中考数学专题练习 一元二次方程的解法

合集下载

九年级 中考数学(人教通用)一轮考点练习:考点7一元二次方程的解法及应用

九年级 中考数学(人教通用)一轮考点练习:考点7一元二次方程的解法及应用

考点7 一元二次方程的解法及应用(时间:40分钟)A1.(2020凉山州)一元二次方程x 2=2x 的根为( ) A .x =0B .x =2C .x =0或x =2D .x =0或x =-22.(2020聊城)用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( ) A .⎝ ⎛⎭⎪⎫x -34 2=1716B .⎝ ⎛⎭⎪⎫x -34 2=12C .⎝ ⎛⎭⎪⎫x -32 2=134D .⎝ ⎛⎭⎪⎫x -32 2=1143.(2020攀枝花)若关于x 的方程x 2-x -m =0没有实数根,则m 的值可以为( )A .-1B .-14C .0D .14.(2020黔东南州)已知关于x 的一元二次方程x 2+5x -m =0的一个根是2,则另一个根是( )A .-7B .7C .3D .-35.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1 260张,如果全班有x 名同学,根据题意,列出方程为( )A .x (x +1)=1 260B .2x (x +1)=1 260C .x (x -1)=1 260D .x (x -1)=1 260×26.某件羊毛衫的售价为1 000元,因换季促销,商家决定降价销售,在连续两次降价x %后,售价降低了190元,则x 为( )A .5B .10C .19D .817.若x =1是关于x 的一元二次方程x 2+ax +2b =0的解,则2a +4b =__________.8.(2020泸州)已知x 1,x 2是一元二次方程x 2-4x -7=0的两个实数根,则x 21 +4x 1x 2+x 22 的值是__________.9.用合适的方法解下列方程:(1)x2-4x-1=0;(2)2x2-3x-1=0.10.如图1,某社区决定在一块长(AD)16 m,宽(AB)9 m的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为112 m2,则小路的宽应为多少?图111.(2020上海)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额.(2)去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8,9月份营业额的月增长率.B12.(2020黔西南州)已知关于x的一元二次方程(m-1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2 B.m≤2C.m<2且m≠1 D.m≤2且m≠113.(2020张家界)已知等腰三角形的两边长分别是一元二次方程x2-6x+8=0的两根,则该等腰三角形的底边长为()A.2 B.4 C.8 D.2或414.(2020德州)菱形的一条对角线长为8,其边长是方程x2-9x+20=0的一个根,则该菱形的周长为__________.15.(2020随州)已知关于x的一元二次方程x2+(2m+1)x+m-2=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)若方程有两个实数根x1,x2,且x1+x2+3x1x2=1,求m的值.16.某商场销售一批衬衫,平均每天可以售出20件,每件盈利40元.为回馈顾客,商场决定采取适当的降价措施.经调查发现,每件衬衫降价1元,商场平均每天可多售出2件.(1)若每件衬衫降价5元,商场可售出多少件?(2)若商场每天的盈利要达到1 200元,同时尽快减少库存,每件衬衫应降价多少元?C17.(2020铜仁)已知m,n,4分别是等腰三角形(非等边三角形)三边的长,且m,n是关于x的一元二次方程x2-6x+k+2=0的两个根,则k的值等于() A.7 B.7或6C.6或-7 D.618.(2020广州)直线y=x+a不经过第二象限,则关于x的方程ax2+2x+1=0实数解的个数是()A.0个B.1个C.2个D.1个或2个1.C 2.A 3.A 4.A 5.C 6.B7.-28.29.解:(1)移项,得x2-4x=1.配方,得x2-4x+4=5,(x-2)2=5.由此可得x-2=±5,x1=2+5,x2=2-5.(2)a=2,b=-3,c=-1.Δ=b2-4ac=(-3)2-4×2×(-1)=17>0.方程有两个不等的实数根x=-b±b2-4ac2a=3±174,即x1=3+174,x2=3-174.10.解:设小路的宽应为x m.根据题意,得(16-2x)(9-x)=112.解得x1=1,x2=16.∵16>9,∴x =16不符合题意,舍去. ∴x =1.答:小路的宽应为1 m.11.解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元. (2)设该商店去年8,9月份营业额的月增长率为x . 依题意,得350(1+x )2=504.解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去). 答:该商店去年8,9月份营业额的月增长率为20%. 12.D 13.A 14.2015.(1)证明:∵Δ=(2m +1)2-4×1×(m -2) =4m 2+4m +1-4m +8 =4m 2+9>0,∴无论m 取何值,此方程总有两个不相等的实数根. (2)解:由根与系数的关系得出⎩⎨⎧x 1+x 2=-(2m +1),x 1x 2=m -2.由x 1+x 2+3x 1x 2=1,得-(2m +1)+3(m -2)=1. 解得m =8.16.解:(1)∵每件衬衫降价1元,商场平均每天可多售出2件, ∴每件衬衫降价5元,可售出20+5×2=30(件). (2)设每件衬衫应降价x 元.根据题意,得(40-x )(20+2x )=1 200. 解得x 1=10,x 2=20.∵要有利于减少库存,∴x =20. 答:每件衬衫应降价20元. 17.B 18.D。

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

一元二次方程四种解法例题

一元二次方程四种解法例题

一元二次方程四种解法例题一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c 为已知常数,且a ≠ 0。

下面是四种解法例题:1. 解法一:使用因式分解法例题:解方程x^2 - 5x + 6 = 0解答:首先,观察方程中的系数 a、b、c,可以发现 a = 1,b = -5,c = 6。

根据因式分解法,我们需要找到两个数的乘积等于 c,且两个数的和等于 b。

在本例中,c = 6,因此我们需要找到两个数的乘积等于 6。

观察可知,3 和 2 的乘积等于 6,且它们的和等于 -5。

因此,我们可以将方程进行因式分解:(x - 3)(x - 2) = 0根据零乘法,当一个乘积等于 0 时,至少有一个因子等于 0。

因此,我们可以得到以下两个方程:x - 3 = 0 或 x - 2 = 0解上述两个方程,得到:x = 3 或 x = 2所以,方程x^2 - 5x + 6 = 0的解为 x = 3 或 x = 2。

2. 解法二:使用求根公式例题:解方程2x^2 - 3x - 2 = 0解答:根据求根公式,对于一元二次方程ax^2 + bx + c = 0,它的根可以通过以下公式计算:x = (-b ± √(b^2 - 4ac)) / (2a)在本例中,a = 2,b = -3,c = -2。

将这些值代入求根公式,我们可以得到:x = (-(-3) ± √((-3)^2 - 4*2*(-2))) / (2*2)= (3 ± √(9 + 16)) / 4= (3 ± √25) / 4= (3 ± 5) / 4因此,我们得到两个解:x1 = (3 + 5) / 4 = 8 / 4 = 2x2 = (3 - 5) / 4 = -2 / 4 = -1/2所以,方程2x^2 - 3x - 2 = 0的解为 x = 2 或 x = -1/2。

3. 解法三:使用配方法例题:解方程x^2 + 4x - 5 = 0解答:对于一元二次方程ax^2 + bx + c = 0,我们可以使用配方法来求解。

中考数学专题训练第7讲一元二次方程(原卷版)

中考数学专题训练第7讲一元二次方程(原卷版)

一元二次方程易错点梳理易错点01 忽略一元二次方程中0 a 这一条件在解与一元二次方程定义有关的问题时,一定要注意一元二次方程的二次项系数不等于0这一条件。

易错点02 利用因式分解法解一元二次方程时出错(1)对因式分解法的基本思想理解不清,没有将方程化为两个一次因式相乘的形式;(2)在利用因式分解法解一元二次方程时忽略另一边要化成0;(3)产生丢根的现象,主要是因为在解方程时,出现方程两边不属于同解变形,解题时要注意方程两边不能同时除以一个含有未知数的项。

易错点03 利用公式法解方程时未将方程化为一般形式在运用公式法解方程时,一定要先将方程化为一般形式,从而正确的确定c b a ,,,然后再代入公式。

易错点04 根的判别式运用错误运用根的判别式判断一元二次方程的根的情况时,必须先把方程化为一般形式,正确的确定c b a ,,。

易错点05 列方程解应用题时找错等量关系列方程解应用题的关键是找对等量关系,根据等量关系列方程。

考向01 一元二次方程的有关概念例题1:(2021·山东聊城·中考真题)关于x 的方程x 2+4kx +2k 2=4的一个解是﹣2,则k 值为( )A .2或4B .0或4C .﹣2或0D .﹣2或2例题2:(2021·贵州遵义·中考真题)在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是例题分析易错点梳理5,﹣4,则原来的方程是()A.x2+2x﹣3=0 B.x2+2x﹣20=0 C.x2﹣2x﹣20=0 D.x2﹣2x﹣3=0考向02 一元二次方程的解法例题3:(2013·浙江丽水·中考真题)一元二次方程()2+=可转化为两个一元一次方x616+=,则另一个一元一次方程是()程,其中一个一元一次方程是x64A.x64+=-+=D.x64 -=-B.x64-=C.x64例题4:(2021·内蒙古赤峰·中考真题)一元二次方程2820--=,配方后可形为()x xA.()2418x-=x-=B.()2414C.()2864x-=x-=D.()241考向03 一元二次方程根的判别式和根与系数的关系例题5:(2021·广西河池·中考真题)关于x的一元二次方程220+--=的根的情x mx m况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.实数根的个数由m的值确定例题6:(2021·山东济宁·中考真题)已知m,n是一元二次方程220210+-=的两个x x实数根,则代数式22++的值等于()m m nA.2019 B.2020 C.2021 D.2022考向04 列一元二次方程解应用题例题7:(2021·山东滨州·中考真题)某商品原来每件的售价为60元,经过两次降价后每件的售价为48.6元,并且每次降价的百分率相同.(1)求该商品每次降价的百分率;(2)若该商品每件的进价为40元,计划通过以上两次降价的方式,将库存的该商品20件全部售出,并且确保两次降价销售的总利润不少于200元,那么第一次降价至少售出多少件后,方可进行第二次降价?例题8:(2021·山西·中考真题)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).一、单选题1.(2021·福建·厦门一中三模)对于一元二次方程20ax bx c ++=()0a ≠,下列说法: ①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=()0a ≠必有两个不相等的实根;③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立;④若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+.其中正确的有( )A .1个B .2个C .3个D .4个 2.(2021·黑龙江牡丹江·模拟预测)关于x 的一元二次方程()22395m x m x x -+=+化为一般形式后不含一次项,则m 的值为( )A .0B .±3C .3D .-33.(2021·广西玉林·一模)关于x 的一元二次方程:24ax bx c ++=的解与方程2540x x -+=的解相同,则a b c ++=( )A .1B .2C .3D .44.(2021·河南涧西·三模)定义()224a b a a b =+-+★,例如()2373372428=+⨯-+=★,若方程0x m =★的一个根是1-,则此方程的另一个根是( )A .2-B .3-C .4-D .5-5.(2021·广东·惠州一中一模)若m ,n 为方程2310x x --=的两根,则m n +的值为( )A .1B .1-C .3-D .3 微练习6.(2021·广东·西南中学三模)下列一元二次方程中,没有实数根的是( )A .2x 2﹣4x +3=0B .x 2+4x ﹣1=0C .x 2﹣2x =0D .3x 2=5x ﹣27.(2021·陕西·西安市铁一中学模拟预测)抛物线222y x x a =++-与坐标轴有且仅有两个交点,则a 的值为( )A .3B .2C .2或3-D .2或38.(2021·广东·珠海市紫荆中学三模)直线y x a =+经过第一、三、四象限,则关于x 的方程220x x a ++=实数解的个数是( )A .0个B .1个C .2个D .以上都有可能9.(2021·四川省宜宾市第二中学校一模)受新冠影响,某股份有限公司在2020年3月份销售口罩的核心材料熔喷无纺布的收入为2.88万元,而在1月份的销售收入仅为2万元,那么该股份有限公司在2020年第一季度的销售收入月增长率为( )A .0.2%B .-2.2%C .20%D .220%10.(2021·安徽·合肥市第四十五中学三模)每年春秋季节流感盛行,极具传染性如果一人得流感,不加干预,则经过两轮后共有81人得流感,则每人每轮平均会感染几人?设每人每轮平均感染x 人,则下列方程正确的是( )A .2181x x ++=B .()2181x += C .()21181x x +++= D .()()211181x x ++++= 11.(2021·黑龙江佳木斯·三模)商场购进一批衬衣,进货单价为30元,按40元出售时,每天能售出500件.若每件涨价1元,则每天销售量就减少10件.为了尽快出手这批衬衣,而且还能每天获取8000元的利润,其售价应该定为( )A .50元B .60元C .70元D .50元或70元12.(2021·河北桥东·二模)若x 比()1x -与()1x +的积小1,则关于x 的值,下列说法正确的是( )A .不存在这样x 的值B .有两个相等的x 的值C .有两个不相等的x 的值D .无法确定 二、填空题13.(2021·湖南师大附中博才实验中学二模)已知1x =是一元二次方程20x x c ++=的解,则c 的值是___________.14.(2021·广东·江门市第二中学二模)设a 为一元二次方程22520210x x +-=的一个实数根,则26152a a ++=______.15.(2021·内蒙古包头·三模)已知a 是方程260x x +-=的解,求22341121a a a a a -⎛⎫-+÷= ⎪+++⎝⎭_____________. 16.(2021·内蒙古·呼和浩特市回民区教育局教科研室二模)方程x 2=x 的解为 ___.17.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)小丽在解一个三次方程x 3-2x +1=0时,发现有如下提示:观察方程可以发现有一个根为1,所以原方程可以转化为(x -1)(x 2+bx +c )=0.根据这个提示,请你写出这个方程的所有的解______.18.(2021·江苏·苏州市立达中学校二模)若关于x 的一元二次方程2(2)20mx m x +++=的根都是整数,则整数m 的最大值是________.三、解答题19.(2021·广东·深圳市宝安中学(集团)模拟预测)解下列方程.(1)()2233x x -=-.(2)22530x x -+=.20.(2021·陕西·西安益新中学模拟预测)解方程:2x (x ﹣3)+x =321.(2021·广东·铁一中学二模)解方程:()2131x x -=+ 22.(2021·浙江·杭州市丰潭中学二模)已知代数式5x 2﹣2x ,请按照下列要求分别求值:(1)当x =1时,代数式的值.(2)当5x 2﹣2x =0时,求x 的值.23.(2021·广东·珠海市文园中学三模)已知关于x 的一元二次方程2(21)210k x x -++=有实数根.(1)求k 的取值范围;(2)取12k =-,用配方法解这个一元二次方程.24.(2021·重庆实验外国语学校三模)永川黄瓜山,林场万亩、环境优美,山势雄伟、地貌奇特,现已成为全国面积最大的南方早熟梨基地,品种以黄花梨为主,还有黄冠、圆黄、红梨、鄂梨2号等.永川梨香甜,脆嫩,皮薄,多汁.2020年,永川梨入选第一批全国名特优新农产品名录.(1)某水果经销商第一批购进黄花梨5000千克,黄冠梨2000千克,黄冠梨每千克的进价比黄花梨的进价每千克多2元,经销商所花费的费用不超过60000元,求黄花梨每千克进价最多为多少元?(2)在第(1)问最高进价的基础上,随着梨大量成熟,该水果经销商第二批购进的黄花梨的数量比第一批的数量增加了2a %,第二批购进的黄冠梨的数量不变,黄花梨的进价减少了12a%,黄冠梨的进价减少了2a%,第二批购进梨的总成本与第一批购进梨的总成本相同,求a的值.25.(2021·辽宁·建昌县教师进修学校二模)某儿童玩具店销售一种玩具,每个进价为60元,现以每个100元销售,每天可售出20个,为了迎接六一儿童节,店长决定采取适当的降价措施,经市场调查发现:若每个玩具每降价1元,则每天多售出2个.设该玩具的销售单价为x(元),日销售量为y(个).(1)求y与x之间的函数关系式.(2)为了增加盈利,减少库存,且日销售利润要达到1200元,销售单价应定为多少元?(3)若销售单价不低于成本价,每个获利不高于成本价的30%,将该玩具的销售单价定为多少元时,玩具店每天销售该玩具获得的利润最大?最大利润是多少元?。

