紫外-可见分光光度计
(完整版)紫外可见分光光度计--原理及使用
应用分光光度计已经成为现代分子生物实验室常规仪器。
常用于核酸、蛋白定量以及细菌生长浓度的定量。
我们实验室主要是用来测物质的光度以求得物质的浓度或者酶活。
基本原理分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。
它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。
朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即A= kcl式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。
c为吸光物质浓度,l为透光液层厚度。
组成各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。
1.光源在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。
热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。
2.单色器单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。
单色器质量的优劣,主要决定于色散元件的质量。
色散元件常用棱镜和光栅。
3.吸收池吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。
吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm光径吸收池最为常用。
4、检测器检测器的作用是检测光信号,并将光信号转变为电信号。
现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。
5、信号显示系统常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。
操作步骤操作之前1.1开启电源进行初始化开启主机电源,分光光度计将按屏幕所显示的项目进行自检和初始化,如下图所示。
所有项目检测完毕,初始化结束,整个过程大约需要4min(若使用多池检测需5min)。
每个项目进行初始化操作时将被加亮显示,当初始化完成后,该项右边的星标也将加亮显示。
紫外可见分光光度计简介
可/可见分光光度计
紫外光 紫外光区:200~400nm 比色皿材质:石英 紫外光区光源:氘灯或氢灯 可见光区:400~800nm 比色皿材质:玻璃\石英 可见光区光源:钨灯 朗伯-比尔(Lambert-Beer)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比,其数学表示式如下: A=KbC A:吸光度,描述溶液对光的吸收程度; K:摩尔吸光系数,单位L•mol-1•cm-1; b:液层厚度,通常以cm为单位; C:溶液的摩尔浓度,单位mol•L-1; 1.光源:在整个紫外光区或可见光区可以发射连续光谱,具有足够的辐射强度、较好的稳定性、较长的使用寿命。 2.单色器:是将光源辐射的复合光分成单色光的光学装置。是分光光度计的心脏部分。一般由夹缝、色散元件及透镜系 统组成。其中,最关键部分为色散元件。 3.吸收池:用于盛装试液的装置。吸收材料必须能够透过所测光谱范围的光。规格有0.5、1.0、2.0、3.0、5.0cm。分 析测定时,比色皿要经过配套性检验合格后才能投入使用。比色皿配套性的要求:两两比对,测定值≤0.005A 4.检测器:利用光电效应将透过吸收池的光信号变成可测的电信号,常用的有光电管、光电倍增管、光电二极管、光电 摄像管等。 要求:灵敏度高、响应时间短、噪声水平低、稳定性好。 5.显示器:将监测器输出的信号放大并显示出来的装置。 常用的液晶数字指示窗口和计算控制显示。
(完整版)紫外可见分光光度计--原理及使用
应用分光光度计已经成为现代分子生物实验室常规仪器。
常用于核酸、蛋白定量以及细菌生长浓度的定量。
我们实验室主要是用来测物质的光度以求得物质的浓度或者酶活。
基本原理分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。
