2019-2020年九年级一模数学试卷(WORD版含答案)
2019-2020数学中考一模试卷附答案
2019-2020数学中考一模试卷附答案一、选择题1.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .417172.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .153.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数4.定义一种新运算:1an n n bn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .255.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )A .68︒B .112︒C .124︒D .146︒6.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :3x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .127.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .48.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内»OB上一点,∠BMO=120°,则⊙C 的半径长为( )A .6B .5C .3D .329.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-10.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm11.如图,直线//AB CD ,AG 平分BAE ∠,40EFC ∠=o ,则GAF ∠的度数为( )A .110oB .115oC .125oD .130o12.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x-=+ B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-=D .6060(125%)30x x⨯+-= 二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.15.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.16.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A处安置测倾器,测得风筝C的仰角∠CBD=60°;(2)根据手中剩余线的长度出风筝线BC的长度为70米;(3)量出测倾器的高度AB=1.5米.根据测量数据,计算出风筝的高度CE约为_____米.(精确到0.1米,3≈1.73).18.正六边形的边长为8cm,则它的面积为____cm2.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)20.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.三、解答题21.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=23.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC,DF+BF=8,如图2,求BF的长.22.数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.活动一如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.数学思考(1)设,点到的距离.①用含的代数式表示:的长是_________,的长是________;②与的函数关系式是_____________,自变量的取值范围是____________.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格.654 3.53 2.5210.500 0.55 1.2 1.58 1.0 2.47 3 4.29 5.08②描点:根据表中数值,描出①中剩余的两个点.③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象. 数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.23.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩24.某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w (元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y 关于x 的函数解析式(不要求写出x 的取值范围)及m 的值; (2)根据以上信息,填空:该产品的成本单价是 元,当销售单价x= 元时,日销售利润w 最大,最大值是 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?25.已知:如图,△ABC 为等腰直角三角形∠ACB =90°,过点C 作直线CM ,D 为直线CM 上一点,如果CE =CD 且EC ⊥CD . (1)求证:△ADC ≌△BEC ;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB15,故选A2.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.3.D解析:D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.4.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-, 经检验,25m =-是方程的解, 故选B. 【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.5.B解析:B 【解析】 【分析】根据题意可知DE 是AC 的垂直平分线,CD=DA .即可得到∠DCE=∠A ,而∠A 和∠B 互余可求出∠A ,由三角形外角性质即可求出∠CDA 的度数. 【详解】解:∵DE 是AC 的垂直平分线, ∴DA=DC , ∴∠DCE=∠A , ∵∠ACB=90°,∠B=34°, ∴∠A=56°,∴∠CDA=∠DCE+∠A=112°, 故选B . 【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.6.A解析:A 【解析】试题解析:∵直线l :与x 轴、y 轴分别交于A 、B ,∴B (0,43), ∴OB=43,在RT △AOB 中,∠OAB=30°, ∴OA=3OB=3×43=12,∵⊙P 与l 相切,设切点为M ,连接PM ,则PM ⊥AB ,∴PM=12PA , 设P (x ,0), ∴PA=12-x , ∴⊙P 的半径PM=12PA=6-12x , ∵x 为整数,PM 为整数,∴x 可以取0,2,4,6,8,10,6个数, ∴使得⊙P 成为整圆的点P 个数是6. 故选A .考点:1.切线的性质;2.一次函数图象上点的坐标特征.7.C解析:C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误; 当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.8.C解析:C【解析】【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【详解】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵∠AOB=90°,∴AB是⊙C的直径,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长=3,故选:C【点睛】本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.C解析:C【解析】【分析】【详解】∵A(﹣3,4),∴,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.10.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.11.A解析:A【解析】【分析】依据AB//CD ,EFC 40∠=o ,即可得到BAF 40∠=o ,BAE 140∠=o ,再根据AG 平分BAF ∠,可得BAG 70∠=o ,进而得出GAF 7040110∠=+=o o o .【详解】解:AB//CD Q ,EFC 40∠=o ,BAF 40∠∴=o ,BAE 140∠∴=o ,又AG Q 平分BAF ∠,BAG 70∠∴=o ,GAF 7040110∠∴=+=o o o ,故选:A .【点睛】本题考查的是平行线的性质和角平分线的定义,理解两直线平行,内错角相等是解题的关键.12.C解析:C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0,2.5),B(2,2.5),C(0.5,1)设函数解析式为y=ax2+bx+c把A. B. C三点分别代入得出c=2.5同时可得4a+2b+c=2.5,0.25a+0.5b+c=1解得a=2,b=−4,c=2.5.∴y=2x2−4x+2.5=2(x−1)2+0.5.∵2>0∴当x=1时,y min=0.5米.14.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线225r h+=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.15.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD交于点E 连接DFFMMNDN∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣43【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.16.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,DC=BC•sin60°=70×32≈60.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.18.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD解析:3【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=83432⨯=cm,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x =4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.三、解答题21.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD,如图1,由已知得到∠BAD=∠CAD,得到»»BD CD=,再由垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是可得结论;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt△DBP中得到,PB=3,在Rt△DEP中利用勾股定理可算出PE=2,由于OP⊥BC,则BP=CP=3,得到CE=1,由△BDE∽△ACE,得到AE的长,再证明△ABE∽△AFD,可得DF=12,最后利用S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)进行计算;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,由»»BD CD=得到CD=BD=△BFD∽△CDA,得到xy=4,再由△FDB∽△FAD,得到16﹣4y=xy,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD,如图1,∵AD平分∠BAC交⊙O于D,∴∠BAD=∠CAD,∴»»BD CD=,∴OD⊥BC,∵BC∥EF,∴OD⊥DF,∴DF为⊙O的切线;(2)连结OB,连结OD交BC于P,作BH⊥DF于H,如图1,∵∠BAC=60°,AD平分∠BAC,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC∥DF,∴∠DBP=30°,在Rt△DBP中,PD=12,在Rt△DEP中,∵,,∴=2,∵OP⊥BC,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE∽△ACE,∴AE:BE=CE:DE,即AE:5=1,∴,∵BE∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5DF=,解得DF=12,在Rt△BDH中,BH=12S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=212⨯+=2π;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即2323=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.22.(1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.【解析】【分析】(1)①利用线段的和差定义计算即可.②利用平行线分线段成比例定理解决问题即可.(2)①利用函数关系式计算即可.②描出点,即可.③由平滑的曲线画出该函数的图象即可.(3)根据函数图象写出两个性质即可(答案不唯一).【详解】解:(1)①如图3中,由题意,,,,故答案为:,. ②作于. ,, ,,, , 故答案为:,. (2)①当时,,当时,, 故答案为2,6. ②点,点如图所示.③函数图象如图所示.(3)性质1:函数值的取值范围为. 性质2:函数图象在第一象限,随的增大而减小.【点睛】 本题属于几何变换综合题,考查了平行线分线段成比例定理,函数的图象等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.23.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.24.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元.【解析】分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.详解;(1)设y 关于x 的函数解析式为y=kx+b ,8517595125k b k b +⎧⎨+⎩==,得5600k b ==-⎧⎨⎩, 即y 关于x 的函数解析式是y=-5x+600,当x=115时,y=-5×115+600=25,即m 的值是25;(2)设成本为a 元/个,当x=85时,875=175×(85-a ),得a=80,w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000,∴当x=100时,w 取得最大值,此时w=2000,(3)设科技创新后成本为b 元,当x=90时,(-5×90+600)(90-b )≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD =∠BCE ,利用SAS 即可证明△ADC ≌△BEC ;(2)由△ADC ≌△BEC 可得∠ADC =∠E =90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC ⊥DM ,∴∠ECD =90°,∴∠ACB=∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD=∠BCE,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。
2019-2020年九年级第一次模拟考试数学试题 Word版含答案
2019-2020年九年级第一次模拟考试数学试题 Word 版含答案一、选择题(共12小题,每小题3分,满分36分)2.下列二次根式中,最简二次根式是( ).A .B .C .D .3.已知一个正多边形的每个外角都是36°,则该正多边形的边数是(). A .7 B .8 C .9D .104.下列计算正确的选项是( )5. 要判断马力同学的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的( ).A .方差B .中位数C .平均数D .众数 6. 抛物线的顶点坐标是( )A .(3,2)B .(3,) C .(,2) D .(,)7.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2的度数是( )A. 155°B. 135°C. 125°D.115°8.关于x 的一元二次方程的一个根为0,则实数a 的值为( )A .1B .C .0D .或19.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19B.18C.16D.15 10.如图,是一个正六棱柱的主视图和左视图,则图中的a =( ). A . B . C .D .11.如图,在等边△ABC 中,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC,垂足分别为M 、N ,如果MN =1,那么△ABC 的面积为( )第11题图左视图主视图第10题图A.3B.C.4D.12.如图,在矩形ABCD 中,点E 为AB 的中点,E F⊥EC 交AD 于点F , 连接CF (AD >AE ),下列结论正确的是( )①∠AEF=∠BCE ;②AF+BC >CF ;③S △CEF =S △EAF +S △CBE ; ④若=,则△CEF ≌△CDF .A. ①②③ B ①②④ C ①③④ D ①②③④二、填空题(共6小题,每小题3分,满分18分)13. -3的倒数是 .14.在平面直角坐标系中,点(3,)与(-3,b )关于原点对称,则b = . 15.因式分解: .16.一组数据如下10,10,8,,已知这组数据的众数与平均数相等,则这组数据的中位数为17.观察下列各等式:①,②,③,④,…,猜想第n (n 是正整数)个等式是 .18.已知△ABC 中,,,平分交于,过作交于,作平分交于,过作交于,则线段的长度为 .(用含有的代数式表示)三、解答题(共8小题,满分66分)19.(6分)计算:(-2)×5+3.20.(6分)解不等式组:⎪⎩⎪⎨⎧-<-≤-33203x x , 并把解集在数轴上表示出来.21.(6分)如图,直线分别交x 轴、y 轴于A (1,0)、B (0,),交双曲线于点C 、D . (1)求k 、b 的值; (2)写出不等式的解集.C 第18题图B 1BA B 2 B 3 B 4 第21题图第12题图22.(8分)已知:如图,△ABC 中,AB =AC ,矩形BCDE 的边DE 分别与AB 、AC 交于点F 、G . 求证:EF =DG23.(8分)如图是某货站传送货物的平面示意图, AD 与地面的夹角为60°.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°成为37°, 因此传送带的落地点由点B 到点C 向前移动了2米.