识解决该问题:如图②,在线段上截取,连结、,由平行四边形的性质可推出点Q的运动路径是以点B为圆心、3为半径的圆.下面是部分证明过程:证明:在线段上截取,连接、.1°当点P在直线外时,证明过程缺失2°当点P在直线上时,易知.综上,点Q的运动路径是以点B为圆心、3为半径的圆.请你补全证明中缺失的过程.【结论应用】在上述问题的条件下,记点M是线段的中点,如图②.若点P在上运动一周,则点M的运动路径长为 .【拓展提升】如图③,在矩形中,,.点P是平面内一点,,将点P沿的方向平移到点Q,使.点M是线段上的任意一点,连结.设线段长度的最大值为a,最小值为b,则 .答案:问题解决:见解析;结论应用:;拓展提升:解析:问题解决:证明:线段上截取,连接、.当点P在直线外时,由平移性质可得,∵,∴四边形是平行四边形,∴,∴点Q的运动路径是以点B为圆心、3为半径的圆.结论应用:如图所示,在上截取,同理可证明点M的运动路径是以点N为圆心、3为半径的圆,∴点P在上运动一周,则点M的运动路径长为;拓展提升:如图所示,在上截取,连接,同理可证明,∴点M的运动轨迹是以点N为圆心,1为半径的圆,∵,∴当点N固定时,当点M运动到上时,有最小值,最小值为,∴在整个运动过程中当最小时,且当点M运动到上时,有最小值,同理在整个运动过程中当最大时,且当点M运动到延长线上时,有最大值,∵,∴,∵四边形是矩形,∴,,,在中,,∴,∴,∴.23. 如图①,是边长为等边三角形.动点从点出发,沿折线向终点运动.当点不与的顶点重合时,以为边作等边,使点和点在的同侧,再作.(1)当点在边上运动时,若,则的值为 ;(2)如图②,当点在边上运动时,求证:;(3)当的周长最小时,求的长;(4)当点在边上运动时,设线段与线段交于点.在不添加辅助线的情况下,图中始终与相似的三角形有 个,并直接写出与相似比为时线段的长.答案:(1)(2)见解析(3)当或时,的周长最小(4);或【小问1详解】∵是边长为的等边三角形,是等边三角形∴∴∴又∴过点作于点,则之间的距离为的长∴【小问2详解】证明:和均为等边三角形,,,,,,,【小问3详解】①当点在边上时,的周长当时周长最小,最小值为,此时;②当点在边上时,同理可得的周长当时的周长最小,最小值为,此时综上,当或时,的周长最小,最小值均为【小问4详解】∵和均为等边三角形,∴∴∴由(2)可得∴∴又∵∴∴图中始终与相似的三角形有个,∵,当,且时,当,且时,设,则∵∴,过点作于点,如图所示∴,则在中,试题解得:(负值舍去)∴综上所述,或24. 在平面直角坐标系中,点和点都在抛物线上,点在抛物线对称轴的右侧,且点关于点的对称点恰好落在轴上,设点的横坐标为.(1)当时,求点的纵坐标;(2)若点的纵坐标为,求点的坐标;(3)当点不在轴上时,过点作轴于点.①当点在轴上方,且抛物线在内部(包括边界)的最高点和最低点的纵坐标之差为时,求点的坐标;②当点在抛物线对称轴右侧时,直线交直线于点,点是点关于轴的对称点.若的周长是周长的倍,直接写出的值.答案:(1)6 (2)或(3)①或②或【小问1详解】当时,点的纵坐标为,点的纵坐标为;【小问2详解】若点的纵坐标为,则点的纵坐标为,令,得解得:∴或【小问3详解】①设点的横坐标为,情形一,如图所示,∴,解得(舍去).此时点的坐标为;情形二:如图所示,则为最低点,为最低点,∴,即,解得,(舍).此时点的坐标为;综上,点的坐标为或②如图所示,当在轴的上方时,∵∴又∵,∴,∴∴∵的周长是周长的倍,∴,依题意,,∴∴∵,∴∴又∵∴解得:(舍去)或当点在轴下方时,如图所示,同理可得,则又∵∴解得:(舍去)或综上所述,或。

2023年福建省福州一中中考数学一模试卷 (1)

2023年福建省福州一中中考数学一模试卷 (1)

2023年福建省福州一中中考数学一模试卷一、选择题;本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在下列简笔画图案中,是轴对称图形的为()A.B.C.D.2.(5分)关于x的一元二次方程kx2﹣2kx+2=0有两个相等的实数根,则k的值是()A.0或2B.2C.0或﹣2D.﹣23.(5分)下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查B.某种彩票中奖的概率是,则购买10张这种彩票一定会中奖C.为了了解一批洗衣粉的质量情况,从仓库中随机抽取100袋洗衣粉进行检验,这个问题中的样本是100D.甲.乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s甲2=3.2,s乙2=1,则乙的射击成绩较稳定4.(5分)一个长方形在平面直角坐标系中三个顶点的坐标为(﹣1,﹣1),(﹣1,2),(3,﹣1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)5.(5分)如图,点A,B,C均在⊙O上,且∠BOC=90°,若∠ACO的度数为m°,∠ABO的度数为n°,则m﹣n的值是()A.30B.45C.50D.606.(5分)已知二次函数y=2(x﹣3)2﹣2,下列说法:①其图象开口向上;②顶点坐标为(3,﹣2);③其图象与y轴的交点坐标为(0,﹣2);④当x≤3时,y随x的增大而减小,其中正确的有()A.1个B.2个C.3个D.4个7.(5分)规定[x]表示不大于x的最大整数,例如[2.3]=2,[3]=3,[﹣2.5]=﹣3.那么函数y=[x]的图象为()A.B.C.D.8.(5分)如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,若BE:EC=1:3,则△DOE与△COA的周长之比为()A.B.C.D.9.(5分)某校园有一块正方形的空地,按如图所示划分区域种花,已知中间互相垂直的两条小路的宽分别为1m,2m,且四个种花区域的面积相同,均为10m2.设原正方形空地的边长为xm,则下列方程正确的是()A.x2﹣3x﹣40=0B.x2﹣3x﹣38=0C.x2+3x﹣38=0D.x2+3x﹣40=0 10.(5分)已知抛物线y=ax2+bx+c(a≠0)如图所示,那么a、b、c的取值范围是()A.a<0、b>0、c>0B.a<0、b<0、c>0C.a<0、b>0、c<0D.a<0、b<0、c<0二、填空题;本题共6小题,每小题5分,共30分11.(5分)在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是.12.(5分)若抛物线y=ax2+c与x轴交于点A(m,0)、B(n,0),与y轴交于点C(0,c),则称△ABC为“抛物三角线”.特别地,当mnc<0时,称△ABC为“正抛物三角形”;当mnc>0时,称△ABC为“倒抛物三角形”.那么,当△ABC为“倒抛物三角形”时,a、c应分别满足条件.13.(5分)若(m+1)2+|n﹣2|=0,则m n=.14.(5分)东方商厦将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价元.15.(5分)如图,已知点A是一次函数y=x(x≥0)图象上一点,过点A作x轴的垂线l,B是l上一点(B在A上方),在AB的右侧以AB为斜边作等腰直角三角形ABC,反比例函数y=(x>0)的图象过点B,C,若△OAB的面积为6,则△ABC的面积是.16.(5分)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=.三、解答题:70分17.(6分)(1)用配方法解方程:x2+4x+1=0(2)已知点(5,0)在抛物线y=﹣x2+(k+1)x﹣k上,求出抛物线的对称轴.18.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.(1)求证:AP平分∠CAB;(2)若∠ACD=114°,求∠MAB的度数.19.(8分)手榴弹作为一种威力较大,体积较小,方便携带的武器,在战争中能发挥重要作用,然而想把手榴弹扔远,并不是一件容易的事,军训中,借助小山坡的有利地势,小刚在教官的指导下用模拟弹进行一次试投:如图所示,把小刚投出的手榴弹的运动路线合作一条抛物线,手榴弹飞行的最大高度为12米,此时它的水平飞行距离为6米;山坡OA的坡度为1:3.(1)求这条抛物线的表达式;(2)山坡上A处的水平距离OE为9米,A处有一棵树,树高5米,则小刚投出的手榴弹能否越过这棵树?请说明理由;(3)求飞行的过程中手榴弹离山坡的最大高度是多少米.20.(8分)一只不透明袋子中装有1个白球和2个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程.(1)每一次摸到白球的概率为;(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.21.(8分)如图,直线l是一次函数y=kx+b的图象,直线经过点(3,﹣3),交x轴于点A,交y轴于点B(0,1).(1)求直线l的解析式;(2)求l与两坐标轴所围成的三角形的面积;(3)当x时,y≥0;(4)求原点到直线l的距离.22.(8分)已知:如图,△ABC是等边三角形,AB=4,E是BC边上任意一点(不与B、C重合),在三角形外作等边△CDE,连结AE、BD.(1)根据题意画出图形;(2)求证:AE=BD;(3)△BDC能否为直角三角形?若能,求出BD长;若不能,请说明理由.23.(8分)在四边形ABCD中,AC平分∠DAB,∠ABC=α,∠ADC=180°﹣α.(1)若α=90°时,直接写出CD与CB的数量关系为;(2)如图1,当α≠90°时,(1)中结论是否还成立,说明理由;(3)如图2,O为AC中点,M为AB上一点,BM=AD,求的值.24.(8分)如图,在▱ABCD中AD>AB.(1)尺规作图:在AD上截取AE,使得AE=AB.作∠ADC的平分线交BC于点F(保留作图痕迹,不写作法);(2)在(1)所作图形中,连接BE,求证:四边形BEDF是平行四边形.(请补全下面的证明过程,不写证明理由).证明:∵DF平分∠ADC,∴∵在▱ABCD中,BC∥AD,∴∴∠CDF=∠CFD,∴CD=CF.∵在▱ABCD中,AB=CD,又∵AE=AB,∴AE=CF.∵在▱ABCD中,AD=BC,∴AD﹣AE=BC﹣CF,即又∵∴四边形BEDF是平行四边形.25.(8分)已知抛物线y=mx2﹣(1﹣4m)x+c过点(1,a),(﹣1,a),(0,﹣1).(1)求该抛物线的解析式;(2)已知过原点的直线与该抛物线交于A,B两点(点A在点B右侧),该抛物线的顶点为C,连接AC,BC,点D在点A,C之间的抛物线上运动(不与点A,C重合).当点A的横坐标是4时,若△ABC的面积与△ABD的面积相等,求点D的坐标;(3)若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切.已知点F的坐标是(0,1),过该抛物线上的任意一点(除顶点外)作该抛物线的切线l,分别交直线y=1和y=﹣3直线于点P,Q,求FP2﹣FQ2的值.。

