小学五年级数学下册复习概念

合集下载

新人教版五年级下册数学概念及公式

新人教版五年级下册数学概念及公式

新人教版五年级数学下册概念及公式兴义市七舍镇七舍小学:陈兴艳因数和倍数1、我们说的因数和倍数指的是整数,不包括0,也不能说小数。

2、因数和倍数是相对的,不能单独说因数和倍数。

3、一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。

一个数的倍数的个数有无限的,最小的倍数是它本身,没有最大的倍数。

一个数的最大因数=最小倍数=它本身。

4、a÷b=c(a、b、c都是整数),我们就可以说,能被b整除,也可以说b能整除a.(例10÷2=5,可以说10能被2整除,2能整除10)。

5、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数。

5的倍数特征:个位上是0或5的数都是5的倍数。

3的倍数特征:一个数各个数位位上的数的和是3的倍数,这个数就是3的倍数。

2和5的倍数特征:个位上是0的数,既是2的倍数又是5的倍数。

判断奇数和偶数的依据是:是否是2的倍数。

自然数不是奇数就是偶数。

奇数:不是2的倍数的数叫奇数。

(就是我们生活中常说的单数)偶数:是2 的倍数的数叫偶数。

(就是我们生活中常说的双数)6、质数:一个数,如果只有1和它本身两个因数,这样的数叫质数。

合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

判断质数和合数的依据是:根据因数的个数。

一个质数只有两个因数,一个合数至少有两个因数。

7、1既不是质数也不是合数。

一个自然数除了质数还有合数,还有1。

8、既是质数又是偶数的一位数是2,既是奇数又是偶数的最小的一位数是9,最小的两位数是15。

9、100以内质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、11、最小的质数是2,最小的合数是4,奇数中最小的合数是9,所有的偶数中只有一个质数是2,其它所有的质数都是奇数。

12、一个自然数不是奇数就是偶数。

(√)一个自然数不是质数就是合数。

小学五年级数学下册认识最大公约数和最小公倍数

小学五年级数学下册认识最大公约数和最小公倍数

小学五年级数学下册认识最大公约数和最小公倍数认识最大公约数和最小公倍数在小学五年级的数学下册中,我们将学习到一个重要的概念——最大公约数和最小公倍数。

了解和掌握最大公约数和最小公倍数的概念和计算方法,对我们后续学习数学知识将起到关键的作用。

本文将详细介绍最大公约数和最小公倍数的定义、计算方法以及相关应用。

一、最大公约数的概念与计算方法最大公约数,简称为最大公因数,指的是一组数中能够同时整除这组数的最大正整数。

最大公约数的计算有多种方法,常用的有质因数分解法、短除法和辗转相除法。

1. 质因数分解法质因数分解法是一种将数分解为质因数的乘积的方法,通过将给定的数分解为质数的乘积,然后找出公因数的乘积,即可得到最大公约数。

以下是一组数的质因数分解法计算最大公约数的示例:例子:求解24和36的最大公约数。

24 = 2 × 2 × 2 × 336 = 2 × 2 × 3 × 3公因数为2 × 2 × 3 = 12,因此最大公约数为12。

2. 短除法短除法是一种通过不断进行除法运算,直到余数为0,然后将除数累加起来得到最大公约数的方法。

以下是一组数的短除法计算最大公约数的示例:例子:求解42和56的最大公约数。

首先,用56除以42,商为1,余数为14。

然后,用42除以14,商为3,余数为0。

因此,最大公约数为14。

3. 辗转相除法辗转相除法是一种通过连续地用较小的数去除较大的数,然后再用得到的余数去除上一步的较小数,如此循环,直到余数为0,即可得到最大公约数的方法。

以下是一组数的辗转相除法计算最大公约数的示例:例子:求解12和18的最大公约数。

首先,用18除以12,商为1,余数为6。

然后,用12除以6,商为2,余数为0。

因此,最大公约数为6。

二、最小公倍数的概念与计算方法最小公倍数指的是一组数中能够同时被这组数整除的最小正整数。

最小公倍数的计算同样有多种方法,常用的有质因数分解法和倍数法。

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

小学五年级下册数学复习资料

小学五年级下册数学复习资料

小学五年级下册数学复习资料小学五年级下册数学复习资料11、公式长方形:周长=(长+宽)×2;字母公式:C=(a+b)×2;面积=长×宽;字母公式:S=ab;正方形:周长=边长×4;字母公式:C=4a;面积=边长×边长;字母公式:S=a;平行四边形:面积=底×高;字母公式:S=ah;三角形:面积=底×高÷2;字母公式:S=ah÷2;底=面积×2÷高;高=面积×2÷底;梯形:面积=(上底+下底)×高÷2;字母公式:S=(a+b)h÷2;上底=面积×2÷高—下底;下底=面积×2÷高—上底;高=面积×2÷(上底+下底)。