(1)求点A 与地面的高度;(2)如果需要在货物着地点C 的左侧留出2米,那么请判断距离D 点14米的货物Ⅱ是否需要挪走,并说明理由.(参考数据:sin37°取0.6,cos37°取0.8,tan37°取0.75,取)24.(10分)王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)补全上表中的有关数据,根据上表数据估计从袋中摸出一个球是黑球的概率是________;(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树形图或列表的方法计第23题图 AB C D EF G 第22题图算他两次都摸出白球的概率.25.(10分)已知:如图,点C 在以AB 为直径的⊙O 上,点D 在AB 的延长线上,∠BCD=∠A . (1)求证:CD 为⊙O 的切线;(2)过点C 作CE ⊥AB 于E .若CE=2,co s ∠D=,求AD 的长.26.(12分)如图,在平面直角坐标系中,已知抛物线经过,两点,顶点为.(1)求、的值;(2)将绕点顺时针旋转90°后,点A 落到点C 的位置,该抛物线沿轴上下平移后经过点,求平移后所得抛物线的表达式;(3)设(2)中平移后所得的抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足△的面积是△面积的3倍,求点的坐标.xx 年4月九年级一模考试参考答案及评分标准(数学)一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2. B ; 3. D ; 4.A ; 5.A ; 6.B ; 7.D ; 8.B ; 9.C ; 10.A ; 11.B ; 12.C ;二、填空题:(本大题共12题,每题4分,满分48分)13. ; 14.6; 15. ; 16.10; 17.n n 21121...21212132-=++++; 18. (或) 三、解答题(本大题共7题,满分78分)19.解:原式= -10+3 …………………………………………………3分 = -7 ……………………………………………………6分20.解:由①得:x ≤3 …………………………………………………………1分 由②得: …………………………………………………………3分………………………5分∴ 原不等式组的解集为: ………………………6分21. 解:(1)∵直线过点(1,0)和(0,-1),∴, ……………………………………………………2分 ∴. ……………………………………………………4分 (2)不等式的解集是:…………………6分22. 证明:∵AB =AC∴∠ABC =∠ACB ……………………………………………………1分 又∵四边形BCDE 是矩形∴BE =DC ,∠E =∠D =∠EBC =∠BCD =90°…………………………3分 ∴ ∠EBF =∠DCG ……………………………………………………5分 ∴△BEF ≌△CDG ……………………………………………………7分 ∴EF =DG ……………………………………………………8分23.解:(1)作AE ⊥BC 于点E , ……………………………………………………1分设,在Rt△ACE中,4cot3CE AE ACE x=⋅∠=,……………………………………2分在Rt△ABE中,,……………………………………3分∵BC=CE-BE,解得.………………………………………………………4分答:点A与地面的高度为6米.(2)结论:货物Ⅱ不用挪走.………………………………………………………5分在Rt△ADE中,cot63ED AE ADE=⋅∠=⨯=……………………6分…………………………………………………………7分∴CD=CE+ED=……………………………………………………………8分∴货物Ⅱ不用挪走.24.解:(1)0.251;……………………………………………………………1分0.25;……………………………………………………………2分(2)设袋中白球为x个,依题意,得:,……………………………………………………………5分x=3 ……………………………………………………………6分答:估计袋中有3个白球。
2019-2020中考数学一模试卷含答案
2019-2020中考数学一模试卷含答案一、选择题1.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是()A.B.C.D.2.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <04.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=5.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )A .12B .24C .123D .1636.直线y =﹣kx +k ﹣3与直线y =kx 在同一坐标系中的大致图象可能是( )A .B .C .D .7.下列计算正确的是( ) A .a 2•a=a 2 B .a 6÷a 2=a 3 C .a 2b ﹣2ba 2=﹣a 2bD .(﹣32a )3=﹣398a8.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .9.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x=+ C .1201508x x=- D .1201508x x =+ 10.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=35米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(5)米11.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55ab >D .-3a >-3b12.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 10 20 30 50 100 人数24531A .众数是100B .中位数是30C .极差是20D .平均数是30二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m 3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.060 0.070 0.065 0.073 0.074 0.069 0.069 0.071 0.070 0.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01). 14.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.15.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.16.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.17.分解因式:2x 3﹣6x 2+4x =__________.18.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .19.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.20.3x +x 的取值范围是_____.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.23.已知关于x的方程220++-=.x ax a(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.24.问题:探究函数y=x+的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x的取值范围是:____;(2)如表是y与x的几组对应值,请将表格补充完整:x…﹣3﹣2﹣﹣1123…y…﹣3﹣3﹣3﹣443…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).25.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看第一列是一个小正方形,第二列是一个小正方形,第三列是两个小正方形,故选:B.【点睛】本题考查了简单几何体的三视图,从上边看上边看得到的图形是俯视图.2.B解析:B 【解析】 【分析】①点P 在AB 上时,点D 到AP 的距离为AD 的长度,②点P 在BC 上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y 与x 的关系式,从而得解. 【详解】①点P 在AB 上时,0≤x≤3,点D 到AP 的距离为AD 的长度,是定值4; ②点P 在BC 上时,3<x≤5,∵∠APB+∠BAP=90°, ∠PAD+∠BAP=90°, ∴∠APB=∠PAD, 又∵∠B=∠DEA=90°, ∴△ABP∽△DEA,∴AB DE =AP AD AB APDE AD =,即34x y =, ∴y=12x, 纵观各选项,只有B 选项图形符合, 故选B .3.D解析:D 【解析】 【分析】 【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12bx a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D.考点:二次函数的图象及性质.4.D解析:D 【解析】 【分析】 【详解】解:A 、a+a 2不能再进行计算,故错误; B 、(3a )2=9a 2,故错误; C 、a 6÷a 2=a 4,故错误; D 、a·a 3=a 4,正确; 故选:D . 【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.5.D解析:D 【解析】 如图,连接BE ,∵在矩形ABCD 中,AD ∥BC ,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°. ∵把矩形ABCD 沿EF 翻折点B 恰好落在AD 边的B′处, ∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°. 在Rt △ABE 中,AB=AE•tan ∠AEB=2tan60°3. ∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD 的面积33D .考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.6.B解析:B【分析】若y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,可对A 、D 进行判断;若y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,则可对B 、C 进行判断. 【详解】A 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以A 选项错误;B 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以B 选项正确;C 、y=kx 过第二、四象限,则k <0,-k >0,k-3<0,所以y=-kx+k-3过第一、三象限,与y 轴的交点在x 轴下方,所以C 选项错误;D 、y=kx 过第一、三象限,则k >0,所以y=-kx+k-3过第二、四象限,所以D 选项错误. 故选B . 【点睛】本题考查了一次函数的图象:一次函数y=kx+b (k≠0)的图象为一条直线,当k >0,图象过第一、三象限;当k <0,图象过第二、四象限;直线与y 轴的交点坐标为(0,b ).7.C解析:C 【解析】 【分析】根据同底数幂的乘法运算可判断A ;根据同底数幂的除法运算可判断B ;根据合并同类项可判断选项C ;根据分式的乘方可判断选项D. 【详解】A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=-278a,不符合题意, 故选C . 【点睛】此题考查了分式的乘除法,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.8.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac 的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.9.D解析:D 【解析】 【分析】首先用x 表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程. 【详解】解:∵甲每小时做x 个零件,∴乙每小时做(x+8)个零件, ∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x =+, 故选D. 【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.10.A解析:A 【解析】试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠D=90°可得:米,则BC=BD -CD=8-3=5米.考点:直角三角形的勾股定理11.D解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 12.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A 不正确; 该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B 正确; 该组数据的极差是100-10=90,故极差是90不是20,所以选项C 不正确; 该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D 不正确.故选B .点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念. 二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故 解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.4【解析】【分析】【详解】解:连接AC 交OB 于D∵四边形OABC 是菱形∴AC⊥OB∵点A 在反比例函数y=的图象上∴△AOD 的面积=×2=1∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC 交OB 于D .∵四边形OABC 是菱形,∴AC ⊥OB .∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:415.【解析】根据弧长公式可得:=故答案为 解析:2π3【解析】 根据弧长公式可得:602180π⨯⨯=23π, 故答案为23π. 16.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案 5【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得5OB OA = 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆:,∴252512BODOAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭, ∴5OB OA=, ∴tan 5OB BAO OA∠==, 故答案为:5.【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.17.2x (x ﹣1)(x ﹣2)【解析】分析:首先提取公因式2x 再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x (x2﹣3x+2)=2x (x ﹣1)(x ﹣2)故答案为2x (x ﹣1)(x ﹣2)点解析:2x (x ﹣1)(x ﹣2).【解析】分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案.详解:2x 3﹣6x 2+4x=2x (x 2﹣3x+2)=2x (x ﹣1)(x ﹣2).故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.18.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF 根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF 解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF ,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF ,cos ∠BAF==,∴cos ∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念. 19.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.20.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x 的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式解析:x ≥﹣3【解析】【分析】直接利用二次根式的定义求出x 的取值范围.【详解】.在实数范围内有意义,则x +3≥0,解得:x ≥﹣3,则x 的取值范围是:x ≥﹣3.故答案为:x ≥﹣3.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分).【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)证明见解析;(2【解析】【分析】(1)在△CAD 中,由中位线定理得到MN ∥AD ,且MN=12AD ,在Rt △ABC 中,因为M 是AC 的中点,故BM=12AC ,即可得到结论; (2)由∠BAD=60°且AC 平分∠BAD ,得到∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,得到∠BMC =60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到222BN BM MN =+,再由MN=BM=1,得到BN 的长.【详解】(1)在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN ∥AD ,且MN=12AD ,在Rt △ABC 中,∵M 是AC 的中点,∴BM=12AC ,又∵AC=AD ,∴MN=BM ; (2)∵∠BAD=60°且AC 平分∠BAD ,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC ,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN ∥AD ,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴222BN BM MN =+,而由(1)知,MN=BM=12AC=12×2=1,∴. 考点:三角形的中位线定理,勾股定理.23.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 24.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.25.(1)见解析3【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF , ∵DE ∥BC ,∴∠EDB=∠DBF , ∴∠EBD=∠EDB , ∴BE=ED ,∴平行四边形BFDE 是菱形; (2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°, ∴∠ABC=60°,∵BD 平分∠ABC , ∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.。