2022年上海市静安区九年级上学期期末中考数学一模试卷带讲解

2022年上海市静安区九年级上学期期末中考数学一模试卷带讲解
∴ , ,
∴ ,
∴ ,
故答案为: .
【点睛】本题考查了平面向量的知识.此题难度不大,注意掌握相似三角形判定的应用,注意掌握数形结合思想的应用.
18.如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______
【答案】 或
【分析】分两种情况分析:当点E在BC下方时记点E为点 ,点E在BC上方时记点E为点 ,连接 , ,根据垂直平分线的性质得 , ,由正方形的性质得 , ,由旋转得 , ,故 , 是等边三角形, , 是等腰三角形,由等边三角形和等腰三角形的求角即可.
【答案】
【分析】由AD、BE分别是边BC、AC上的中线,可求得AE=EC,BD=DC,然后利用△DEG∽△∽ABG,求得结果.
【详解】解:连接DE
∵AD、BE分别是边BC、AC上 中线,
∴AE=EC,BD=DC,
∴DE是△ABC的中位线,
∴DE= AB,
∴△DEG∽△∽ABG,
∴ ,
∴AG=2DG,BG=2EG,
6.下列说法错误的是()
A. 任意一个直角三角形都可以被分割成两个等腰三角形
B. 任意一个等腰三角形都可以被分割成两个等腰三角形
C. 任意一个直角三角形都可以被分割成两个直角三角形
D. 任意一个等腰三角形都可以被分割成两个直角三角形
【答案】B
【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【答案】低
【分析】根据抛物线 的形状开口方向向上即可得出结果.
【详解】解:∵抛物线开口方向与抛物线 的开口方向相同,抛物线 中,a= >0开口方向向上,
∴该抛物线有最低点,
故答案为:低.

河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)

河南省洛阳市2024届九年级下学期中考一模数学试卷(含解析)