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

专题复习】九年级数学上册一元二次方程解法练习100题(含答案)1.解方程:$2x^2-8x+3=0$,使用公式法。

2.解方程:$(2x-1)(x+3)=43$。

3.解方程:$4y^2+4y-1=-10-8y$。

4.解方程:$(x-1)(x-3)=8$。

5.解方程:$5x^2-8x+2=0$。

6.解方程:$x(x-3)=10$。

7.解方程:$x^2-2=-2x$。

8.解方程:$3x(7-x)=18-x(3x-15)$。

9.解方程:$4x(3x-2)=6x-4$。

10.解方程:$x^2+12x+27=0$。

11.解方程:$2x^2-4x+1=0$,使用配方法。

12.解方程:$4(x-1)^2=9(x-5)$。

13.解方程:$x^2-6=-2(x+1)$。

14.解方程:$x^2+4x-5=0$。

15.解方程:$2x^2+5x-1=0$。

16.解方程:$3(x-2)^2=x(x-2)$。

17.解方程:$2x^2-3x-2=0$。

18.解方程:$2x^2-7x+1=0$。

19.解方程:$x^2-6x-4=0$,使用配方法。

20.解方程:$x^2-4x-3=0$。

21.解方程:$x^2-5x+2=0$。

22.解方程:$x^2-4x+8=0$。

23.解方程:$3x^2-6x+4=0$。

24.解方程:$(x-2)(x-3)=12$。

25.解方程:$(x-3)(x+7)=-9$。

26.解方程:$3x^2+5(2x+1)=0$,使用公式法。

27.解方程:$x^2-12x-4=0$。

28.解方程:$(x-5)(x-6)=x-5$。

29.解方程:$x^2-8x-10=0$。

30.解方程:$x(x-3)=15-5x$。

31.解方程:$5x(x-3)=(x+1)(x-3)$。

32.解方程:$x^2+8x+15=0$。

33.解方程:$25x^2+10x+1=0$。

34.解方程:$x^2+6x-7=0$,使用配方法。

35.解方程:$x^2+4x-5=0$,使用配方法。

九年级一元二次方程解法专项练习(难度较大)

九年级一元二次方程解法专项练习(难度较大)

九年级一元二次方程解法专项练习(难度较大)一、选择题:1、若关于x的方程2x m-1+x-m=0是一元二次方程,则m为()A.1 B.2 C.3 D.02、一元二次方程3x2﹣4=﹣2x的二次项系数、一次项系数、常数项分别为()A.3,﹣4,﹣2 B.3,﹣2,﹣4 C.3,2,﹣4 D.3,﹣4,03、已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为()A.0 B.1 C.2 D.44、一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤15、已知关于x的一元二次方程x2+ax+b=0有一个非零根﹣b,则a﹣b的值为()A.1 B.﹣1 C.0 D.﹣26、下列对方程2x2-7x-1=0的变形,正确的是( )A.(x+)2= B.(x-)2=C.(x-)2= D.(x+)2=7、一元二次方程4x2+1=4x的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根8、关于x的方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m≤2 B.m<2 C.m<3且m≠2 D.m≤3且m≠29、用配方法解方程x2-2x-5=0时,原方程应变形为()A.(x+1)2=6 B.(x-1)2=6 C.(x+2)2=9 D.(x-2)2=9 10、根据下面表格中的对应值:x 3。

23 3.24 3.25 3。

26ax2+bx+c -0。

06 -0.02 0.03 0.09判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()A.3<x<3.23 B.3。

23<x<3.24 C.3。

24<x<3。

25 D.3.25<x<3。

26 11、三角形两边的长是3和4,第三边的长是方程x2-10x+21=0的根,则该三角形的周长为 ( ) A.14 B.10 C.10或14 D.以上都不对12、关于x的方程x2+2kx+k﹣1=0的根的情况描述正确的是( )A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个不相等的实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种二、填空题:13、一元二次方程的一般形式是,其中一次项系数是.14、关于x的方程(m﹣2)x|m|+3x﹣1=0是一元二次方程,则m的值为.15、若x=3是一元二次方程x2+mx+6=0的一个解,则方程的另一个解是.16、若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m的值等于_______.17、关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是.18、已知m是关于x的方程x2-2x-3=0的一个根,则2m2-4m=______.19、若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图像不经过第象限20、若关于x的一元二次方程kx2+4x﹣2=0有两个不相等的实数根,则k的取值范围是.三、计算题:21、3x2+x-5=0;(公式法) 22、x2+2x-399=0。

2121 一元二次方程的解法(一)配方法-2021-2022学年九年级数学上练(人教版)(解析版)

2121 一元二次方程的解法(一)配方法-2021-2022学年九年级数学上练(人教版)(解析版)