2019-2020年初三第一次模拟考试数学试卷(word版,含答案)
保证铺地时既无缝隙又不重叠,请你告诉他们下面形状的塑胶板:①
正三角形; ② 正
四边形;③ 正五边形;④ 正六边形,可以选择的是
(
)
A. ②③④
B.
①②③
C. ①②④ D. ①③④
10. 如图, 四边形 ABCD为⊙ O的内接四边形, E 是 BC延长线上的一点, 已知 BOD 100 ,
则 DCE 的度数为(
六、解答题( 10× 2=20 分)
25.设 x i (i 1, 2 ,3 , , n ) 为任意代数式, 我们规定: y max x1 , x2 , , xn 表示 x1 ,x2 ,
, xn 中的最大值,如 y max 1,2 2
(1)求 y max x , 3 ;
(2)借助函数图像,解决以下问题:
向红色区域的概率是
.
17.在平行四边形 ABCD中,E 为 BC延长线上一点, AE交 CD于点 F,若 AB=7,CF=3,则 AD CE
的值为
.
红
白
白
红
红
蓝
第 16 题
第 17 题
18. 当 2 x 2 时,下列函数中,函数值 y 随自变量 x 增大而增大的是
(只
填写序号)① y 2x ;② y 2 x ;③ y
A .(— 4,— 3) B .( 4, 3 ) C .(— 4, 3 ) D .( 4,— 3)
3.若 x1, x2 是一元二次方程 x 2 4 x 1 0 的两个根,则 x1 +x2 的值是(
)
A. 1
B. 1
C. 4
D .4
4.下列图象中,表示直线 y x 1的是
(
)
5. 在一次中学生田径运动会上,参加男子跳高的
2019-2020年初三一模数学试题及答案
2019-2020年初三一模数学试题及答案一、选择题(本题共30分,每小题3分)1.如图,数轴上有A ,B ,C ,D 四个点,其中绝对值为2的数对应的点是( )A .点A 与点CB .点A 与点DC .点B 与点CD .点B 与点D2.南水北调工程是迄今为止世界上规模最大的调水工程. 2015年3月25日,记者从北京市南水北调办获悉,北京自来水厂每日利用南水约1 300 000立方米.将1 300 000用科学记数法表示应为( ) A .70.1310⨯ B .71.310⨯C .61.310⨯D .51310⨯3. 下面平面图形中能围成三棱柱的是( )4.如图,AB ∥CD ,AB 与EC 交于点F ,如果EA EF =,110C ∠=︒,那么E ∠等于( )A .30︒B .40︒C .70︒D .110︒5. 如图,数轴上表示的是某不等式组的解集,那么这个不等式组可能是( )A .23x x -⎧⎨⎩≥>B .23x x -⎧⎨⎩<≤C .23x x -⎧⎨⎩<≥D .23x x -⎧⎨⎩>≤6. 关于x 的一元二次方程2210mx x --=有两个实数根,那么字母m 的取值范围是( )A .1m ≥-B .1m >-C .10m m ≠≥-且D .10m m ≠>-且7. 某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了下边的折线图,那么符合这一结果的实验最有可能的是( )A .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球C .掷一枚质地均匀的硬币,落地时结果是“正面向上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6D CB A 021-2-18. 代数式245x x -+的最小值是( )A .-1B .1C .2D .59. 为增强居民的节水意识,某市自2014年实施“阶梯水价”. 按照“阶梯水价”的收费标准,居民家庭每年应缴水费y (元)与用水量x (立方米)的函数关系的图象如图所示.如果某个家庭2014年全年上缴水费1180元,那么该家庭2014年用水的总量是( ) A .240立方米B .236立方米C .220立方米D .200立方米10.如图,一根长为5米的竹竿AB 斜立于墙MN 的右侧,底端B 与墙角N 的距离为3米,当竹竿顶端A 下滑x 米时,底端B 便随着向右滑行y 米,反映y 与x 变化关系的大致图象是( )二、填空题(本题共18分,每小题3分)11.分解因式:2mx 2-4mx +2m = .12. 某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼的时间的众数是 小时. 13.如图,A ,B ,C 三点都在⊙O 上,如果∠AOB =80°,那么∠ACB = °.14.请写出一个图象经过点(11-,),并且在第二象限内函数值随着自变量的增大而增大的函数的表达式: .15.如图,O 为跷跷板AB 的中点,支柱OC 与地面MN 垂直,垂足为点C ,且OC =50cm ,当跷跷板的一端B着地时,另一端A 离地面的高度为cm.16.右图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口 A ,B ,C 的机动车辆数如图所示,图中 123,,x x x 分别表示该时段单位时间通过路段 AB ,BC ,CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则123,,x x x 的大小关系是 .(用“>”、“<”或“=”连接)三、解答题(本题共30分,每小题5分)17.已知:如图,点B ,F ,C ,E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF .求证:∠B =∠E .FDECB A18. 计算:0-112sin60(3.14π)12()2+--+.19.解分式方程: 112x x x -=-.20.如果21m m -=,求代数式21)(1)(1)2015m m m -++-+(的值.21.如图,一次函数122y x =+的图象与x 轴交于点B ,与反比例函数ky x =的图象的一个交点为A (2,m ).(1)求反比例函数的表达式;(2)过点A 作AC ⊥x 轴,垂足为点C ,如果点P 在反比例函数图象上,且△PBC 的面积等于6,请直接写出点P 的坐标.xAyOBC22.列方程或方程组解应用题:中国国家博物馆由原中国历史博物馆和中国革命博物馆两馆合并改扩建而成.新馆的展厅总面积与原两馆大楼的总建筑面积相同,成为目前世界上最大的博物馆.已知原两馆大楼的总建筑面积比原两馆大楼的展览面积的3倍少0.4万平方米,新馆的展厅总面积比原两馆大楼的展览面积大4.2万平方米,求新馆的展厅总面积和原两馆大楼的展览面积.四、解答题(本题共20分,每小题5分)23.如图,菱形ABCD 中, 分别延长DC ,BC 至点E ,F ,使CE =CD ,CF =CB ,联结DB ,BE ,EF ,FD . (1)求证:四边形DBEF 是矩形;(2)如果∠A =60 ,菱形ABCD 的面积为38,求DF 的长.FEDCBA24.根据某市统计局提供的2010~2014年该市地铁运营的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出“2014年某市居民乘地铁出行距离情况统计图”中m 的值;(2)从2010年到2014年,该市地铁的日均客流量每年的增长率近似相等,估算2015年该市地铁运营的日均客流量约为____________万人次;(3)自2015年起,该市地铁运营实行了新票价:乘地铁5公里内(含5公里)收费2元,乘地铁5~15公里(含15公里)收费3元,乘地铁15公里以上收费4元.如果2015年该市居民乘地铁出行距离情况与2014年基本持平,估算2015年该市地铁运营平均每日票款收入约为____________万元.25.如图,⊙O 的直径AB 垂直于弦CD ,垂足为点E ,过点C 作⊙O 的切线,交AB 的延长线于点P ,联结PD .(1)判断直线PD 与⊙O 的位置关系,并加以证明;(2)联结CO 并延长交⊙O 于点F ,联结FP 交CD 于点G ,如果CF =10,4cos 5APC ∠=,求EG 的长.GO PABCD E F26.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法. 先做四个全等的直角三角形,设它们的两条直角边分别为a ,b , 斜边为c ,然后按图1的方法将它们摆成正方形.由图1可以得到22142a b ab c +=⨯+(), 整理,得22222a ab b ab c ++=+. 所以222a b c +=.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请 你参照上述证明勾股定理的方法,完成下面的填空: 由图2可以得到 ,整理,得 , 所以.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.4444123123321213xOy28.在△ABC 中,CA =CB ,CD 为AB 边的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G. (1)如果∠ACB =90°,①如图1,当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形; ②如图2,当点P 不与点A 重合时,求CFPE的值; (2)如果∠CAB =a ,如图3,请直接写出CFPE的值.(用含a 的式子表示)29. 设点Q 到图形W 上每一个点的距离的最小值称为点Q 到图形W 的距离.例如正方形ABCD 满足A (1,0),B (2,0),C (2,1),D (1,1),那么点O (0,0)到正方形ABCD 的距离为1.(1)如果⊙P 是以(3,4)为圆心,1为半径的圆,那么点O (0,0)到⊙P 的距离为 ; (2)①求点(3,0)M 到直线21y x =+的距离;②如果点(0,)N a 到直线21y x =+的距离为3,那么a 的值是 ; (3)如果点(0,)G b 到抛物线2y x =的距离为3,请直接写出b 的值.4444123123321213xO y丰台区2015年度初三毕业及统一练习参考答案一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 答案BCABDCDBCA二、填空题(本题共18分,每小题3分)题号 1112 13 1415 16答案22(1)m x -7401y x=- , 答案不唯一100312x x x >>三、解答题(本题共30分,每小题5分) 17.证明:∵BF =CE ,∴BC =EF .……1分 ∵AC ∥DF ,∴∠ACB =∠DFE .……2分 ∵AC =DF ,∴ △ACB ≌△DFE .……4分 ∴∠B =∠E .……5分18.解:原式=3212322⨯+-+…4分 =33-....5分19.解:去分母得:2(2) 2.x x x x --=-…1分222 2.x x x x -+=-……2分2.x =-…….3分经检验,2x =-是原方程的解.…….4分所以,原方程的解是 2.x =-…….5分20. 解:原式=222112015m m m -++-+…1分=2222015m m -+……2分 =22()2015m m -+…….3分∵21m m -=, ∴原式=2017. …….5分21.(1)一次函数122y x =+的图象经过点A (2,m ), ∴3m =.∴点A 的坐标为(2,3). ………1分反比例函数ky x=的图象经过点A (2,3), ∴6k =………2分∴反比例函数的表达式为6.y x=……3分(2)(3,2)(3,2).P P --,………………5分22. 解:设新馆的展厅总面积为x 万平方米,原两馆大楼的展览面积为y 万平方米,根据题意列方程得:…1分4.2,30.4.x y x y =+=-⎧⎨⎩………3分 解得: 6.5,2.3.x y ==⎧⎨⎩ ………4分答:新馆的展厅总面积为6.5万平方米,原两馆大楼的展览面积为2.3万平方米. ………5分23.(1)证明: ∵CE =CD ,CF =CB ,∴四边形DBEF 是平行四边形..…….1分 ∵四边形ABCD 是菱形, ∴CD =CB ..…….2分 ∴CE =CF ,∴BF =DE ,∴四边形DBEF是矩形..…….3分23.(2)过点D 作DG ⊥BC 于点G ,∴∠DGC =90°. ∵四边形ABCD 是菱形,∠A =60︒,∴∠BCD =60°.在Rt△CDG 中,cos∠BCD =12CG CD =, ∴设CG =x ,则CD =BC =2x ,DG =3x . ∵菱形ABCD 的面积为38,∴83BC DG ⋅=.∴2383x x ⋅=,得2x =±(舍负),∴DG =23..……. 4分 ∵CF =CD ,∠BCD =60°,∴∠DFC =30°. ∴DF =2DG =43..…….5分24.(1)15;…1分(2)483;…2分(3)1593.9.…2分25.(1)PD 与⊙O 相切于点D ..……. 1分 证明:联结OD∵在⊙O 中,OD OC =,AB CD ⊥于点E , ∴12∠=∠. 又∵OP OP =,∴OCP ∆≌ODP ∆. ∴OCP ODP ∠=∠.又∵PC 切⊙O 于点C ,OC 为⊙O 半径, ∴OC PC ⊥..……. 2分∴090OCP ∠=.∴090ODP ∠=.∴OD PD ⊥于点D . ∴PD 与⊙O 相切于点D ..……. 3分 (2)作FM AB ⊥于点M .∵090OCP ∠=,CE OP ⊥于点E ,∴03490∠+∠=,0490APC ∠+∠=.∴3APC ∠=∠. ∵4cos 5APC ∠=,∴Rt△OCE 中,4cos 35CE OC =∠=.∵10CF =,∴152OF OC CF ===.∴4CE =,3OE =..……. 4分 又∵FM AB ⊥,AB CD ⊥,∴090FMO CEO ∠=∠=.ABCDEFG M3421FE D CBAPO G5BCAxO yDx =1y =2x -2y =2x 2-4x -2-13-2-4∵51∠=∠,OF OC =,∴OFM ∆≌OCE ∆.∴4FM CE ==,3OM OE ==. ∵在Rt△OCE 中,4cos 5PC OP APC =∠=,设4,5PC k OP k ==,∴3OC k =. ∴35k =,53k =.∴253OP =.∴163PE OP OE =-=,343PM OP OM =+=. 又∵090FMO GEP ∠=∠=,∴FM ∥GE .∴PGE ∆∽PFM ∆.∴GE PE FM PM =,即1633443GE=.∴3217GE =..……. 5分26.22142ab b a c ⨯+-=(),.…….3分 22222ab b ab a c +-+=,.……. 4分 222a b c +=..……. 5分五、解答题27 . 解:(1)∵抛物线22y x mx n =++过点A (-1,a ),B (3,a ), ∴抛物线的对称轴x =1..……. 1分 ∵抛物线最低点的纵坐标为-4 , ∴抛物线的顶点是(1,-4)..……. 2分 ∴抛物线的表达式是22(1)4y x =--, 即2242y x x =--..…3分把A (-1,a )代入抛物线表达式,求出4a =..……. 4分(2)∵抛物线顶点(1,4)C -关于y 轴的对称点为点D ,∴(1,4)D --.求出直线CD 的表达式为4y =-. .……. 5分求出直线BD 的表达式为22y x =-,当1x =时,0y =..……. 6分 所以40t -<≤..……. 7分28.(1)①作图.……. 1分ADE ∆(或PDE ∆).…….2分②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,.…….3分∴CPM CAB ∠=∠.∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF CG ⊥,∴∠PFC =∠PFN =90°.∵PF =PF ,∴PFC ∆≌PFN ∆.∴CF FN =..…….4分 由①得:PME ∆≌CMN ∆.∴PE CN =.∴12CF CF PE CN ==..…….5分 (2)1tan 2α..…….7分29. (1)4;.…….2分(2)①直线21y x =+记为l ,过点M 作MH l ⊥,垂足为点H ,设l 与,x y 轴的交点分别为,E F ,则1(,0)(0,1)2E F -,.∴52EF =..…….3分 ∵EOF MHE ∆∆∽∴MH MEOF EF =,即72152MH =.∴755MH =.∴点M 到直线21y x =+的距离为755..…….4分 ②135a =±..…….6分(3)3b =-或374b =..…….8分GF EBC(P )A DG F EC D AP BN MM 3—121H yOxEF y =2x +1。
2019-2020年初三一模数学试卷参考答案