洛阳市2024 年中招模拟考试(一)数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共6页,满分120分,考试时间100分钟.2.试题卷上不要答题,请用0.5 毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 的绝对值是()A. 3B.C.D.【答案】A解析:解:,的绝对值是3,故选:A.2. 天地正清明,最美四月天.2024年清明假期,河南省文化和旅游市场热度延续、高潮迭起.三天假期,河南省接待国内游客1906.9万人次,旅游总收入112.5亿元.与2023年同期相比,接待人次增长9.9%,旅游总收入增长20.6%.数据“112.5亿”用科学记数法表示为()A. B. C. D.【答案】D解析:解:数据亿用科学记数法可表示为:,故选:D.3. 我国古代数学家刘徽利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的左视图是()A. B. C. D.【答案】A解析:解:由几何体可得,从左边看到的平面图形为,故选:.4. 下列运算正确的是()A. B. C. D.【答案】C解析:解:A.,运算错误,不符合题意;B.,运算错误,不符合题意;C.运算正确,符合题意;D.运算错误,不符合题意.故选:C.5. 如图,已知,于点F,平分,若,则的度数是()A. B. C. D.【答案】D解析:设与相交于点G,∵,∴,∵,∴,∵,∴,∵平分,∴,∴.故选:D.6. 关于x的方程有两个不相等的实数根,m的值可以是()A. B. 1 C. D. 2【答案】A解析:解:∵关于的方程有两个不相等的实数根,,解得:.故的值可以为,故选:A.7. 如图,四边形内接于,连接.若,则的度数为()A. B. C. D.【答案】D解析:∵四边形内接于,∴,∵,∴,∵与所对的弧都是,∴.故选:D.8. 某校计划组织研学活动,现有四个地点可供选择:龙门石窟、洛邑古城、龙门海洋馆、洛阳博物馆.为了解学生想法,校方进行问卷调查(每人选一个地点),并绘制成如图所示统计图.已知选择洛邑古城的有360人,那么选择龙门石窟的有()A. 120人B. 240人C. 360人D. 480人【答案】B解析:解:学生总数为:(人),选择龙门石窟的人数为:(人),故选:B.9. 如图,在平面直角坐标系中,的顶点O为坐标原点,,C是斜边的中点,且交x轴于点D.将沿x轴向右平移得到,当的中点E恰好落在y 轴上时,点的坐标为()A. B. C. D. (7,0)【答案】A详解】解:∵,∴,∴,∴;∵C是斜边的中点,∴,∵,∴在中,,由平移的性质可得,,∴,∵点E为的中点,∴,在中,,∴,∴,故选:A.10. 如图1,点E在正方形的边上,且点P沿从点B运动到点D,设B,P 两点间的距离为x,,图2是点P运动时y随x变化的关系图象,若图象的最低点M的纵坐标为则最高点N的纵坐标a的值为()A. 6B.C.D.【答案】C解析:连接,∵四边形是正方形,是其对角线,∴,又,∴,∴,,连接交于点,(三角形两边之和大于第三边).当点P运动到时,,解得,.连接,则.在图1中,当P运动到D点时,对应图2中最高点N,此时y取最大值a,,故选:C.二、填空题(每小题3分,共15分)11. 若一次函数(b是常数)的图象经过第二、三、四象限,则b的值可以是_____ (写出一个即可).【答案】(答案不唯一)解析:解:∵一次函数(b是常数)的图象经过第二、三、四象限,∴.故答案为:(答案不唯一).12. 不等式组的解集为__________.【答案】解析:解:,由①得,,由②得,,故不等式组的解集为.故答案为:.13. 人类的性别由一对染色体决定,称为性染色体.女性的性染色体是一对同型的染色体、用表示,男性的性染色体是一对异型的染色体,用表示,每个人的成对染色体只有一个能遗传给后代,且可能性相等.则一对夫妇的第一个孩子是女孩的概率是_______.【答案】##解析:解:一对夫妇的第一个孩子有女孩和男孩两种情况,所以一对夫妇的第一个孩子是女孩的概率是,故答案为:.14. 如图,在中,,,以点A 为圆心,边的长为半径作交边于点 E ,以边 为直径作半圆交边于点 D ,则图中阴影部分的面积为_______.【答案】解析:∵,∴,∴,∴.故答案为:.15. 在中,将边绕点A旋转,点C的对应点是点D,连接.当是等腰直角三角形时,的长为_________.【答案】或解析:解:当,且点在上方时,如图所示,过点作的垂线,垂足为,∵,且,∴四边形是正方形,∴,∴.在中,.当,且点在下方时,如图所示,过点作的垂线,垂足为,∵,且,∴四边形是正方形,∴,∴.在中,综上所述:的长为或.故答案为:或.三、解答题(本大题共8个小题,共75分)16. (1)计算:;(2)化简:【答案】(1);(2)解析:解:(1);(2).17. 某公司有A,B,C三种型号电动汽车出租,每辆车每天费用分别为310元,370元,580元.洛洛打算从该公司租一辆汽车外出旅游一天,往返行程为,为了选择合适的型号,通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.型平均里程()中位数()众数()号A199195C227225225(1)洛洛已经对A,C型号汽车数据统计如表,请继续求出B型号汽车行驶里程的平均数、中位数和众数;(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的租车建议.【答案】(1)平均数是;中位数为;众数为(2)选择型号汽车(1)解:型号汽车行驶里程的平均数是:,把这20个数据按从小到大的顺序排列,第10,11个数据均为,所以中位数为;出现了六次,次数最多,所以众数为;(2)选择型号汽车,理由如下:型号汽车的平均里程、中位数和众数均低于,且只有的车辆能达到行程要求,故不建议选择;型号汽车的平均里程、中位数和众数都超过,其中型号汽车有符合行程要求,很大程度上可以避免行程中充电耽误时间,且型号汽车比型号汽车更经济实惠,故建议选择型号汽车.18. 如图,四边形的顶点B,C在x轴上,顶点D在y轴上,,顶点A的坐标为,顶点B的横坐标.双曲线经过点A.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出的平分线(要求:不写作法,保留作图痕迹);(3)上问中所作的角平分线与x轴交于点E,若点C的坐标为,求证:四边形是菱形.【答案】(1)反比例函数的解析式为(2)见详解(3)见详解(1)解:将点代入双曲线,得,,解得:,∴反比例函数的解析式为;(2)(3),,,,,,,,,是的平分线,,,,,,,∴四边形是平行四边形,,∴平行四边形是菱形.19. 随着端午节的临近,A,B两家超市开展促销活动,各自推出不同的购物优惠方案,如下表:A超市B超市优惠方案所有商品按七五折出售购物金额每满100元返40元(1)当购物金额为90元时,选择超市(填“A”或“B”)更省钱;当购物金额为120元时,选择超市(填“A”或“B”)更省钱;(2)当购物金额为元时,请分别写出它们的实付金额y(元)与购物金额x(元)之间的函数表达式,并说明促销期间如何选择这两家超市去购物更省钱?(3)对于A超市的优惠方案,随着购物金额的增大,顾客享受的优惠率不变,均为(注:优惠率=购物金额-实付金额).若在B超市购物,购物金额越大,享受的优惠率一定越大吗?请举例说明.【答案】(1)(2)当或时,在超市购物更省钱;当或时,在超市购物和超市购物实付金额一样多,任选一家即可;当时,在超市购物更省钱(3)在超市购物、购物金额越大,享受的优惠率不一定越大(1)解:当购物金额为90元时,在超市购物实付金额(元),在超市购物实付金额90元,∵,∴当购物金额为90元时,选择超市更省钱;当购物金额为120元时,在超市购物实付金额(元),在超市购物实付金额(元),,∴当购物金额为120元时,选择超市更省钱.故答案为:.(2)当时,在超市购物实付金额;当时,在超市购物实付金额;当时,在超市购物实付金额;∴在超市购物实付金额,当时,;当时:;当时:若,解得;若,解得;若,解得.综上,当或时,在超市购物更省钱;当或时,在超市购物和超市购物实付金额一样多,任选一家即可;当时,在超市购物更省钱.(3)在超市购物、购物金额越大,享受的优惠率不一定越大.举例说明如下:当在超市购物金额为100元时,返40元,实付金额为(元),优惠率为;当在超市购物金额为160元时,返40元,实付金额为(元),优惠率为,∴在超市购物、购物金额越大,享受的优惠率不一定越大.20. 风是一种可再生能.利用风能进行发电既可以提供持续的电力供应,又可以减少温室气体排放,抑制全球气候变暖,还可以增加能供应的多样性,降低对传统能的依赖.某市若干台风机矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶,,两两所成的角为,当其中一片风叶与塔干叠合时,在与塔底O水平距离为米的E处,测得塔顶部A的仰角.,风叶的视角,求风叶的长度(结果精确到.参考数据:)【答案】风叶的长度约为解析:如图,自点B作,垂足为点F,过点A作,垂足为点G.∵,∴四边形是矩形,∴.由已知,∴,在中,.∵,∴,又,则,∴,则.在中,,,∴,∴,在中,,∴,则,∴.答:风叶的长度约为.21. “急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离0234竖直高度0根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系;(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系记该运动员第一次训练落入沙坑点的水平距离为,第二次训练落入沙坑点的水平距离为,请比较,的大小.【答案】(1)(2)(1)解:由题意得,抛物线的顶点坐标为:.∴该运动员竖直高度的最大值为米.设函数关系式为:.∵经过点,∴,解得:.∴函数解析式为:.(2)取.第一次训练时,.解得:(不合题意,舍去),.∴.第二次训练时,.解得:(不合题意,舍去),.,,.22. 如图1,⊙O与直线l相离,过圆心O作直线l的垂线,垂足为P,且交于两点(M在之间).我们把点N称为关于直线l的“远望点”,把的值称为关于直线l的“远望数”.(1)如图2,在平面直角坐标系中,点E的坐标为,过点E画垂直于x轴的直线a,则半径为1的关于直线a的“远望点”的坐标是________,关于直线a的“远望数”为________;(2)如图3,在平面直角坐标系中,直线交x轴于点A,交y轴于点B,点C坐标为,以点C为圆心、长为半径作.若与直线相离,点O是关于直线的“远望点”,且关于直线的“远望数”是求直线的函数表达式.【答案】(1)(2)直线的函数表达式为(1)根据“远望点”定义,可得半径为1的关于直线a的“远望点”的坐标是,∴关于直线a的“远望数”为,故答案为:(2)设直线的解析式为连接并延长,交于H,交直线于点G,过C作轴于点D,设∵点C坐标为,∵O是关于直线的“远望点”,且关于直线的“远望数”是,即∵点C坐标为,轴于点D,∴即同理得即,∴,解得,∴直线的函数表达式为23. 综合与实践课上,老师让同学们用“木工尺”探究三等分任意角的方法.如图1为“木工尺”示意图,它是由两条宽度相同且互相垂直的直尺组成的,其中.下面是同学们的探究过程,请仔细阅读,并完成相应的任务,【操作实践】如图2,小明画的平行线,使得与的距离等于尺宽,在上取点E,使等于尺宽,调整“木工尺”的位置,使得经过点O,点D落在上,点E落在上,则三等分小明过点D作,垂足为点F,由题意得:,∴().∵,∴垂直平分,∴,∴平分(),∴.∴.∴三等分.任务:(1)请在括号内填写推理的依据.【类比迁移】爱动脑筋的小华受到上述方法的启发,想到了通过折叠矩形纸片三等分一个已知角的方法,他的前两个操作步骤如下(如图3):步骤1:在矩形纸片上折出任意角,将矩形对折,折痕记为,再将矩形对折,折痕记为,展开矩形;步骤2:将矩形沿着折叠,使得点B的对应点落在上,点M的对应点落在上.任务:(2)连接,试证明是的一条三等分线.【拓展应用】(3)在上述小华折叠的条件下,若,且三点共线,请直接写出的长.【答案】【1】到角的两边距离相等的点在这个角的角平分线上;垂直平分线的性质【2】见解析【3】解析:(1)根据到角的两边距离相等的点在这个角的角平分线上;根据垂直平分线的性质.故答案为:到角的两边距离相等的点在这个角的角平分线上;垂直平分线的性质(2)连接,过点B作于点J,过点作于点K,根据折叠的性质,得,,,∴,,∴,∵,∴,,∴,∴,∵,∴,∴平分,∴,∴,故是的一条三等分线.(3)过点作于点T,根据(2)证明,得到,∵,且三点共线,∴,∴,,∵,∴,∴,∴,,∴.。

