平面直角坐标系水平测试题
八年级数学上册第六章平面直角坐标系测试题试题
第六章平面直角坐标系测试题班级_________ 姓名__________一、选择题〔每一小题3分〕1、以下各点中,在第二象限的点是〔〕A.〔2,3〕 B.(2,-3) C.(-2,3) D.(-2, -3)2、坐标平面内点M(a,b)在第三象限,那么点N(b, -a)在〔〕A.第一象限 B.第二象限 C.第三象限 D.第四象限3、点P位于x轴下方,y轴左侧,间隔 x轴4个单位长度,间隔 y轴2个单位长度,那么点P的坐标是〔〕A.〔4,2〕 B.〔-2,-4〕 C.〔-4,-2〕 D.〔2,4〕4、点E〔a,b〕到x轴的间隔是4,到y轴间隔是3,那么有〔〕A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±35、假设点P〔x,y〕的坐标满足xy=0(x≠y),那么点P在〔〕A.原点上 B.x轴上 C.y轴上 D.x轴上或者y轴上6、点P〔a,b〕,ab>0,a+b <0,那么点P在〔〕A.第一象限 B.第二象限 C.第三象限 D.第四象限7、点P〔m+3, m+1〕在直角坐标系的x轴上,那么点P坐标为〔〕A.〔0,-2〕 B.〔 2,0〕 C.〔 4,0〕 D.〔0,-4〕8、平面直角坐标中,和有序实数对一一对应的是〔〕A.x轴上的所有点 B.y轴上的所有点C.平面直角坐标系内的所有点 D. x轴和y轴上的所有点9、假如点M到x轴和y轴的间隔相等,那么点M横、纵坐标的关系是〔〕A.相等 B.互为相反数 C.互为倒数 D.相等或者互为相反数10、点P〔x, x〕,那么点P一定〔〕 A.在第一象限 B.在第一或者第四象限 C.在x轴上方 D.不在x轴下方11、点A〔2,-3〕,线段AB与坐标轴没有交点,那么点B的坐标可能是〔〕A.〔-1,-2〕 B.〔 3,-2〕 C.〔1,2〕 D.〔-2,3〕12、点E与点F的纵坐标一样,横坐标不同,那么直线EF与y轴的关系是〔〕A.相交 B.垂直 C.平行 D.以上都不正确13、将某图形的横坐标都减去2,纵坐标不变,那么该图形〔〕A.向右平移2个单位 B.向左平移2 个单位C.向上平移2 个单位 D.向下平移2 个单位14、点A〔0,-3〕,以A为圆心,5为半径画圆交y轴负半轴的坐标是〔〕A.〔8,0〕 B.〔 0,-8〕 C.〔0,8〕 D.〔-8,0〕15、一个点的横、纵坐标都是整数,并且他们的乘积为6,满足条件的点一共有〔〕A.2 个 B.4 个 C.8 个 D.10 个二、填空题〔每空2分〕1、在电影票上,假如将“8排4号〞记作〔8,4〕,那么〔10,15〕表示_______________。
平面直角坐标系测试题
平面直角坐标系测试题(一)姓名:一、精心选一选(每小题3分,共30分)1.在平面直角坐标系中,点P的坐标为(46),,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限2.点A(m+3,m+1)在x轴上,则A点的坐标为()A (0,-2)B、(2,0)C、(4,0)D、(0,-4)3.点P在第二象限内,点P到x轴的距离是2,到y轴的距离是3,那么点P的坐标为( ).A.(-2,3)B.(-3,-2)C.(-3,2)D.(3,-2)4、已知点P(0,a)在y轴的负半轴上,则点Q(-2a-1,-a+1)在第象限.5、点A(-1,2)与B(3,5)的距离是6.在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是().A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A´7.一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1),(– 1,2),(3,–1),则第四个顶点的坐标为().A.(2,2 B.(3,2) C.(3,3) D.(2,3)8.已知点A的坐标是(a,b),若a+b<0、ab>0.则点A在( ).A.第一象限B.第二象限C.第三象限D.第四象限9. 已知M(1,-2),N(-3,-2)则直线MN与x轴,y轴的位置关系分别为()A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直10.如图1,若车的位置是(4,2),那么兵的位置可以记作().A.(1,5)B.(4,4)C.(3,4)D.(0,5)10. 下列各点中,在第二象限的点是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)11、将点A(-4,2)向上平移3个单位长度得到的点B的坐标是()A. (-1,2)B. (-1,5)C. (-4,-1)D. (-4,5)12、如果点M(a-1,a+1)在x轴上,则a的值为()A. a=1B. a=-1C. a>0D. a的值不能确定13 点P的横坐标是-3,且到x轴的距离为5,则P点的坐标是()A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)14若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、细心填一填1.点A(3,-4)到y轴的距离为___ _ ___,到x轴的距离为__ ___.2. 若点P(2,k -1)在第一象限,则k 的取值范围是____ ___.3. 已知AB∥x 轴,点A 的坐标为(3,2),并且AB =5,则点B 的坐标为 .4. 第二象限内的点()P x y ,满足||9x =,24y =,则点P 的坐标是 .5. 将点P (-3,y )向下平移3个单位,向右平移2个单位后得到点Q (x ,-1),则xy=_____ ___.直线a 平行于x 轴,且过点(-2,3)和(5,y ),则y=6. 若点M (a-2,2a+3)是x 轴上的点,则a 的值是7. 已知点P 的坐标(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是8. 