2、单位换算的方法大化小,乘进率;小化大,除以进率。

3、常用单位间的进率1千米=1000米1米=10分米;1分米=10厘米1厘米=10毫米;1平方千米=100公顷1公顷=10000平方米;1平方米=100平方分米1平方分米=100平方厘米。

4、图形之间的关系(1)平行四边形可以转化成一个长方形;两个完全相同的三角形可以拼成一个平行四边形。

两个完全相同的梯形可以拼成一个平行四边形。

(2)等底等高的平行四边形面积相等;等底等高的三角形面积相等。

(3)等底等高的平行四边形面积是三角形面积的2倍。

如果一个三角形和一个平行四边形等面积,等底,则三角形的高是平行四边形的2倍。

如果一个三角形和一个平行四边形等面积,等高,则三角形的底是平行四边形的2倍。

(4)把长方形框架拉成平行四边形,周长不变,面积变小了。

5、求组合图形面积的方法(1)仔细观察,确定组合图形可以分割或添补成哪些可以计算面积的基本图形。

(2)找到计算这些基本图形的面积所需要的数据。

(3)分别计算这些基本图形的面积,然后再相加或相减。

小学五年级数学下册认识相似和全等三角形

小学五年级数学下册认识相似和全等三角形

小学五年级数学下册认识相似和全等三角形相似和全等三角形是数学中重要的概念之一,它们在几何图形的研究和运用中扮演着重要的角色。

在小学五年级数学下册中,我们将深入学习相似和全等三角形的概念以及它们的性质和判定方法。

一、相似三角形的概念相似三角形是指具有相同形状但尺寸不同的两个三角形。

在相似三角形中,对应角相等,而对应边的比例相同。

例如,如果两个三角形的内角相等,并且对应边的比例相等,那么这两个三角形就是相似三角形。

例如,我们可以观察边长分别为3cm、4cm、5cm的三角形ABC和边长分别为6cm、8cm、10cm的三角形DEF。

这两个三角形的内角都是直角,而且对应边的比例为1:2。

因此,三角形ABC和三角形DEF 是相似的。

二、相似三角形的性质相似三角形具有一些重要的性质,包括比例关系、角度关系和边长关系。

1. 比例关系:相似三角形中,对应边的比例相等。

这意味着,如果两个三角形相似,我们可以通过已知一个对应边的长度和比例关系推算出其他对应边的长度。

2. 角度关系:相似三角形中,对应角相等。

这意味着,如果我们已知一个三角形的内角度数,通过相似三角形的性质,可以推断出其他相似三角形的内角度数。

3. 边长关系:相似三角形中,边长之比等于对应角度的正弦值之比或者边长之比等于对应角度的余弦值之比。

这个关系在解决实际问题时非常有用。

三、相似三角形的判定方法判定两个三角形是否相似有几种方法,其中最常用的方法是SAS (边角边相似定理)、AA(角角相似定理)和SSS(边边边相似定理)。

1. SAS相似定理:在两个三角形的对应边的比例相等的情况下,如果两个三角形有一个相等的角,那么这两个三角形是相似的。

2. AA相似定理:在两个三角形的两个内角分别相等的情况下,这两个三角形是相似的。

3. SSS相似定理:在两个三角形的三边对应相等的情况下,这两个三角形是相似的。

四、全等三角形的概念全等三角形是指具有相同形状和尺寸的两个三角形。

小学五年级下册数学复习要点(解方程)

小学五年级下册数学复习要点(解方程)