21.2.1 一元二次方程的解法(一)配方法瞄准目标,牢记要点夯实双基,稳中求进直接开方法解一元二次方程原理:题型一:直接开方法解一元二次方程原理:【例题1】下列方程不能用直接开平方法求解的是( ) A .240x -= B .2(1)90x --= C .230x x += D .22(1)(21)x x -=+【答案】C【分析】根据直接开方法求一元二次方程的解的类型客直接得出答案.【详解】能用直接开平方法求解的是:240x -=、2(1)90x --=和22(1)(21)x x -=+; 故选C .【点睛】此题考查了解一元二次方程-公式法,用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0). 变式训练【变式1-1】关于x 的方程()2x a b +=能直接开平方求解的条件是( ) A .0,0a b ≥≥B .0,0a ≥≤知识点管理 归类探究 1 (1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义. 特别说明:用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).C .a b ,为任意数D .a 为任意数且0b ≥【答案】D【分析】根据一个数的平方是非负数,可得0b ≥. 【详解】∵()20x a +≥,∵0b ≥,a 为任意数,故选:D .【点睛】本题考查了用直接开方法求一元二次方程的解,基本形式有:2x a =(a≥0).形如关于x 的一元二次方程2x a ,可直接开平方求解题型二:形如关于x 的一元二次方程2x a ,可直接开平方求解【例题2】一元二次方程290x 的解是( )A .3x =B .3x =-C .123,3x x ==-D .12=3,3x x =-【答案】C【分析】先变形得到x 2=9,然后利用直接开平方法解方程. 【详解】解:x 2=9,x =±3,所以x 1=3,x 2=-3. 故选:C .【点睛】本题考查了直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程. 变式训练【变式2-1】方程280x -=的解为( ) A .14x =,24x =-B .122x =,222x =-2 若0a则x a =±;表示为1,2x a x a ==- 方程有两个不等实数根 若=0a 则x=O 表示为120x x == 方程有两个相等的实数根 若0a则方程无实数根特别说明:(1)先移项,再开方;(2)形如2x a =的方程不一定有解,需要分情况讨论.C .10x =,222x =D .22x =【答案】B【分析】移项得x 2=8,然后利用直接开平方法解方程即可.【详解】解:移项得28x =,两边开方的:22x =±,即1222,22x x ==-,故选:B . 【点睛】本题考查了一元二次方程的解法:直接开平方法,熟练掌握运算方法是解题的关键. 【变式2-2】方程x 2=0的解为( ) A .0x = B .120x x ==C .无解D .以上都不对【答案】B【分析】直接运用直接开平方法求解即可. 【详解】解:∵x 2=0,∵x 1=x 2=0.故选:B.【点睛】此题考查了解一元二次方程-直接开平方法,熟练掌握直接开平方的方法是解本题的关键. 【变式2-3】一元二次方程224x =-的解是( ) A .2x =- B .2x =C .无解D .12x =,22x =-【答案】C形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解题型三:形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解 【例题5】方程2(1)4x +=的解为( )A .121,1x x ==-B .121,3x x =-=C .122,2x x ==-D .121,3x x ==-【答案】D【分析】根据直接开平方法即可求解.3 形如关于x 的一元二次方程2()(0,0)ax n m a m +=≠≥,可直接开平方求解,两根是12,n m n mx x a a-+--==. 特别说明:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【详解】解2(1)4x +=x+1=±2∵x+1=2或x+1=-2 解得121,3x x ==- 故选D .【点睛】此题主要考查解一元二次方程,解题的关键是熟知直接开平方法的运用. 变式训练【变式5-1】2(31)9x -= 【答案】(1)x 1=43,x 2=23-;【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可; 【详解】解:(1)2(31)9x -=, 两边开方得:313x -=±, 解得:x 1=43,x 2=23-;【变式5-2】解方程:(1)22(2)180x +-= (2)229(2)4(25)x x -=+ (1)解:22(2)180x +-=, ∵22(2)18x +=, ∵2(2)9x +=, ∵23x +=或23x,解得:x 1=1,x 2=-5;(2)解:∵9(x -2)2=4 (2x +5)2.∵3(x -2)=2(2x +5)或3(x -2)=-2(2x +5), 解得x 1=-16,x 2=47-配方法解一元二次方程题型四:用配方法给方程变形【例题3】(2021·浙江杭州市·八年级期中)用配方法解方程241x x -=时,原方程应变形为( ) A .2(2)1x -= B .2(2)5x +=C .2(2)1x +=D .2(2)5x -=【答案】D【分析】移项,配方,变形后即可得出选项. 【详解】解:x 2-4x =1, x 2-4x +4=1+4, ∵(x -2)2=5,4 1.配方法的定义通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.2.用配方法解一元二次方程的一般步骤①通过去分母、去括号、移项、合并同类项等步骤,把原方程化为20(0)ax bx c a ++=≠的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数,形如;⑤一般地,如果一个一元二次方程通过配方转化成的形式,那么就有:(1)当p >0时,原方程有两个不相等的实数根;(2)当p =0时,原方程有两个相等的实数根;(3)当p <0时,因为对任意实数x ,都有,所以原方程无实数根. . 特别说明:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式.2()x n p +=2()x n p +=12x n p x n p =--=-+,12x x n ==-2()0x n +≥故选:D .【点睛】本题考查了解一元二次方程,能够正确配方是解此题的关键. 变式训练【变式4-1】(2021·浙江杭州市·八年级期中)方程26100x x --=变形时,下列变形正确的为( ) A .2(3)1x += B .2(3)1x -=C .2(3)19x +=D .2(3)19x -=【答案】D【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断. 【详解】解:方程移项得:x 2-6x =10,配方得:x 2-6x +9=19,即(x -3)2=19,故选:D .【变式4-2】(2021·浙江杭州市·八年级期中)一元二次方程2660x x --=经配方可变形为( ) A .2(3)10x -= B .()2642x -=C .2(6)6x -=D .2(3)15x -=【答案】D【分析】把方程左边化为完全平方式的形式即可.【详解】解:原方程可化为x 2-6x +32-32=6,即(x -3)2=15.故选:D .【变式4-3】(2021·浙江杭州市·八年级期中)若方程280x x m -+=可通过配方写成2() =6x n -的形式,则285++=x x m 可配方成( ) A .2(5)1x n -+= B .2()1x n +=C .2(5)11x n -+=D .2()11x n +=【答案】D【分析】已知方程x 2-8x +m =0可以配方成(x -n )2=6的形式,把x 2-8x +m =0配方即可得到一个关于m 的方程,求得m 的值,再利用配方法即可确定x 2+8x +m =5配方后的形式. 【详解】解:∵x 2-8x +m =0, ∵x 2-8x =-m , ∵x 2-8x +16=-m +16,∵(x -4)2=-m +16, 依题意有n =4,-m +16=6, ∵n =4,m =10,∵x 2+8x +m =5是x 2+8x +5=0, ∵x 2+8x +16=-5+16, ∵(x +4)2=11, 即(x +n )2=11. 故选:D【点睛】本题考查了解一元二次方程-配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 题型五:配方法解一元二次方程【例题5】(2019·湖北黄冈市·九年级期中)解方程:2x 2﹣4x ﹣1=0.【答案】x 1x 2 【分析】用配方法解一元二次方程即可. 【详解】解:∵2x 2﹣4x ﹣1=0, ∵2x 2﹣4x=1,则x 2﹣2x=12, ∵x 2﹣2x+1=32,即(x ﹣1)2=32,则x ﹣∵x 1=22+x 2=22. 【点睛】此题考查了配方法解一元二次方程, 解题时要注意解题步骤的准确使用, 把左边配成完全平方式, 右边化为常数.变式训练【变式5-1】(2018·芜湖市繁昌区第三中学)解方程: 22310x x --=(用配方法)【答案】14x =,24x =;【分析】先两边同时除以2,再将原方程配方即可得出答案.【详解】解:231x 022x --= 2223331x 02442x ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭2317x 416⎛⎫-= ⎪⎝⎭∵1x =2x = 【变式5-2】(2018·全国九年级单元测试)x 2-4x +2=0(配方法);【答案】x 1=2x 2=2【分析】方程的常数项移到方程右边,两边都加上4,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;【详解】解方程变形得: x 2-4x=-2 配方得: x 2-4x+4=2,即(x -2) 2=2,开方得:x -2=±解得:12x =22x =【变式5-3】(2019·江苏期中)解方程:x 2+6x ﹣2=0.【答案】x=﹣.【分析】利用配方法可求出一元二次方程的解. 【详解】∵x 2+6x ﹣2=0,∵x 2+6x=2,则x 2+6x+9=2+9,即(x+3)2=11, ∵x+3=±11, ∵x=﹣3±11.配方法的应用题型六:配方法用于比较大小【例题6】(2020·福建省永春第五中学九年级期中)已知7115P m =-,2815Q m m =-,(m 为任意实数),则P 、Q 的大小关系为( ) A .P >Q B .P=QC .P <QD .不能确定【答案】C【分析】由题意表示出,再根据化简后的代数式的特征即可作出判断.【详解】解:∵∵P Q <故选C.【点睛】用不等式比较代数式的大小是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握. 变式训练【变式6-1】(2020·四川遂宁市·八年级期中)已知22862M x y x =-+-,29413N x y =++,则M N-5 1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 特别说明:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.的值 ( ) A .为正数 B .为负数C .为非正数D .不能确定【答案】B【分析】将M -N 整理成-(x -3)2-(y+2)2-2,从而说明M -N 的值为负数. 【详解】∵M -N=8x 2-y 2+6x -2-(9x 2+4y+13) =-x 2+6x -y 2-4y -15=-[(x 2-6x+9)+(y 2+4y+4)+2]=-(x -3)2-(y+2)2-2, ∵M -N 的值为负数,故选:B .【点睛】本题考查了配方法的应用、非负数的性质--偶次方.解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.【变式6-2】(2019·浙江杭州市·九年级其他模拟)若代数式238M x =+,224N x x =+,则M 与N 的大小关系是( ) A .M N ≥ B .M N ≤C .M N >D .M N <【答案】C【解析】∵223824M x N x x =+=+,,∵222238(24)48(2)40M N x x x x x x -=+-+=-+=-+>, ∵M N >.故选C.【变式6-3】(2021·河北九年级专题练习)已知M=29a ﹣1,N=a 2﹣79a (a 为任意实数),则M 、N 的大小关系为( ) A .M <N B .M=NC .M >ND .不能确定【答案】A【详解】∵M =219a -,N =279a a -(a 为任意实数),∵N -M =21a a -+=21324a ⎛⎫-+ ⎪⎝⎭,∵N >M ,即M <N ,故选A . 题型七:配方法用于求待定字母的值【例题7】(2018·全国九年级单元测试)已知2a 4b 18-=-,2b 10c 7+=,2c 6a 27-=-.则a b c ++的值是( ) A .5-B .10C .0D .5【答案】C【分析】将已知三个式子相加后,配方即可得到a 、b 、c 的值,从而得出结论. 【详解】由a 2﹣4b =﹣18,b 2+10c =7,c 2﹣6a =﹣27得:a 2﹣4b +b 2+10c +c 2﹣6a +38=0,∵(a ﹣3)2+(b ﹣2)2+(c +5)2=0,∵a =3,b =2,c =﹣5,∵a +b +c =0. 故选C .【点睛】本题考查了配方法的应用,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值. 变式训练【变式7-1】(2020·江苏南通市·八年级期中)若x 2+y 2+4x ﹣6y+13=0,则式子x ﹣y 的值等于( ) A .﹣1 B .1C .﹣5D .5【答案】C【分析】把给出的式子进行配方,根据非负数的性质求出x ,y 的值,再代入要求的式子即可得出答案. 【详解】∵x 2+y 2+4x−6y +13=0, ∵x 2+4x +4+y 2−6y +9=0, ∵(x +2)2+(y−3)2=0,∵x =−2,y =3, ∵x−y =−2−3=−5; 故选C .【点睛】此题考查了配方法的应用,用到的知识点是非负数的性质,通过配方求出x ,y 的值是解题的关键. 【变式7-2】(2021·黑龙江大庆市·八年级期末)已知三角形三边长为a 、b 、c ,且满足247a b -=,246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【解析】∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∵a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∵a =3,b =2,c =2,∵此三角形为等腰三角形. 故选A .【变式7-3】若22228160m mn n n -+-+=,求m 、n 的值. 解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=,4,4n m ∴==.题型八:配方法用于求最值【例题8】(2020·湖南湘西土家族苗族自治州·八年级期末)阅读下面的解题过程,求21030y y -+的最小值.解:∵21030y y -+=()()222102551025555y y y y y -++=-++=-+,而()250y -≥,即()25y -最小值是0; ∵21030y y -+的最小值是5 依照上面解答过程,(1)求222020m m ++的最小值; (2)求242x x -+的最大值. 【答案】(1)2019;(2)5.【分析】(1)利用完全平方公式把原式变形,根据偶次方的非负性解答即可; (2)利用完全平方公式把原式变形,利用非负数的性质解答即可; 【详解】(1)2222020212019m m m m ++=+++ ()212019m =++∵()210m +≥,∵()2120192019m ++≥,∵222020m m ++的最小值为2019;(2)()2242215x x x x -+=--++()215x =--+,∵()210x -≥, ∵()210x --≤, ∵()2155x --+≤, ∵242x x -+的最大值是5.变式训练【变式8-1】(2019·辽宁大连市·八年级期末)已知关于x 的多项式24x mx -++的最大值为5,则m 的值可能为( ) A .1 B .2C .4D .5【答案】B【分析】利用配方法将24x mx -++进行配方,即可得出答案.【详解】解:22244,24m m x mx x ⎛⎫-++=--++ ⎪⎝⎭故245,4m += 解得: 2.m =± 故选B.【变式8-2】(2020·全国八年级课时练习)不论,a b 为任何实数,2261035a b a b +-++的值都是( ) A .非负数 B .正数 C .负数 D .非正数【答案】B【分析】利用完全平方公式配方,进而利用偶次方的性质得出答案. 【详解】2261035a b a b +-++22(3)(5)10a b =-+++>, ∵a 2+b 2−6a +10b +35的值恒为正数.故选:B .【点睛】此题主要考查了完全平方公式的应用以及偶次方的性质,正确配方得出是解题关键. 【变式8-3】(2020·山东威海市·八年级期中)若2245a a x -+-=,则不论取何值,一定有( )A .5x >B .5x <-C .3x ≥-D .3x ≤-【答案】D【分析】由﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3可得:x ≤﹣3.【详解】∵x =﹣2a 2+4a ﹣5=﹣2(a ﹣1)2﹣3≤﹣3,∵不论a 取何值,x ≤﹣3. 故选D .【真题1】(2016·湖北荆州市·中考真题)将二次三项式x 2+4x +5化成(x +p)2+q 的形式应为____. 【答案】(x +2)2+1 【详解】试题分析:原式=2x +4x+4+1=()221x ++ 故答案为:()221x ++【真题2】(2010·河北中考真题)已知实数的最大值为______.【答案】4【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++1链接中考2(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【真题3】(2010·江苏镇江市·中考真题)已知实数的最大值为______.【答案】4 【解析】变形的配方试题,2230x x x y +++-=223x y x x +=--+ 2(211)3x y x x +=-++-+ 2(1)3x y x +=-+++12(1)4x y x +=-++ 所以当1x =-时x y +的最大值为4【拓展1】(2020·全国九年级课时练习)解方程:2232mx x -=+()1m ≠【答案】当1m 时,原方程的解是x =1m <时,原方程无实数解【分析】先移项,再合并同类项可得()215m x -=,根据1m ≠求出251x m =-,再讨论10m -<时,10m ->,分别计算出方程的解.【详解】解:移项得:2223mx x -=+, 化简得:()215m x -=,1m ≠,251x m ∴=-, 当10m -<时,2501x m =<-, ∴原方程无实数解,当10m ->时,2501x m =>-, 满分冲刺1x ∴==2x ==∴当1m 时,原方程的解是x ==当1m <时,原方程无实数解.【点睛】此题考查解一元二次方程,根据每个方程的特点选择适合的解法是解题的关键.【拓展2】(2020·渠县崇德实验学校七年级期中)“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∵(x +2)2+1≥1,∵x 2+4x +5≥1.试利用“配方法”解决下列问题:(1)填空:x 2﹣4x +5=(x )2+ ; (2)已知x 2﹣4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2﹣1与2x ﹣3的大小. 【答案】(1)﹣2,1;(2)1;(3)x 2﹣1>2x ﹣3 【分析】(1)直接配方即可;(2)先配方得到非负数和的形式,再根据非负数的性质得到x 、y 的值,再求x +y 的值; (3)将两式相减,再配方即可作出判断. 【详解】解:(1)x 2﹣4x+5=(x ﹣2)2+1; (2)x 2﹣4x+y 2+2y+5=0, (x ﹣2)2+(y+1)2=0, 则x ﹣2=0,y+1=0, 解得x =2,y =﹣1, 则x+y =2﹣1=1; (3)x 2﹣1﹣(2x ﹣3) =x 2﹣2x+2 =(x ﹣1)2+1, ∵(x ﹣1)2≥0,∵(x﹣1)2+1>0,∵x2﹣1>2x﹣3.【点睛】本题考查了配方法的综合应用,配方的关键步骤是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.【拓展3】(2019·全国九年级单元测试)阅读下面的解答过程,求y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵(y+2)2≥0,∵(y+2)2+4≥4,∵y2+4y+8的最小值为4.仿照上面的解答过程,求x2-x+4的最小值和6-2x-x2的最大值.【答案】154;7.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值.【详解】解:(1)x2-x+4=(x-12)2+154,∵(x-12)2≥0,∵(x-12)2+154≥154.则x2-x+4的最小值是154;(2)6-2x-x2=-(x+1)2+7,∵-(x+1)2≤0,∵-(x+1)2+7≤7,则6-2x-x2的最大值为7.【点睛】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.配方法:先加上一次项系数一半的平方,使式中出现完全平方式,再减去一次项系数一半的平方,使整个式子的值不变,这种变形的方法称为“配方法”.。