2019-2020年初三一模数学试卷参考答案二、填空题(每空3分,共30分)9.17; 10.2.3×105; 11.xy 2-=; 12.a (x +2)(x -2); 13.1、2、3; 14. 110;15.4; 16.21; 17.②、④(填对一个得2分); 18.2; 三、解答题(共74分)19.解:原式=1+3-32…………………………………………………3分 =4-32………………………………………………………4分 20.解:22111a a +-+21(1)(1)(1)(1)a a a a a -=++-+-………………2分 1(1)(1)a a a +=+-………………………………………………3分11a =-…………………………………………………………4分 当3a =时,原式1111312a ===--.……………………………………6分21………………………………………………………………………………2分12x 2x 2+≥+.…………………………………………………………3分理由:(x 2+2)—(2x+1)=x 2—2x+1……………………………………4分 =(x —1)2≥0.……………………………………………………………5分 ∴12x 2x 2+≥+.………………………………………………………6分等级522.证明:∵AB =AC∴∠B =∠C ……………………………………………………………1分 ∵∠B+∠C =∠DAB ………………………………………………………2分∴∠C =21∠DAB ………………………………………………………3分 ∵∠DAM=21∠DAB ………………………………………………………4分∴∠C =∠DAM ……………………………………………………………5分∴AM ∥BC …………………………………………………………………6分 23.(1)条形图补充正确;………2分(2)10﹪;…………………………………………3分 (3)72°;…………………………………………4分 (4)330.……………………………………………7分 (计算出A 、B 级人数各得1分,合计3分)24.(1)画出树状图来说明评委给出A 选手的所有可能结果: 所有可能出现的结果(通过 通过 通过)(通过 通过 淘汰)(通过 淘汰 通过)(通过 淘汰 淘汰) (淘汰 通过 通过) (淘汰 通过 淘汰)(淘汰 淘汰 通过) (淘汰 淘汰 淘汰)………………………………………………………………………………………………4分 (2)由上可知评委给出A 选手所有可能的结果有8种. 并且它们是等可能的……5分对于A 选手,进入下一轮比赛的概率是12.………………………………………7分25.解:(1)设规定时间为x 天,则13221220=++++x x x ………………………3分 解之,得x=28.………………………………………………………………4分 经检验x=28是原方程的根所以规定的时间是28天.……………………………………………………………5分(2)设甲、乙两组合做完成这项工程的65用去y 天,则65)16282142821(=-⨯++⨯y 解之,得y=20(天). ……………………………………………………………6分甲独做剩下工程所需时间:10(天).因为20+l0=30>28, 所以甲独做剩下工程不能在规定时间内完成;………………7分甲 乙 丙通过通过淘汰通过 淘汰 通过淘汰淘汰 通过淘汰通过淘汰通过淘汰乙独做剩下工程所需时间:320(天). 因为20+320=2632<28,所以留下乙组最好……………………………………8分 26.方法一:过点C 作CE ⊥AB 与AB 的延长线相交于点E ,……1分 在Rt △ACE 中,CE=A E ·tanA=(3+x+0.8)·33……………………3分 在Rt △BCE 中,CE=B E ·tan ∠CBE=(x+0.8)·3…………………5分∴(3+x+0.8)·33=(x+0.8)·3……………………………………6分解得x=0.7………………………………………………………………8分方法二:过点C 作CE ⊥AB 与AB 的延长线相交于点E ,则……………………1分 ∵∠DCA =30°,DC ∥AB ∴∠A =30°……………………………………………………………………………2分 ∵∠ACB =∠DCB -∠DCA =30°……………………………………………………3分 ∴∠A =∠ACB∴BC=AB=3.…………………………………………………………………………5分 在Rt △BCE 中,∠BCE =30°, ∴BE=21CB=1.5,……………………………………………………………………6分 ∴x=0.7………………………………………………………………………………8分 27.活动一:1;……………………………………………2分活动二:正方形,4;………………………………6分活动三:方法1:过点B 作BG ⊥DC 于点G ,将Rt △BCG 按逆时针方向绕点B 旋转90°得到Rt △BEF ,…………………………………………………7分则EF=CG=4-2=2,…………………………………8分∠BFE =∠BGC =90°,∠EBF =∠CBG∴∠CBG +∠CBF =∠EBF +∠CBF =∠CBE =90° ∴∠ABG +∠CBG +∠CBF =180°∴点A 、B 、F 在同一条直线上…………………………9分∴S △ABE =21A B ·EF =2……………………………………10分方法2:过点B 作BG ⊥DC 于点G ,过点E 作EF ⊥AB 与AB 的延长线交于点F ………7分通过证明△BCG ≌△BE F ………………………………………………………9分∴S △ABE =21A B ·EF =2…………………………………………………………10分CA B D EB CDAE G F28.(1)当点A 的坐标为(1,0)时,AB=AC=2-1,点C 的坐标为(1,2-1);…………………………………………………………………1分当点A 的坐标为(-1,0)时,AB=AC=2+1,点C 的坐标为(-1,2+1);………2分 (2)直线BC 与⊙O 相切……………………………………………………………………3分 过点O 作OM ⊥BC 于点M , ∴∠OBM =∠BOM =45°, ∴OM=O B ·sin45°=1……………………………………………………………………4分 ∴直线BC 与⊙O 相切……………………………………………………………………5分 (3)过点A 作AE ⊥OB 于点E在Rt △OAE 中,AE 2=OA 2-OE 2=1- x 2,在Rt △BAE 中,AB 2=AE 2+BE 2=(1-x 2) +(2-x )2=3-22x ∴S=21A B ·AC=21 AB 2=21(3-22x)= x 223-……………………………………6分 其中-1≤x ≤1,当x=-1时,S 的最大值为223+,……………………………………………………7分 当x=1时,S 的最小值为223-.……………………………………………………8分(4)①当点A 位于第一象限时(如右图): 连接OA ,并过点A 作AE ⊥OB 于点E ∵直线AB 与⊙O 相切,∴∠OAB=90°, 又∵∠CAB=90°,∴∠CAB +∠OAB=180°,∴点O 、A 、C 在同一条直线上 ∴∠AOB =∠C=45°,在Rt △OAE 中,OE=AE=22.点A 的坐标为(22,22) (9)过A 、B 两点的直线为y =-x+2. (10)②当点A 位于第四象限时(如右图):点A 的坐标为(22,-22)………………………………………11分过A 、B 两点的直线为y=x -2.……………………………………12分江宁第8题解答设CO为x,根据勾股定理OA2=x2+(2x)2 OE2=(x+4)2+16OA,OE均为半圆的半径所以有x2+(2x)2=(x+4)2+16 解得x=2,或x=4如果x=2,则大正方形边长等于小正方形边长,所以x不为2. x=4 半圆的半径=4√5。
2019-2020年中考一模数学试题(WORD版,含答案)
2019-2020年中考一模数学试题(WORD 版,含答案)一.仔细选一选 (本题有10个小题, 每小题3分, 共30分) 1.下列各数中,倒数为– 2的数是( )A. 2B. – 2C. 21D.21- 2.下列各式中,错误..的是( ) A. 3)3(2=-B.3=-C. 3)3(2=3=-3. 下列计算正确的是( )4. 图象经过点(2,1)的反比例函数是( )A. 2y x =-B. 2y x =C. 12y x= D. 2y x =5.将一块含60°角的三角板与一无刻度的直尺按如图所示摆放,如果三角板的斜边与直尺的长边平行,则图中1∠等于( )A .30°B .35°C .45°D .60°6. 心率即心脏在一定时间内跳动的次数. 某次九年级体检对5名同学的心率测试结果如下(次/分):76,72,74,76,77. 则下列说法错误..的是( ) A .这组测试结果的众数是76 B. 这组测试结果的平均数75 C. 这组测试结果的中位数是74 D. 这组测试结果的方差是2.3 7. 如图是某几何体的三视图,则该几何体的表面积为( )A. 31224+B. 31216+C. 3624+D. 3616+8. 不等式组⎪⎩⎪⎨⎧>+<--x x a x x 324)3(2无解,则a 的取值范围是( )A.2<aB.a ≤2C. 2>aD. a ≥2 9. 已知⊙O 半径为3cm ,下列与⊙O 不是..等圆的是( ) A. ⊙1O 中,120°圆心角所对弦长为B. ⊙2O 中,45°圆周角所对弦长为第7题第5题C. ⊙3O 中,90°圆周角所对弧长为32πcm D. ⊙4O 中,圆心角为60°的扇形面积为32π2cm10.如图,射线AM 、BN 都垂直于线段AB ,点E 为AM 上一点,过点A 作BE 的垂线AC 分别交BE 、BN 于点F 、C ,过点C 作AM 的垂线CD ,垂足为D . 若CD =CF ,则=ADAE( ) A. 215- B. 412+ C. 21D. 413+二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.当3=x 时,分式bx ax +-没有意义,则=b .12.如图,铁管CD 固定在墙角,BC =5米,∠BCD =55°,则顶端D 的高度为 .13. 函数b ax y +=的图象如图,则方程0=+b ax 的解为 ;不等式0<b ax +≤2的解集为 .14. 函数y = 2x 与函数y =x2的图象相交于A ,C 两点,AB 垂直于x 轴于点B ,则△ABC 的面积为 .15. 矩形纸片ABCD 中,AD =15cm ,AB =10cm ,点P 、Q 分别为AB 、CD 的中点. 如图,将这张纸片沿AE 折叠,使点B 与点G 重合,则AGE ∆的外接圆的面积为 .16. 如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B(4,2),一次函数y =kx -1的图象平分它的面积.若关于x 的函数k m x k m mx y +++-=2)3(2的图象与坐标轴只有两个交点,则m 的值为 .三. 全面答一答 (本题有7个小题, 共66分)17. (本小题满分6分) 梯形ABCD 中,AD ∥BC ,请用尺规作图并解决问题.第13题第10题第12题第15题第16题⑴作AB 中点E ,连接DE 并延长交射线CB 于点F ,在DF 的下方作FDG ∠=ADE ∠,边DG 交BC 于点G ,连接EG ; ⑵试判断EG 与DF 的位置关系,并说明理由.18.(本小题满分8分)一个数的算术平方根为62-m ,此数的平方根为)2(-±m ,求这个数.19. (本小题满分8分)甲、乙两人每次都从五个数–2,–1,0,1,2中任取一个,分别记作x 、y .在平面直角坐标系中有一圆心在原点、半径为2的圆. ⑴能得到多少个不同的数组(x ,y )?⑵若把⑴中得到的数组作为点P 的坐标 (x ,y ), 则点P 落在圆内的概率是多少?20. (本小题满分10分)如图,点A 的坐标为)0,1(-,点B 在直线42-=x y 上运动.⑴若点B 的坐标是)2,1(-,把直线AB 向上平移m 个单位后,与直线42-=x y 的交点在第一象限,求m 的取值范围;⑵当线段AB 最短时,求点B 的坐标.21. (本小题满分10分)如图,AB =AC ,AE 是△ABC 中BC 边上的高线,点D 在直线AE 上一点(不与A 、E 重合). ⑴ 证明:△ADB ≌△ADC ;⑵当△AEB ∽△BED 时,若cos ∠DBE =32,BC = 8,求线段AE 的长度.第20题第21题22. (本小题满分12分) 如图,抛物线与x 轴相交于B 、C 两点,与y 轴相交于点A ,P (a ,m a a ++-272)(a 为任意实数)在抛物线上,直线b kx y +=经过A 、B 两点,平行于y 轴的直线2=x 交直线AB 于点D ,交抛物线于点E .⑴若2=m ,①求直线AB 的解析式;②直线x =t 0(≤t ≤)4与直线AB 相交于点F ,与抛物线相交于点G . 若FG ∶DE =3∶4,求t 的值;⑵当EO 平分AED ∠时,求m 的值.23. (本小题满分12分) 如图,已知正方形ABCD 的边长为4,点E 、F 分别从C 、A 两点同时出发,以相同的速度作直线运动. 已知点E 沿射线CB 运动,点F 沿边BA 的延长线运动,连结DF 、DE 、EF ,EF 与对角线AC 所在的直线交于点M ,DE 交AC 于点N .⑴求证:DE ⊥DF ;⑵设CE =x ,AMF ∆的面积为y ,求y 与x 之间的函数关系式,并写出自变量的取值范围;⑶随着点E 在射线CB 上运动,NA ·MC 的值是否会发生变化?若不变,请求出NA ·MC 的值;若变化,请说明理由.第22题2014年杭州江干区中考数学一模答案一、 选择题1. D2. D3. B4. B5. A6. C7. A8. B9. B (解析:90°所对的弦长才为 10. A 解析:第23题备用图222CD=CF CDE CFE ED=EF DEC=FEC=ECB BE=BC AE=ED=y EF=y BC=BE=x BF=x AEF CBF ,y 0,()()1011AE 1,=22AD 2x y y yyx x x y x x xy x y x x x x y ∠∠∠∴∴=+-=+-=++=∴===+由易知≌,,,设x,,,+y,由∽,有可得则得则二、 填空题11. -3 12. 5tan55° 13. x=3 14. 0≤x<3 15. 2 16. 0或-1或12-解析:三、解答题17. (1)略(2)易知,ADE BFE ≅ED EF =得,ADE EFG ∠=∠又知ADE FDG ∠=∠,有DG=FGEG DF ∴⊥18.解:228m m m =m 2)m 4(3m ≥≥-==知(2-6)0得3,且(2-6)(得或不符舍去)∴m 的值为419.解:(1)共能得到52=25个数组(2)2B BE x E BCOE y=(3m 1)x 2m 1=x 1)(21)2m+1=1m=-1,1O 2m 10,2mx m mm -+++---≠=+==-过点作⊥轴于点,知直线平分梯形必过矩形的中心(2,1)则求得k=1,函数为,mx (。
2019-2020年九年级数学第一次摸底试题答案
2019-2020年九年级数学第一次摸底试题答案一、选择题(每题3分,共30分)二、填空题(每题3分,共15分)三、解答题(本大题8个小题,共75分)16.(8分)解:原式= = ……………4分当a=0时,原式==217. (1)m=70,n=0.2 ……………2分(2)如图……………4分(3)80≤x<90 ……………6分(4) 3000×0.25=750(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有750人.……………9分18.解(1)证明:连接DO,∵AC为直径,∴∠ADC=90°,∴∠CDB=90°∵E为BC边的上中点,∴CE=EB=DE,∴∠CDE=∠ECD,∵OC=OD,∴∠ODC=∠OCD, ……………3分∴∠CDE+∠ODC=∠ECD+∠OCD.即∠ODE=∠ACB=90°,∵D为圆O上的点,∴DE是圆O的切线. ……………5分(2)①3 ②45°……………9分20.解(1)设购买A 种树苗每棵需要x 元,B 种树苗每颗y 元,由题意得,解得,答: 购买A 种树苗每棵需要100元,B 种树苗每颗50元 …………3分(2) 设购买A 种树苗m 棵,则B 种树苗(100-m)颗,由题意得, 解得故有四种购买方案:①购买A 种树苗50颗,B 种树苗50颗;②购买A 种树苗51颗,B 种树苗49颗;③购买A 种树苗52颗,B 种树苗48颗;④购买A 种树苗53颗,B 种树苗47颗;………6分(3)设种植工钱为W,由题意得:W=30m+20(100-m)=10m+xx,∵10>0,∴W 随着m 的增大而增大,∴当m=50时,W 最小,最小值是2500元,所以购买A 种树苗50颗,B 种树苗50颗时所付的种植工钱最少,最少工钱是2500元.21. 解:(2)抛物线如图所示;(3)x= - 4, -1或1;(4) - 4<x <-1或x >1.22.解(1)BE=AF;(2)无变化.如图2,在Rt △ABC 中,∵AB=AC, ∴∠ABC=∠ACB=45°,∴sin ∠ABC=.在正方形CDEF 中,∵∠FEC=∠FED=45°,∠EFC=90°,∴sin ∠FEC==.∴.………….9分∵∠FCE=∠ACB=45°,∴∠FCE-∠ACE=∠ACB-∠ACE,即∠FCA=∠ECB.∴△ACF∽△BCE,∴==, 即BE=AF;∴线段BE与AF的数量关系无变化.(3)-1或+123.解(1)∵A,B两点在直线y=-x-4上,且横坐标分别为-1,-4,∴A(-1,-3),B(-4,0) ……………1分∵抛物线过原点,∴c=0.将A(-1,-3),B(-4,0)代入抛物线解析式可得,解得∴抛物线解析式为y=x2+4x. ………………2分(2)△ABC为等腰三角形,可分三种情况:①AB=AC时,此时点C在y轴上,设C(0,y), ……………3分则AB==3,∴AC=3,即AC==3,解得y1=-3-,y2=-3+,∴C(O, -3-)或C(0, -3+); ………………4分②AB=BC时,此时点C在x轴上,设C(x,0) ………5分则有AB==3,∴BC=3,即BC=|x+4|=3,解得x1=-4+3,x2=-4-3,∴C(-4+3,0)或C(-4-3,0) ……………6分③CB=CA时,此时点C在线段AB的垂直平分线与坐标轴的交点处,设AB的垂直平分线的解析式为y=x+d,由题可得线段AB的中点坐标为(-,-),将(-,-)代入y=x+d可得d=1,即AB的垂直平分线解析式为y=x+1.∴C(-1,0)或C(0,1) ………………8分(3)过点P作PQ⊥EF,交EF于点Q,过点A作AD⊥x轴于点D,∵PE∥OA,GE∥AD,∴∠OAD=∠PEG,∠PQE=∠ODA=90°,∴△PQE∽△ODA,∴即EQ=3PQ,∵直线AB的解析式为y=-x-4,∴∠ABO=45°=∠PFQ,∴PQ=FQ,∴EF=4PQ ……………9分∵S△BGF=3S△EFP,∴GF2=34PQ2∴GF=2PQ.∴…………11分。
2019-2020中考数学一模试卷含答案
2019-2020中考数学一模试卷含答案一、选择题1.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .2.下列几何体中,其侧面展开图为扇形的是( )A .B .C .D .3.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根4.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .25.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.A .1B .2C .3D .46.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 7.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A.B.C.D.8.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣59.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()A.60°B.50°C.45°D.40°10.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间11.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°12.cos45°的值等于( )A.2B.1C.32D.22二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.如图:已知AB=10,点C、D在线段AB上且AC=DB=2; P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连结EF,设EF的中点为G;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.15.计算:2cos45°﹣(π+1)0+111()42-+=______. 16.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y (米)表示甲、乙两人之间的距离,x (秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y 与x 函数关系,那么,乙到达终点后_____秒与甲相遇.18.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得如图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角∠CBD =60°; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度AB =1.5米.根据测量数据,计算出风筝的高度CE 约为_____米.(精确到0.1米,3≈1.73).19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量100 200 500 1000 2000 A出芽种子数 96 165 491 984 1965 发芽率0.960.830.980.980.98出芽种子数961924869771946B发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.22.