2023年黑龙江省大庆市高新区中考数学一模试卷(含解析)

2023年黑龙江省大庆市高新区中考数学一模试卷(含解析)

2023年黑龙江省大庆市高新区中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 2023的相反数的倒数是( )A. 2023B. −2023C. 12023D. −120232. 大庆市2020年GDP超过了2800亿元,2800亿用科学记数法表示为( )A. 2.8×103B. 28×1011C. 2.8×1012D. 2.8×10113. 已知有理数a,b,c在数轴上的对应点的位置如图所示,则下列关系中,正确的( )A. a<bB. c>bC. a>b+cD. b−a<c−a4. 地铁标志作为城市地铁的形象和符号,是城市与文化的缩影,下列图案分别为杭州,北京,深圳,上海四个城市的地铁标志,其中是中心对称图形的是( )A. B. C. D.5. 某校要从四名学生中选拔一名参加市“汉字听写”大赛,将多轮选拔赛的成绩数据进行分析得到每名学生的平均成绩及其方差如下表所示:甲乙丙丁平均数−x(单位:分)m909188方差s2(单位:分 2)n12.514.511根据表中数据,可以判断同学甲是这四名选手中成绩最好且发挥最稳定的学生,则m,n的值可以是( )A. m=92,n=15B. m=92,n=8.5C. m=85,n=10D. m=90,n=12.56. 已知一个圆锥的三视图如图所示,则这个圆锥的体积为( )A. 36πcm3B. 24πcm3C. 12πcm3D. 8πcm37. 如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°,若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为( )A. 1B. 2C. 3D. 28. 下列说法正确的是( )A. 相等的角是对顶角B. 在同一平面内,不相交的两条直线必平行C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D. 两条直线被第三条直线所截,同位角相等9. 如图,点A(m,1)和B(−2,n)都在反比例函数y=4的图象x上,过点A分别向x轴y轴作垂线,垂足分别是M、N,连接OA、OB、AB,若四边形OMAN的面积记作S1,△OBA面积记作S2,则( )A. S1:S2=2:1B. S1:S2=1:2C. S1:S2=4:3D. S1:S2=4:510. 如图①,在矩形ABCD中,H为CD边上的一点,点M从点A出发沿折线AH−HC−CB运动到点B停止,点N从点A出发沿AB运动到点B停止,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t(s),△AMN的面积为S(cm2),已知S与t之间函数图象如图②所示,则下列结论正确的是( )①当0<t≤6时,△AMN是等边三角形.②在运动过程中,使得△ADM为等腰三角形的点M一共有3个.③当0<t≤6时,S=3t2.4④当t=9+3时,△ADH∽△ABM.⑤当9<t<9+33时,S=−3t+9+33.A. ①③④B. ①③⑤C. ①②④D. ③④⑤第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)11. 已知一次函数y=(m+4)x+m+2的图象不经过第二象限,则m的范围______.12. 黑龙江省第五届旅游发展大会将于2023年夏季在大庆市举办,为”迎旅发”,创建美丽城市,九年级学生设计了正方体废纸回收盒,如图所示,将写有“庆”字的正方形添加到图中,使它们构成完整的正方体展开图,共有______ 种添加方式.13. 数学家发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b2+1.例如把(3,−2)放入其中,就会得到32+(−2)2+1=14.现将实数对(−2,1)放入其中得到实数m,再将实数对(m,−2)放入其中后,得到的实数是______ .14. 若关于x的不等式3x−2m<x−m只有3个正整数解,则m的取值范围是______ .15. 哈齐高铁于2015年开通,是我国目前最北端的高速铁路,开通8年时间,方便了千千万万大庆市民出行,也推动了龙江经济发展.从大庆西站到哈尔滨站中间有4个车站,共有______ 种票价.(注:拟设每两个城市之间的票价相同)16. 如图,点A0(0,0),A1(1,2),A2(2,0),A3(3,−2),A(4,0)…….根据这个规律,探究可得点A2023的坐标是______ .17. 如图,AB,AC是⊙O的两条弦,且AB=AC,点D,P分别在B C,A C上.若∠BDC=140°,则∠APC的度数为______ .18. 已知抛物线y=ax2+bx+c(a,b,c是常数,a≠c),且a−b+c=0,a>0.下列四个结论:①对于任意实数m,a(m2−1)+b(m−1)≥0恒成立;②若a+b=0,则不等式ax2+bx+c<0的解集是−1<x<2;③一元二次方程−a(x−2)2+bx=2b+c有一个根x=1;④点A(x1,y1),B(x2,y2)在抛物线上,若c>a,则当−1<x1<x2时,总有y1<y2.其中正确的是______.(填写序号)三、解答题(本大题共10小题,共66.0分。