中考数学总复习考点知识专题练习7一元二次方程的解法及应用

中考数学总复习考点知识专题练习7一元二次方程的解法及应用

中考数学总复习考点知识专题练习7一元二次方程的解法及应用1.一元二次方程x2-8x-2=0,配方后可变形为()A.(x-4)2=18 B.(x-4)2=14C.(x-8)2=64 D.(x-4)2=12.一元二次方程x2-4x+3=0的解为()A.x1=-1,x2=3 B.x1=1,x2=3C.x1=1,x2=-3 D.x1=-1,x2=-33.下列一元二次方程中,无实数根的是()A.x2-2x-3=0 B.x2+3x+2=0C.x2-2x+1=0 D.x2+2x+3=04.关于x的方程x2-4x+m=0有两个不相等的实数根,则m的取值范围是()A.m>2 B.m<2 C.m>4 D.m<45.若m,n是一元二次方程x2+3x-9=0的两个根,则m2+4m+n的值是()A.4 B.5 C.6 D.126.某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为()A.5 B.6 C.7 D.87.关于x的方程2x2+mx-4=0的一根为x=1,则另一根为__________.8.若关于x的一元二次方程x2+3x+c=0有两个相等的实数根,则c的值为__________.9.中国古代数学家杨辉的《田亩比类乘除捷法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为______________.10.解方程:(1)x2+x-1=0; (2)(x-4)(x-2)+1=0.11.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?B12.在解一元二次方程x2+px+q=0时,小红看错了常数项q,得到方程的两个根是-3,1.小明看错了一次项系数p,得到方程的两个根是5,-4,则原来的方程是()A.x2+2x-3=0 B.x2+2x-20=0C.x2-2x-20=0 D.x2-2x-3=013.若等腰三角形的一边长是4,另两边的长是关于x的方程x2-6x+n=0的两个根,则n的值为__________.14.已知关于x的一元二次方程x2+2mx+m2+m=0有实数根.(1)求m的取值范围;(2)若该方程的两个实数根分别为x1,x2,且x21+x22=12,求m的值.15.如图1,有长为30 m的篱笆,一面利用墙(墙的最大可用长度为10 m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB长为x m.(1)如果要围成面积为63 m2的花圃,问AB的长是多少?(2)能围成面积为72 m2的花圃吗?如果能,请求出AB的长;如果不能,请说明理由.图1C16.函数y =kx +b 的图象如图2所示,则关于x 的一元二次方程x 2+bx +k -1=0的根的情况是()图2A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定17.若(x 2+y 2)2-5(x 2+y 2)-6=0,则x 2+y 2=__________.18.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为40元的小商品进行直播销售,如果按每件60元销售,每天可卖出20件.通过市场调查发现,每件小商品售价每降低5元,日销售量增加10件.(1)若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?(2)小明的线下实体商店也销售同款小商品,标价为每件62.5元.为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过(1)中的售价,则该商品至少需打几折销售?中考数学总复习考点知识专题练习 7 一元二次方程的解法及应用1.A2.B3.D4.D5.C6.B7.x =-28.949.x (x +12)=86410.解:(1)这里a=1,b=1,c=-1.∵b2-4ac=12-4×1×(-1)=5>0,∴x=-1±52×1=-1±52,即x1=-1+52,x2=-1-52.(2)方程化为x2-6x+9=0,(x-3)2=0.两边开平方,得x-3=0.∴x1=x2=3.11.解:(1)设这两个月参观人数的月平均增长率为x.依题意,得10(1+x)2=12.1.解得x1=0.1=10%,x2=-2.1(不合题意,舍去).答:这两个月参观人数的月平均增长率为10%.(2)12.1×(1+10%)=13.31(万人).答:预计6月份的参观人数是13.31万.12.B13.8或914.解:(1)根据题意,得Δ=(2m)2-4(m2+m)≥0.解得m≤0.∴m的取值范围为m≤0.(2)根据题意,得x1+x2=-2m,x1x2=m2+m.∵x21+x22=(x1+x2)2-2x1x2=12,∴(-2m)2-2(m2+m)=12.整理,得m2-m-6=0.解得m1=-2,m2=3(舍去).∴m的值为-2.15.解:(1)由题意,得x(30-3x)=63.解得x1=7,x2=3.当x=7时,30-3x=9<10,符合题意;当x=3时,30-3x=21>10,不符合题意,舍去.∴AB的长为7 m.(2)不能围成面积为72 m2的花圃.理由如下:由题意,得x(30-3x)=72.整理,得x2-10x+24=0.解得x1=4,x2=6.当x=4时,30-3x=18>10,不符合题意,舍去;当x=6时,30-3x=12>10,不符合题意,舍去.∴不能围成面积为72 m2的花圃.16.C17.618.解:(1)设每件售价应定为x元,则每件利润为(x-40)元,日销售量为20+10(60-x)5=(140-2x)件.依题意,得(x-40)(140-2x)=(60-40)×20.整理,得x2-110x+3 000=0.解得x1=50,x2=60.∵商家想尽快销售完该款商品,∴x=50.答:每件售价应定为50元.(2)设该商品需打a折销售.由题意,得62.5×a10≤50.解得a≤8.答:该商品至少需打8折销售.。

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题

完整版)一元二次方程解法及其经典练习题一元二次方程的解法及经典练题方法一:直接开平方法(基于平方根的定义)平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

即,如果x²=a,那么x=±√a。

注意,x可以是多项式。

一、使用直接开平方法解下列一元二次方程:1.4x²-1=22.(x-3)²=233.81(x-2)²=1644.(x+1)²/4=255.(2x+1)²=(x-1)²6.(5-2x)²=9(x+3)²7.2(x-4)²/3-6=0.方法二:配方法解一元二次方程1.定义:把一个一元二次方程的左边配成一个平方,右边为一个常数,然后利用开平方数求解,这种解一元二次方程的方法叫做配方法。

2.配方法解一元二次方程的步骤:1)将方程移项,使等式左边为完全平方,右边为常数。

2)将等式左右两边开平方。

3)解出方程的根。

二、使用配方法解下列一元二次方程:1.y²-6y-6=02.3x²-2=4x3.3x²-4x=94.x²-4x-5=05.2x²+3x-1=06.3x²+2x-7=0方法三:公式法1.定义:利用求根公式解一元二次方程的方法叫做公式法。

2.公式的推导:使用配方法解方程ax²+bx+c=0(a≠0),解得x=[-b±√(b²-4ac)]/(2a)。

3.由上可知,一元二次方程ax²+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因为1)当b²-4ac>0时,方程有两个实数根,x₁=[-b+√(b²-4ac)]/(2a),x₂=[-b-√(b²-4ac)]/(2a)。

2)当b²-4ac=0时,方程有一个实数根,x₁=x₂=-b/(2a)。

一元二次方程的解法练习题(带答案))

一元二次方程的解法练习题(带答案))

【答案】( 1 ) ① ②
(2) (3)
【解析】( 1 ) ( 2 ) 方程 ∴
. . . .
的解为
, .
6
( 3 ) 解方程


【标注】【知识点】算式找规律
, .
四、 因式分解法
1. 用因式分解法解方程:
(1)

(2)

(3)

(4)

【答案】( 1 ) (2) (3) (4)








【解析】( 1 ) (2) (3) (4)
3. 阅读材料,解答问题.
阅读材料:为解方程
,我们可以将 视为一个整体,然后设
,则
,原方
程化为
.解得

.当 时,


;当 时,
,∴

∴原方程的解为




解答问题:请你仔细阅读上述材料,深刻领会解题过程中所包含的数学思想和方法,然后解方程

【答案】


【解析】 设
,则原方程化为

解这个方程,得
,.

, ,
. .
【解析】( 1 ) (2)
, ,
. .
【标注】【知识点】公式法求一元二次方程的根
2. 公式法解方程:
(1)

(2)

(3)

【答案】( 1 ) (2) (3)






【标注】【知识点】公式法求一元二次方程的根
3. 在实数范围内因式分解:

【专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

【专题复习】九年级数学上册 一元二次方程解法练习100题(含答案)

【专题复习】九年级数学上册一元二次方程解法练习100题1.解方程:2x2﹣8x+3=0(用公式法). 2.解方程:(2x-1)(x+3)=43.解方程:4y2+4y-1=-10-8y.4.解方程:x(x-3)=105.解方程:(x-1)(x-3)=86.解方程:x2-2=-2 x7.解方程:4x(3x-2)=6x-4. 8.解方程:3x(7-x)=18-x(3x-15);9.解方程:5x2-8x+2=0. 10.解方程:x2+12x+27=0.11.解方程:2x2-4x+1=0(用配方法) 12.解方程:4(x-1)2=9(x-5)2 13.解方程:x2﹣6=﹣2(x+1) 14.解方程:x2+4x﹣5=0.15.解方程:2x2+5x﹣1=0.16.解方程:3(x-2)2=x(x-2):17.解方程:2x2-3x-2=0 18.解方程:2x2-7x+1=019.解方程:x2﹣6x﹣4=0(用配方法) 20.解方程:x2-4x-3=021.解方程:x²-5x+2=0 22.解方程:x2﹣4x+8=0;23.解方程:3x2-6x+4=0 24.解方程:(x-2)(x-3)=1225.解方程:(x﹣3)(x+7)=﹣9 26.解方程:3x2+5(2x+1)=0(公式法) 27.解方程:x2﹣12x﹣4=0;28.解方程:(x﹣5)(x﹣6)=x﹣5.29.解方程:x2﹣8x﹣10=0;30.解方程:x(x﹣3)=15﹣5x;31.解方程:5x(x﹣3)=(x+1)(x﹣3) 32.解方程:x2+8x+15=033.解方程:25x2+10x+1=0 34.解方程:x2﹣7=﹣6x.(配方法)35.解方程:x2+4x﹣5=0(配方法) 36.解方程:4(x+3)2﹣(x﹣2)2=0(因式分解法)37.解方程:2x2+8x﹣1=0(公式法) 38.解方程:2x2-4x-1=0.39.解方程:(2x﹣5)2﹣(x+4)2=0.40.解方程:(x+1)(x﹣2)=2x(x﹣2) 41.解方程:4x2﹣6x﹣3=0(运用公式法) 42.解方程:2x2﹣x﹣3=0.43.解方程:(x+3)(x-1)=12 44.解方程:x2+3=3(x+1)45.解方程:x2-2x-24=0. 46.解方程:4x2-7x+2=0.47.解方程:x2-2x=2x+1;48.解方程:2(t-1)2+t=1;49.解方程:(3x-1)2-4(2x+3)2=0. 50.解方程:x2-6x-4=0;51.解方程:x(x﹣3)=4x+6.52.解方程:y2+3y+1=0;53.解方程:3y2+4y-4=0 54.解方程:(x-3)2-2x(x-3)=055.解方程:x2﹣2x=4 56.解方程:3(x﹣1)2=x(x﹣1) 57.解方程:3x2﹣6x+1=0(用配方法) 58.解方程:3(x-5)2=2(5-x) 59.解方程:3x2+5(2x+1)=0 60.解方程:x2+6x=9.61.解方程:x2﹣2x=x﹣2.62.解方程:(2x﹣1)2=(3﹣x)2 63.解方程:2x2-10x=3. 64.解方程:(x﹣1)(x﹣3)=8.65.解方程:3x2+2x-5=0;66.解方程:(1-2x)2=x2-6x+9.67.解方程:5(3x-2)2=4x(2-3x).68.解方程:(2x+1)2+4(2x+1)+3=0.69.解方程:2x2+3=7x; 70.解方程:(2x+1)2+4(2x+1)+3=0.71.解方程:x2﹣2x﹣3=0.72.解方程:x﹣3=4(x﹣3)273.解方程:(x+1)(x-1)=2x;74.解方程:3x2-7x+4=0.75.解方程:(x+2)2﹣10(x+2)=0.76.解方程:x2+3x+2=0;77.解方程:(x-1)2-2(x2-1)=0 78.解方程:x2-4x+2=0;79.解方程:x2﹣5x+1=0;80.解方程:x2﹣2x=4.81.解方程:x2+3x-2=0. 82.解方程:x2-5x+1=0(用配方法)83.解方程:x2+5x﹣6=0(因式分解法) 84.解方程:x2+3x﹣4=0(公式法)85.解方程:x2﹣4x+1=0(配方法) 86.解方程:(x﹣5)2=16 (直接开平方法)87.解方程:(x﹣1)(x+2)=6. 88.解方程:2x2+3x+1=089.解方程:(3x+1)2=9x+3. 90.解方程:5x2﹣3x=x+191.解方程:(x﹣4)2=(5﹣2x)2. 92. 解方程:(2x+1)2+15=8(2x+1)93.解方程:x2+x﹣1=0. 94.解方程:2x2﹣3x﹣1=0.95.解方程:x2-2x-3=0 96.解方程:3x2-7x+4=0.97.解方程:(x+3)(x-1)=12 98.解方程:x2-x-6=099.解方程:2x2﹣4x=1(用配方法) 100.解方程:(x+8)(x+1)=-12参考答案1.答案为:x=,x2=.12.答案为:x=1,x2=-3.5.13.答案为:y=y2=-1.5.14.答案为:x=5,x2=-2.15.答案为:x=5,x2=-1.16.答案为:∴,7.答案为:x=1/2,x2=-2/3.18.答案为:x=39.答案为:10.答案为:x=-3,x2=-9.111.答案为:12.答案为:x=13,x2=-3.4.113.答案为:x=﹣1+,x2=﹣1﹣.114.答案为:x=1,x2=﹣5.115.答案为:x=.16.答案为:x=2,x2=3.117.答案为:x=-0.5,x2=-2.118.答案为:;19.答案为:x=-3+,x2=-3-120.答案为:x=2721.答案为:略;22.答案为:x=x2=2;123.方程无实根;24.答案为:x=-1,x2=6. ;125.答案为:x=﹣6,x2=2;126.答案为:∴x1=,x2=.27.答案为:x=6+2,x2=6﹣2;128.答案为:x=5,x2=7.129.答案为:x=4+,x2=4﹣;130.答案为:x=3,x2=﹣5131.答案为:x=3,x2=0.25.132.答案为:x=-3,x2=-5.133.答案为:x=x2=-0.2.134.答案为:x=1,x2=﹣7.135.答案为:x=﹣5,x2=1;136.答案为:x=﹣4/3,x2=﹣8;137.答案为:x=,x2=.138.答案为:x=+1,x2=1-139.答案为:x=1/3,x2=9.140.答案为:x=2,x2=1.141.答案为:,;42.答案为:x=1.5,x2=﹣1.143.答案为:44.答案略;45.答案为:x=0,x2=3;146.答案为:x=+,x2=-.147.答案为:x=2+,x2=2-.148.答案为:t=1,t2=.149.答案为:x=-,x2=-7.150.答案为:x=3+,x2=3-.151.答案为:x=,x2=.152.答案为:y=,y2=.153.答案为:54.答案为:x=3,x2=-3;155.答案为:∴x=1﹣,x2=1+;156.答案为:x=1,x2=1.5.157.答案为:x=1+,x2=1﹣;158.答案为:x=5,x2=13/3.159.答案为:60.答案为:x=﹣3+3,x2=﹣3﹣3.161.答案为:x=2,x2=1.162.答案为:63.答案为:x 1=,x 2=. 64.答案为:x 1=5,x 2=﹣1. 65.答案为:x 1=1,x 2=-. 66.答案为:x 1=,x 2=-2. 67.答案为:x 1=,x 2=.68.答案为:x 1=-1,x 2=-2.69.答案为:x 1=,x 2=3.70.答案为:x 1=-1,x 2=-2.71.答案为:x 1=3,x 2=﹣1.72.答案为:x 1=3,x 2=3.25;73.答案为:x 1=+,x 2=-74.答案为:x 1=,x 2=1 75.答案为:x 1=﹣2,x 2=8.76.答案为:x 1=-1,x 2=2.77.答案为:x 1=1,x 2=3.78.答案为:x 1=22 ,x 2=2-2. 79.答案为: 80.答案为:x 1=1+,x 2=1﹣.81.∵a=1,b=3,c=-2,∴Δ=32-4×1×(-2)=17,∴x=,∴x 1=,x 2=.82.答案为:,.83.x1=﹣6,x2=1.84.答案为:x=﹣4,x2=1;185.;86.x=1,x2=9;187.x=,x2=.188.x1=﹣0.5,x2=﹣1;89.x1=﹣,x2=.90.x=﹣0.2,x2=1;191.x=3,x2=1.192.x=1,x2=2.193.x=,x2=.194.x=,x2=.195.96.解:(3)x=,x2=1197.98.99.x=1+,x2=1﹣.1100.1=﹣4,x2=﹣5.。