它是带状光谱,反映了分子中某些基团的信息,可以用标准光谱图再结合其它手段进行定性分析。
朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即A= kcl式中比例常数k与吸光物质的本性,入射光波长及温度等因素有关。
c为吸光物质浓度,l为透光液层厚度。
组成各种型号的紫外-可见分光光度计,就其基本结构来说,都是由五个基本部分组成,即光源、单色器、吸收池、检测器及信号指示系统。
1.光源在紫外可见分光光度计中,常用的光源有两类:热辐射光源和气体放电光源。
热辐射光源用于可见光区,如钨灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。
2.单色器单色器的主要组成:入射狭缝、出射狭缝、色散元件和准直镜等部分。
单色器质量的优劣,主要决定于色散元件的质量。
色散元件常用棱镜和光栅。
3.吸收池吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。
吸收池的种类很多,其光径可在0.1~10cm之间,其中以1cm光径吸收池最为常用。
4、检测器检测器的作用是检测光信号,并将光信号转变为电信号。
现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。
5、信号显示系统常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。
操作步骤操作之前1.1开启电源进行初始化开启主机电源,分光光度计将按屏幕所显示的项目进行自检和初始化,如下图所示。
所有项目检测完毕,初始化结束,整个过程大约需要4min(若使用多池检测需5min)。
每个项目进行初始化操作时将被加亮显示,当初始化完成后,该项右边的星标也将加亮显示。
紫外-可见光分光光度计
紫外-可见光分光光度法一、技术原理紫外-可见分光光度法是在190〜800mn波长范围内测定物质的吸光度,用于鉴别、杂质检查和定量测定的方法。
当光穿过被测物质溶液时,物质对光的吸收程度随光的波长不同而变化。
因此,通过测定物质在不同波长处的吸光度,并绘制其吸光度与波长的关系图即得被测物质的吸收光谱。
从吸收光谱中,可以确定最大吸收波长λmax和最小吸收波长λmix。
物质的吸收光谱具有与其结构相关的特征性。
因此,可以通过特定波长范围内样品的光谱与对照光谱或对照品光谱的比较,或通过确定最大吸收波长,或通过测量两个特定波长处的吸收比值而鉴别物质。
用于定量时,在最大吸收波长处测量一定浓度样品溶液的吸光度,并与一定浓度的对照溶液的吸光度进行比较或采用吸收系数法求算出样品溶液的浓度。
二、浓度测定基本原理朗伯一比尔(Lambert - Beer)定律是分光光度法的基本原理。
当一束单色光通过一均匀的溶液时,一部分被吸收,一部分透过,设入射光的强度为I0,透射光强度为I,则I/I0为透光度,用T表示。
当溶液的液层厚度不变时,溶液的浓度越大,对光的吸收程度越大,则透光度越小。
即:-lgT=a1*c(式中a1为常数,c为浓度)当溶液浓度不变时,溶液的液层厚度越大,对光的吸收程度越大,则透光度越小。
即:- lgT=a2*b(b为液层厚度)将以上两式合并可用下式表示:lgT=a*b*c研究表明:溶液对光的吸收程度即吸光度(A)又称消光度(E)或光密度(OD)与透光度(T)呈负对数关系,即:A=-lgT故A=a3*b*c(a3为吸光系数)。
上式为朗伯比尔定律,其意义为:当一束单色光通过一均匀溶液时,溶液对单色光的吸收程度与溶液浓度和液层厚度的乘积成正比。
三、仪器的矫正和检定1.波长矫正常使用高氣酸钦溶液校正双光束仪器,以10%高氯酸溶液为溶剂,配制含氧化钬(Ho2O3 ) 4 % 的溶液,该溶液的吸收峰波长为241. 13nm,278. 10nm,287. 18nm,333. 44nm,345. 47nm,361. 31nm,416. 28nm,451. 30nm,485. 29nm,536. 64nm和640. 52nm。
紫外-可见分光光度计
双波长分光光度计是一种新型的分光光度计, 能把同一光源发出的光通过一个特别的单色 器,把光调成两束不同波长的光,经过切光 器,使其交替通过样品池,再至检测器,可 以测出样品与参比的吸光值,从而计算出被 测组分的浓度。这类仪器优点是可以消除人 工配制的空白溶液与样品基体之间的差别而 引起的误差,还能测定混合物溶液。