小学五年级下册数学复习要点(解方程)1.简易方程:方程axb=c(a,b,c是常数)叫做简易方程。

2.方程:含有未知数的等式叫做方程。

(注意方程是等式,又含有未知数,两者缺一不可)方程和算术式不同。

算术式是一个式子,它由运算符号和已知数组成,它表示未知数。

方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

3.方程的解使方程左右两边相等的未知数的值,叫做方程的解。

如果两个方程的解相同,那么这两个方程叫做同解方程。

4.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

5.解方程:解方程,求方程的解的过程叫做解方程。

6.列方程解应用题的意义:用方程式去解答应用题求得应用题的未知量的方法。

7.列方程解答应用题的步骤(1)弄清题意,确定未知数并用x表示;(2)找出题中的数量之间的相等关系;(3)列方程,解方程;(4)检查或验算,写出答案。

8.列方程解应用题的方法(1)综合法先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

9.列方程解应用题的范围:小学范围内常用方程解的应用题:(1)一般应用题;(2)和倍、差倍问题;(3)几何形体的周长、面积、体积计算;(4)分数、百分数应用题;(5)比和比例应用题。

为大家整理的小学五年级下册数学复习要点就到这里,更多小学生辅导相关内容请随时关注小学频道!。

小学数学五年级下册总复习全部

小学数学五年级下册总复习全部

小红家的客厅长四八分米,宽三 二分米.现在给客厅的地面铺正方 形地砖,有三种砖,你帮小红家想一 想,选择哪种地砖能铺得即整齐又 不会有余料?
边长三分米
边长六分米
边长八分米
分析:求出四八和三二的公因数,这个公因数是
地砖的边长.
复习长方体和正方体
一、建构知识网络
第一课时
长方形 正方形
等边三角形 按边分 等腰三角形
[二]简单图形旋转九0°的画法
一.找出图形的关键点或线段. 二.借助三角板[或量角器]作原图形线段或关键点与旋转中心所在线段的垂线. 三.在所做垂线上量出与原线段相等的长度[即找出原图关键点的对应点]. 四.顺次连接所画出的对应点.
[一]画出图一的全部对称轴. [二]画出图二向上平移三格后的图形.
七、一九
偶数

四、六、八、一0、
一二、一四、一六、
二.出示判断题:
[一]自然数中,除了奇数就是偶数.[ ]
[二]所有的奇数都是质数.
[]
[三]所有的合数都是偶数.
[]
[四]自然数中,除了质数就是合数.[ ]
[五]质数与质数的积还是质数. [ ]
[六]一个数越大,它的因数的个数就越多.
[]
注意:奇数里既有质数也有合数还有一. 质数里除了二以外都是奇数. 偶数里除了二以外全是合数.
10
单位:厘米
8 15


一左


0●



五 长方体六个面的面积,就是长方体的表面积.
二.正方体表面积的含义 [一]正方体棱长与每个面边长的关系
后 上 左前右 下
正方体展开图的每个面都是正方形, 边长就是正方体的棱长,每个面的面 积都等于棱长乘棱长。

小学五年级下册数学要背概念及公式

小学五年级下册数学要背概念及公式

五年级下册数学要背概念及公式一、旋转、平移时针旋转1小时是30度二、因数与倍数1、如果a×b=c(a、b、c都是不为0的整数),那么a、b就是c得因数,c就是a、b的倍数。

2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。

3、奇数与偶数:自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

偶数:个位是0,2,4,6,8的数。

奇数:个位不是0,2,4,6,8的数。

4、倍数特征:2的倍数的特征:各位是0,2,4,6,8。

3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:各位是0,5。

5、质数与合数:质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

1既不是质数也不是合数。

6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

9、100以内的质数表:2、3、5、7、11、13、17、1923、29、31、37、41、43、47、5359、61、67、71、73、79、83、89、97三、长方体的认识、表面积、体积和容积1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。

2. 正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。

小学数学五年级下册总复习

小学数学五年级下册总复习

平面图形
三角形
一般三角形 锐角三角形
按角分 直角角三角形
平行四边形
钝角三角形
等腰梯形
梯形 组合图形
直角梯形 一般梯形
正方体 立体图形
长方体
二、 注重知识的承接,回顾所学平面图形的特征、周长和面积公式.
S=
1 2
(a+b)h
S=
1 2
ah
三、 明确长方体、正方体的异同.
从点、棱、面三方面比较长方体和正方体之间的相同点和不同点
一 =
-1
+1
1
-
1
+
-1
2
2
4
4
8
+1 - 1
一8 1
=-
16
32
= 31
1
+ 16
1
32
32
在圆圈内填上适当的分数,使每行、每 列的三个数加起来的和都等于一.
1 4
3 10
1 5
统计与概率
统计量的复习
面是正方形,有( 4 )个面是长方形。
二. 要焊接一个长一0cm,宽八cm,高六cm的长方体框架,要准备一0cm, 宽八cm,高六cm的铁丝各[ 四 ]根.
三.一个正方体纸盒的棱长是七cm,这个纸盒的棱长总和是[八四 ]cm.
四.有一根一一五五0cm长的铁丝,用这根铁丝焊成了一个正方体的框架,还 剩铁丝六cm0c.m这个正方体框架的棱长是[ 一]厘二米.
小结:分数与除法的关系
分数可以表示整数除法的商,在表示整数除法时, 要用除数作分母,用被除数作分子.
用关系式表示:
被除数
被除数÷除数= ————
用字母可以表示成: 除数