北京市丰台区2022年九年级一模数学试题

北京市丰台区2022年九年级一模数学试题

北京市丰台区2022年九年级一模数学试题(共8题;共16分)1.(2分)如图是某几何体的三视图,该几何体是()A.长方体B.三棱柱C.圆柱D.圆锥【答案】C2.(2分)根据国家统计局统计结果,从北京冬奥会申办成功至2021年10月,全国参与冰雪运动的人数达到3.46亿,“带动三亿人参与冰雪运动”的承诺已经实现,这是北京冬奥会最大的遗产成果.将346000000用科学记数法表示应为()A.346×106B.3.46×108C.3.46×109D.0.346×109【答案】B3.(2分)如图,直角三角板的直角顶点A在直线l上,如果∠1=35°,那么∠2的度数是()A.55°B.45°C.35°D.25°【答案】A4.(2分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】C5.(2分)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a+b<0B.a﹣b>0C.ab>0D.|b|>2【答案】B6.(2分)不透明的袋子中有3个小球,其中有1个红球,1个黄球,1个绿球,除颜色外3个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么两次摸出的小球都是红球的概率是()A.23B.13C.16D.19【答案】D7.(2分)如果3x﹣2y=0,那么代数式(xy+1)•3xx+y的值为()A.1B.2C.3D.4【答案】B8.(2分)如图,长方体的体积是100m3,底面一边长为2m.记底面另一边长为xm,底面的周长为lm,长方体的高为hm.当x在一定范围内变化时,l和h都随x的变化而变化,则l与x,h与x满足的函数关系分别是()A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.反比例函数关系,一次函数关系D.一次函数关系,反比例函数关系【答案】D(共8题;共8分)9.(1分)若分式1x−5有意义,则实数x的取值范围是.【答案】x≠510.(1分)分解因式:2x2﹣8=【答案】2(x+2)(x﹣2)11.(1分)写出一个比3大且比5小的无理数.【答案】π(答案不唯一)12.(1分)在平面直角坐标系xOy中,直线y=x与双曲线y=k x交于点A(2,m),则k的值是.【答案】413.(1分)如图,∠O的直径AB垂直于弦CD,垂足为E,∠CAD=45°,则∠BOC=°.【答案】4514.(1分)如图,点B,E,C,F在一条直线上,BC=EF,∠B=∠DEF.只需添加一个条件即可证明∠ABC∠∠DEF,这个条件可以是(写出一个即可).【答案】AB=DE(答案不唯一)15.(1分)如图是甲、乙两名射击运动员10次射击训练成绩的统计图,如果甲、乙这10次射击成绩的方差为s甲2,s乙2,那么s甲2s乙2.(填“>”,“=”或“<”)【答案】>16.(1分)某工厂有甲、乙、丙、丁、戊五台车床.若同时启动其中两台车床,加工10000个W型零件所需时间如表:则加工W 型零件最快的一台车床的编号是 .【答案】丙(共13题;共125分)17.(5分)计算:(12)﹣1﹣2cos30°+|﹣√12|﹣(3.14﹣π)0.【答案】解:(12)﹣1﹣2cos30°+|﹣√12|﹣(3.14﹣π)0=2﹣2×√32+2√3﹣1=2﹣√3+2√3﹣1 =√3+118.(5分)解不等式组:{3(x −1)<2x +1x−12≤x +2.【答案】解:{3(x −1)<2x +1①x−12≤x +2② 由①得3x −3<2x +1,即x <4 由②得x −1≤2x +4,即x ≥−5 ∴不等式组的解集为:−5≤x <419.(10分)已知关于x 的一元二次方程x 2﹣(m+2)x+m+1=0.(1)(5分)求证:该方程总有两个实数根;(2)(5分)若该方程的两个实数根互为相反数,求m 的值.【答案】(1)证明:∵Δ=[﹣(m+2)]2﹣4(m+1)=m 2+4m+4﹣4m -4=m 2≥0,∴无论m 取何值,此方程总有两个实数根; (2)解:根据题意得x 1+x 2=m+2, ∵方程的两个实数根互为相反数, ∴m+2=0, 解得m =﹣2,即m的值为﹣2.20.(10分)《周髀算经》中记载了一种确定东南西北方向的方法.大意是:在平地上点A处立一根杆,记录日出时杆影子的长度AB,并以点A为圆心,以AB为半径画圆,记录同一天日落时杆影子的痕迹与此圆的交点C,那么直线CB表示的方向就是东西方向,∠BAC的角平分线所在的直线表示的方向就是南北方向.(1)(5分)上述方法中,点A,B,C的位置如图所示,使用直尺和圆规,在图中作∠BAC的角平分线AD(保留作图痕迹);(2)(5分)在图中,确定了直线CB表示的方向为东西方向,根据南北方向与东西方向互相垂直,可以判断直线AD表示的方向为南北方向,完成如下证明.证明:∵点B,C在∠O上,∴AB=▲ .∴∠ABC是等腰三角形.∵AD平分∠BAC,∴AD∠BC ()(填推理的依据).∵直线CB表示的方向为东西方向,∴直线AD表示的方向为南北方向.【答案】(1)解:如图所示,射线AD即为∠BAC的角平分线;(2)证明:∵点B,C在∠O上,∴AB=AC.∴∠ABC 是等腰三角形. ∵AD 平分∠BAC ,∴AD∠BC (等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合)(填推理的依据). ∵直线CB 表示的方向为东西方向, ∴直线AD 表示的方向为南北方向.21.(10分)如图,在四边形ABCD 中,∠DCB =90°,AD ∥BC ,点E 在BC 上,AB ∥DE ,AE 平分∠BAD .(1)(5分)求证:四边形ABED 为菱形;(2)(5分)连接BD ,交AE 于点O .若AE =6,sin∠DBE =35,求CD 的长.【答案】(1)证明:∵AD ∥BC ,AB ∥DE ,∴四边形ABED 为平行四边形, ∵AE 平分∠BAD , ∴∠BAE=∠DAE . ∵AD ∥BC , ∴∠DAE=∠AEB , ∴∠BAE=∠AEB , ∴AB=BE , ∴∠ABED 是菱形; (2)解:如图,连接BD ,∵四边形ABED 是菱形,∴AE∠BD ,AO=OE=12AE =3,OB=OD ,∴sin∠DBE=OE BE =35,∴BE=5,∴OB =√BE 2−OE 2=√52−32=4, ∴BD=2OB=8, ∵∠DCB =90°,∴S 菱形ABED =12AE ×BD =BE ×CD ,∴12×6×8=5⋅CD ∴CD =245. 22.(10分)在平面直角坐标系xOy 中,一次函数y =kx+b (k≠0)的图象由函数y =2x 的图象平移得到,且经过点(2,1).(1)(5分)求这个一次函数的解析式;(2)(5分)当x >0时,对于x 的每一个值,函数y =mx (m≠0)的值大于一次函数y =kx+b 的值,直接写出m 的取值范围.【答案】(1)解:由题意知,k =2将(2,1)代入y =2x +b 得,2×2+b =1 解得b =−3∴一次函数解析式为y =2x −3. (2)m ≥223.(10分)如图,AB 是∠O 的直径,C 是∠O 上一点,连接AC .过点B 作∠O 的切线,交AC 的延长线于点D ,在AD 上取一点E ,使AE =AB ,连接BE ,交∠O 于点F ,连接AF .(1)(5分)求证:∠BAF =∠EBD ;(2)(5分)过点E 作EG∠BD 于点G .如果AB =5,BE =2√5,求EG ,BD 的长.【答案】(1)证明:∵AB是⊙O的直径∴∠AFB=90°∵BD是⊙O的切线∴∠ABD=90°∵∠BAF+∠ABF=90°,∠ABF+∠EBD=90°∴∠BAF=∠EBD.(2)解:如图,∵AE=AB,∠AFB=90°∴BF=EF=12BE=√5∵∠BAF=∠EBD∴sin∠BAF=sin∠EBD∴BFAB=EGBE即√55=EG2√5解得EG=2在Rt△BEG中,由勾股定理得BG=√BE2−EG2=4∵∠EDG=∠ADB,∠EGD=∠ABD=90°∴△EDG∽△ADB∴DGBD=EGAB即BD−4BD=25解得BD=20 3∴EG的长为2,BD的长为20 3.24.(15分)某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,水柱从喷水头喷出到落于湖面的路径形状可以看作是抛物线的一部分.若记水柱上某一位置与水管的水平距离为d米,与湖面的垂直高度为h米.下面的表中记录了d与h的五组数据:根据上述信息,解决以下问题:(1)(5分)在下面网格(图1)中建立适当的平面直角坐标系,并根据表中所给数据画出表示h 与d函数关系的图象;(2)(5分)若水柱最高点距离湖面的高度为m米,则m=;(3)(5分)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过.如图2所示,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为2米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).【答案】(1)解:以水管与湖面的交点为原点,水管所在的直线为y轴,建立平面直角坐标系,如图所示:根据表格数据可得,d=1与d=3的函数值相同,∴对称轴为d=2,h=1.5,∴抛物线的顶点坐标为(2,1.5),∴设抛物线的解析式为h=a(d-2)2+1.5,将点(0,0.5)代入可得0.5=4a+1.5,解得:a=−14,h=−14(d-2)2+1.5,当h=0时,d=2+√6,∴h=−14(d-2)2+1.5(0<d<2+√6);(2)1.5(3)解:设水管高度至少向上调节m 米,由题意可知调节后的水管喷出的抛物线的解析式为h=−14d 2+d+0.5+m ,当横坐标为2+32=3.5时,纵坐标的值大于等于2+0.5=2.5,∴−14×3.52+3.5+0.5+m≥2.5,解得:m≥2516,0.5+2516=3316≈2.1米,水管高度至少要调节到2.1米.25.(5分)为了解地铁14号线与7号线的日客运强度,获得了它们2022年1月份工作日(共21天)日客运强度(单位:万人/公里)的数据,并对数据进行整理、描述和分析.下面给出了部分信息:a .地铁14号线2022年1月份工作日日客运强度的数据的频数分布直方图如下(数据分成6组:0.50≤x <0.70,0.70≤x <0.90,0.90≤x <1.10,1.10≤x <1.30,1.30≤x <1.50,1.50≤x≤1.70);b .地铁14号线2022年1月份工作日日客运强度的数据在1.30≤x <1.50这一组是:26.(15分)为了解地铁14号线与7号线的日客运强度,获得了它们2022年1月份工作日(共21天)日客运强度(单位:万人/公里)的数据,并对数据进行整理、描述和分析.下面给出了部分信息:a.地铁14号线2022年1月份工作日日客运强度的数据的频数分布直方图如下(数据分成6组:0.50≤x<0.70,0.70≤x<0.90,0.90≤x<1.10,1.10≤x<1.30,1.30≤x<1.50,1.50≤x≤1.70);b.地铁14号线2022年1月份工作日日客运强度的数据在1.30≤x<1.50这一组是:1.37 1.37 1.37 1.38 1.41 1.47 1.48 1.48 1.49c.地铁14号线与7号线2022年1月份工作日日客运强度的平均数、中位数如下:根据以上信息,回答下列问题:(1)(5分)写出表中m的值;(2)(5分)日客运强度反映了地铁的拥挤程度,小明每天上班均需乘坐地铁,可以选择乘坐地铁14号线或乘坐地铁7号线.请帮助小明选择一种乘坐地铁的方式,并说明理由;(3)(5分)2022年一共有249个工作日,请估计2022年全年的工作日中,地铁14号线日客运强度不低于1.3万人/公里的天数(直接写出结果).【答案】(1)解:根据条形统计图可得,1+1+2+3+9=16,14号线的中位数第11个数据在1.30≤x<1.50这一组第4个数据为1.38,故答案为:1.38;(2)解:选择7号线,理由如下:7号线的客运强度的平均数及中位数均小于14号线,说明人流量较小,所以选择7号线;(3)166天27.(10分)在平面直角坐标系xOy中,点M(2,m),N(4,n)在抛物线y=ax2+bx(a>0)上.(1)(5分)若m=n,求该抛物线的对称轴;(2)(5分)已知点P(﹣1,P)在该抛物线上,设该抛物线的对称轴为x=t.若mn<0,且m <p<n,求t的取值范围.【答案】(1)解:当m=n时,对称轴为x=2+42=3;(2)解:根据题意可得:m=4a+2b,n=16a+4b,p=a-b,∵m<p<n,mn<0,∴m<0,n>0,∴4a+2b<0,16a+4b>0,化简得:−b2a>1①,−b2a<2②,∵m<p<n,∴{4a+2b<a−b③a−b<16a+4b④化简③得−b2a>12,化简④得−b2a<32,∵t=−b2a∴综合①②③④可得:1<t<3 2.28.(10分)如图,在∠ABC中,AB=AC,∠BAC=α,点D在边BC上(不与点B,C重合),连接AD,以点A为中心,将线段AD逆时针旋转180°﹣α得到线段AE,连接BE.(1)(5分)∠BAC+∠DAE=°;(2)(5分)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.【答案】(1)180(2)解:如图所示:连接并延长AF ,使FG=AF ,连接DG ,CG ;∵DF=CF ,AF=GF ;∴四边形ADGC 为平行四边形; ∴∠DAC+∠ACG=180°, 即∠ACG=180°-∠DAC ,∠BAE=∠BAC+∠DAE-∠DAC=180°-∠DAC , 所以∠ACG=∠BAE ,∵四边形ADGC 为平行四边形; ∴AD=CG , 又∵AD=AE , AE=CG ,在∠ABE 和∠CAG 中,{AB =CA∠BAE =∠ACG AE =CG∴∠ABE∠∠CAG , ∴BE=AG , ∴AF=12AG=12BE ,故线段AF 与BE 的数量关系:AF=12BE ;29.(10分)在平面直角坐标系xOy 中,∠O 的半径为1,T (0,t )为y 轴上一点,P 为平面上一点.给出如下定义:若在∠O 上存在一点Q ,使得∠TQP 是等腰直角三角形,且∠TQP =90°,则称点P 为∠O 的“等直点”,∠TQP 为∠O 的“等直三角形”.如图,点A ,B ,C ,D 的横、纵坐标都是整数.(1)(5分)当t=2时,在点A,B,C,D中,∠O的“等直点”是;(2)(5分)当t=3时,若∠TQP是∠O“等直三角形”,且点P,Q都在第一象限,求CPOQ的值.【答案】(1)A、B、D(2)解:如图,依题意作∠O的“等直三角形”∠TQP∴TQ=PQ,∠TQP=90°过Q点作MH//x轴,交y轴于M点,过点P作PH∠MH于H点∴∠TMQ=∠QHP=90°∴∠TQM+∠MTQ=∠TQM+∠HQP=90°∴∠MTQ=∠HQP∴∠TMQ∠∠QHP(AAS)∴TM=QH,MQ=HP设Q(x,y)∴HM=MQ+QH=MQ+TM=x+3-y,PH=MQ=x∴P(x-y+3,x+y)∵C(3,0)∴PC=√(x−y+3−3)2+(x+y)2=√2⋅√x2+y2∵OQ=√x2+y2∴CPOQ=√2.试题分析部分1、试卷总体分布分析2、试卷题量分布分析3、试卷难度结构分析4、试卷知识点分析。