三、常用的紫外-可见分光光度计的使用 视频录像 四、分光光度计的检验及维护保养(自学)
三、紫外-可见分光光度计
一、基本组成:
1.光源: 作用是提供入射光
(1)可见光光源:钨丝灯 可提供 325~ 2500nm的光
(2)紫外光光源:氢灯、氘灯、氙灯等 可提供 185~375nm的光
可见分光光度计使用可见光光源,而紫外分 光光度计一般又上述两个光源。
2.单色器(分光元件): 作用是将光源发射的连 续光谱分解为单一波长的单色光。
4.检测器: 作用是将透过溶液的光信号转ห้องสมุดไป่ตู้换为电信号。
(1)光电池:接受光信号后产生电流,但 长时间照射易疲劳
(2)光电管:比光电池灵敏度高、不易疲 劳产生电流需要放大
(3)光电倍增管:具有自身信号放大作用
5.信号显示器 (1)检流计、微安表 (2)数字显示器、自动记录仪
二、紫外-可见分光光度计的类型 1.紫外-可见分光光度计分类: (1)按使用波长分为: 可见分光光度计(400~780nm) 紫外可见分光光度计(200~1000nm) (2)按光路分为:单光束型和双光束型 (3)按提供的波长数分为:单波长型和双
分光元件有:
(1)棱镜:普通玻璃或石英玻璃制成 利用的是光 的折射原理达到分光目的
(2)光栅:在平滑的金属表面 刻上锯齿状平行的 划痕 利用的是光的衍射和干涉原理达到分光目的。
紫外-可见分光光度法
• 组成DNA的碱基均具有一定的吸收紫外线特性,最大吸收值在波长为250~270nm之间,腺嘌呤
的最大紫外线吸收值在260.5nm,胞嘧啶:267nm,鸟嘌呤:276nm,胸腺嘧啶:264.5nm,尿嘧啶: 259nm。这些碱基与戊糖、磷酸形成核苷酸后其最大吸收峰不会改变,但核酸的最大吸收波长是 260nm,吸收低谷在230nm。这个物理特性为测定核酸溶液浓度提供了基础。在波长260nm紫外线 下,10OD值的光密度相当于双链DNA浓度为50μg/ml;单链DNA或RNA为40μg/ml;单链寡聚核 苷酸为20μg/ml。可以此来计算核酸样品的浓度。 分光光度法不但能够确定核酸的浓度,还可以通过测定在260nm和280nm的紫外线吸收值的比值 (A260/A280)估计核酸的纯度。DNA的比值为1.8,RNA的比值为2.0。若DNA比值高于1.8,说 明制剂中RNA尚未除尽。RNA、DNA溶液中含有酚和蛋白质将导致比值降低。270nm存在高吸收 表明有酚的干扰。当然也会出现既含蛋白质又含RNA的DNA溶液比值为1.8的情况,所以有必要 结合凝胶电泳等方法鉴定有无RNA,或用测定蛋白质的方法检测是否存在蛋白质。紫外分光光度 法只用于测定浓度大于0.25μg/ml的核酸溶液。
• Tips:当A260/ A280比值<1.9时,该样品可适当稀释,用饱和的酚、
氯仿、异戊醇抽一次,再用无水乙醇沉淀、抽干。
• 当A260/ A280比值大于2时,则RNA浓度过高,要去RNA
谢谢聆听
Thanks
• c为100ml溶液中所含物质的重量(按干燥品或无水物计算),g; • l(L)为液层厚度,cm。 • 上述公式中吸收系数也可以摩尔吸收系数ε来表示,其物理意义为溶液浓度c为1mol/L和液层厚度
1-紫外可见分光光度计简介
单机模式
单片机软件平台
PC联机模式
UVWin软件工作站 190~1100nm ±0.3nm(开机自动校准) 0.2nm
单机模式/PC联机模式
单机 UVWin软件工作站
<0.2%T(220nm,Nal;340nm,N确度
透过率,吸光度,能量
-0.3~3Abs ±0.002Abs(0~0.5A) ±0.004Abs(0.5~1A) ±0.3%T(0~100%T) 0.001Abs(0~0.5A)
按所吸收光的波长区域不同,分为紫外分光 光度法和可见分光光度法,合称为紫外-可见分光 光度法。
紫外-可见分光光度法的特点: 1 与其它光谱分析方法相比,其仪器设备和操作 都比较简单,费用少,分析速度快; 2 灵敏度高;
3
4 5
选择性好;
精密度和准确度较高; 用途广泛。
2、紫外-可见分光光度计
I.
单机模式/PC联机模式 单机/UVWIN5
波长范围 波长准确度 波长重复性
190~1100nm ±0.3nm(开机自动校准) 0.2nm <0.3%T(220nm,Nal;340nm,NaNo2) 透过率,吸光度,能量 -0.3~3Abs ±0.002Abs(0~0.5A)