5年级下册数学复习

5年级下册数学复习

五年级数学总复习整理人:汪宏2009年小数的乘除法概念部分:1、整数乘法的交换律、结合律、和分配律,对于小数乘法也适用。

2、小数除法,可以把除数转化成整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0点上小数点,如果有余数要添0 再除。

3、一个数的小数部分,从某一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

4、小数部分的位数是有限的小数,叫做有限小数。

5小数部分的位数是无限小数,叫做无限小数。

6、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。

7、小数8、判断练习:①整数乘小数,积比这个数小。

(×)②小数乘法的积,可能是整数。

(√)③因为小数未尾的0不影响小数的大小,所以在任何时候,小数未尾的0都可以去掉。

(×)④近似值的小数位数越多,表示这个数的取值越精确。

(√)⑤1.47÷1.2的商是1.2,余数是3。

(×)⑥3.145926.......是循环小数。

(×)⑦一个不等于0的数除以0.5,商一定比这个数大。

(√)⑧在小数除法中,被除数的小数的小数部分有几位,商的小数部分就有几位。

(×)⑨4.40与4.4大小相等,表示的意义也相同。

(×)9、典型填空:①3.97保留一位小数是(4.0),保留两位小数是(3.98),保留三位小数是(3.980)。

②0.42×1.53的积里有(4)位小数。

③4.6×1.02>4.6 2.3×0.99<2.3 4.6÷1.02<4.62.3÷0.99>2.3 4.6÷0.1>4.6×0.1 2.3×10=2.3÷0.1④从70.2里连续减去5.4,减(13)次,正好减完。

⑤11÷6的商用循环小数表示是(1.83…),2.03304304……可以写作(2.03304…)。

五年级数学下册知识点

五年级数学下册知识点

五年级数学下册知识点
五年级数学下册的知识点主要包括以下内容:
1. 分数的认识和运算:认识真分数、假分数、带分数,掌握分数的相等、比较大小等概念,进行分数的加减乘除运算。

2. 小数的认识和运算:认识小数的定义和表示方法,包括小数点的读法和写法,学习小数的加减乘除运算。

3. 长度、容量和质量的换算:学习长度、容量和质量的单位换算,例如米和千米、升和毫升、千克和克的换算。

4. 图形的认识和性质:认识各种图形的名称和性质,例如正方形、长方形、平行四边形、三角形、圆等,学习图形的周长和面积的计算。

5. 时、刻和日历的学习:学习时间的读法和表示方法,包括时、刻、分和秒的关系,学习使用日历计算日期和星期的方法。

6. 数据的收集和分析:学习数据的搜集、整理和展示方法,包括柱状图、折线图、饼图等的制作和分析。

7. 逻辑推理和问题解决:培养学生的逻辑思维和问题解决能力,通过解决各类数学问题来锻炼学生的综合运用数学知识的能力。

以上列举的知识点是五年级数学下册的主要内容,具体的教材和学校的教学进度可能会有所不同,建议根据具体的教材和教学计划进行学习。

人教版五年级数学下册复习重点考点分析带测试题,拿给同学们练习!

人教版五年级数学下册复习重点考点分析带测试题,拿给同学们练习!