山东省泰安市东平县2024届九年级下学期中考一模数学试卷(含解析)

山东省泰安市东平县2024届九年级下学期中考一模数学试卷(含解析)

数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题48分,非选择题102分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题卡交回.第Ⅰ卷(选择题共48分)一、单选题(本大题共12个小题,每小题4分,共48分.每小题给出的四个答案中,只有一项是正确的.)1. 的相反数是()A. B. C. D.答案:C解析:详解:解:的相反数是.故选:C2. 下列计算正确的是()A. B.C. D.答案:B解析:详解:解:、,故本选项不符合题意;、,故本选项符合题意;、,故本选项不符合题意;、,故本选项不符合题意;故选:B.3. 5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上.用科学记数法表示1300000是()A. B. C. D.答案:C解析:详解:解:∵,故选:C.4. 花钿()是古时汉族妇女脸上用金翠珠宝制成的一种花形首饰,有红、绿、黄三种颜色,其中以红色为最多,是唐代比较流行的一种首饰.下列四种眉心花钿图案既是轴对称图形又是中心对称图形的是()A. B.C. D.答案:D解析:详解:解:A.是轴对称图形不是中心对称图形,故该选项不符合题意;B.是轴对称图形不是中心对称图形,故该选项不符合题意;C.既不是轴对称图形也不是中心对称图形,故该选项不符合题意;D.轴对称图形也是中心对称图形,故该选项符合题意;故选:D.5. 如图,先在纸上画两条直线a,b,使,再将一块直角三角板平放在纸上,使其直角顶点落在直线b 上,若,则的度数是()A. B. C. D.答案:B解析:详解:解:如图,∵∴,∵,∴,故选:B6. 某学校组织学生进行了视力测试.刘明所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A. 4.8 4.74B. 4.8 4.5C. 5.0 4.5D. 4.8 4.8答案:D解析:详解:解:把这组数据从小到大排列为,,,,,排在中间的数是,故中位数是;这组数据中出现的次数最多,故众数为.故选:D.7. 如图,是的直径,点C,D,E在上,若,则的度数为( )A. B. C. D.答案:B解析:详解:连接,如图,∵是的直径,∴,∵,∴.故选:B.8. 在同一平面直角坐标系中,函数与(其中m,n是常数,)的大致图象可能是()A. B.C. D.答案:C解析:详解:A选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,A选项错误;B选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在一、三象限,与图像不符,B选项错误;C选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像相符,C选项正确;D选项,依图得,此时一次函数中,,,则,则在反比例函数中,,反比例函数图像应在二、四象限,与图像不符,D选项错误.故选:C.9. 如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为( )A. π﹣1B. π﹣2C. π﹣3D. 4﹣π答案:B解析:详解:解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.10. 出口贸易是我国经济发展的重要因素,由于出口贸易持续增长,一企业生产某种商品的数量增加明显.已知今年生产该商品的数量比今年和去年生产的数量总和的一半多11万件,去年的数量比今年和去年生产数量总和的三分之一少2万件.设今年生产该商品的数量为x万件,去年生产该商品的数量为y万件,根据题意可列出的方程组是()A. B.C. D.答案:D解析:详解:设今年生产该商品的数量为x万件,去年生产该商品的数量为y万件,由题意可得:,故选:D.11. 如图,在四边形ABCD中,,,连接,,且,的平分线分别交、于点O、E,则①、②、③、④.上述结论正确的有()A. 1个B. 2个C. 3个D. 4个答案:B解析:详解:解:①即,且,∴,,又∵平分,∴,∴,∵,∴,∴,即①正确,②过点A、O作于F,于G,∵平分,,,∴,又∵,,∴是等腰直角三角形,,∴,∴,∴,∴,即②错误;③∵,∴,∵,,∴,又∵于F,∴四边形是矩形,是等腰直角三角形,,∴,∴∵,∴∴,即③错误;④∵,,∴,即平分,∴与若以和为底边,高相等;以和作底边,高相同;∴,(高相等时,三角形面积之比等于底边之比)∵,,∴,∴,∴,即④正确;故正确的有:①④,共两个,故选B.12. 如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC 于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为( )A. B. C. 1 D. 2答案:C解析:详解:连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为等腰直角三角形,∴AC=BC=AB=,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=AP=CQ,QF=BQ,∴PE+QF=(CQ+BQ)=BC==1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=(PE+QF)=,即点M到AB的距离为,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=AB=1,故选C.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6个小题,每小题4分,共24分,只要求填写最后结果)13. 关于x的一元二次方程有实根,则m取值范围是___________.答案:且解析:详解:解:∵关于的一元二次方程有实数根,,解得且.故答案为:且.14. 如图1是我国明末《崇祯历书》之《割圆勾股八线表》中所绘的割圆八线图.如图2,根据割圆八线图,在扇形中,,和都是的切线,点和点是切点,交于点,交于点,.若,则的长为_________.答案:##解析:详解:解:如图,,,,,,是的切线,点是切点,,即,,在中,,,,在中,,,,.故答案为:.15. 《中华人民共和国道路交通安全法》规定,同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,其原因可以用物理和数学的知识来解释.公路上行驶的汽车急刹车时,刹车距离与时间的函数关系式为,当遇到紧急情况刹车时,由于惯性的作用,汽车最远要滑行___________才能停下.答案:16解析:详解:解:依题意,该函数关系式化简为,当时,汽车停下来,滑行了16米,汽车最远要滑行16米才能停下,故答案为:16.16. 如图,将的按下面的方式放置在一把刻度尺上,顶点O与尺下沿的端点重合,与尺下沿重合,与尺上沿的交点B在尺上的读数为,若按相同的方式将的放置在该刻度尺上,则尺上沿的交点C在尺上的读数是________(结果精确到,参考数据)答案:解析:详解:解:作于,作于,如图:依题意得:,在中,,,,,,,且,,在中,,,,,即:,解得:,点C在尺上的读数约为,故答案为:.17. 如图,已知等边三角形纸片,点E在边上,点F在边上,沿折叠,使点落在边上的点的位置,且,则的度数为_____.答案:##度解析:详解:由翻折性质可知:,∵为等边三角形,∴,,,∵,∴为直角三角形,∴,∵是的外角,∴,∵是由翻折得到,∴,故答案为:.18. 如图,在平面直角坐标系中,已知点的坐标是,以为边在右侧作等边三角形,过点作轴的垂线,垂足为点,以为边在右侧作等边三角形,再过点作轴的垂线,垂足为点,以为边在右侧作等边三角形,按此规律继续作下去,得到等边三角形,则点的纵坐标为______答案:解析:详解:解:∵点的坐标是,以为边在右侧作等边三角开过点作轴的垂线,垂足为点∴∴,点纵坐标是,∵以为边在右侧作等边三角形,过点作轴的垂线,垂足为点,∴,,∴,∴点纵坐标,即,∵以为边在右侧作等边三角形,同理,得点纵坐标是,按此规律继续作下去,得:点的纵坐标是,即.故答案为:三、解答题(本大题共7个小题,共78分,写出必要的文字说明、证明过程或推演步骤.)19. (1)计算:(2)化简:答案:(1);(2)2解析:详解:解:(1)原式;(2)原式.20. 某学校为了开展好课后延时服务,举办了A:机器人;B:航模;C:科幻绘画:D:信息学;E:科技小制作等五个兴趣小组(每人限报一项),将参加各兴趣小组的人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)求本次参加课后延时服务的学生人数;(2)把条形统计图补充完整,并求扇形统计图中的度数;(3)在C组最优秀的2名同学(1名男生1名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加全区的课后延时服务成果展示比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.答案:(1)80 (2)图形见解析;(3)树状图见解析;所选两名同学中恰好是1名男生1名女生的概率为解析:小问1详解:解:本次参加课后延时服务的学生人数是(名).