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.修建隧道可以方便出行.如图:A,B两地被大山阻隔,由A地到B地需要爬坡到山顶C地,再下坡到B地.若打通穿山隧道,建成直达A,B两地的公路,可以缩短从A地i B到C坡面的坡角到B地的路程.已知:从A到C坡面的坡度345CBA ∠=︒,42BC =公里.(1)求隧道打通后从A 到B 的总路程是多少公里?(结果保留根号)(2)求隧道打通后与打通前相比,从A 地到B 地的路程约缩短多少公里?(结果精确到0.01)(2 1.414≈,3 1.732≈)25.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F 'V V ≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】作线段BC 的垂直平分线可得线段BC 的中点. 【详解】作线段BC 的垂直平分线可得线段BC 的中点. 由此可知:选项A 符合条件, 故选A . 【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.2.C解析:C 【解析】 【分析】根据特殊几何体的展开图逐一进行分析判断即可得答案. 【详解】A 、圆柱的侧面展开图是矩形,故A 错误;B 、三棱柱的侧面展开图是矩形,故B 错误;C 、圆锥的侧面展开图是扇形,故C 正确;D 、三棱锥的侧面展开图是三个三角形拼成的图形,故D 错误, 故选C . 【点睛】本题考查了几何体的展开图,熟记特殊几何体的侧面展开图是解题关键.3.A解析:A 【解析】 【分析】先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>, ∴方程由两个不相等的实数根.故选:A . 【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.4.C解析:C 【解析】 【分析】由A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继而求得答案. 【详解】解:连接OA ,OB . ∵∠APB =45°, ∴∠AOB =2∠APB =90°. ∵OA =OB =2,∴AB 故选C .5.B解析:B 【解析】 【分析】由图像可知a >0,对称轴x=-2ba=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断. 【详解】解:∵抛物线开口向上, ∴a >0,∵抛物线的对称轴为直线x =﹣2ba=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方, ∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∵x =﹣1时,y =0, ∴a ﹣b +c =0,所以②错误; ∵b =﹣2a ,∴2a +b =0,所以③错误; ∵抛物线与x 轴有2个交点, ∴△=b 2﹣4ac >0,所以④正确. 故选B . 【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.6.B解析:B 【解析】【分析】根据菱形的性质逐项进行判断即可得答案. 【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等, 故选B .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.7.D解析:D 【解析】 【分析】 【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等; B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1. 故选:D8.A解析:A 【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等, ∴4=|2a +2|,a +2≠3, 解得:a =−3, 故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.9.D解析:D 【解析】 【分析】 【详解】∵∠C=80°,∠CAD=60°, ∴∠D=180°﹣80°﹣60°=40°, ∵AB ∥CD , ∴∠BAD=∠D=40°. 故选D .10.B解析:B 【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.11.D解析:D 【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.D解析:D 【解析】 【分析】将特殊角的三角函数值代入求解. 【详解】 解:cos45°= 2. 故选D . 【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案. 详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan∠BAC=133 EF ACAF AC==.故答案为1 3 .点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.3【解析】【分析】分别延长AEBF交于点H易证四边形EPFH为平行四边形得出G为PH中点则G的运行轨迹为三角形HCD的中位线MN再求出CD的长运用中位线的性质求出MN的长度即可【详解】如图分别延长A解析:3【解析】【分析】分别延长AE、BF交于点H,易证四边形EPFH为平行四边形,得出G为PH中点,则G 的运行轨迹为三角形HCD的中位线MN.再求出CD的长,运用中位线的性质求出MN的长度即可.【详解】如图,分别延长AE、BF交于点H.∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G也正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为三角形HCD的中位线MN.∵CD=10-2-2=6,∴MN=3,即G的移动路径长为3.故答案为:3.【点睛】本题考查了等腰三角形及中位线的性质,以及动点问题,是中考的热点.15.【解析】解:原式==故答案为:解析:322 +.【解析】解:原式=212122⨯-++=322+.故答案为:322+.16.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300 s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.1【解析】试题分析:在Rt△CBD中知道了斜边求60°角的对边可以用正弦值进行解答试题解析:在Rt△CBD中DC=BC•sin60°=70×≈6055(米)∵AB=15∴CE=6055+15≈621解析:1.【解析】试题分析:在Rt△CBD中,知道了斜边,求60°角的对边,可以用正弦值进行解答.试题解析:在Rt△CBD中,.55(米).∵AB=1.5,∴CE=60.55+1.5≈62.1(米).考点:解直角三角形的应用-仰角俯角问题.19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516. 三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.20元/束.【解析】【分析】设第一批花每束的进价是x 元/束,则第一批进的数量是:4000x ,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程. 【详解】设第一批花每束的进价是x 元/束, 依题意得:4000x ×1.5=45005x -,解得x =20.经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,剟剟. 当1017a 剟时, (ⅰ)当10a =时,10010801200b ⨯+„,∴52b „, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+„,∴54b „, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a …时,1001200a …,即成人门票至少需要1200元,不合题意,舍去. 当110a <„时,(ⅰ)当9a =时,100980601200b ⨯++„,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++„,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.24.(1)隧道打通后从A 到B 的总路程是(434)+公里;(2)隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【解析】【分析】(1)过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.(2)由坡度可以得出A ∠的度数,从而得出AC 的长,根据AC CB AB +-即可得出缩短的距离.【详解】(1)作CD AB ⊥于点D ,在Rt BCD ∆中,∵45CBA ∠=︒,42BC =,∴4CD BD ==.在Rt ACD ∆中,∵1:3CD i AD==, ∴343AD CD ==,∴()434AB =+公里.答:隧道打通后从A 到B 的总路程是()434+公里.(2)在Rt ACD ∆中,∵3CD i AD==, ∴30A ∠=︒,∴2248AC CD ==⨯=,∴842ACCB +=+.∵434AB =+,∴842434 2.73AC CB AB +-=+--≈(公里).答:隧道打通后与打通前相比,从A 地到B 地的路程约缩短2.73公里.【点睛】本题考查的是解直角三角形的应用-坡度问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记坡度和锐角三角函数的定义.25.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.又∵AF=AE,∴平行四边形AECF是菱形.考点:1.全等三角形的判定;2.菱形的判定.。
2019-2020中考数学一模试卷(附答案)
2019-2020中考数学一模试卷(附答案)一、选择题1.下列计算正确的是( )A .2a +3b =5abB .( a -b )2=a 2-b 2C .( 2x 2 )3=6x 6D .x 8÷x 3=x 5 2.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .3.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( )A .27B .9C .﹣7D .﹣16 4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--5.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连结BF 交AC 于点M ,连结DE 、BO .若∠COB=60°,FO=FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE :S △BCM =2:3.其中正确结论的个数是( )A .4个B .3个C .2个D .1个7.如图,在矩形ABCD 中,2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A.2个B.3个C.4个D.5个8.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁9.如图,在矩形ABCD中,AD=3,M是CD上的一点,将△ADM沿直线AM对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A.3 B.23C.32D.610.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样11.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间12.均匀的向一个容器内注水,在注水过程中,水面高度h与时间t的函数关系如图所示,则该容器是下列中的()A.B.C.D.二、填空题13.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE <15°,∠C的度数为整数,则∠C的度数为_____.14.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表501002004005008001000120015002000数n色盲患者的频37132937556985105138数m色盲患者的频0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069率m/n根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).15.如图是两块完全一样的含30°角的直角三角尺,分别记做△ABC与△A′B′C′,现将两块三角尺重叠在一起,设较长直角边的中点为M,绕中点M转动上面的三角尺ABC,使其直角顶点C恰好落在三角尺A′B′C′的斜边A′B′上.当∠A=30°,AC=10时,两直角顶点C,C′间的距离是_____.16.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.17.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.19.计算:82-=_______________.20.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____. 三、解答题21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.23.如图,在四边形ABCD 中,AB DC P ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =2BD =,求OE 的长.24.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F 'V V ≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.D解析:D【解析】【分析】先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=−2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(−2,0),(8,0),最后把(−2,0)代入y=x2−6x+m可求得m的值.【详解】解:∵抛物线的对称轴为直线x=,∴x=−2和x=8时,函数值相等,∵当−2<x<−1时,它的图象位于x轴的下方;当8<x<9时,它的图象位于x轴的上方,∴抛物线与x 轴的交点坐标为(−2,0),(8,0),把(−2,0)代入y =x 2−6x +m 得4+12+m =0,解得m =−16.故选:D .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 5.A解析:A【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a \=,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选:A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.6.A解析:A【解析】【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB ≌△OEB 得△EOB ≌△CMB ;③先证△BEF 是等边三角形得出BF=EF ,再证▱DEBF 得出DE=BF ,所以得DE=EF ;④由②可知△BCM ≌△BEO ,则面积相等,△AOE 和△BEO 属于等高的两个三角形,其面积比就等于两底的比,即S △AOE :S △BOE =AE :BE ,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE ,得出结论S △AOE :S △BOE =AE :BE=1:2.【详解】试题分析:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BOE=1:2,又∵FM:BM=1:3,∴S△BCM =34S△BCF=34S△BOE∴S△AOE:S△BCM=2:3故④正确;所以其中正确结论的个数为4个考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质7.C解析:C【解析】【分析】【详解】试题分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AB,∵AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=12(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵∠AHB=12(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选C.【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质8.D解析:D【解析】【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【详解】∵22211x x x x x -÷--=2221·1x x x x x ---=() 2212·1xx xx x----=()()221·1x x xx x----=()2xx --=2xx-,∴出现错误是在乙和丁,故选D.【点睛】本题考查了分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.9.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴==故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 10.C解析:C【解析】试题分析:设商品原价为x,表示出三家超市降价后的价格,然后比较即可得出答案.解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选C.考点:列代数式.11.B解析:B【解析】 解:∵3104<<,∴41015<+<.故选B .点睛:此题主要考查了估算无理数的大小,正确得出10 的取值范围是解题关键.12.D解析:D【解析】【分析】由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D 几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.【点睛】此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.二、填空题13.36°或37°【解析】分析:先过E 作EG∥AB 根据平行线的性质可得∠AEF=∠BAE+∠DFE 再设∠CEF=x 则∠AEC=2x 根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E 作EG ∥AB ,根据平行线的性质可得∠AEF=∠BAE+∠DFE ,再设∠CEF=x ,则∠AEC=2x ,根据6°<∠BAE <15°,即可得到6°<3x-60°<15°,解得22°<x <25°,进而得到∠C 的度数.