杂散光
光度方式 光度范围
光度准确度
2、中档紫外可见分光光度计18系列
181系列(准双光束)/188系列(双光束)
1998年推出的18系列紫外可见分光光度计, 满足了中低档紫外系列产品用户的需要。
18系列的产品又分为两大类:181和188。 其中:181为准双光束 188为双光束
双光束比例监测系统(准双光束)性能指标
仪器代号 光谱带宽 工作模式 软件支持 2nm(固定狭 缝) 单机模式 单片机软件平台 S 0.5、1、2、5nm(可 变狭缝) PC SPC APC 2nm(固定 狭缝) ASPC 0.5、1、2、5nm(可 变狭缝) 2nm(固定狭缝) 0.5、1、2、5nm(可 变狭缝) PC联机模式 UVWin软件工作站
紫外-可见分光光度法
一、分光光度计的主要部件 1. 光源
对光源基本要求:足够光强、稳定、 连续辐射且强度随波长变化小。
钨及碘钨灯:340~2500 nm,多 用在可见光区;
氢灯和氘灯:160~375 nm,多用 在紫外区。
2. 单色器
单色器的用途就是把混合光变成 单色光,由入射狭缝、准直镜、色散 元件、聚焦元件和出口狭缝组成。常 用的色散元件有棱镜和光栅。
对于光谱分析,可测量的最小分析信 号xL为
xL xb ksb
空白试验 多次测量 的平均值
根据一定 置信度确 定的系数
空白试验 多次测量 的标准差
与 xL xb ksb 相对应的浓
度或量即为检出限L
L xL xb ksb
S
S
方法的灵敏度
2. 标准比较法
该法是标准曲线法的简化,即只
配制一个浓度为cs的标准溶液,并测量 其吸 光度 , 求 出吸 收系 数 k, 然 后 由
Aa2
Ab2
a
2
lca
b
2
lcb
cb
Aa2b
a
2
lca
l
b
2
1. 解方程组
Aa1b
Aa1
Ab1
a
1
lca
b
1
lcb
Aa2b
Aa2
Ab2
a
2
lca
b
2
lcb
2. 双波长法—等吸收点法
测定b组分时,选择b组分的最大吸收波长作测定波长 1,由b的峰顶向横坐标作垂线与a吸收曲线的一侧相 交,从相交点作横坐标的平行线与a吸收曲线的另一 侧相交,交点所对应的波长为参比波长2 。在1和2 处分别测量吸光度 A1ab与 ,然后相减求 Aab 。
紫外可见分光光度计
临床分析 色彩測定 环境分析
生物化学分析
有机化学分析
无机化学分析 光学测定
有机化学分析 无机化学分析 光学测定 生物化学分析 环境分析 色彩測定 临床分析
紫外/可见分光光度计的基本结构
光源 单色器 样品室 检测器 控制放大电路 显示器
比色皿 单色光
光电管(或光电池) 放大器
显示器
斩光器 单色光
阳光是复合光的事实。
分光光度法
❖ 1859年德国物理学家本生(R.W.Bunsen)和基尔 霍夫(G.R.Kirchhoff)发现由食盐发出的黄色谱线 的波长和“夫琅和费线”中的D线波长完全一致, 才知道一种物质所发射光的波长(或频率),与它所能 吸收的波长(或频率)是一致的。
分光光度法
❖ 朗伯(J.H.Lambert)早在1760年就发现物质对光 的吸收与物质的厚度成正比,后被人们称之为朗伯 定律;比耳(A.Beer)在1852年又发现物质对光的吸 收与物质的浓度成正比,后被人们称之为比耳定律。 在应用中.人们把朗伯定律和比耳定律结合起来, 称之为朗伯—比耳定律。随后,人们开始重视研究 物质对光的吸收,并试图在物质的定性、定量分析 方面予以使用。因此,许多科学家开始研究以朗 伯—比耳定律为理论基础的仪器装置。
对其分别进行光度测定。
ABS (%T)
ABS (%T)
时间
时间
(二)定性分析
一、利用标准物质定性 在相同条件下,用光谱扫描法测定未知物的吸收光谱,与所推断化合物的标
准物的吸收光谱进行比较,如果两吸收光谱的形状和吸收峰的数目、位置、拐点 等完全一致,就可初步判定未知物与标准物是同一种物质。但要注意,物质不同 但光谱相似的特殊情况。
波长
紫外-可见分光光度法概述(中药制剂检验课件)
含量(W/W%)=(C供×D供×V供)/(100×W供) 本法测定时无需对照品,方法简便。
-18-
必备知识
吸收系数法测定含量
含量计算公式有两种:
1)含量(mg/丸)=
壹 基础知识
贰 必备知识
精诚制药 本草济民
叁 拓展知识
-1-
基础知识