中考数学专题复习(有答案) 一元二次方程的解法及应用

中考数学专题复习(有答案) 一元二次方程的解法及应用

第2节 一元二次方程的解法及应用A 组1.(2020聊城)用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( A )A.⎝⎛⎭⎫x -342=1716B .⎝⎛⎭⎫x -342=12 C .⎝⎛⎭⎫x -322=134 D .⎝⎛⎭⎫x -322=114 2.(2020鹤岗)已知2+3是关于x 的一元二次方程x 2-4x +m =0的一个实数根,则实数m 的值是( B )A .0B .1C .-3D .-13.(2020鄂州)目前以5G 等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G 用户2万户,计划到2021年底全市5G 用户数累计达到8.72万户.设全市5G 用户数年平均增长率为x ,则x 值为( C )A .20%B .30%C .40%D .50%4.如果关于x 的方程x 2-4x +m =0有两个相等的实数根,那么m 的值是 4 .5.(2020邵阳改编)设方程x 2-4x -5=0的两根分别是x 1,x 2,则x 1+x 2的值为 4 .6.(2020南京)解方程:x 2-2x -3=0.解:因式分解,得(x -3)(x +1)=0.解得x 1=3,x 2=-1.B 组7.(2020河南)定义运算:m ☆n =mn 2-mn -1.例如:4☆2=4×22-4×2-1=7.则方程1☆x =0的根的情况为( A )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根8.(2020鄂州)已知关于x 的方程x 2-4x +k +1=0有两实数根.(1)求k 的取值范围;(2)设方程两实数根分别为x 1,x 2,且3x 1+3x 2=x 1x 2-4,求实数k 的值. 解:(1)由题意,得Δ=16-4(k +1)=16-4k -4=12-4k ≥0,∴k ≤3.(2)由题意,得x 1+x 2=4,x 1x 2=k +1.∵3x 1+3x 2=x 1x 2-4, ∴3(x 1+x 2)x 1x 2=x 1x 2-4. ∴3×4k +1=k +1-4. 解得k 1=5,k 2=-3,∵k ≤3,∴k =-3.C 组9.【新考法】(2020河北)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2,同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和-16,如图.如,第一次按键后,A ,B 两区分别显示:――→第一次按键(1)从初始状态按2次后,分别求A ,B 两区显示的结果;(2)从初始状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.解:(1)A 区显示的结果为25+2a 2,B 区显示的结果为-16-6a .(2)这个和不能为负数,理由如下:根据题意,得A ,B 两区代数式的和为25+4a 2+(-16-12a )=25+4a 2-16-12a =4a 2-12a +9=(2a -3)2.∵(2a -3)2≥0,∴A ,B 两区代数式的和不能为负数.。

完整版)一元二次方程解法练习题(四种方法)

完整版)一元二次方程解法练习题(四种方法)

完整版)一元二次方程解法练习题(四种方法)一元二次方程解法练题一、用直接开平方法解下列一元二次方程。

1.4x^2-1=2,解为x=±1/2.2.(x-3)^2=2,解为x=3±√2.3.81(x-2)=162,解为x=3.二、用配方法解下列一元二次方程。

1.y^2-6y-6=0,解为y=3±√15.2.3x^2-4x+2=0,解为x=1/3±√(2/3)。

三、用公式解法解下列方程。

1.x^2-2x-8=0,解为x=1±√9.2.4y^2-1=0,解为y=±1/2.3.2x^2-5x+1=0,解为x=(5±√17)/4.4.-4x^2-8x+1=0,解为x=(-1±√3)/2.5.x^2-4x=96,解为x=2±4√7.6.3x^2+2x-7=0,解为x=(-2±√22)/3.7.3y^2-23y+1=0,解为y=(23±√505)/6.8.2x^2-3x-2=0,解为x=2/3或x=-1.四、用因式分解法解下列一元二次方程。

1.x^2=2x,解为x=0或x=2.2.(x+1)^2-(2x-3)^2=0,解为x=-1或x=5.3.x^2-6x+8=0,解为x=2或x=4.4.4(x-3)^2=25(x-2),解为x=7/3或x=11.5.(1+2)x^2-(1-2)x-6=0,解为x=-1或x=3/2.6.(2-3x)+(3x-2)^2=0,解为x=2/3.五、用适当的方法解下列一元二次方程。

1.3x/(x-1)=x/(x+5),解为x=15/8.2.2x-3=5x^3,解为x=(-1±√13)/5.3.x-2y+6=2,解为y=(x-4)/2.4.x^2-7x+10=0,解为x=2或x=5.5.(x-3)(x+2)=6,解为x=1±√7.6.4(x-3)+x(x-3)=27,解为x=4或x=7.7.(5x-1)^2-2=8,解为x=-1/5或x=3/5.8.3y^2-4y-9=0,解为y=(2±√37)/3.9.x^2-7x-30=0,解为x=-3或x=10.10.(y+2)(y-1)=4/11,解为y=-1/2或y=3/2.11.4x(x-1)=3(x-1),解为x=3/4.12.4x(x-1)=3(x-1)^2,解为x=3/7或x=4.13.x-4ax=b-4a,解为x=(b-4a)/(1-4a)。

中考数学复习一元二次方程组专项综合练含答案解析

中考数学复习一元二次方程组专项综合练含答案解析

中考数学复习一元二次方程组专项综合练含答案解析一、一元二次方程1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.李明准备进行如下操作实验,把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm 2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm 2,你认为他的说法正确吗?请说明理由.【答案】 (1) 李明应该把铁丝剪成12 cm 和28 cm 的两段;(2) 李明的说法正确,理由见解析. 【解析】试题分析:(1)设剪成的较短的这段为xcm ,较长的这段就为(40﹣x )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58cm 2建立方程求出其解即可; (2)设剪成的较短的这段为mcm ,较长的这段就为(40﹣m )cm .就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48cm 2建立方程,如果方程有解就说明李明的说法错误,否则正确.试题解析:设其中一段的长度为cm ,两个正方形面积之和为cm 2,则,(其中),当时,,解这个方程,得,,∴应将之剪成12cm 和28cm的两段;(2)两正方形面积之和为48时,,,∵,∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.考点:1.一元二次方程的应用;2.几何图形问题.3.已知:关于x的方程x2-4mx+4m2-1=0.(1)不解方程,判断方程的根的情况;(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2【答案】(1) 有两个不相等的实数根(2)周长为13或17【解析】试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;(2)根据等腰三角形的性质及△>0,可得出5是方程x2﹣4mx+4m2﹣1=0的根,将x=5代入原方程可求出m值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.试题解析:解:(1)∵△=(﹣4m)2﹣4(4m2﹣1)=4>0,∴无论m为何值,该方程总有两个不相等的实数根.(2)∵△>0,△ABC为等腰三角形,另外两条边是方程的根,∴5是方程x2﹣4mx+4m2﹣1=0的根.将x=5代入原方程,得:25﹣20m+4m2﹣1=0,解得:m1=2,m2=3.当m=2时,原方程为x2﹣8x+15=0,解得:x1=3,x2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;当m=3时,原方程为x2﹣12x+35=0,解得:x1=5,x2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.综上所述:此三角形的周长为13或17.点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x=5求出m值.4.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程中,“大众点评”网上的购买价格比原有价格上涨52m%,购买数量和原计划一样:“美团”网上的购买价格比原有价格下降了920m元,购买数量在原计划基础上增加15m%,最终,在两个网站的实际消费总额比原计划的预算总额增加了152m%,求出m的值.【答案】(1)120;(2)20.【解析】试题分析:(1)本题介绍两种解法:解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”网上的购买实际消费总额:120a(1﹣25%)(1+52m%),在“美团”网上的购买实际消费总额:a[120(1﹣25%)﹣920m](1+15m%);根据“在两个网站的实际消费总额比原计划的预算总额增加了152m%”列方程解出即可.试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;解法二:7680÷80÷0.8=96÷0.8=120(元).答:每个礼盒在花店的最高标价是120元;(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:120×0.8a(1﹣25%)(1+52m%)+a[120×0.8(1﹣25%)﹣920m](1+15m%)=120×0.8a(1﹣25%)×2(1+ 152m%),即72a(1+52m%)+a(72﹣920m)(1+15m%)=144a(1+ 152m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),m2=20.答:m的值是20.点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.5.已知:关于的方程有两个不相等实数根.(1)用含的式子表示方程的两实数根;(2)设方程的两实数根分别是,(其中),且,求的值.【答案】(I)kx2+(2k-3)x+k-3 = 0是关于x的一元二次方程.∴由求根公式,得.∴或(II ),∴.而,∴,.由题意,有∴即(﹡)解之,得经检验是方程(﹡)的根,但,∴【解析】(1)计算△=(2k-3)2-4k (k-3)=9>0,再利用求根公式即可求出方程的两根即可;(2)有(1)可知方程的两根,再有条件x 1>x 2,可知道x1和x2的数值,代入计算即可.一位数学老师参加本市自来水价格听证会后,编写了一道应用题,题目如下:节约用水、保护水资源,是科学发展观的重要体现.依据这种理念,本市制定了一套节约用水的管理措施,其中规定每月用水量超过(吨)时,超过部分每吨加收环境保护费元.下图反映了每月收取的水费(元)与每月用水量(吨)之间的函数关系. 请你解答下列问题:6.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥ (2)4 【解析】 试题分析:根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论.根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值. 试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥⎪⎣⎦⎝⎭,解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+,因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.7.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6. 【答案】(1)x 1=1x 2=11=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32. ∴x -1=. ∴x 1=1x 2=1(2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.8.已知关于x 的一元二次方程()220x m x m -++=(m 为常数)(1)求证:不论m 为何值,方程总有两个不相等的实数根; (2)若方程有一个根是2,求m 的值及方程的另一个根. 【答案】(1)见解析;(2) 即m 的值为0,方程的另一个根为0.【分析】(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m 2+4>0,则方程有两个不相等实数解,于是可判断不论m 为何值,方程总有两个不相等的实数根; (2)设方程的另一个根为t ,利用根与系数的关系得到2+t=21m + ,2t=m,最终解出关于t 和m 的方程组即可. 【详解】 (1)证明:△=(m+2)2−4×1⋅m=m 2+4, ∵无论m 为何值时m 2≥0, ∴m 2+4≥4>0, 即△>0,所以无论m 为何值,方程总有两个不相等的实数根. (2)设方程的另一个根为t ,()220x m x m -++=根据题意得2+t=21m + ,2t=m , 解得t=0, 所以m=0,即m 的值为0,方程的另一个根为0. 【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t ,用根于系数关系列出方程组,在求解.9.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n . 【解析】 【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解. 【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.10.已知关于x 的一元二次方程有两个实数x 2+2x+a ﹣2=0,有两个实数根x 1,x 2. (1)求实数a 的取值范围;(2)若x 12x 22+4x 1+4x 2=1,求a 的值.【答案】(1)a≤3;(2)a=﹣1. 【解析】试题分析:(1)由根的个数,根据根的判别式可求出a 的取值范围; (2)根据一元二次方程根与系数的关系,代换求值即可得到a 的值. 试题解析:(1)∵方程有两个实数根, ∴△≥0,即22﹣4×1×(a ﹣2)≥0,解得a≤3; (2)由题意可得x 1+x 2=﹣2,x 1x 2=a ﹣2, ∵x 12x 22+4x 1+4x 2=1,∴(a ﹣2)2﹣8=1,解得a=5或a=﹣1, ∵a≤3, ∴a=﹣1.11.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12;(2)∵k取最小整数,∴k=0,∴原方程可化为x2+x=0,∴x1=0,x2=﹣1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.若关于x的一元二次方程x2﹣3x+a﹣2=0有实数根.(1)求a的取值范围;(2)当a为符合条件的最大整数,求此时方程的解.【答案】(1)a≤174;(2)x=1或x=2【解析】【分析】(1)由一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于a的不等式,即可求出a的取值范围;(2)根据(1)确定出a的最大整数值,代入原方程后解方程即可得.【详解】(1)∵关于x的一元二次方程x2﹣3x+a﹣2=0有实数根,∴△≥0,即(﹣3)2﹣4(a﹣2)≥0,解得a≤174;(2)由(1)可知a≤174,∴a的最大整数值为4,此时方程为x2﹣3x+2=0,解得x=1或x=2.【点睛】本题考查了一元二次方程根的判别式以及解一元二次方程,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【答案】(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.【解析】【分析】(1)设每次降价的百分率为 x ,(1﹣x )2为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】解:(1)设每次降价的百分率为 x . 40×(1﹣x )2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;(2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得()4030y (448)5100.5y--⨯+= 解得:1y =1.5,2y =2.5, ∵有利于减少库存,∴y =2.5.答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.14.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件: (1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m 件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m 的值.【答案】(1)销售单价至少为35元;(2)m=16. 【解析】试题分析:(1)根据利润的公式列出方程,再求解即可; (2)销售价为原销售价×(1﹣m%),销售量为(150+m ),列出方程求解即可.试题解析:(1)设销售单价至少为x 元,根据题意列方程得,150(x ﹣20)=2250, 解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m )=5670,150+m ﹣150×m%﹣m%×m=162,m ﹣m 2=12,60m ﹣3m 2=192, m 2﹣20m+64=0, m 1=4,m 2=16, ∵要使销售量尽可能大, ∴m=16.【考点】一元二次方程的应用;一元一次不等式的应用.15.将进货单价为40元的商品按50元售出,能售出500件,如果该商品涨价1元,其销售量就要减少10件,为了赚取8000元的利润,售价应定为多少元?这时应进货多少件? 【答案】要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件. 【解析】 【分析】设每件商品涨价x 元,能赚得8000元的利润;销售单价为(50)x +元,销售量为(50010)x -件;每件的利润为根据为(50+x-40)元,根据总利润=销售量×每个利润,可列方程求解 【详解】解:设每件商品涨价x 元,则销售单价为(50)x +元,销售量为(50010)x -件. 根据题意,得(50010)[(50)40]8000x x -+-=. 解得110x =,230x =.经检验,110x =,230x =都符合题意. 当10x =时,5060x +=,50010400x -=; 当30x =时,5080x +=,50010200x -=.所以,要赚取8000元的利润,售价应定为60元或80元.售价定为60元时,应进货400件;售价定为80元时,应进货200件. 【点睛】本题考查一元二次方程的应用,关键看到售价和销售量的关系,然后以利润做为等量关系列方程求解。