2020—2021学年度第二学期部编版五年级语文复习重点考点分析一、因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

2、因数和倍数:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

3、奇数:不能被2整除的数,也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

5、质数(或素数):只有1和它本身两个因数。

合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

1:只有1个因数。

“1”既不是质数,也不是合数。

二、分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

2、单位“1”:一个物体、一个计量单位或是一些物体等都可以看作一个整体。

一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。

3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

4、分数的基本性质分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

5、公因数、最大公因数几个数公有的因数叫这些数的公因数。

其中最大的那个就叫它们的最大公因数。

(1)几个数的公因数只有1,就说这几个数互质。

(2)求两个数的最大公因数的方法。

(3)最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。

其中最小的那个就叫它们的最小公倍数。

7、约分和通分(1)约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

(2)通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。

8、比分数的大小分母相同,分子大,分数就大;分子相同,分母小,分数才大。

三、分数的加减法1、同分母分数加、减法的计算分母不变,分子相加、减。

计算的结果能约分的要约分成最简分数。

新北师大版小学数学五年级下册知识点归纳

新北师大版小学数学五年级下册知识点归纳

新北师大版小学数学五年级下册知识点归纳新北师大版五年级数学下册必背概念知识点整理第一单元:《分数加减法》1、异分母分数相加减:要先通分,化成相同的分母,再加减,计算结果能约分的要约分。

2、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

3、分数加减混和运算的运算顺序和整数加减混和运算的运算顺序相同。

在计算过程,整数的运算律对分数同样适用。

4、计算异分母分数混合运算主要有两种方法,一时将所有的分数进行通分,再进行计算,二是先根据需要进行部分通分。

根据算式特点来选择方法。

5、在比较分数与小数大小时,要先统一他们的表现形式。

将分数转化为小数或者将小数转化为分数。

只有表现形式统一了,才有可能比较大小。

6、小数化成分数的方法:将小数化成分母是10、100、1000…的分数,能约分的要约分。

具体是:看有几位小数,就在1后边写几个做分母,把小数点去掉的部分做分子,能约分的要约分。

7、分数化成小数的办法:用分子除以分母所得的商即可,除不尽时平日保留三位小数。

8、在分数化成小数时,如果分母只含有2或5的质因数,这个分数能化成有限小数。

如果含有2或5以外的质因数,这个分数就不能化成有限小数。

9、分数单位:用分子是1、分母是某一自然数(和1除外)的分数(即几分之一)作为分数单位。

第二单元:《长方体(一)》2.1长方体的认识知识点:1、熟悉长方体、正方体,了解各部分的称号。

(1)表面平平的部分称为面;两面相交便形成了一条棱;而三条棱又交于一点,这个点叫作顶点。

(2)左面的面叫左面,右面的面叫右面,上面的面叫上面,下面的面叫下面(或叫底面),前面的面叫前面,后面的面叫后面。

(3)长方体有12条棱,这12条棱中有4条长、4条宽和4条高。

正方体的12条棱的长度都相等。

2、长方体、正方体各自的特点。

顶点个数个数面形状大小关系条数棱长度关系86都是长方形,相对的面是特殊的有两个完全一样的相对的面是正长方形。

人教版小学五年级数学上下册概念及公式

人教版小学五年级数学上下册概念及公式

第一单元:小数的乘法一个因数乘另一个因数,位,积就有几位。

例如:3.45×6.29=21.7005例如:3.65×6.72=24.528第二单元:小数的除法例如:30÷0.5=6030÷5= 6例如:2.36÷0.02=236÷2例如:0.232323第四单元:简易方程1. 功效×时间=工作总量工作总量÷功效= 时间工作总量÷时间= 功效例如:王师傅一小时加工8少个零件?解:设王师傅工作一天加工x功效×时间=工作总量X=24×8X=192答:王师傅工作一天加工192 2.路程=时间×速度例如:小明和小红家相距560小明平均每分钟走45米,解:设小红平均每分钟走x米. 路程=时间×速度560=(x+45)×7560÷7=x+45X=35答:小红平均每分钟走35米。

左右两边仍然相等。

5的倍数的特征:各位是0,5。

5、质数与合数:质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。

1不是质数,也不是合数。

1既不是质数也不是合数。

6、奇数与偶数的运算规律偶数+偶数=偶数奇数+奇数=奇数奇数+偶数=奇数偶数-偶数=偶数奇数-奇数=奇数奇数-偶数=奇数偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

8、分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。

9、100以内的质数表:2、 3、 5、 7、 11、 13、17、1923、29、31、 37、 41、 43、47、5359、61、67、71、 73、 79、83、89、97三、长方体的认识、表面积、体积和容积1. 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱,12条棱可以分为三组:4条长,4条宽,4条高。