定义:紫外-可见分光光度法(Ultraviolet and Visible Spectrophotometry) 系指通过测定被测物质在紫外-可见光区(200~760nm)对光的吸光度或发光强度, 进行物质定性定量分析的方法。
特点:设备简单、操作简便、灵敏度和准确度较高等。 适用范围:中药制剂定性鉴别、杂质检查及含量测定。
-21-
拓展知识
紫外-可见分光光度计的校正
杂散光的检查
试剂名称 碘化钠 亚硝酸钠
杂散光的检查
试剂浓(g/100ml) 测定用波长(nm)
1.00
220
5.00
340
透光率(%) <0.8 <0.8
-22-
拓展知识
紫外-可见分光光度计的校正
吸收池的校正 分别在两个洁净的统一规格、同一材料的吸收池中装入同一溶剂(一般可用水
式中,A为吸光度;K为吸收系数;C为溶液浓度;L为液层厚度。 吸收系数是指吸光物质在单位浓度及单位厚度时的吸光度。 吸收系数K :百分吸收系数、摩尔吸收系数。《中国药典》采用百分吸收系数。 定量方法有吸收系数法、对照品法、标准曲线法。
-17-
必备知识
吸收系数法测定含量
紫外-可见分光光度计
8
玻璃可吸收紫外光,玻璃棱镜只能用于350 ~ 3200 nm的 波长范围,即只能用于可见光域内。 石英棱镜可使用的波长范围较宽,可从185 ~ 4000nm, 即可用于紫外、可见和近红外三 个光域。
9
光栅是利用光的衍射与干涉作用制成的,可用于紫外、 可见及红外光域 在整个波长区具有良好的、几乎均匀一致的分辨能力。 具有色散波长范围宽、分辨本领高、成本低、便于保存 和易于制备等优点。 缺点: 各级光谱会重叠而产生干扰。
30
特点: 可测多组份试样、混浊试样、而且可作成导数光谱、 不需参比液(消除了由于参比池的不同和制备空白溶液 等产生的误差)。 克服了电源不稳而产生的误差,灵敏度高。
缺点:
仪器需要装备两个单色器,价格较高,体积较大。
用微机装备的单波长仪器能实现上述双波长仪器的功能。
31
32
双波长光度计光路示意图
19
光电管:紫外-可见分光光度计上应用较为广泛。
光电倍增管:检测微弱光最常用的光电元件
特点:灵敏度比一般的光电管要高200倍,因此可使 用较窄的单色器狭缝,对光谱的精细结构有较好的 分辨能力。
缺点:强光照射会引起不可逆损害,不适用于检测
高能量。
20
(五)信号指示系统 作用是放大信号并以适当方式指示或记录下来。 常用的信号指示装置有直读检流计、电位调节指零装置 以及数字显示或自动记录装置等。 很多型号的分光光度计装配有微处理机,一方面可对分 光光度计进行操作控制,另一方面可进行数据处理。
①入射狭缝:光源的光由此进入单色器 狭缝在决定单色器性能上起重要作用。狭缝的大小直接 影响单色光纯度,但过小的狭缝又会减弱光强。 ②准直装置:透镜或反射镜,使入射光成为平行光束
6
紫外可见分光光度计与可见分光光度计的区别
可见分光光度计与紫外可见分光光度计的区别可见分光光度计与紫外可见分光光度计的区别是测定波长范围不同,紫外一般用氢灯,测定波长范围180~350nm,可见一般用钨灯,测定波长范围320~1000nm。
所谓紫外可见分光光度计也就是说这个仪器可以更换光源,能够测定吸收峰在紫外和可见光部分的化合物。
发现吸光度超过2,便不再显示,是正常现象。
吸光度是透光率的负对数,吸光度超过2就是说透光率小于1%,低于仪器的检出限,就不再显示了。
至于能不能用分光光度计,取决于你测定的波长。
具体来说分为以下三点:
1、光源不同:可见分光光度计的光源一般只用钨灯,而紫外可见分光光度计是用钨灯+氘灯两个光源,同时还多了这两个光源灯的切换部件。
这是因为钨灯的光谱范围主要在可见到近红外这段,氘灯主要在紫外端。
也正是因为光源的不一样,紫外可见分光光度计也多了一个专门提供氘灯工作的氘灯电源了。
2、光学器件的不同:由于玻璃能吸收紫外波,而对可见到近红外端有比较好的透过性,所以可见分光光度计的一些光学部件可以使用玻璃,而紫外可见分光光度计就不能使用玻璃部件,一般使用石英光学部件。
同时由于这个原因,在比色皿的选择上也就有不同了,可见分光光度计可以使用玻璃制的比色皿,而紫外可见分光光度计一般使用
石英制的比色皿了。
3、接收器的不同:由于紫外可见分光光度计多了紫外波,所以在接收器的选择上也就不一样了。
多了对紫外波的灵敏响应功能,这类接收器的价格就比可见分光光度计的接收器贵了很多了。
紫外可见分光光度法
T与A的关系