详解:如图,过E 作EG ∥AB ,∵AB ∥CD ,∴GE ∥CD ,∴∠BAE=∠AEG ,∠DFE=∠GEF ,∴∠AEF=∠BAE+∠DFE ,设∠CEF=x ,则∠AEC=2x ,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.14.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.15.5【解析】【分析】连接CC1根据M是ACA1C1的中点AC=A1C1得出CM=A1M=C1M=AC=5再根据∠A1=∠A1CM=30°得出∠CMC1=60°△MCC1为等边三角形从而证出CC1=CM解析:5【解析】【分析】连接CC1,根据M是AC、A1C1的中点,AC=A1C1,得出CM=A1M=C1M=12AC=5,再根据∠A1=∠A1CM=30°,得出∠CMC1=60°,△MCC1为等边三角形,从而证出CC1=CM,即可得出答案.【详解】解:如图,连接CC1,∵两块三角板重叠在一起,较长直角边的中点为M,∴M是AC、A1C1的中点,AC=A1C1,∴CM=A1M=C1M=12AC=5,∴∠CMC1=60°,∴△CMC1为等边三角形,∴CC1=CM=5,∴CC1长为5.故答案为5.考点:等边三角形的判定与性质.16.2【解析】由D是AC的中点且S△ABC=12可得;同理EC=2BE即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=217.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x ﹣40)千米/时, 根据题意得:13201320304060x x -=-. 故答案为:13201320304060x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系. 19.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y 甲关于x 的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;∴22? (01){157?(1)x x y x x 甲<<=+>,=163y x +乙; (2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <12; 令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4;令y 甲=y 乙,即15x+7=16x+3,解得:x=4;令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4. 综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型. 22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA ==.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB ∥CD ,∴CAB ACD ∠=∠∵AC 平分BAD ∠∴CAB CAD ∠=∠,∴CAD ACD ∠=∠∴AD CD =又∵AD AB =∴AB CD =又∵AB ∥CD ,∴四边形ABCD 是平行四边形又∵AB AD =∴ABCD Y 是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB V 中,90AOB ∠=︒.∴2OA =.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC V 中,90AEC ∠=︒.O 为AC 中点. ∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点. 25.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析.【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证.【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE .∵四边形ABCD 是平行四边形,∴∠B=∠D ,AB=CD ,∠C=∠BAD .∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD ,即∠1+∠2=∠2+∠3.∴∠1=∠3.在△ABE 和△AD′F 中∵{13D BAB AD ∠'=∠='∠=∠∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠5=∠6.∴∠4=∠6.∴AF=AE .∵AE=EC ,∴AF=EC .又∵AF ∥EC ,∴四边形AECF 是平行四边形.又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.。
安徽省合肥市2019—2020学年度九年级第一学期第一次联考数学试卷(沪科word版含答案)
安徽省合肥市2019—2020学年度第一学期第一次联考九年级 数学试卷注意事项:本卷共8大题,23小题.满分150分,考试时间120分钟. 一、单选题(本大题共10小题,每小题4分,满分40分) 1.下列y 关于x 的函数中,属于二次函数的是( ) A .y =x -1 B .y =-1xC .y =(x -1)2-x 2D .y =-2x 2+1 2.在同一坐标系中,分别作2y x =,212y x =-,213y x =-的图象,它们共同的特点是( )A.抛物线的开口都向上B.都是关于y 轴对称的抛物线,且y 随x 的增大而增大C.都是关于y 轴对称的抛物线,且y 随x 的增大而减小D.都是关于y 轴对称的抛物线,有公共的顶点3.抛物线 y = 3(x -2)2+ 5 的顶点坐标是( ) A.(-2,5)B.(-2,-5)C.(2,5)D.(2,-5)4.函数y=﹣2x 2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A .y=-2(x -1)2+2B .y=-2(x -1)2-2C .y=-2(x+1)2+2D .y=-2(x+1)2-25.若二次函数y=ax 2的图象经过点P (-2,4),则该图象必经过点( ) A.(2,4) B.(-2,-4)C.(-4,2)D.(4,-2)6.若二次函数y=x 2﹣2x+c 的图象与x 轴没有交点,则c 的值可能是( ) A .-3B .2C .0D .-27.如图,直线y1=-x +k 与抛物线y 2=ax 2(a ≠0)交于点A (-2,4)和点B .若y 1<y 2,则x 的取值范围是( ) A .x <-2 B .-2<x <1 C .x <-2或x >1 D .x <-2或x >328.由下表:可知方程 ( 为常数)一个根(精确到0.01)的范围是( ) A.B.C.D.9.长丰县某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y (万元)和月份n之间满足函数关系式y=-n 2+14n -24,则企业停产的月份为( )A .1月、2月和12月B .2月至12月C .1月D .2月和12月 10.已知二次函数y=-x 2+x+6及一次函数y=−x+m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数(如图所示),当直线y=-x+m 与新图象有4个交点时,m 的取值范围是( ) A.2534m -<< B.2524m -<< C. 23m -<< D.62m -<<-第10题图 第12题图二、填空题(本大题共4小题,每小题5分,满分20分)11.若二次函数2y ax bx =+的图象开口向下,则a _____0(填“=”或“>”或“<”). 12.若二次函数y =x 2-2x +k 的部分图象如图所示,且关于x 的一元二次方程x 2-2x +k =0的一个解为x 1=3,则方程x 2-2x +k =0的另一个解为x 2= .13.若二次函数26y x x c =-+的图象经过A (-1,1y )、B (2,2y )、C (3+,3y )三点,则关于123y y y ,,大小关系正确的是___________.14.已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 . 三、(本大题共2小题,每小题8分,满分16分) 15.已知函数 21(1)3m y m x x +=-+为二次函数,求m 的值.16.请通过配方....将二次函数2241y x x =+-的解析式化为y =a (x +h )2+k 的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.四、(本大题共2小题,每小题8分,满分16分) 17.已知二次函数221y x kx =--.⑴求证:无论k 取何实数,此二次函数的图象与x 轴都有两个交点; ⑵若此二次函数图象的对称轴为直线1x =,求它的解析式.18.已知抛物线y =-x 2+5x -6与x 轴交于A ,B 两点(点A 在点B 的左侧),抛物线的顶点记为C . (1)分别求出点A 、B 、C 的坐标;(2)计算△ABC 的面积.五、(本大题共2小题,每小题10分,满分20分)19.岗集中学某社团小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边长为y米,直接写出y与x的函数关系式及自变量x的取值范围;(2)设这个苗圃园的面积为S,求S与x之间的函数关系,当x为多少时,S有最大值,最大值是多少?20.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点C的坐标为(-1,-3),与x轴交于A(-3,0)、B(1,0),根据图象回答下列问题:(1)写出方程ax2+bx+c=0的根;(2)写出不等式ax2+bx+c>0的解集;(3)写出y随x的增大而减少时自变量x的取值范围;(4)若方程ax2+bx+c=k有实数根,写出实数k的取值范围.六、(本大题12分)21.若一次函数y=kx+m的图象经过二次函数y=ax2+bx+c的顶点,我们则称这两个函数为“丘比特函数组”(1)请判断一次函数y=-3x+5和二次函数y=x2-4x+5是否为“丘比特函数组”,并说明理由.(2)若一次函数y=x+2和二次函数y=ax2+bx+c为“丘比特函数组”,已知二次函数y =ax2+bx+c顶点在二次函数y=2x2-3x-4图象上并且二次函数y=ax2+bx+c经过一次函数y=x+2与y轴的交点,求二次函数y=ax2+bx+c的解析式;七、(本大题12分)22.在2019年女排世界杯前夕,合肥某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?八、(本大题14分)23.如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(-1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)若抛物线在第一象限的图象上有一点P,求△ACP面积S的最大值.安徽省合肥市2019—2020学年度第一学期第一次联考九年级 数学参考答案1—10 DDCBA BCCAD11.< 12.-1 13.132y y y >> 14.2y x x =+或21133y x x =-+(写对1个给3分,多写或写错不给分) 15.m=-116.y =2(x +1)2-3, …………………………5分 抛物线的开口向上,对称轴是直线x =-1,顶点坐标为(-1,-3).…………………8分 17.(1)证明:∵y =x 2-2kx -1, ∴△=4k 2+4>0,∴无论k 取何实数,此二次函数的图象与x 轴都有两个交点;…………………………4分 (2)∵此二次函数图象的对称轴为直线x =1,y =x 2-2kx -1, ∴1122=⨯--k,解得:k =1, ∴二次函数的解析式是y =x 2-2x -1. …………………………8分 18.解:(1)当y =0时,-x 2+5x -6=0,解得x 1=2,x 2=3, ∴A 点坐标为(2,0),B 点坐标为(3,0);∵y =-x 2+5x -6=-(x -25)2+41, …………………………3分 ∴顶点C 的坐标为(25,41); …………………………5分 (2)△ABC 的面积=21×(3-2)×41=81. …………………………8分19.解:(1)y=30-2x,(6≤x<15);…………………………4分(2)S=xy=x(30-2x)=-2(x-7.5)2+112.5.∵a=-2<0,∴当x=7.5时,y有最大值为112.5. …………………………10分20.解:(1)∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3,0)、B(1,0),∴ax2+bx+c=0的根为:x1=-3,x2=1.…………………………3分(2)因为二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3,0)、B(1,0),观察图象可知:当x<-3或x>1时,图象总在x轴的上方.所以不等式ax2+bx+c>0的解集为:x<-3或x>1.…………………………6分(3)因为二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3,0)、B(1,0),所以该图象的对称轴为直线x=-1由于图象开口向上所以当x<-1时,y随x的增大而减小.…………………………8分(4)抛物线图象开口向上,顶点C的坐标为(-1,-3),∵方程ax2+bx+c=k有实数根,即抛物线y=ax2+bx+c与直线y=k有交点,∴k≥-3.即当k≥-3时,方程ax2+bx+c=k有实数根.…………………………10分21.解:(1)y=x2-4x+5=(x-2)2+1,即顶点坐标为(2,1),当x=2时,y=-3x+5=-1≠1,故一次函数y=-3x+5和二次函数y=x2-4x+5不是“丘比特函数组”;……………4分(2)设:二次函数的顶点为:(m,m+2),将顶点坐标代入二次函数y=2x2-3x-4得:m+2=2m2-3m-4,解得:m =3或-1, ………………………………6分 当m =3时,函数顶点为(3,5),一次函数y =x +2与y 轴的交点为:(0,2),则二次函数表达式为:y =a (x -3)2+5=a (x 2-6x +9)+5,即:9a +5=2,解得:a =31-, 故:抛物线的表达式为:y =31-x 2+2x +2; …………………………9分 同理当m =-1时,抛物线的表达式为:y =x 2+2x +2,综上,抛物线的表达式为:y =31-x 2+2x +2或y =x 2+2x +2; …………………………12分 22.解:(1)480420560240+-=⨯--=x x y (x ≥60) …………………………4分 (2)根据题意可得,x (-4x +480)=14000,解得,x 1=70,x 2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元. …………………………8分(3)设一个月内获得的利润为w 元,根据题意,得w =(x -40)(-4x +480),=-4x 2+640x -19200,=-4(x -80)2+6400, …………………………11分 当x =80时,w 的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.…12分23.解:(1)当x =0时,y =ax 2+bx +6=6,则C (0,6),设抛物线的解析式为y =a (x +1)(x -6),把C (0,6)代入得a •1•(-6)=6,解得a =-1,∴抛物线的解析式为y =-(x +1)(x -6),即y =-x 2+5x +6;……………………4分(2)由抛物线的解析式y =-x 2+5x +6=-(x -25)2+449,对称轴为直线x =25. ∵点M 在抛物线的对称轴上,∴MB =MA ,CM +BM =CM +AM ,当点C 、M 、A 在同一直线上时,CM +BM 最小.设直线AC 的解析式为y =kx +n ,则⎩⎨⎧==+606n n k ,解得⎩⎨⎧=-=61n k , ∴y =-x +6.当x =25时,y =27,∴点M 的坐标为(25,27).……………………………………9分 (3)过点P 作PD 垂直x 轴,交AC 于点Q ,设点P 的坐标为(m ,-m 2+5m +6),则点Q 的坐标为(m ,-m +6),∴PQ =(-m 2+5m +6)-(-m +6)=-m 2+6m , S=21PQ •OA =21(-m 2+6m )×6=-3m 2-18m =-(m -3)2+27, ∵抛物线开口向下,对称轴为直线m =3,∴当m =3时,S 有最大值为27.…………………………………………………………14分。
2019-2020年初三一模数学试卷含答案解析