五下数知识点总结

五下数知识点总结

五下数知识点总结
一、整数的认识
1、自然数、零和负整数统称为整数。

2、正整数、零和负整数在数轴上的位置。

3、整数的大小比较。

4、整数的运算:加法、减法、乘法、除法。

5、整数的应用。

二、分数的认识
1、分数的概念。

2、分数的表示法。

3、分数在数轴上的位置。

4、分数的大小比较。

5、分数的加法和减法。

6、分数的乘法和除法。

7、分数的应用。

三、小数的认识
1、小数的概念。

2、小数的表示法。

3、小数点的意义。

4、小数的大小比较。

5、小数的加法和减法。

6、小数的乘法和除法。

7、小数的应用。

四、有关图形的认识
1、直线段、封闭曲线和曲线。

2、平行线、相交线、垂直线的关系。

3、三角形、四边形的性质。

4、尺规作图。

5、有关测量的知识。

6、图形的应用。

五、统计与概率的认识
1、统计的基本概念。

2、图形统计。

3、概率的基本概念。

4、简单的概率计算。

以上是五下数学的知识点总结,具体详细内容请参考教科书。

小学五年级数学下册第三单元知识点大全,各个版本都有!

小学五年级数学下册第三单元知识点大全,各个版本都有!

小学五年级数学下册第三单元知识点大全,各个版本都有!人教版第三单元《长方体和正方体》1、长方体或正方体的认识①一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。

两个面相交的边叫做棱。

三条棱相交的点叫做顶点。

相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

判断:长方体的三条棱分别叫做长方体的长宽高。

(×)长方体特点:有6个面(6个面都是长方形或者4个面是长方形,2个面是正方形),8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

一个长方体(不含正方体)最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

最多有4个面完全相同。

用6个完全一样的长方形可以围成一个长方体(×)。

长方体12条棱可以分成3组,分别有4条长、4条宽、4条高。

②由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:正方体有12条棱,它们的长度都相等。

有8个顶点。

正方形的6个面是完全相同的正方形。

正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

③比较④长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4长= 棱长总和÷4-宽-高 a=L÷4-b-h宽= 棱长总和÷4-长-高 b=L÷4-a-h高= 棱长总和÷4-长-宽 h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷12例1、如图,有一个长5分米、宽和高都是3分米的长方体硬纸箱,如果用绳子将箱子横着捆两道,长着捆一道,打结处共用2分米。

一共要用绳子多长?2、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?2、长方体或正方体的表面积表面积的意义:长方体或者正方体的6个面的总面积,叫做它的表面积。

五年级数学下册《因数与倍数》重难点复习归纳

五年级数学下册《因数与倍数》重难点复习归纳

五年级数学下册《因数与倍数》重难点复习归纳一、因数和倍数的概念突破建议:1.引导学生从本质上理解概念,同时结合具体的例子降低难度,避免死记硬背。

因数和倍数是最基本的两个概念,只有真正理解了它们的含义,后面的概念理解才会水到渠成。

教材从整除的本质出发,给出了9个除法算式,放手让学生根据自己的理解将除法算式进行分类。

学生可能会出现分成三类的现象,即将类似于8÷3=2……2和9÷5=1.8各分为一类。

此处,教师应该让学生讨论,为什么商是小数没有余数、商是整数有余数这两种情况应归为一类?让学生理解,其实例如9÷5=1.8这样商是小数没有余数的除法算式,可以写成这样的9÷5=1……4商是整数有余数的除法算式。