九年级数学上册第24章一元一次方程阶段核心方法专训一元二次方程的九种解法习题

九年级数学上册第24章一元一次方程阶段核心方法专训一元二次方程的九种解法习题

022,的解一定是原方程的解, 021
解得
x=4
041.
方程组xx- -22
019=-2 020=-2
021,的解也一 022
定是原方程的解,解得 x=-2.∵原方程最多有两个
实数解,∴原方程的根为 x1=4 041,x2=-2.
学习延伸
一、与同学们讨论下各自的学习心得 二、老师们指点下本课时的重要内容
x1=7+6
13,x2=7-6
13 .
(2)4x2-3x-5=x-2. 解:4x2-3x-5=x-2, 4x2-4x-3=0. 其中 a=4,b=-4,c=-3. ∴b2-4ac=(-4)2-4×4×(-3)=64. ∴x=4±8 64,即 x1=32,x2=-12.
10.解方程:6x2+19x+10=0.
16.解方程:(x-2 019)(x-2 020)=2 021×2 022.
【点拨】解本题也可采用换元法.设x-2 020=t, 则 x - 2 019 = t + 1 , 原 方 程 可 化 为 t(t + 1) = 2 021×2 022,先求出t,进而求出x.
解:方程组xx- -22
019=2 020=2
12.解方程:(x-1)(x-2)(x-3)(x-4)=48.
解:原方程即为[(x-1)(x-4)][(x-2)(x-3)]=48,
即(x2-5x+4)(x2-5x+6)=48.
设 y=x2-5x+5,则原方程变为(y-1)(y+1)=48.
解得 y1=7,y2=-7.
当 x2-5x+5=7 时,解得 x1=5+2 33,x2=5-2 33;
解:将原方程两边同乘 6, 得(6x)2+19×(6x)+60=0. 解得 6x=-15 或 6x=-4. ∴x1=-52,x2=-23.

初三数学一元二次方程练习题及答案

初三数学一元二次方程练习题及答案

初三数学一元二次方程练习题及答案一元二次方程是初中数学中重要的内容之一,它包括一个未知数的二次项、一次项和常数项,形如ax²+bx+c=0。

在初三数学中,学生需要熟练掌握一元二次方程的解法,能够灵活运用相关的知识进行问题的求解。

下面将给出一些初三数学一元二次方程的练习题及答案,供同学们参考练习。

练习题1:解下列方程:1. x² + 5x + 6 = 02. 2x² - 4x - 3 = 03. x² + 8x + 15 = 0解答:1. 对于方程x² + 5x + 6 = 0,我们可以通过分解因式的方法进行求解。

将方程转化为(x + 2)(x + 3) = 0,所以x + 2 = 0或x + 3 = 0,解得x = -2或x = -3。

2. 对于方程2x² - 4x - 3 = 0,我们可以使用求根公式进行求解。

由求根公式x =(-b±√(b^2-4ac))/2a,带入a=2,b=-4,c=-3,解得x=3/2或x=-1。

3. 对于方程x² + 8x + 15 = 0,我们可以再次使用求根公式进行求解。

带入a=1,b=8,c=15,解得x=-3或x=-5。

练习题2:解下列方程:1. 3x² - 2x + 1 = 02. 4x² + 12x - 9 = 03. 5x² + 7x + 2 = 0解答:1. 对于方程3x² - 2x + 1 = 0,我们可以使用求根公式进行求解。

带入a=3,b=-2,c=1,解得x=1或x=1/3。

2. 对于方程4x² + 12x - 9 = 0,我们可以通过分解因式的方法进行求解。

将方程转化为(2x - 1)(2x + 9) = 0,所以2x - 1 = 0或2x + 9 = 0,解得x=1/2或x=-9/2。

3. 对于方程5x² + 7x + 2 = 0,我们同样可以通过分解因式的方法进行求解。

中考数学专项训练: 一元二次方程(含解析)

中考数学专项训练: 一元二次方程(含解析)

一、选择题3.(2019·泰州) 方程2x 2+6x -1=0的两根为x 1、x 2,则x 1+x 2等于( )A.-6B.6C.-3D.3 【答案】C【解析】根据一元二次方程根与系数的关系,x 1+x 2=62-=-3,故选C.6. (2019·烟台)当5b c +=时,关于x 的一元二次方程230x bx c +-=的根的情况为( ). A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .无法确定 【答案】A【解析】因为5b c +=,所以5c b =-,因为()2224343(5)6240b c b b b ∆=-⨯⨯=-⨯⨯-=-+>,所以该一元二次方程有两个不相等的实数根.10.(2019·威海)已知a ,b 是方程x 2+x -3=0的两个实数根,则a 2-b+2019的值是( ) A,2023 B,2021 C.2020 D.2019【答案】A【解析】由题得a 2+a -3=0,a+b =-1,所以a 2=-a +3,所以a 2-b+2019=-a +3-b +2019=-(a +b )+3+ 2019=-(-1)+3+2019=2023,故选A. 8.(2019·盐城)关于 x 的一元二次方程 x 2 +kx-2=0(k 为实数)根的情况是( )A. 有两个不相等的实数根 C. 没有实数根B. 有两个相等的实数根 D. 不能确定 【答案】A【解析】∵a =1,b =k ,c=-2,∴△=b 2-4ac =k 2-4×1×(-2)=k 2+8>0,∴方程有两个不相等的实数根.故选A .8.(2019·山西)一元二次方程x 2-4x -1=0配方后可化为( )A.(x+2)2=3B.(x+2)2=5C.(x -2)2=3D.(x -2)2=5【答案】D【解析】原方程可化为:x 2-4x =1,x 2-4x+4=1+4,(x -2)2=5,故选D.7.(2019·淮安)若关于x 的一元二次方程022=-+k x x 有两个不相等的实数根,则k 的取值范围是( ) A.k<-1 B.k>-1 C.k<1 D.k>1 【答案】B【解析】∵关于x 的一元二次方程022=-+k x x 有两个不相等的实数根, ∴△=k k 44)(1422+=-⨯⨯->0, ∴k >-1.4.(2019·黄冈)若x 1,x 2是一元一次方程x 2-4x -5=0的两根,则x 1·x 2的值为 ( )A.-5B.5C.-4D.4【答案】A【解析】由根与系数的关系可知x 1·x 2=-5.1. (2019·怀化)一元二次方程x 2+2x +1=0的解是( ) A.x 1=1,x 2=-1 B.x 1=x 2=1 C.x 1=x 2=-1 D.x 1=-1,x 2=2 【答案】C.【解析】方程x 2+2x +1=0, 配方可得(x +1)2=0, 解得x 1=x 2=-1.故选C.2. (2019·滨州)用配方法解一元二次方程x 2-4x +1=0时,下列变形正确的是( ) A .(x -2)2=1 B .(x -2)2=5 C .(x +2)2=3 D .(x -2)2=3【答案】D【解析】x 2-4x+1=0,移项得x 2-4x=-1,两边配方得x 2-4x+4=-1+4,即(x -2)2=3.故选D .3. (2019·聊城)若关于x 的一元二次方程(k -2)x 2-2kx+k =6有实数根,则k 的取值范围为 ( )A.k ≥0B.k ≥0且k ≠2C.k ≥32D.k ≥32且k ≠2 【答案】D【解析】∵原方程是一元二次方程,∴k -2≠0,∴k ≠2,∵其有实数根,∴(-2k)2-4(k -2)k ≥0,解之得,k ≥32,∴k 的取值范围为k ≥32且k ≠2,故选D.4. (2019·潍坊)关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为( ) A .m =-2 B .m =3 C .m =3或m =-2 D .m =3或m =2 【答案】A【解析】由题意可得:222121212()212x x x x x x +=+-=,因为:122122,x x m x x m m+=-⎧⎨=+⎩ 所以:22(2)2()12m m m --+=,解得:m 1=3,m 2=-2;当m =3时Δ=62-4×1×12<0,所以m =3应舍去; 当m =-2时Δ=(-4)2-4×1×2>0,符合题意. 所以m =-2,故选择A .5. (2019·淄博) 若2212123,5,x x x x +=+=则以12,x x 为根的一元二次方程是( ) A.2320x x -+= B.2320x x +-=C.2320x x ++=D.2320x x --=【答案】A.【解析】222121212()2,x x x x x x +=++⋅ 又∵2212123,5,x x x x +=+=∴2221212122()()954,x x x x x x ⋅=+-+=-= ∴12,2x x =,∴以12,x x 为根的一元二次方程是2320x x -+=.故选A.6.(2019·自贡)关于x 的一元二次方程x 2-2x +m =0无实数根,则实数m 的取值范围是( ) A.m <1 B.m ≥1 C.m ≤1 D.m >1 【答案】D.【解析】∵方程无实数根, ∴△=(-2)2-4×1·m =4-4m <0. 解得,m >1. 故选D.7. (2019·金华)用配方法解方程x 2-6x -8=0时,配方结果正确的是( ) A. 2(3)17x -= B. 2(3)14x -= C. 2(6)44x -= D. 2(3)1x -=【答案】A .【解析】解方程x 2-6x -8=0,配方,得(x -3)2=17,故选A .8. (2019·宁波) 能说明命题”关于x 的方程x 2-4x+m =0一定有实数根”是假命题的反例为A.m =-1B.m =0C.m =4D.m =5 【答案】D【解析】方程的根的判别式∆=(-4)2-4m =16-4m,当∆<0时,方程无实数根,∴应使16-4m<0,即m>4,可得原方程无实数根,四个选项中,只有m =5符合条件,故选D.二、填空题15.(2019·嘉兴)在x 2+ +4=0的括号中添加一个关于x 的一次项,使方程有两个相等的实数根. 【答案】4x ±【解析】根据一元二次方程有两个相等的实数根的条件可知,则△=b 2﹣4ac =b 2﹣16=0,得b =±4, 故一次项为±4x ,故答案为4x ±.14.(2019·泰州)若关于x 的方程x 2+2x+m =0有两个不相等的实数根,则m 的取值范围是________. 【答案】m<1【解析】该方程的根的判别式∆=22-4m =4-4m,因为有两个不相等的实数根,∴4-4m>0,所以m<1. 16.(2019·威海) 一元二次方程3x 2=4-2x 的解是【答案】1x =,2x = 【解析】直接利用公式法解一元二次方程得出答案.3x 2=4-2x 即3x 2+2x-4=0,则△b 2-4ac =4-4×3×13.(2019·盐城)设1x 、2x 是方程2320x x +-=的两个根,则1212x x x x +-⋅= . 【答案】1【解析】根据一元二次方程中根与系数的关系,由韦达定理可知121232b cx x x x a a+==⋅==-,,得12121x x x x +-⋅=.10.(2019·青岛)若关于x 的一元二欠方程2x 2-x +m =0有两个相等的实数根,则m 的值为 . 【答案】18【解析】本题考查一元二次方程根的判别式,因为一元二次方程有两个相等的实数根,所以△=(-1)2-4×2m =1-8m =0,解得m =18. 9.(2019·江西)设1x ,2x 是一元二次方程012=--x x 的两根,则2121x x x x ++= . 【答案】0【解析】∵1x ,2x 是一元二次方程012=--x x 的两根, ∴=+21x x 1,=21x x -1, ∴2121x x x x ++=1+(-1)=0.15.(2019·武汉) 抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,则关于x 的一元二次方程 a (x -1)2+c =b -bx 的解是___________.【答案】x =-2或5 【解析】∵抛物线y =ax 2+bx +c 经过点A (-3,0)、B (4,0)两点,∴y =a (x +3)(x -4)=ax 2-2ax -12a .∴b =-2a ,c =-12a .∴一元二次方程为 a (x -1)2-12a =-2a +2ax ,整理,得ax 2-3ax -10a =0,∵a ≠0,∴x 2-3x -10=0,解得x 1=-2,x 2=5.9.(2019·济宁) 已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是 .【答案】-2【解析】方法1:把x =1代入得1+b -2=0,解得b =1,所以方程是x 2 +x -2=0,解得x 1=1,x 2=-2. 方法2:设方程另一个根为x 1,由根与系数的关系知1×x 1=-2.∴x 1=-2. 14.(2019·陇南)关于x 的一元二次方程x 2+x +1=0有两个相等的实数根,则m 的取值为 . 【答案】4.【解析】∵关于x 的一元二次方程x 2+x+1=0有两个相等的实数根,∴2411-⨯⨯=0,解得,m=4, 故答案为:4. 1. (2019·泰安)已知关于x 的一元二次方程x 2-(2k -1)x+k 2+3=0有两个不相等的实数根,则实数k 的取值范围是________.【答案】k<114-【解析】∵关于x 的一元二次方程x 2-(2k -1)x+k 2+3=0有两个不相等的实数根,∴∆=(2k -1)2-4(k 2+3)>0,解之,得k<114-.2. (2019·枣庄)已知关于x 的方程ax 2+2x -3=0有两个不相等的实数根,则a 的取值范围是________.【答案】a>13-且a ≠0【解析】因为关于x 的方程ax 2+2x -3=0有两个不相等的实数根,∴a ≠0,且22-4a(-3)>0,解之得,a>13-且a ≠0.17.(2019·娄底)已知方程230x bx ++=___________.【解析】设原方程的另一个根为1x ,则由一元二次方程根与系数的关系12c x x a=得13x ⨯=∴13x ===3. (2019·眉山) 设a 、b 是方程x 2+x -2019=0的两个实数,根则(a -1)(b -1)的值为 . 【答案】-2017【解析】解:根据题意,得:a+b=-1,ab=-2019,∴(a-1)(b-1)=ab-(a+b )+1=-2019+1+1=-2017,故答案为:-2017.4. (2019·攀枝花)已知x 1、x 2是方程x 2-2x -1=0的两根,则2212x x += 。