小问2详解:参加组的人数为(名).补全条形统计图如图所示.扇形统计图中的的度数是.小问3详解:设组的1名男生和1名女生分别记为组的2名男生和1名女生分别记为.画树状图如下:共有6种等可能的结果,其中所选两名同学中恰好是1名男生1名女生的结果有:,,共3种,所选两名同学中恰好是1名男生1名女生的概率为.21. 如图,一次函数的图象与反比例函数的图象相交于A,B两点,其中点A的坐标为,点B的坐标为.(1)求这两个函数的表达式;(2)根据图象,直接写出满足的取值范围;(3)求的面积;答案:(1)反比例函数关系式为,一次函数关系式为:;(2)或;(3).解析:小问1详解:解:∵图象过点,则,解得:,∴反比例函数关系式为,当时,,∴B点坐标为,设一次函数关系式为,则,解得:,∴一次函数关系式为:;小问2详解:解:由图象得,当或时,一次函数的值大于反比例函数的值;小问3详解:解:设直线与x轴的交点为C,由(2)知,,令,则,即.则.22. 为了响应国家发展科技的号召,某公司计划对A、B两类科研项目投资研发.已知研发1个A类科研项目比研发1个B类科研项目少投资75万元,且投资1200万元研发A类科研项目的个数与投资1500万元研发B类科研项目的个数相同.(1)研发一个A类科研项目所需的资金是多少万元?(2)该公司今年计划投资研发A、B两类科研项目共40个,且该公司投入研发A、B两类科研项目总资金不超过1亿3200万元,则该公司投资研发A类科研项目至少是多少个?答案:(1)研发一个类科研项目所需资金是300万元(2)今年研发类科研项目至少24个解析:小问1详解:解:设研发一个类科研项目所需资金为万元,则研发一个类科研项目所需资金为万元,根据题意,得,解得.经检验,是原分式方程的解,.答:研发一个类科研项目所需资金是300万元.小问2详解:解:设今年研发类科研项目个,则研发类科研项目个,根据题意,得,解得.答:今年研发类科研项目至少24个.23. 如图1,已知四边形是矩形,点E在的延长线上,.与相交于点G,与相交于点F,.(1)求证:;(2)若,求;(3)如图2,连接,请判定,,三者之间的数量关系并证明.答案:(1)见解析(2)(3),证明见解析解析:小问1详解:证明:∵四边形是矩形,点E在的延长线上,∴,又∵,∴,∴,∴,即,故;小问2详解:解:∵四边形是矩形,∴,,∴,∴,又∵,,即,解得或(舍去);∴;小问3详解:解;,证明如下:如图,在线段上取点,使得,在与中,,∴,∴,∴,∴为等腰直角三角形,∴,即.24. 综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在“中,,,分别取,的中点D,E,作.如图2所示,将绕点A逆时针旋转,连接,.(1)探究发现:旋转过程中,线段和的长度存在怎样的数量关系?写出你的猜想,并证明.(2)性质应用:如图3,当所在直线首次经过点B时,求的长.(3)延伸思考:如图4,在中,,,,分别取,的中点D,E.作,将绕点B逆时针旋转,连接,.当边平分线段时,求的值.答案:(1)猜想,证明见解析(2)(3)解析:小问1详解:解:猜想,证明如下:∵点D和点E为分别为中点,∴由图1可知,,∴,则,∵,∴,∴,根据旋转的性质可得:,∴,∴;小问2详解:解:由图1可知点D和点E为分别为中点,∴,,∴,∴,∴当所在直线经过点B时,,根据勾股定理可得:,由(1)可得:,∴,解得:;小问3详解:解:令相交于点Q,过点E作于点G,根据题意可得:,∵,∴,∴,∵边平分线段,,∴,∴,∵,∴,∴,根据旋转的性质可得:,∴,∴,∴,,∴,∴.25. 如图,在平面直角坐标系中,点、在轴上,点、在轴上,且,,抛物线经过三点,直线与抛物线交于另一点.(1)求这条抛物线的解析式;(2)在抛物线对称轴上是否存在一点,使得的周长最小,若存在,请求出点的坐标,若不存在,请说明理由;(3)点是直线上一动点,点为抛物线上直线下方一动点,当线段的长度最大时,请求出点的坐标和面积的最大值.答案:(1)抛物线的解析式为;(2)时的周长最小;(3)当面积最大时,点的坐标为,面积最大值为.解析:小问1详解:∵,,∴点的坐标为,点的坐标为,点的坐标为,点的坐标为,将,,代入得:,解得:,∴这条抛物线的解析式为;小问2详解:∵,∴抛物线的对称轴为直线,连接,交抛物线对称轴点,如图所示,∵点,关于直线对称,∴,∴∴当点,,三点共线时,取得最小值,即的周长最小,设直线的解析式为,将,代入得:,解得:,∴直线的解析式为,当时,,∴在这条抛物线的对称轴上存在点时的周长最小;小问3详解:∵,,∴直线的解析式为,联立直线和抛物线的解析式成方程组,得:,解得:,,∴点的坐标为,过点作轴,交直线于点,如图所示,设点的坐标为,则点的坐标为,∴,∴,,,,∵,∴当时,的面积取最大值,最大值为,∴当面积最大时,点的坐标为,面积最大值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A .B .C .D .九年级数学一模试一、选择题(本大题共10题,每小题3分,共计30分) 1.-3的倒数是 ( ) A .-3 B .3 C .-13 D .132.下列计算正确的是 ( )A .2a -a =1B .a 2+a 2=2a 4C .a 2· a 3=a 5D .(a -b )2=a 2-b 2 3.下列图形中,不是中心对称图形的是 ( )4.在锐角△ABC 中,|sin A - 32 |+( cos B -22 )2=0 ,则∠C 的度数是 () A .30° B .45° C .60° D .75° 5.下列说法中,正确的是 ( ) A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C .抛掷一个正方体骰子,点数为奇数的概率是13 D .“打开电视,正在播放广告”是必然事件6.若点M (-2,y 1),N (-1,y 2),P (8,y 3)在抛物线y= - 12 x 2+2x 上,则下列结论正确的 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 7.定义新运算:对于任意实数a ,b ,都有a ⊕b =a 2-3a +b ,如3⊕5=32-3×3+5,若x ⊕1=11则实数x 的值 ( )A .2或-5B .-2或5C .2或5D .-2或-5 8.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为 ( )A .4B .6C .8D .129.如图,矩形ABCD 为⊙O 的内接四边形,AB =2,BC =3,点E 为BC 上一点,且BE =1,延长 AE 交⊙O 于点F ,则线段AF 的长为 ( )A .75 5B .5C .5+1D .32 510.如图,正方形ABCD的对角线BD长为2 2 ,若直线l满足:(1)点D到直线l的距离为1,(2)A、C两点到直线l的距离相等,则符合题意的直线l 的条数为( )A.1 B.2C.3 D.4二、填空题(本大题共8小题,每小题3分,共计24分)11.使1-3x有意义的x的取值范围是____________.12.据统计,今年无锡鼋头渚“樱花节”活动期间入园赏樱人数约803万人次,用科学记数法可表示为___________人次.13.分解因式:4a2-16=____________.14.已知0≤x≤1,若x-2y=6,则y的最小值是____________.15.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积...是 . 16.如图,△ABC中,AB=5,BC=3,CA=4,D为AB的中点,过点D的直线与BC交于点E,若直线DE截△ABC所得的三角形与△ABC相似,则DE=_________.17.如图,在以点O为原点的直角坐标系中,一次函数y=- 12x+1的图象与x轴交于A,与y轴交于点B,点C在第二象限内且为直线AB上一点,OC=12AB,反比例函数y=kx的图象经过点C,则k的值为 .18.等边三角形ABC中,BC=6,D、E是边BC上两点,且BD=CE=1,点P 是线段DE上的一个动点,过点P分别作AC、AB的平行线交AB、AC于点M、N,连接MN、AP交于点G,则点P由点D移动到点E的过程中,线段BG扫过的区域面积为__________.BCAD·第16题图AOBxy第17题图AB CPMNGD E··第18题图第9题图AB CDEOF·第10题图CDAB第8题图513三、解答题(本大题共10小题,共计86分.) 19.(本题满分10分)(1)计算: | 3 -1|-(12 )-2-2sin60o(2)计算: (1-3x +2 )÷x 2-1x +220.(本题满分10分)(1)解方程: 2x 2x -1 +xx -2 =2; (2)解不等式组: ⎩⎪⎨⎪⎧x -32 +3≥x ,1-3(x -1)<8-x .21.(本题满分6分)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中任意取一点,以所取的这一点及点B 、C 为顶点画三角形,则所画三角形是等腰三角形的概率是 ;(2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解).B AC F ED ·· · · · ·22.(本题10分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金。