2019-2020年初三一模数学试卷含答案解析数学试卷 2016.4第Ⅰ卷(共30分)一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.在下列各数中,绝对值最大的数是A .1B .-2C .21D .13-2.2015年10月16日,新一期全球超级计算机500强榜单在美国公布,中国“天河二号”超级计算机以每秒338600000亿次浮点运算速度连续第六度称雄.将338600000用科学记数法表示为A .3.386×107B .0.3386×109C .3.386×108D .0.3386×1083. 右图是某个几何体的三视图,则这个几何体是A .圆柱B .圆锥C .三棱柱D .三棱锥4.阿仁是一名非常爱读书的学生.他制作了五张材质和外观完全一样的书签,每张书签上写有一本书的名称和作者,分别是:《海底两万里》(作者:凡尔纳,法国)、《三国演义》(作者:罗贯中)、《西游记》(作者:吴承恩)、《骆驼祥子》(作者:老舍)、《钢铁是怎样炼成的》(作者:尼·奥斯特洛夫斯基,前苏联),从这五张书签中随机抽取一张,则抽到的书签上的作者是中国人的概率是A .15B .25C .35D .455. 下列运算正确的是A .236x x x =B .632x x x ÷=C .32422x x x -=D .()236xx =6.一次函数y kx b =+的图象如右图所示, 则k,b 应满足的条件是A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b <<7.如图,将一块含有45°的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,则∠2的度数是A .15°B .20°C .25°D .30°8.如图,⊙O 的半径为10,AB 是弦,OC ⊥AB 于点C , 若AB =12,则OC 的长为A .2B .C .6D .89.某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω)成反比例, 右图表示的是该电路中电流I 与电阻R 之间函数关系的图象,则 电流I 关于电阻R 的函数关系式为 A .6I R =B .6I R =-C .3I R =D .2I R=10.如图,把正方形ABCD 绕它的中心O 顺时针旋转,得到正方形A ’B ’C ’D ’,旋转角大于0°小于90°.△A ’EF 的面积为S ,线段AE 的长度为x ,那么S 关于x 的函数的图象可能是机读答题卡A B C D第13题图 第14题图 第Ⅱ卷 (共70分)二、填空题 (共6道小题,每小题3分,共18分) 11. 分解因式:22ax ay -=___________.12.某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg ),则这组数据的中位数是__________.13. 如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(-3,-2),“炮”位于点(-2.0),则“兵”位于的点的坐标为 . 14.如图,“吃豆小人”是一个经典的游戏形象,它的形状是一个扇形,开口∠1=60°,半径为,则这个“吃豆小人”(阴影图形)的面积为 .15.若关于x 的一元二次方程2420kx x +-=有两个不相等的实数根,则k 的取值范围是_________________. 16. 阅读下面材料:在数学课上,老师提出如下问题:小义同学作法如下:老师说:“小义的作法正确.”请回答:小义的作图依据是______________________________________________________.三、解答题(共10道小题,17-24题每小题5分,25-26题每小题6分,共52 分) 17.(本小题5分) 计算:()1201611-3-⎛⎫-++︒ ⎪⎝⎭.18.(本小题5分)解不等式2113x x --≤,并写出不等式的正整数解.19.(本小题5分)如图,△AFD 和△BEC 中,点A 、E 、F 、C 在同一条直线上.有下面四个关系式: (1)AD =CB ,(2)AD ∥BC ,(3)∠B =∠D ,(4)AE =CF .请用其中三个作为已知条件,余下一个作为求证的结论,写出你的已知和求证,并证明. 已知: 求证:证明:20.(本小题5分)先化简,再求值:2212 2x xy y x y x y-+--,其中3x y =.A B C D E F某城市2015年约有初中生10万人, 2016年初中生人数还会略有增长.该市青少年活动中心对初中生阅读情况进行了统计,绘制的统计图表如下:根据以上信息解答下列问题: (1)扇形统计图中m 的值为 ;(2)2015年,在该市喜爱阅读的初中生中,首选阅读科普读物的人数为 万; (3)请你结合对数据的分析,预估2016年该市喜爱阅读的初中生人数,并简单说明理由. 22.(本小题5分)在“校园文化”建设中,某校用8 000元购进一批绿植,种植在礼堂前的空地处. 根据建设方案的要求,该校又用7500元购进第二批绿植.两次所买绿植盆数相同,且第二批每盆的价格比第一批的少10元. 请问第二批绿植每盆多少元?23.(本小题5分) 如图,△ABC 和△CDE 都是直角三角形,点B 、C 、D 在同一条直线上,∠B =∠D =∠ACE =90°,112BC AB == ,4CD = . (1)求DE 的长;(2)连接AE .求证:四边形ABDE 是矩形.CA如图,以△ABC 的一边BC 为直径的⊙O ,交AB 于点D ,连接CD ,OD , 已知∠A +12∠1=90°. (1)求证:AC 是⊙O 的切线; (2)若∠B =30°,AD =2,求⊙O 的半径. 25.(本小题6分)在平面直角坐标系中,已知抛物线22y x mx =-与x 轴的一个交点为A (4,0). (1)求抛物线的表达式及顶点B 的坐标;(2)将05x ≤≤时函数的图象记为G ,点P 为G 上一动点,求P 点纵坐标n 的取值范围;(3)在(2)的条件下,若经过点C (4,-4)的直线()0y kx b k =+≠与图象G 有两个公共点,结合图象直接写出b 的取值范围.在一节数学活动课上,老师和同学们一起研究不同等腰三角形形状差异问题,老师提出我们可以规定一个“正度”,“正度”应满足三个条件:①可以用来衡量等腰三角形与正三角形的接近程度;②相似的等腰三角形的“正度”相等;③“正度”的值是非负数.经过讨论后,有两个组给出了答案:小智组提出:设等腰三角形的底和腰分别为a ,b ,可用式子a b -来表示“正度”,a b -的值越小,表示等腰三角形越接近正三角形;小信组提出:设等腰三角形的底角和顶角分别为α和β,可用式子αβ-来表示“正度”,αβ-的值越小,表示等腰三角形越接近正三角形.⑴ 他们的方案哪个较为合理,为什么?⑵ 请再写出一种可以衡量“正度”的表达式.北京市朝阳区2016年初中毕业考试数学试卷评分标准及参考答案 2016.4一、选择题(每小题3分,共30分)1.B 2.C 3.B 4.C 5.D 6.A 7.C 8.D 9.A 10.B 二、填空题(每小题3分,共18分)11.()()a x y x y +- 12.6 13.(5-,1) 14.5π 15. 2k >-且0k ≠ 16.三边分别相等的两个三角形全等;全等三角形对应角相等(写出其中一个即可). 三、解答题(17—24题每小题5分,25—26题每小题6分,共52 分)17.解:原式1322=++⨯………………………………………………4分 =4. ………………………………………………………………… 5分18.解:3321x x -≤- ………………………………………………………………2分 3231x x -≤- ……………………………………………………3分2x ≤ ………………………………………………………………4分∴原不等式的所有正整数解为1,2. ………………………………………5分19.已知:AD =CB ,AD ∥CB ,∠D =∠B . ……………………………………1分 求证:AE =CF . 证明:∵AD ∥CB ,∴∠A =∠C. ……………………………………………………2分 ∵AD =CB ,∠D =∠B ,∴△ADF ≌△CBE ………………………………………………… 3分 ∴AF =CE. …………………………………………………………………4分 ∴AE =CF . ………………………………………………………… 5分20.解:原式()212x y x y x y -=⋅-- …………………………………………………3分 2x y x y-=- …………………………………………………………… 4分 当3x y =时, 原式3232y yy y-==-. …………………………………………………… 5分21. 解:(1)8. …………………………………………… … ………………1分(2)0.75. ……………………………………………… … ……………3分 (3)答案依据数据说明,合理即可.如:6.6万人,因为该市喜爱阅读的初中生人数逐年增长,且增长趋势变快. …………………………5分22. 解:设第二批绿植每盆x 元. ……………………………………………1分依题意,得8000750010x x=+. ……………………………………… 2分 解得 150x =. ………………………………… 3分经检验,x = 150是原方程的解,且符合题意. …………… 4分 答:第二批绿植每盆150元. ………………………… …………………5分23.(1) 解:∵∠B =∠ACE =90°,∴∠A +∠ACB =90°,∠ECD +∠ACB =90°.∴∠A =∠ECD . …………… …………………………………1分 ∵∠B =∠D =90°,∴△ABC ∽△CDE . …………………………………………2分∴BC ABDE CD=. ∵112BC AB == ,4CD =, ∴2DE =. ………………… ………………………………3分(2)证明: ∵∠B =∠D =90°,∴∠B +∠D =180°.∴AB ∥DE . …………………………………………………4分 ∵AB =DE =2,∴四边形ABDE 是平行四边形. ∵∠B =90°,∴平行四边形ABDE 是矩形. ………………………………5分 24.(1)证明:依题意,得 ∠B =12∠1. …………………………………1分 ∵∠A +12∠1=90°, ∴∠A +∠B =90°. ∴∠ACB =90°. ∴AC ⊥BC .∵BC 是⊙O 的直径,∴AC 是⊙O 的切线. …… …………………………………2分(2) 解:∵BC 是⊙O 的直径,∴∠CDB =∠ADC =90°. ……………………………………3分 ∵∠B =30°, ∴∠A =60°,∠ACD =30°.∴AC =2AD =4. ………………………………………………4分∴tan ACBC B==∠.∴⊙O 的半径为 ……………………………………5分25.解:(1)∵A (4,0)在抛物线22y x mx =-上,∴1680m -=.解得 2m =.∴24y x x =-. …………………………………………………1分 即 ()224y x =--.∴顶点坐标为()2,4B -. ……………………………………………2分(2)当2x =时,y 有最小值–4;当5x =时,y 有最大值5.∴点P 纵坐标的n 的取值范围是45n -≤≤. ……………………………4分 (3)40b -<≤. …………………………………………………………………6分26.解:(1)小信组的方案合理. …………………………………………………………1分因为αβ-的值越小,两个角越接近60°,等腰三角形就越接近正三角形, 且保证相似三角形的正度相等. ………………………………………………2分小智组的方案不合理. ……………………………………………………………3分 因为不能保证相似的等腰三角形的正度相等,如三边分别为4、4、2和8、8、4,4284-≠-|. …………………………4分 (2)60α-︒(+120αβ-︒,1b a -,1αβ-,…) …………………………6分说明:各解答题的其他正确解法请参照以上标准给分.新课标第一网系列资料 新课标第一网不用注册,免费下载!。
2019-2020年九年级一模数学试卷答案
2019-2020年九年级一模数学试卷答案数学答案及评分参考 2017.5题8分)17.(本小题满分5分) 解:原式=4213+--,………………………………………………………4分 =5-………………………………………………………………………5分18.(本小题满分5分)解:31,22(1) 1.x x x -⎧<⎪⎨⎪+-⎩≥解①得:x<5,…………………………………………………………2分解②得:3x ≥﹣,…………………………………………………………4分 所以不等式组的解集为:35x ﹣≤<. ……………………………………5分 19. ∵EF 垂直平分BD ,∴FB =FD . ……………………………………2分 ∴∠FBD =∠BDF . ………………………………3分 ∵BD 是∠ABC 的平分线∴∠ABD =∠FBD . …………………………4分 ∴∠ABD =∠BDF . …………………………5分 20.(本小题满分5分)解:原式=222()()a ab b aa ab a b -+⋅-+,……………………………………………2分=a ba b-+.………………………………………………………………………3分 ∵ 20a b -=,∴2a b =.…………………………………………………4分∴原式=21233b b b b b b -==+.…………………………………………5分②① B21.解(1)设反比例函数表达式为(0)ky k x=≠ ∵此函数过A (2,1) ∴12k=,解得2k = ∴此函数表达式为2y x=; …………………………2分 (2) 02x << ; ……………………………………………………3分 (3)P (0 ,3)或P (6 ,0) . ……………………………………………………5分22.问题:通过解方程组得 …………………………………………………3分由于人数只能是非负整数,因此判断小军不能以人数被未知数进行情境创设.………5分 23.(1)结论:等腰三角形 ……………………………1分理由:由折叠的性质可得:∠ANM =∠CNM . ∵ 四边形ABCD 是矩形, ∴ AD ∥BC . ∴ ∠ANM =∠CMN . ∴ ∠CMN =∠CNM . ∴ CM =CN .即△CMN 为等腰三角形………………………………2分(2)解:过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形. ∴ HC =DN ,NH =DC . ∵ MC =3ND∴ MH =2HC . ………………3分设DN =x ,则HC =x ,MH =2x , ∴CN =CM =3x .在Rt △CDN 中,DC =22x =4, ∴ 2x =∴ HM =22 . ………………4分在Rt △MNH 中,MN 2281626MH NH ++= ………5分 24.(1) 334; ……………………1分(2)图形或列表正确即可 ; …4分 (3)只要总结符合我区发展与科技有关 的正能量的话语即可. ……5分时间(年) 项目(项)2014 2015 2016 申请专利 304 300 604 授予专利1792353345.56x y =⎧⎨=⎩25. (1) 证明:连接OB∵CD 为⊙O 的直径 ,∴︒=∠+∠=∠90OBD CBO CBD .∵AE 是⊙O 的切线,∴︒=∠+∠=∠90OBD ABD ABO . …………………1分 ∴CBO ABD ∠=∠.∵OB 、OC 是⊙O 的半径,∴OB=OC .∴CBO C ∠=∠. ∴C ABD ∠=∠. ∵C E ∠=∠, ∴E ABD ∠=∠.∴ OE ∥BD .…………………………………………………2分 (2)解:由(1)可得sin ∠C = ∠DBA=25,在Rt △OBE 中, sin ∠C ,OC =5∴ . …………………………………3分∵90CBD EBO ∠=∠=︒,C E ∠=∠,∴△CBD ∽△EBO . ∴ .∴ . …………………………………4分∵OE ∥BD ,CO =OD , ∴CF =FB .∴ .∴ .…………………………………5分26.(1)sin AD C B =⋅,cos BD C B =⋅.…………2分 (2)2222cos b a c ac B =+-⋅ . …………3分 (3)补全图形正确 . ……………………4分 结果:27AC = ……………………5分 27. (1)()()3a 1113=+- ……………1分解得:34a =-………………………2分 6个 ………………………3分EB COF DA25BDCD ==4BD =BD CD BO EO =252EO =122OF BD ==212EF OE OF =-=ECD(2)由()()y a 13x x =+-配方或变形()()()2y a 13=14x x a x a =+--- .所以顶点P 的坐标为(1,-4a ). ……………………………………5分(3) a <0时, ;a >0时, . 1分 数量关系:EC =BC + ED . …………2分 (2)数量关系:BC ED +=.过D 作DF ∥AC 交BC 延长线于F 点∵DF ∥AC ,ED ∥BC , ∴四边形ADCF 为平行四边形. ∴ED=CF , EC=DF . ∵AB =AC , ∴∠ABC =∠ACB . ∵ED ∥BC ,∴∠DEC =∠ECB , ∠EDB =∠DBC . ∴∠CED =∠BDE . ∴AE =AD .∴EC =BD . …………………3分 ∴BD =DF . ∵DF∥AC ,∴∠BDF =∠BAC =90°.∴△BDF 为等腰直角三角形.…………………4分在Rt △BDF 中 ∵BF 2=BD 2+DF 2, ∴(BC +ED )2=2EC 2.BC ED += . …………………5分2132a --≤<12a <≤(3)数量关系:2sin2BC ED EC α+=⋅.……6分①由(2)可知四边形ACFD 为平行四边形,△BDF 为等腰三角形 过D 点作DN ⊥BC 于N 点可得BN =12BF ,∠BDN =12α②在Rt △BDN 中 Sin ∠BDN =BN BD =sin 2α. 可得2sin2BC ED EC α+=⋅.……………………………7分29.(1)B (-2,3),E (4,3);…………………………2分 (2)①当垂等点N 直线PM 右侧时,依题意如图 可知∠MOP =∠MPN =∠NFP= 90°,PM =PN ∵90OPM OMP OPM NPF ∠+∠=∠+∠=︒, ∴OMP NPF ∠=∠. ∴△MOP ≌△PFN .∴PF =OM ,OP =FN . ∵P (1,0), ∴OF =4,FN =1. ∵点N 在第一象限, ∴N (4,1).∴过点M 、N 的一次函数表达式为132y x =-+.②当垂等点N 直线PM 左侧时,依题意如图同理可得N (-2,-1) ∴过点M 、N 的一次函数表达式为23y x =+;…(3)图形正确 ; PM 长的取值范围:PM ≤。
2019-2020中考数学一模试卷及答案
2019-2020中考数学一模试卷及答案一、选择题1.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x52.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°3.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.74.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y=ax2+bx+c的对称轴在y轴的左侧;④不等式4a+2b+c>0一定成立.A.①②B.①③C.①④D.③④5.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:26.直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A .B .C .D .7.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5 8.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°10.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)11.13O e 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .43 12.下列计算正确的是( ) A .()3473=a b a b B .()232482--=--b a b ab b C .32242⋅+⋅=a a a a a D .22(5)25-=-a a二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.15.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.16.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A=30°,则劣弧»BC 的长为 cm . 17.已知关于x 的一元二次方程2220ax x c ++-=有两个相等的实数根,则1c a+的值等于_______.18.计算:82-=_______________. 19.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.20.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .三、解答题21.如图,点B 、C 、D 都在⊙O 上,过点C 作AC ∥BD 交OB 延长线于点A ,连接CD ,且∠CDB=∠OBD=30°,DB=63cm .(1)求证:AC 是⊙O 的切线;(2)求由弦CD 、BD 与弧BC 所围成的阴影部分的面积.(结果保留π)22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?25.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率;(3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.2.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.3.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C .考点:众数;中位数.4.