中考数学一轮复习训练:一元二次方程的解法及应用

中考数学一轮复习训练:一元二次方程的解法及应用

一元二次方程的解法及应用基础练1. (2020天府新区一诊)下列是一元二次方程的是( ) A. x 2-2x -3=0 B. x -2y +1=0 C. 2x +3=0D. x 2+2y -10=02. 四位同学在解方程x 2-23x -1=0,都用了配方法进行变形,下面给出了四个人的书写过程:同学甲:“配方,得(x -13)2=89”同学乙:“配方,得(x -13)2=-89”同学丙:“配方,得(x -13)2=109”同学丁:“配方,得(x -23)2=0”其中变形正确的是( ) A. 同学甲 B. 同学乙 C. 同学丙D. 同学丁3. (2020凉山州)一元二次方程x 2=2x 的根为( ) A. x =0 B. x =2C. x =0或x =2D. x =0或x =-24. (2020甘肃省卷)已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值为( ) A. -1或2 B. -1 C. 2D. 05. (2020安徽)下列方程中,有两个相等实数根的是( ) A. x 2+1=2x B. x 2+1=0 C. x 2-2x =3D. x 2-2x =06. (2020武侯区一诊)若关于x 的一元二次方程(k +2)x 2-2x -1=0有实数根,则实数k 的取值范围是( ) A. k >3B. k ≥-3C. k >-3且k ≠-2D. k ≥-3且k ≠-27. 在解决实际问题:“为发展教育事业,我区加强了对教育经费的投入,前年投入3000万元,预计今年投入5000万元.设教育经费的年平均增长率为x ”中,有四位同学有如下列式:同学甲:“列方程,得3000(1+x )=5000” 同学乙:“列方程,得3000(1+x %)2=5000” 同学丙:“列方程,得3000(1+x )2=5000”同学丁:“列方程,得3000+3000(1+x )+3000(1+x )2=5000” 其中所列的方程正确的是( ) A. 同学甲 B. 同学乙 C. 同学丙D. 同学丁8. (2020攀枝花)若关于x 的方程x 2-x -m =0没有实数根,则m 的值可以为( ) A. -1 B. -14C. 0D. 19. (2020遵义)如图,把一块长为40 cm ,宽为30 cm 的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒,若该无盖纸盒的底面积为600 cm 2,设剪去小正方形的边长为x cm ,则可列方程为( )第9题图A. (30-2x )(40-x )=600B. (30-x )(40-x )=600C. (30-x )(40-2x )=600D. (30-2x )(40-2x )=60010. (2020丹东)关于x 的方程(m +1)x 2+3x -1=0有两个实数根,则m 的取值范围是________. 11. (2020成华区一诊)若方程x 2-2x -4=0的两个实数根为α,β,则α2+β2的值为________.12. (2020成都黑白卷)已知x 1,x 2是关于x 的一元二次方程x 2-4x +8-t =0的两个实数根,且(x 1-2)(x 2-2)=-1,则t =________.13. (2020宜宾)已知一元二次方程x 2+2x -8=0的两根为x 1、x 2,则x 2x 1+2x 1x 2+x 1x 2=________.14. (2020金牛区一诊)若关于x 的一元二次方程(a -2)x 2+(2a -3)x +a +1=0有两个不相等的实数根,则a 的取值范围是________.15. 某市组织一次篮球比赛,赛制为单循环形式(每两个队之间比赛一场),计划一共安排21场比赛,设邀请x 个学校参加比赛,列方程为______.16.解方程:4(x-1)2-9=0.17. (2020高新区一诊)解方程:x2-2x-3=0.18. (2020无锡)解方程:x2+x-1=0.19. (2020龙泉驿区三诊)关于x的方程x2-2x+2m-1=0有实数根,且m为正整数,求m的值及此时方程的根.巩固练20.(2020天门)关于x的方程x2+2(m-1)x+m2-m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A. -1B. -4C. -4或1D. -1或421.(2020德州)菱形的一条对角线长为8,其边长是方程x2-9x+20=0的一个根,则该菱形的周长为________.22. (2020乐山)已知y ≠0,且x 2-3xy -4y 2=0.则xy 的值是________.23. (2020大庆)已知关于x 的一元二次方程x 2-2x -a =0,有下列结论: ①当a >-1时,方程有两个不相等的实根; ②当a >0时,方程不可能有两个异号的实根; ③当a >-1时,方程的两个实根不可能都小于1; ④当a >3时,方程的两个实根一个大于3,另一个小于3. 以上4个结论中,正确的个数为________.24. (2019东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?25. (2020上海)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等,求该商店去年8、9月份营业额的月增长率.提升练26.(2020河南)定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则方程1☆x=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根27.(2020荆州)阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x的值.【问题】解方程:x2+2x+4x2+2x-5=0.【提示】可以用“换元法”解方程.解:设x2+2x=t(t≥0),则有x2+2x=t2原方程可化为:t2+4t-5=0【续解】参考答案1. A 【解析】A .是一元二次方程,故此选项正确;B .是二元一次方程,故此选项错误;C .是一元一次方程,故此选项错误;D .是二元二次方程,故此选项错误.2. C3. C 【解析】∵x 2-2x =0,∴x (x -2)=0,则x =0或x -2=0,解得x =0或x =2.4. B5. A 【解析】逐项分析如下:6. D 【解析】由题意得,4+4(k +2)≥0,解得k ≥-3,∵k +2≠0,∴k ≥-3且k ≠-2.7. C8. A 【解析】∵关于x 的方程x 2-x -m =0没有实数根,∴b 2-4ac =(-1)2-4×1×(-m )=1+4m <0,解得m <-14.9. D 【解析】由题意得底面矩形的长为(40-2x )cm ,宽为(30-2x )cm ,由矩形面积公式得,(30-2x )(40-2x )=600,故选D .10. m ≥-134且m ≠-1 【解析】∵此方程有两个实数根,∴是一元二次方程,∴32-4(m +1)(-1)≥0,且m +1≠0,解得m ≥-134且m ≠-1.11. 12 【解析】∵方程x 2-2x -4=0的两个实数根为α,β,∴由根与系数的关系得:α+β=2,αβ=-4,∴α2+β2=(α+β)2-2αβ=22-2×(-4)=12.12. 5 【解析】由题意可得x 1+x 2=4,x 1x 2=8-t ,∵(x 1-2)(x 2-2)=-1,∴(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=-1,∴8-t -2×4+4=-1.解得t =5.13. -372 【解析】∵x 2+2x -8=0,∴x 1+x 2=-2,x 1x 2=-8,∴x 2x 1+2x 1x 2+x 1x 2=x 21+x 22x 1x 2+2x 1x 2=(x 1+x 2)2x 1x 2-2+2x 1x 2=-372.14. a <178且a ≠2 【解析】∵关于x 的一元二次方程(a -2)x 2+(2a -3)x +a +1=0有两个不相等的实数根,∴a -2≠0且Δ=(2a -3)2-4(a -2)(a +1)>0,解得a <178且a ≠2.15. 12x (x -1)=2116. 解:由原方程,得(x -1)2=94,直接开平方,得x -1=±32,解得x 1=52,x 2=-12.17. 解:∵x 2-2x -3=0, ∴(x -3)(x +1)=0, 则x -3=0或x +1=0, 解得x =3或x =-1.18. 解:∵a =1,b =1,c =-1, ∴b 2-4ac =12-4×1×(-1)=5>0, ∴x =-b ±b 2-4ac 2a =-1±52,∴x 1=-1+52,x 2=-1-52.19. 解:∵关于x 的方程x 2-2x +2m -1=0有实数根, ∴b 2-4ac =4-4(2m -1)≥0, 解得:m ≤1, ∵m 为正整数, ∴m =1,∴原方程可化为x 2-2x +1=0, 则(x -1)2=0, 解得:x 1=x 2=1.20. A 【解析】∵方程x 2+2(m -1)x +m 2-m =0有两个实数根α,β,∴α+β=-2(m -1)1=-2m +2,αβ=m 2-m 1=m 2-m ,∵α2+β2=(α+β)2-2αβ,α2+β2=12,∴(-2m +2)2-2(m 2-m )=12,整理得,m 2-3m -4=0,解得m 1=-1,m 2=4,若使x 2+2(m -1)x +m 2-m =0有实数根,则[2(m -1)]2-4(m 2-m )≥0,解得,m ≤1,所以m =-1.21. 20 【解析】如解图, ∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,∵x 2-9x +20=0,因式分解得:(x -4)(x -5)=0,解得:x =4或 x =5,分两种情况:当AB =AD =4时,4+4=8,不能构成三角形;当AB =AD =5时,5+5>8,可构成三角形;∴菱形ABCD 的周长为4AB =20.第21题解图22. 4或-1 【解析】∵y ≠0,∴将x 2-3xy -4y 2=0两边同除以y 2得:(x y )2-3x y -4=0,令t =xy ,则t 2-3t -4=0,因式分解得:(t -4)(t +1)=0,解得t =4或t =-1,即xy的值是4或-1.23. 3 【解析】如果方程有两个不相等的实数根,则(-2)2-4×(-a )>0,解得a >-1,故①正确;如果方程有两个异号的实数根,则x 1x 2=-a <0,解得a >0,∴当a >0时, 方程有两个异号的实数根,故②错误;由题意得,x 1+x 2=2,对称轴为直线x =x 1+x 22=1,∴当a >-1时,方程有两个不相等的实数根,两个实数根不可能都小于1,故③正确;把原方程变形为x 2-2x +1=a +1 ,∴(x -1)2=a +1,解得x =1±a +1,∵a >3,∴a +1>2,∴当a >3时, 方程有两个实数根,一个大于3,另一个小于3,故④正确,综上所述,正确的结论有3个.24. 解:设降价后的销售单价为x 元,根据题意得: (x -100)[300+5(200-x )]=32000. 整理得:x 2-360x +32400=0. 解得x 1=x 2=180. x =180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元. 25. 解:(1)∵第七天的营业额是前六天总营业额的12%, ∴这七天的总营业额为450+450×12%=504(万元). 答:该商店去年“十一黄金周”七天的总营业额为504万元; (2)∵“十一黄金周”这七天的总营业额与9月份的营业额相等, ∴9月份的营业额为504万元.设该商店去年8,9月份营业额的月增长率为x ,根据题意得350(1+x )2=504, 解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去),答:该商店去年8,9月份营业额的月增长率为20%.26. A【解析】根据新定义的运算可知1☆x=0,即x2-x-1=0,∴b2-4ac=(-1)2-4×1×(-1)=5>0,∴该方程有两个不相等的实数根.27.解:(t+2)2=9,∴t+2=±3,解得t1=1,t2=-5,(不合题意,舍去),∴t=x2+2x=1,∴x2+2x=1,∴(x+1)2=2,∴x1=-1+2,x2=-1- 2.。