T 100% 50% 25% 10% 1.0% 0.1% 0.01% 0.001% 0%
A 0 0.301 0.602 1.00 2.0 3.0 4.0
5.0
上述说明: T值为0%至100%内的任何值。 A值可以取任意的正数值。
入射光强度 I0
等 条件一定时, E 仅与吸收物质本身的性质有关, 与待测物浓度无关; (3)同一吸收物质在不同波长下的E 值是不同的。在最大 吸收波长λmax处的摩尔吸收系数E max表明了该 吸收物质最大限度的吸光能力,也反映了光度法 测定该物质可能达到的最大灵敏度。
(4)可作为定性鉴定的参数;
(5)物质的吸光能力的度量
? EK2带
B带 R带
苯乙酮的紫外吸收光谱
四、影响吸收带的因素
• 位阻影响 • 跨环效应
共轭系统共平面性↓→共轭效应↓ → max ↓(短移), ↓
• 溶剂效应 溶剂极性↑→ K带长移,R带短移
• pH影响
max 210.5nm,270nm
235nm,287nm
位阻影响
顺式
反式
二苯乙烯顺反异构体 的紫外吸收光谱
最大处对应的波长称为最大吸收波长λmax。 吸收曲线的形状、λmax及吸收强度等与分子 的结构密切相关。
在吸收曲线上,最大吸收峰所对应的是最大吸收波长 (λmax),为不同化合物的特征波长。吸收曲线的形状是物 质定性的主要依据,在定量分析中可提供测定波长,一般以灵 敏度较大的λmax为测定波长。
峰与峰之间的部位叫谷,该处对应波长为最小吸收波长。 在图谱短波端只呈现强吸收但不成峰的部分称为末端吸收 (end absorption)。
UV紫外分光光度计
—比尔定律。
17
紫外—可见分光光度法的误差和测量条件的选择
分光光度法的误差
•溶液不遵守朗伯—比尔定律所引起的误差 利用标准曲线的直线段来测定被测溶液的浓度,从而
减少由入射光为非单色光引起的误差;也可以利用试剂空 白和确定适宜的浓度范围来减少由溶液本身所引起的误差 。 •光度测量误差
吸光度与透光率是负对数关系,故吸光度的标尺刻度 是 不 均 匀 的 。 一 般 来 说 透 光 率 为 20 % ~65 % ( 吸 光 度 为 0.2~0.7)时,浓度测量的相对误差都不太大。这就是分光 光度分析中比较适宜的吸光度范围。
lgT=-0.4343=A
即当A=0.4343时,吸光度测量误差最小
21
紫外—可见分光光度法应用实例
应用: • 测量试样微量组分 • 测定配合物的组成及稳定常数、弱酸 的解离常数、化学反应的速率常数、催 化反应的活化能等. • 根据分子的紫外光谱数据判断分子的 空间构型,确定分子结构。
22
1、波长准确度和波长重复性 2、透射比准确度及透射比重复性
2.双光束:经单色器分光后经反射镜分解为强度相等的两束光,
一束通过参比池,一束通过样品池。光度计能自动比较两束
光的强度,此比值即为试样的透射比,经对数变换将它转换
成吸光度并作为波长的函数记录下来。快速全波段扫描。可
消除光源不稳定、检测器灵敏度变化等因素的影响,特别适
合于结构分析。仪器复杂,价格较高。
表示,称为吸光系数(absorption coefficient),其单 位为L·g-1·cm-1,此时式(9-3)变为
A abc
(1-3)
4
如果浓度c的单位为mol·L-1,b的单位为cm,这时k常用
紫外可见分光光度计基本常识与使用
检查仪器的光源、单色器、检测器等部件是 否正常工作。
参数设置与校准
根据实验需求,设置波长范围、 扫描速度、狭缝宽度等参数。
进行波长校准,确保波长准确。
进行吸光度或透过率校准,使用 标准物质进行校准,确保测试结
果的准确性。
样品处理与测试
将样品放入比色皿或石英 池中,注意擦拭干净比色 皿或石英池的外表面。
波长准确度与重复性
高准确度和重复性的波长定位是保证测量准 确的关键。
样品室与检测系统
01
02
03
样品室设计
可容纳不同类型的样品池, 如石英比色皿、微量池等。
检测器类型
常用硅光电池、光电倍增 管等作为检测器,具有高 灵敏度和宽线性范围。
背景校正
采用双光束设计,自动扣 除背景干扰,提高测量精 度。
数据处理与显示系统
02
紫外可见分光光度计基本构造
光源系统
光源类型
通常使用氘灯和钨灯作为紫外和 可见光区的光源,具有稳定、连 续的光谱输出。
光源寿命
光源寿命有限,需要定期更换, 以保证测量准确性和稳定性。
单色器系统
单色器类型
采用棱镜或光栅作为分光元件,将复合光分 解为单色光。
波长范围