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确;根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.故选:C.5.A解析:A【解析】分析:求出当y=7.5时,x 的值,判定A ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出抛物线与直线的交点,判断C ,根据直线解析式和坡度的定义判断D . 详解:当y=7.5时,7.5=4x ﹣12x 2, 整理得x 2﹣8x+15=0,解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意;y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得,110 0x y =⎧⎨=⎩,22772xy=⎧⎪⎨=⎪⎩,则小球落地点距O点水平距离为7米,C正确,不符合题意;∵斜坡可以用一次函数y=12x刻画,∴斜坡的坡度为1:2,D正确,不符合题意;故选:A.点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.6.B解析:B【解析】【分析】若y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,可对A、D进行判断;若y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,则可对B、C进行判断.【详解】A、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以A选项错误;B、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以B选项正确;C、y=kx过第二、四象限,则k<0,-k>0,k-3<0,所以y=-kx+k-3过第一、三象限,与y轴的交点在x轴下方,所以C选项错误;D、y=kx过第一、三象限,则k>0,所以y=-kx+k-3过第二、四象限,所以D选项错误.故选B.【点睛】本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).7.B解析:B【解析】【分析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠ABD=12∠ABC=30°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=3.故选B.8.C解析:C【解析】从上面看,看到两个圆形,故选C.9.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.10.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D 、2有两个,即序列S 0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D .【点睛】本题考查规律型:数字的变化类.11.C解析:C【解析】【分析】过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,由垂径定理得出1,32DF CF AG BG AB ====,得出2EG AG AE =-=,由勾股定理得出2OG ==,证出EOG ∆是等腰直角三角形,得出45,OEG OE ∠=︒==30OEF ∠=︒,由直角三角形的性质得出12OF OE ==DF = 【详解】解:过点O 作OF CD ⊥于点F ,OG AB ⊥于G ,连接OB OD 、,如图所示: 则1,32DF CF AG BG AB ====, ∴2EG AG AE =-=,在Rt BOG ∆中,2OG ==,∴EG OG =,∴EOG ∆是等腰直角三角形,∴45OEG ∠=︒,OE == ∵75DEB ∠=︒,∴30OEF ∠=︒,∴12OF OE ==在Rt ODF ∆中,DF ===∴2CD DF ==故选:C .【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.12.C解析:C【解析】【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan ∠BAC=故答案为点睛:本题考查了锐角三角函 解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a +2b +c =2.5,0.25a +0.5b +c =1解得a =2,b =−4,c =2.5.∴y =2x 2−4x +2.5=2(x −1)2+0.5.∵2>0∴当x =1时,y min =0.5米.15.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC ∥DE 根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A解析:18【解析】【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.16.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧»BC的长=606=2180ππ⋅⋅(cm).17.【解析】【分析】根据关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根结合根的判别式公式得到关于a和c的等式整理后即可得到的答案【详解】解:根据题意得:△=4﹣4a(2﹣c)=0整理得:解析:【解析】【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【详解】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:12ca -=-,则12ca+=,故答案为:2.【点睛】本题考查了根的判别式,正确掌握根的判别式公式是解题的关键.18.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.19.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM=32,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP=2AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=32,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=2AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.20.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°AF=AD=5根据矩形的性质得到∠EFC=∠BAF根据余弦的概念计算即可由翻转变换的性质可知∠AFE=∠D=90°AF=AD=5∴∠EF解析:.【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF==,∴cos∠EFC=,故答案为:.考点:轴对称的性质,矩形的性质,余弦的概念.三、解答题21.(1)证明见解析;(2)6πcm2.【解析】【分析】连接BC,OD,OC,设OC与BD交于点M.(1)求出∠COB的度数,求出∠A的度数,根据三角形的内角和定理求出∠OCA的度数,根据切线的判定推出即可;(2)证明△CDM≌△OBM,从而得到S阴影=S扇形BOC.【详解】如图,连接BC,OD,OC,设OC与BD交于点M.(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC∥BD,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC⊥AC,∵OC为半径,∴AC是⊙O的切线;(2)由(1)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)24.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x档次的产品,根据题意得:[10+2(x-1)]×[76-4(x-1)]=1024,整理得:x2﹣16x+48=0,解得:x1=4,x2=12(不合题意,舍去).答:该烘焙店生产的是四档次的产品.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)根据单件利润×销售数量=总利润,列出关于x 的一元二次方程.25.(1)8%,16;(2)P (1名男生和1名女生)23=;(3)至少需要选取6人进行集训. 【解析】【分析】(1)一等奖所占的百分比=1减去其它奖项的百分比即可求解;根据优秀奖比例和人数可计算总数,进而计算出三等奖人数.(2)求出一等奖男女各有多少人,然后列表或画树形图即可解;(3)设需要选取x 人进行集训,依据使获得一等奖的人数不少于二等奖人数的2倍,列不等式解答即可.【详解】(1)一等奖所占的百分比=1-40%-30%-32=8%; 总人数=20÷40%=50(人), 三等奖的人数是=50×32%=16(人); (2)一等奖的人数=508%4⨯=,男女都有的人数14211⨯=+, 列表得:∴一等奖有两位男生两位女生,一共有12种等可能结果,其中恰是一男一女的结果数是8,∴P (1名男生和1名女生)82123==. (3)设需要选取x 人进行集训,根据题意得:()4210x x +≥-,解得 163x ≥, 因为x 是整数,所以x 取6.答:至少需要选取6人进行集训.【点睛】本题主要考查了条形统计图及扇形统计图以及求随机事件的概率,不等式的应用,解题的关键是能从条形统计图及扇形统计图得出相关数据.列表或画出树形图解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级一模数学试卷(WORD 版含答案)一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是.符合题意的. 1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9 608 000人次,将9 608 000用科学记数法表示为 (A )3960810⨯ (B )4960.810⨯ (C )596.0810⨯ (D )69.60810⨯2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是 (A )0a b += (B )0a b -=(C )a b <(D )0ab >3.如图,AB ∥CD ,DA ⊥CE 于点A .若∠EAB = 55°,则∠D 的度数为 (A )25°(B )35° (C )45° (D )55°第3题图 第4题图4.右图是某几何体的三视图,该几何体是(A )三棱柱 (B )长方体 (C )圆锥(D )圆柱5.若正多边形的一个外角是40°,则这个正多边形是 (A )正七边形 (B )正八边形(C )正九边形(D )正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为(A )()234x -=(B )()2314x -=(C )()294x -=(D )()2914x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面距离为1.5m ,则旗杆的高度为(单位:m )(A )163(B )9 (C )12 (D )6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元” .若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是 (A )80%20x - (B )()80%20x - (C )20%20x -(D )()20%20x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁) 13 14 15 16 频数(单位:名)515x10-x(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数(D )众数、方差10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A )以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B )以低于80km /h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少 (C )以高于80km /h 的速度行驶时,行驶相同路程,丙车比乙车省油 (D )以80km /h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升 二、填空题(本题共18分,每小题3分) 11.分解因式:ax 2-2ax +a =________.12.若函数的图像经过点A(1,2),点B(2,1),写出一个符合条件的函数表达式_________.13.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000投中次数m58 96 174 302 484 601投中频率mn0.580 0.640 0.580 0.604 0.605 0.601这名球员投篮一次,投中的概率约是.4.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度数为____________.第14题图第15题15.在平面直角坐标系xOy中,以原点O为旋转中心,将△AOB顺时针旋转90°得到△A'OB',其中点A'与点A对应,点B'与点B对应.若点A(-3,0),B(-1,2),则点A'的坐标为_______________,点B'的坐标为________________.16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P . 求作:直线l 的平行直线,使它经过点P .作法:如图2.(1) 过点P 作直线m 与直线l 交于点O ;(2) 在直线m 上取一点A (OA <OP ),以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ; (3) 以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ;(4) 作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是 .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程.17.计算: (10O 123260322sin -⎛⎫-- ⎪⎝⎭18.解不等式组:52<3+47 22x xxx-⎧⎪⎨+≥⎪⎩19.已知x=2y,求代数式222112x xy yy x x y⎛⎫-+-÷⎪⎝⎭的值.20.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE. 求证:∠BCE=∠A+∠ACB.21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系x O y,直线y=x-1与y轴交于点A,与双曲线=kyx交于点B(m,2).(1)求点B的坐标及k的值;(2)将直线AB平移,使它与x轴交于点C,与y轴交于点D,若△ABC的面积为6,求直线CD的表达式.23.如图,在□ABCD中,对角线BD平分∠ABC,过点A作AE//BD,交CD的延长线于点E,过点E作EF⊥BC,交BC延长线于点F.(1)求证:四边形ABCD是菱形;(2)若∠ABC=45°,BC=2,求EF的长.DEBA24. 汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.2007—2015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为万辆,与2015年相比,2016年的增长率约为%;(2)从2008年到2015年,年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到万辆,预估理由是25.如图,AB为⊙O的直径,C为⊙O上一点,过点C作⊙O的切线,交BA的延长线交于点D,过点B 作BE⊥BA,交DC延长线于点E,连接OE,交⊙O于点F,交BC于点H,连接AC.(1)求证:∠ECB =∠EBC;(2)连接BF,CF,若CF =6,sin∠FCB =35,求AC的长.D26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃ 时,加热停止;当水箱中的水温下降到20℃ 时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x 的函数,其中y (单位:℃ )表示水箱中水的温度.x (单位:min )表示接通电源后的时间. 下面是小明的探究过程,请补充完整:(1)下表记录了32min 内14个时间点的温控水箱中水的温度y 随时间x 的变化情况m 的值为;(2)①当0 ≤ x ≤ 4时,写出一个符合表中数据的函数解析式 ; 当4<x ≤ 16时,写出一个符合表中数据的函数解析式 ;②如图,在平面直角坐标系xOy 中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x ≤32时,温度y 随时间x 变化的函数图象:(3) 如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源 min .27.在平面直角坐标系xOy 中,二次函数y =mx 2 -(2m + 1)x + m -5的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数, ①写出这个二次函数的解析式;②当n ≤ x ≤ 1时,函数值y 的取值范围是-6 ≤ y ≤ 4-n ,求n 的值;③将此二次函数平移,使平移后的图象经过原点O.设平移后的图象对应的函数表达式为y=a(x h)2 + k,当x < 2时,y随x的增大而减小,求k的取值范围.28.在△ABC中,AB = BC,BD⊥AC于点D.(1)如图1,当∠ABC = 90°时,若CE平分∠ACB,交AB于点E,交BD于点F.①求证:△BEF是等腰三角形;②求证:BD =12(BC + BF);(2)点E 在AB 边上,连接CE .若BD =12(BC + BE ),在图2中补全图形,判断∠ACE 与∠ABC 之间的数量关系,写出你的结论,并写出求解∠ACE 与∠ABC 关系的思路.图2图1DCB AAB29.在平面直角坐标系xOy 中,若点P 和点P 1关于y 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点A (-1 , 0).①若点B 是点A 关于y 轴,直线l 1: x =2的二次对称点,则点B 的坐标为 ; ②若点C (-5 , 0)是点A 关于y 轴,直线l 2: x = a 的二次对称点,则a 的值为 ;③若点D (2 , 1)是点A 关于y 轴,直线l 3的二次对称点,则直线l 3的表达式为 ; (2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4: x = b 的二次对称点,且点M'在射线(0)y x x =≥(3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:1y =+的二次对称点,且点N '在y 轴上,求t 的取值范围.图1图2。