中考数学专题练习 一元二次方程(含解析)-人教版初中九年级全册数学试题

中考数学专题练习 一元二次方程(含解析)-人教版初中九年级全册数学试题

一元二次方程一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m时为一元一次方程;当m时为一元二次方程.3.若(a+b)(a+b+2)=8,则a+b=.4.x2+3x+=(x+)2;x2﹣+2=(x)2.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是cm2.6.若方程x2+px+q=0的两个根是﹣2和3,则p=,q=.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10=.9.当t时,关于x的方程x2﹣3x+t=0可用公式法求解.10.若实数a,b满足a2+ab﹣b2=0,则=.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D.+﹣2=012.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣114.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠015.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤016.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?一元二次方程参考答案与试题解析一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:x2﹣8x﹣4=0 ,二次项系数为: 1 ,一次项系数为:﹣8 ,常数项为:﹣4 .【考点】一元二次方程的一般形式.【分析】去括号、移项变形为一元二次方程的一般形式ax2+bx+c=0,a叫二次项系数,b叫一次项系数,c叫常数项.【解答】解:去括号得,x﹣3+3x2﹣9x=2x2+1,移项得,x2﹣8x﹣4=0,所以一般形式为x2﹣8x﹣4=0;二次项系数为1;一次项系数为﹣8;常数项为﹣4.故答案为x2﹣8x﹣4=0,1,﹣8,﹣4.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m =1 时为一元一次方程;当m≠1 时为一元二次方程.【考点】一元二次方程的定义;一元一次方程的定义.【专题】方程思想.【分析】根据一元二次方程和一元一次方程的定义,含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程;含有一个未知数,并且未知数的最高次数是1的整式方程是一元一次方程.可以确定m的取值.【解答】解:要使方程是一元一次方程,则m﹣1=0,∴m=1.要使方程是一元二次方程,则m﹣1≠0,∴m≠1.故答案分别是:m=1;m≠1.【点评】本题考查的是一元一次方程和一元二次方程的定义,根据定义确定m的取值.3.若(a+b)(a+b+2)=8,则a+b= 2或﹣4 .【考点】换元法解一元二次方程.【专题】换元法.【分析】把原方程中的(a+b)代换成y,即可得到关于y的方程y2+2y﹣8=0,求得y的值即为a+b 的值.【解答】解:把原方程中的a+b换成y,所以原方程变化为:y2+2y﹣8=0,解得y=2或﹣4,∴a+b=2或﹣4.【点评】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.4.x2+3x+=(x+)2;x2﹣2x +2=(x ﹣)2.【考点】完全平方式.【专题】计算题.【分析】(1)根据首项是x的平方及中间项3x,利用中间项等于x与乘积的2倍即可解答.(2)根据首项与尾项分别是x与的平方,那么中间项等于x与乘积的2倍即可解答.【解答】解:(1)∵首项是x的平方及中间项3x,∴3x=2×x×,x2+3x+=,∴应填,.(2)首项与尾项分别是x与的平方,∴2×x×即为中间项.∴x2﹣2x+2=,故应填:2,﹣.故答案为:,,2,﹣.【点评】本题考查了完全平方公式,属于基础题,关键要熟记完全平方公式.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是96 cm2.【考点】一元二次方程的应用;勾股定理的应用.【专题】几何图形问题.【分析】根据直角三角形的两直角边是3:4,设出两直角边的长分别是3x、4x,再根据勾股定理列方程求解即可.【解答】解:设两直角边分别是3x、4x,根据勾股定理得:(3x)2+(4x)2=400,解得:x=4,(负值舍去)则:3x=12cm,4x=16cm.故这个三角形的面积是×12×16=96cm2.【点评】此题主要根据勾股定理来确定等量关系,也考查了三角形的面积公式.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ﹣1 ,q= ﹣6 .【考点】根与系数的关系.【分析】根据根与系数的关系,分别求出p、q的值.【解答】解:由题意知,x1+x2=﹣p,即﹣2+3=﹣p,∴p=﹣1;又x1x2=q,即﹣2×3=q,∴q=﹣6.【点评】已知了一元二次方程的两根求系数,可利用一元二次方程根与系数的关系:x1+x2=,x1x2=解答.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是1或﹣.【考点】解一元二次方程﹣因式分解法.【分析】根据题意先列出方程,然后利用因式分解法解方程求得x的值.【解答】解:∵代数式4x2﹣2x﹣5与2x2+1的值互为相反数,∴4x2﹣2x﹣5+2x2+1=0,即(x﹣1)(3x+2)=0,解得x=1或﹣.【点评】本题是基础题,考查了一元二次方程的解法.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= 0 .【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.9.当t≤时,关于x的方程x2﹣3x+t=0可用公式法求解.【考点】根的判别式.【专题】计算题.【分析】关于x的方程x2﹣3x+t=0可用公式法求解,则△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若实数a,b满足a2+ab﹣b2=0,则=.【考点】解一元二次方程﹣公式法;一元二次方程的解.【专题】计算题.【分析】把b看成常数,解关于a的一元二次方程,然后求出的值.【解答】解:a2+ab﹣b2=0△=b2+4b2=5b2.a== b∴=.故答案是:【点评】本题考查的是用一元二次方程的求根公式解方程,把b看成是常数,用求根公式解关于a 的一元二次方程,然后求出的值.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D.+﹣2=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)方程是整式方程;(2)未知数的最高次数是2;(3)只含有一个未知数.由这三个条件得到相应的关系式,再求解即可.【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.【点评】判断一个方程是否是一元二次方程,首先判断是否是整式方程,若是整式方程,再进行化简,化简以后只含有一个未知数,并且未知数的最高次数是2,这样的方程就是一元二次方程.12.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±【考点】解一元二次方程﹣直接开平方法.【分析】两个数互为倒数,即两数的积是1,据此即可得到一个关于x的方程,从而求解.【解答】解:根据2x+1与2x﹣1互为倒数,列方程得(2x+1)(2x﹣1)=1;整理得4x2﹣1=1,移项得4x2=2,系数化为1得x2=;开方得x=±.故选C.【点评】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.本题开方后要注意分母有理化.13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣1【考点】一元二次方程的解.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;将m代入原方程即可求得m+n的值.【解答】解:把x=m代入方程x2+nx﹣m=0得m2+mn﹣m=0,又∵m≠0,方程两边同除以m,可得m+n=1;故本题选A.【点评】此题中应特别注意:方程两边同除以字母系数时,应强调字母系数不得为零.14.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值X围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.15.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程﹣直接开平方法.【分析】根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.【点评】此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.16.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】(1)运用提取公因式法分解因式求解;(2)运用公式法分解因式求解;(3)运用平分差公式分解因式求解;(4)运用公式法求解.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x1=﹣4,x2=1.(2)(x+1)2=4x,x2+2x+1﹣4x=0,(x﹣1)2=0,∴x1=x2=1.(3)(x+3)2﹣(1﹣2x)2=0,(x+3+1﹣2x)(x+3﹣1+2x)=0,(4﹣x)(3x+2)=0,∴x1=4,x2=﹣.(4) 2x2﹣10x=3,2x2﹣10x﹣3=0,x=,x1=,x2=.【点评】此题考查了选择适当的方法解一元二次方程的能力,属基础题.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【考点】一元二次方程的解;解一元二次方程﹣因式分解法.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据△>0恒成立即可证明.(2)由方程有两个正根,根据根与系数的关系即可求出a的取值.(3)由方程有两根相异,并且负根的绝对值较大,根据根与系数关系解答.(4)令x=0代入方程求解即可.【解答】解:(1)方程x2﹣2ax+a=4,可化为:x2﹣2ax+a﹣4=0,∴△=4a2﹣4(a﹣4)=4+15>0恒成立,故方程必有相异实根.(2)若方程有两个正根x1,x2,则x1+x2=2a>0,x1x2=a﹣4>0,解得:a>4.(3)若方程有两根相异,并且负根的绝对值较大,则可得:x1+x2=2a<0,x1x2=a﹣4<0,解得:a <0.(4)若方程有一根为零,把x=0代入方程x2﹣2ax+a=4,得:a=4.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。

一元二次方程解法例题

一元二次方程解法例题

一元二次方程解法例题一、配方法例题1. 例题:解方程x^2+6x + 4 = 0。

- 首先呢,我们要把这个方程变成完全平方式的样子。

对于x^2+6x这部分,我们知道完全平方公式(a + b)^2=a^2+2ab + b^2,这里a=x,2ab = 6x,那b就是3。

- 我们就在方程两边加上3^2,同时为了保持等式成立,也要在右边减去3^2。

方程就变成了x^2+6x+3^2+4 - 3^2=0。

- 也就是(x + 3)^2+4 - 9 = 0,进一步得到(x + 3)^2=5。

- 然后呢,开平方可得x+3=±√(5)。

- 最后解得x=-3±√(5)。

2. 再看一个例子,解方程2x^2-5x+1 = 0。

- 先把二次项系数化为1,方程两边同时除以2,得到x^2-(5)/(2)x+(1)/(2)=0。

- 对于x^2-(5)/(2)x这部分,按照完全平方公式,2ab =-(5)/(2)x,a = x,所以b=-(5)/(4)。

- 方程两边加上(-(5)/(4))^2,同时右边也要减去(-(5)/(4))^2,就变成x^2-(5)/(2)x+(-(5)/(4))^2+(1)/(2)-(-(5)/(4))^2=0。

- 也就是(x-(5)/(4))^2+(1)/(2)-(25)/(16)=0,化简得到(x-(5)/(4))^2=(25)/(16)-(8)/(16)=(17)/(16)。

- 开平方得x-(5)/(4)=±(√(17))/(4)。

- 解得x=(5±√(17))/(4)。

二、公式法例题1. 例题:解方程x^2-3x - 4 = 0。

- 对于一元二次方程ax^2+bx + c = 0(这里a = 1,b=-3,c = - 4),有个求根公式x=frac{-b±√(b^2)-4ac}{2a}。

- 先算判别式Δ=b^2-4ac,把a = 1,b=-3,c = - 4代入,得到Δ=(-3)^2-4×1×(-4)=9 + 16=25。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法
一、选择题
1.方程(x﹣2)(x+3)=0的解是()
A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣3
2.方程x2﹣5x=0的解是()
A.x1=0,x2=﹣5 B.x=5 C.x1=0,x2=5 D.x=0
3.下列计算正确的是()
A.a4•a3=a12B.C.(x2+1)0=0 D.若x2=x,则x=1
4.一元二次方程x(x﹣2)=2﹣x的根是()
A.﹣1 B.2 C.1和2 D.﹣1和2
5.一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()
A.11 B.11或13
C.13 D.以上选项都不正确
6.方程x2﹣2x=0的解为()
A.x1=1,x2=2 B.x1=0,x2=1 C.x1=0,x2=2 D.x1=,x2=2
7.一元二次方程x2﹣2x﹣3=0的解是()
A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=﹣1,x2=﹣3 D.x1=1,x2=3
8.方程x(x﹣3)+x﹣3=0的解是()
A.3 B.﹣3,1 C.﹣1 D.3,﹣1
9.三角形的两边长分别是3和6,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.11 B.13 C.11或13 D.11和13
10.一元二次方程x2﹣x﹣2=0的解是()
A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2
二、填空题
11.一元二次方程2x2﹣3x+1=0的解为.
12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b= .
13.将x2+6x+3配方成(x+m)2+n的形式,则m= .
14.一元二次方程x(x﹣6)=0的两个实数根中较大的根是.
15.方程x2﹣2x=0的解为.
16.方程x2﹣2x﹣3=0的解是.
17.一元二次方程x2﹣3x=0的根是.
18.填空:x2﹣4x+3=(x﹣)2﹣1.
19.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为.
20.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于.
21.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= .
22.现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.
三、解答题
23.解方程:x2﹣10x+9=0.
24.阅读下列材料,并用相关的思想方法解决问题.
计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).
令++=t,则
原式=(1﹣t)(t+)﹣(1﹣t﹣)t
=t+﹣t2﹣t﹣t+t2
=
问题:
(1)计算
(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);
(2)解方程(x2+5x+1)(x2+5x+7)=7.
25.选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫配方.例如
①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2;
②选取二次项和常数项配方:,或
③选取一次项和常数项配方:
根据上述材料,解决下面问题:
(1)写出x2﹣8x+4的两种不同形式的配方;
(2)已知x2+y2+xy﹣3y+3=0,求x y的值.
26.(1)解方程:x2﹣5x﹣6=0;
(2)解不等式组:.
27.解方程:x2+2x﹣3=0.
28.解方程:3x(x﹣2)=2(2﹣x)
29.阅读材料:用配方法求最值.
已知x,y为非负实数,
∵x+y﹣2≥0
∴x+y≥2,当且仅当“x=y”时,等号成立.
示例:当x>0时,求y=x++4的最小值.
解: +4=6,当x=,即x=1时,y的最小值为6.
(1)尝试:当x>0时,求y=的最小值.
(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养、维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元?
参考答案
一、选择题
1.D;2.C;3.B;4.D;5.C;6.C;7.A;8.D;9.B;10.D;
二、填空题
11.x1=,x2=1;12.﹣或1;13.3;14.6;15.x1=0,x2=2;16.x1=3,x2=﹣1;17.x1=0,x2=3;18.2;19.15;20.4;21.3或﹣3;22.﹣1或4。

相关文档
最新文档