覆盖紫外和可见光区,可根据需求选择不同 的波长范围。
副产品监控
某些生产过程中会产生副产品,通 过对其吸收光谱的测量,可以监控 副产品的生成情况,以便及时采取 措施。
新产品开发与研究
1 2
新材料研究
紫外可见分光光度计可用于研究新材料的光学性 能,如吸收、反射、透射等,为新材料开发提供 数据支持。
配方优化
在产品配方开发过程中,通过测量不同配方的吸 收光谱,可以优化配方组成,提高产品性能。
第一章 紫外-可见分光光度计
第一节紫外-可见分光光度计的基本结构一、紫外-可见分光光度计的分类紫外-可见分光光度计(UV-Vis spectrophotometer)是量度介质对紫外、可见光区波长的单色光吸收程度的分析仪器,按不同的分类标准所做的分类如表1-1目前,国际上一般按紫外-可见分光光度计的仪器结构将其分为单光束、准双光束、双光束和双波长四类。
本节将对这四者之间的主要区别、各自的特点进行简单介绍。
(一)单光束紫外-可见分光光度计1945年美国Beckman公司推出的世界上第一台成熟的紫外-可见分光光度计商品仪器,就是单光束紫外-可见分光光度计。
顾名思义,单光束紫外-可见分光光度计只有一束单色光,一只比色皿,一只光电转换器(又称光接收器)。
其光电转换器通常采用硅光电池、光敏三极管或光电管,其结构简单、价格便宜,但因其杂散光、光源波动、电子学的噪声等都不能抵消,故单光束紫外-可见分光光度计的光度准确度差。
国外的DU70、PU8700等及我国生产的721、722、723、727、751、752、753、754等紫外-可见分光光度计都是单光束仪器,它们属于低档仪器。
单光束紫外-可见分光光度计的技术指标比较差,特别是杂散光、光度噪声、光谱带宽等主要技术指标比较差,分析误差较大,在使用上收到限制。
一般来讲,要求较高的制药行业、质量检验行业、科研行业等不宜使用单光束紫外-可见分光光度计。
单光束紫外-可见分光光度计的组成如图1-1所示。
(二)准双光束紫外-可见分光光度计所谓准双光束紫外-可见分光光度计,就是有两束光,但只有一只比色皿的紫外-可见分光光度计。
其中,一束光通过比色皿,另一束光不通过比色皿。
不通过比色皿的那束光,主要起抵消光源波动对分析误差影响的作用。
准双光束紫外-可见分光光度计有两种类型:一种是两束单色光,一只比色皿,两只光电转换器;另一种是一束单色光,一束复合光,一只比色皿,两只光电转换器。
1.两束单色光的准双光束紫外-可见分光光度计这种准双光束紫外-可见分光光度计比较多,目前国内外市场上或用户正在使用的准双光束紫外-可见分光光度计,基本上都是这种类型的仪器,它属于普及型的常规仪器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于多组分混合物、混浊试样(如生物组织液)分析, 以及存在背景干扰或共存组分吸收干扰的情况下,利用双波 长分光光度法,往往能提高方法的灵敏度和选择性。利用双 波长分光光度计,能获得导数光谱。
双波长 BECKMAN-DU_640
(4)动力学分光光度计 解决在光化学反应、辐射化学反应和酶催化反应中,
紫外—可见分光光度计
第一部分 紫外-可见吸收光谱法的原理 第二部分 紫外-可见分光光度计构造与类型 第三部分 紫外-可见分光光度计的应用 第四部分 紫外-可见吸收光谱分析的条件和影响因素 第五部分 仪器的使用操作、维护
第一部分 紫外-可见吸收光谱法的原理
一、基本原理:光的选择性吸收
分子中的某些基团吸收了紫外可见辐射光后, 发生了电子能级跃迁,而产生了相应的吸收光谱。 属分子吸收光谱。
(2)吸收物质在特定波长和溶剂条件下的特征常数;
(3)不随浓度c 和光程长度b的改变而改变。在温度和 波长等条件一定时,k仅与吸收物质本身的性质有关;
(4)是物质吸光能力的量度,可作为定性鉴定的参数;
(5)同一物质在不同波长下的 k 值是不同的。在 最大吸收波长λmax处的摩尔吸光系数,常以 kmax 表示。K max表明了该吸收物质最大限度的吸光能
4. 检测器 利用光电效应将透过吸收池的光信号变成可测的电信号,常用
的有光电管、光电倍增管、光电二极管、光电摄像管等。 要求灵敏度高、响应时间短、噪声水平低、稳定性好的优点。
5. 显示器 将监测器输出的信号放大并显示
出来的装置。 常用的液晶数字指示窗口和计算
控制显示。
二、紫外-可见分光光度计的分类及特点