“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息)。

已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y (件)与销售价x (元/件)之间的关系可用图中的一条折线(实线)来表示。

该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务)。

(1)求日销售量y (件)与销售价x (元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收入=支出),求该店员工的人数; (3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?23.(本题满分8分)“校园手机”现象越来越受到社会的关注.某校小记者随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的家长大约有多少名?40 140 140 学生 学生及家长对中学生带手机的态度统计图人数 家长 赞成无所谓 反对 类别 280 210 70 30 80 30 图①赞成 无所谓20% 反对 家长对中学生带手机的态度统计图 图② 第27题 x 元/件 71 58 40 60 24 110 y 件24.(本题满分8分)2014年3月8日凌晨,马来西亚航空公司吉隆坡飞北京的MH370航班在起飞一个多小时后在雷达上消失,至今没有被发现踪迹.飞机上有239名乘客,其中154名是中国同胞,中国政府启动了全面应急和搜救机制,派出多艘中国舰船在相关海域进行搜救.如图,某日在南印度洋海域有两艘自西向东航行的搜救船A 、B ,B 船在A 船的正东方向,且两船保持20海里的距离,某一时刻两船同时测得在A 的东北方向,B 的北偏东15°方向有一疑似物C ,求此时疑似物C 与搜救船A 、B 的距离各是多少?(结果保留根号)25.(本题满分6分)如图,以O 为圆心的BD 度数为60 o ,∠BOE =45o ,DA ⊥OB ,EB ⊥OB .(1)求BEDA 的值; (2)若OE 与BD 交于点M ,OC 平分∠BOE ,连接CM .说明:CM 为⊙O 的切线;(3)在(2)的条件下,若BC =1,求tan ∠BCO 的值.45o 15oA 北 北 C 东 BDM E C B O A26.(本题满分8分)机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油为36千克.为了建设节约型社会,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关.(1)甲车间通过技术改革后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备实际耗油量是多少千克?(2)乙车间通过技术改革后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到19.2千克,问乙车间通过技术改革后,加工一台大型机械设备润滑用油量是多少千克?拥有的重复利用率是多少?【问题情境】如图1,在△ABC 中,AB =AC ,点P 为边BC 上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .求证:PD +PE =CF .【结论运用】如图2,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD =8,CF =3,求PG +PH 的值;【迁移拓展】图3是一个航模的截面示意图.在四边形ABCD 中,E 为AB 边上的一点,ED ⊥AD ,EC ⊥CB ,垂足分别为D 、C ,且AD ·CE =DE ·BC ,AB =8,AD =3,BD =7;M 、N 分别为AE 、BE 的中点,连接DM 、CN ,求△DEM 与△CEN 的周长之和.C PD AF E B 图1 B F HG P A E D CC' 图2 D C B AM E N 图3如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O、C两点做抛物线y1=ax(x-t)(a 为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A,k= ;(2)随着三角板的滑动,当a=14时:①请你验证:抛物线y1=ax(x-t)的顶点在函数y=-14x2的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.▲▲2014—2015学年第二学期九年级数学一模试卷一、选择题(本大题共10题,每小题3分,共计30分)1、C2、C3、B4、D5、A6、C7、B8、B9、A 10、D 二、填空题(本大题共8小题,每小题2分,共计16分)11、x ≤13 12、8.03×10613、4(a +2)(a -2) 14、-3 15、3π 16、2 17、-1150 18、3 3 2三、解答题(本大题共10小题,共计84分.)19.(本题满分8分)(1)| 3 -1|-(12 )-2-2sin60o += 3 -1-4-2×32……………………3分 =-5…………………………………………4分(2) (1-3x +2 )÷x 2-1x +2=x -1x +2 ÷(x -1)(x +1)x +2 ……………………2分=1x +1 …………………………………………4分20.(本题满分8分)(1)2x 2x -1 +xx -2=2;解:2x(x-2)+x(2x-1)=2(2x-1)(x-2) …………1分5x=4…………………………………………2分 x=45 …………………………………………3分 经检验,x=45是原方程的根。

相关文档
最新文档