因此,应该将它们归为一类。

然后顺利过渡到因数和倍数。

2.引导学生明确因数和倍数这一概念的前提与概念间的相互依存性。

教学时,应该使学生明确:(1)因数和倍数这一概念的前提是被除数、除数、商都是大于0的自然数。

(2)因数与倍数概念间的相互依存性,因数、倍数都不能单独存在,在描述因数和倍数的时候必须说清楚谁是谁的因数,谁是谁的倍数。

及时纠正“2是因数,12是倍数”这样的说法。

至于辨析“倍数”和以前所学习的“几倍”,可以放在学生对因数与倍数有了较为全面深刻的认识之后再来具体比较,这样不容易混淆,也有利于学生的巩固。

二、2、5、3倍数的特征突破建议:1.让学生自主探究、合作交流,从而获得新知。

教材提供了百数表,让学生通过圈数、观察、发现、总结,最后陈述2、5、3的倍数的特征。

由于5、2的倍数的特征比较明显,学生很容易发现,所以放手让学生自主探究,效果应该比较好。

再由2的倍数引出了奇数和偶数,其实这些数对学生来说并不陌生,只是在称呼上与以往所接触的有所不同。

因此,为了使学生更好地掌握奇数和偶数的概念,这里的教学可以试着和生活中的奇数和偶数的应用结合起来。

例如,打开数学课本,左边是偶数,右边是奇数等。

五年级下册数学知识点总结

五年级下册数学知识点总结

五年级下册数学知识点总结五年级下册数学知识点总结北海小学五(04)、五(09)第十册数学复习提纲4/21/2022五年级下册知识点班级姓名学号一图形的变换轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。

画出对称图形按旋转的角度画出旋转图形二因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数偶数:能被2整除的数。

最小的奇数是1,最小的偶数是0.个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.北海小学五(04)、五(09)第十册数学复习提纲4/21/2022质数:有且只有两个因数,1和它本身合数:至少有三个因数,1、它本身、别的因数1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、 43、47、53、59、61、67、71、73、79、83、89、974、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、最大公因数几个数公有的因数叫这些数的公因数。