自动记录,快速全波段扫描。可消除光源不稳定、检测 器灵敏度变化等因素的影响,特别适合于结构分析。仪器复 杂,价格较高。
参比池
M1
M3
M2 样品池
M4
岛津UV-2450
(3)双波长分光光度计
由同一光源发出的光被分成两束,分别经过两个单色 器,得到两束不同波长(1和2)的单色光;通过折波器 以一定的频率交替通过同一样品池,然后由检测器交替接 收信号,最后由显示器显示出两个波长处的吸光度差值ΔA。
狭缝:将单色器的散射光切割成单色光。直接关系到仪器的分辨 率。狭缝越小,光的单色性越好。分为入射狭缝和出射狭缝。 棱镜:玻璃350~3200 nm,石英185~4000 nm。 光栅:波长范围宽,色散均匀,分辨性能好,使用方便。
4
2
5
1 3
1.入射狭缝 2.准直透镜 3.棱镜 4.聚焦棱镜 5.出射狭缝
紫外-可见吸收光谱分析是研究物质在紫外-可 见光波下的分子吸收光谱的分析方法。 紫外-可见区可细分为: (1)10-200nm;远紫外光区 (2)200-400nm;近紫外光区 (3)400-800nm;可见光区
二、光的吸收定律:
1.朗伯——比尔定律:A=kbc。
表明:一定温度下,一定波长的单色光通过均匀的、非散射的溶液 时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。
(一)按仪器使用波长分类:
①真空紫外分光光度计(0.1-200 nm); ②可见分光光度计(350-700 nm); ③紫外-可见分光光度计(190-1100 nm); ④紫外-可见-红外分光光度计(190-2500 nm);
(二)按仪器使用的光学系统分类:
①单光束分光光度计; ②双光束分光光度计 ③双波长分光光度计 ④动力学分光光度计
具有足够的辐射强度、较好的稳定性、较长的使用 寿命。
可见光区常用的光源是钨灯或碘钨灯,波长范 围是350-1000 nm。
在紫外区常为氢灯或氘灯,发射的连续波长范 围是180-360 nm。
2.单色器 单色器是将光源辐射的复合光分成单色光的光学装置。它是
分光光度计的心脏部分。单色器一般由狭缝、色散元件及透镜系 统组成。关键是色散元件,最常见的色散元件是棱镜和光栅。
3.吸收池 用于盛装试液的装置。吸收材料必须能够透过所测光谱范
围的光。一般可见光区使用璃吸收池,紫外光区使用石英 吸收池。 规格有0.5、1.0、2.0、5.0cm 等。
在高精度的分析测定中(紫外区尤其重要)吸收池要挑选 配对,因为吸收池材料的本身吸光特性以及吸收池的光程长
度的精度等对分析结果都有影响。
力,也反映了光度法测定该物质可能达到的最大灵 敏度。
(6)kmax越大表明该物质的吸光能力越强,用光度
法测定该物质的灵敏度越高。
(7)k在数值上等于浓度为1mol/L、液层厚度为1cm
时该溶液在某一波长下的吸光度。
三、紫外吸收光谱与分子结构的关系
有机化合物的紫外吸收光谱常被用作结构分析的依据:
饱和有机化合物
能量转化、酶的降解、生物合成等的反应变化。
特点:时间辨别、快速扫描、测定生物化学瞬间 产物的吸收光谱和随时间变化值。
入射光 I0
透射光 It
A=kbc 式中: A:吸光度;描述溶液对光的吸收程度; k:摩尔吸光系数,单位 L·mol-1·cm-1; b:液层厚度(光程长度),通常以cm为单位; c:溶液的摩尔浓度,单位 mol·L-1;
2.摩尔吸光系数:(A=kbc)
(1) k与入射波长、溶液的性质以及温度有关。
(1)单光束分光光度计
经单色器分光后的一束平行光,轮流通过参比溶液和样品溶 液,以进行吸光度的测定。
简单,价廉,适于在给定波长处测量吸光度或透光度,一般 不能作全波段光谱扫描,要求光源和检测器具有很高的稳定性。
参比池
样品池
(2)双光束分光光度计
经单色器分光后经反射镜分解为强度相等的两束光,一 束通过参比池,一束通过样品池。光度计能自动比较两束光 的强度,此比值即为试样的透射比,经对数变换将它转换成 吸光度并作为波长的函数记录下来。
饱和烃及其取代衍生物
不饱和脂肪族有 机化合物
不饱和烃及共轭烯烃、 羟基化合物
芳香化合物 不饱和杂环化合物
苯及其衍生物
第二部分 紫外—可见分光光度计
一、紫外-可见分光光度计的基本构造
基本构造主要由光源、单色器、吸收池、检测器和显 示器五大部分组成。
光源 单色器 样品池 检测器
显示器
1.光源 在整个紫外光区或可见光区可以发射连续光谱,