小学五年级数学下册认识平方数和立方数

小学五年级数学下册认识平方数和立方数

小学五年级数学下册认识平方数和立方数认识平方数和立方数数学是一门理性而严谨的学科,它贯穿我们的生活方方面面。

在数学的世界中,平方数和立方数是很重要的概念。

在小学五年级数学下册中,我们将学习认识平方数和立方数,探索它们的特性和应用。

本文将深入探讨平方数和立方数的概念以及它们在数学中的应用。

一、平方数的认识平方数是指某个自然数的平方。

简单来说,就是一个数字乘以它自己所得到的结果。

例如,1的平方、2的平方、3的平方等等。

这种数字的特性给予它们一种特殊的形式和规律。

1² = 12² = 43² = 94² = 16我们可以发现,平方数的特点是每个数字的个位数只能是0、1、4、5、6、9。

这是因为,在自然数的范围内,一个数字的个位数只能有这几种情况。

平方数在日常生活中有着广泛的应用。

比如,在建筑设计中,为了保持建筑物的结构稳定,工程师需要平方数来制定材料的尺寸;在绘画中,画家需要平方数来调整画布的比例关系。

另外,在数学的具体计算和解题过程中,平方数也经常出现,比如求面积、求边长的问题等等。

因此,对平方数的认识和运用对我们的日常学习和生活都有着重要的意义。

二、立方数的认识立方数是指某个自然数的立方。

也就是说,一个数字乘以自己两次所得到的结果。

例如,1的立方、2的立方、3的立方等等。

1³ = 12³ = 83³ = 274³ = 64与平方数类似,立方数也有其独特的规律和特性。

例如,立方数的个位数可以是0、1、4、5、6、9。

同时,在立方数的计算中,我们会发现一些有趣的现象。

当我们把从1到10的立方数相加时,得到的结果恰好是1到10的自然数的平方和。

这是一个有趣的数学规律。

立方数在现实生活中也有广泛的应用。

在几何学中,立方数用于求解体积问题。

例如,当我们需要知道一个立方体的体积时,我们就需要用到立方数。

在物理学、工程学等领域,立方数也用于描述力、物质等的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5、偶数与奇数:是2倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数.
6、质数和和合数:一个数,如果只有1和它本身两个因数的数叫做质数(或素数),最小的质数是2.一个数,如果除了1和它本身还有别的因数的数叫做合数,最小的合数是4.
三、长方体和正方体
1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点.
小学五年级数学下册复习知识点归纳总结
一、图形的变换
1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同.
3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度.旋转只改变物体的位置,不改变物体的形状、大小.
27.长方体表面积=(长×宽+宽×高+长×高)×2或长方体表面积=长×宽×2+宽×高×2+长×高×2
28.正方体表面积=棱长×棱长×6
29.计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m3
30.棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m3
9、最简分数:分子和分母只有公因数1的分数叫做最简分数.
10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分.
11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数.
12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分.
13、特殊情况下的最大公因数和最小公倍数:
31.长方体所含体积单位的数量就是长方体的体积.长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘
32.相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升
39. A是B的几分之几?用A÷B
40.分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变.这叫做分数的基本性质.
41.几个数公有的因数,叫做这几个数的公因数.其中最大的一个叫做这几个数的最大公因数.通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数.
42.如果两个数的公因数只有1,这两个数是互质数.两个连续自然数;两个质数;1和其他自然数一定是互质数.
37.分子比分母小的分数叫真分数,真分数小于1.分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1.
38.带分数包括整数部分和分数部分.假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变.带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变.
13.将合数分解成几个质数相乘的形式就叫做分解质因数.分解质因数用短除法,把36分解质因数是?
14.最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍源自的最小数是30,最小三位数是120
15.奇数加奇数等于偶数.奇数加偶数等于奇数.偶数加偶数等于偶数.
16. a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a-b的差是c的倍数,c是a-b差的因数.
二、因数与倍数
1、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数.
2、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找.
3、一个数的倍数的求法:一个数的倍数的个数是无限的,最小的是它本身,没有最大的,方法时依次乘以自然数.
4、2、5、3的倍数的特征:个位上是0、2、4、6、8的数,都是2的倍数.个位上是0或5的数,是5的倍数.一个数各位上的数的和是3的倍数,这个数就是3的倍数.
9.个位是0的数,既是2的倍数,又是5的倍数.
10.一个数各位上的和是3的倍数,这个数就是3的倍数.
11.只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数.1既不是质数,也不是合数.
12.整数按因数的个数来分类:1,质数,合数.整数按是否是2的倍数来分类:奇数,偶数
1ml=1立方厘米
14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算
方法相同,但要从里面量长、宽、高.
四、分数的意义和性质
1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数.
2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位.
3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:
2~3个1次
4~9个2次
10~27个3次
28~81个4次
82~242个5次.
1.因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数.不能单独说谁是倍数或因数
2.求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的
3.求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……
a÷b= (b≠0).
被除数÷除数=
4、真分数和假分数:
分子比分母小的分数叫做真分数,真分数小于1.
分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1.
由整数部分和分数部分组成的分数叫做带分数.
5、假分数与带分数的互化:
把假分数化成带分数,用分子除以分母,所得商作整数部分,余数作分子,分母不变
33.一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”.
34.把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.例如:表示把单位“1”平均分成7份,表示这样的3份.其中表示一份的数叫做分数单位.
35.米表示
(1)把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)
①成倍数关系的两个数,最大公因数就是较小的数,最小公倍数就是较大的数.②互质的两个数,最大公因数就是1,最小公倍数就是它们的乘积.
14、分数的大小比较:
同分母的分数,分子大的分数就大,分子小的分数就小;
同分子的分数,分母大的分数反而小,分母小的分数反而大.
15、分数和小数的互化:
小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;
八、找次品
本单元的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
找次品的最优策略:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。
待测物品数至少称的次数
分数化小数,用分子除以分母,除不尽的按要求保留几位小数.
五、分数的加法和减法
1、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减.
2、异分母分数的加减法:异分母分数相加、减,先通分,再按照同分母分数加减法的方法进行计算.
3、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同.在一个算式中,如果含有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算.
43.分子和分母只有公因数1的分数叫做最简分数.把一个分数化成和它相等,但分子分母比较小的分数,叫做约分.
44.几个数公有的倍数,叫做这几个数的公倍数.其中最小的一个叫做这几个数的最小公倍数.通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数.
2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.
3、长方体的棱长总和=(长+宽+高)×4
正方体的棱长总和=棱长×12
4、表面积:长方体或正方体6个面的总面积叫做它的表面积.
5、长方体的表面积=(长×宽+长×高+宽×高)×2
S =(ab+ah+bh)×2
正方体的表面积=棱长×棱长×6
(2)把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米
36.当整数除法得不到整数的商时,可以用分数表示除法的商.在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线.(除数不能为0)区别:分数是一种数,除法是一种运算
4.一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的.
5.一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的.
6.个位上是0,2,4,6,8的数,都是2的倍数,也是偶数.
7.自然数中,是2的倍数的数叫做偶数(0也是偶数).不是2的倍数的数叫奇数.
8.个位上是0或者5的数,都是5的倍数.
21.长方体有8个顶点.
22.相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高
23.正方体有6个面, 6个面都是正方形,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点
24.长方体棱长之和:(长+宽+高)×4长×4+宽×4+高×4
25.正方体棱长之和:棱长×12
26.长方体(正方体)6个面的总面积,叫做它的表面积.
相关文档
最新文档