已知点Q (-8,6),它到x 轴的距离是 ,它到y 轴的距离是9. 若P (x ,y )是第四象限内的点,且2,3x y ==,则点P 的坐标是一、选择:1.某同学的座位号为(4,2),那么该同学的位置是( )(A )第2排第4列 (B )第4排第2列 (C )第2列第4排 (D )不好确定2.下列各点中,在第二象限的点是( )(A )(2,3) (B )(2,-3) (C )(-2,-3) (D )(-2,3)3.若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( )(A )(3,0) (B )(0,3) (C )(3,0)或(-3,0) (D )(0,3)或(0,-3)4.点M (1m +,3m +)在x 轴上,则点M 坐标为( ).(A )(0,-4) (B )(4,0) (C )(-2,0) (D )(0,-2)5.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )(A )(3,2) (B )(3,2--) (C )(2,3-) (D )(2,3-)6.如果点P (5,y )在第四象限,则y 的取值范围是( )(A )0y < (B )0y > (C )0y ≤ (D )0y ≥7.如图:正方形ABCD 中点A 和点C 的坐标分别为)3,2(-和)2,3(-,则点B 和点D 的坐标分别为( ). (A ))2,2(和)3,3( (B ))2,2(--和)3,3( (C ))2,2(--和)3,3(-- (D ))2,2(和)3,3(--8.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)(-1,2),(3,-1)•,则第四个顶点的坐标为( ) (A )(2,2) (B )(3,2) (C )(3,3) (D )(2,3)9.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度, 得到线段A 1B 1,则A 1、B 1的坐标分别为( )(A )A 1(0,5-),B 1(3,8--) (B )A 1(7,3), B 1(0,5)(C )A 1(4,5-) B 1(-8,1) (D )A 1(4,3) B 1(1,0)二、细心填一填:12. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第_______象限.13. 若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________15. 已知点P (x ,y )在第四象限,且|x |=3,|y |=5,则点P 的坐标是______.17.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标________.18.已知点P 的坐标(2a -,36a +),且点P 到两坐标轴的距离相等,则点P 的坐标是 .。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
最新人教版七年级数学下册第十章数据的收集、整理与描述题测试题及答案(2)
人教版七年级下册第7章平面直角坐标系水平测试卷第10章数据的收集、整理与描述期末复习测试卷一、选择题(每小题3分,共30分)1.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图所示,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是()A.100人B.200人C.260人D.400人2.宾馆有100间相同的客房,经过一段时间的经营,发现客房定价与客房的入住率之间有下表所示的关系,按照这个关系,要使客房的收入最高,每间客房的定价应为()3.下列调查中,最适合采用抽样调查(抽查)的是()A.调查“神州十一号飞船”各部分零件情况B.调查旅客随身携带的违禁物品C.调查全国观众对湖南卫视综艺节目“声临其境”的满意情况D.调查某中学九年级某班学生数学暑假作业检测成绩4.下列调查中,调查方式选择不合理的是A.调查我国中小学生观看电影《厉害了,我的国》情况,采用抽样调查的方式B.调查全市居民对“老年餐车进社区”活动的满意程度,采用抽样调查的方式C.调查“神州十一号”运载火箭发射前零部件质量状况,采用全面调查普查的方式D.调查市场上一批LED节能灯的使用寿命,采用全面调查普查的方式5.为了了解某校2000名学生的体重情况,从中抽取了150名学生的体重,就这个问题来说,下面说法正确的是()A.2000名学生的体重是总体B.2000名学生是总体C.每个学生是个体D.150名学生是所抽取的一个样本6.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下表:和最合适...的是()A.20双B.30双C.50双D.80双7.井冈山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志。
从而估计该地区有穿山甲()A.400只B.600只C.800只D.1000只8.一个容量为40的样本最大值为35,最小值为12,取组距为4 ,则可以分为()A.4组B.5组C.6组D.7组9.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图所示的两幅不完整的统计图,根据图中信息,以下说法不正确的是()A.样本容量是200 B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的大约有900人10.如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A.6月1日B.6月2日C.6月3日D.6月5日二、选择题(每小题3分,共30分)11.一组数据分为5组,第一组的频率为0.15,第二组的频率为0.21,第三组的频率为0.29,第四组的频率为0.15,则第五组的频率是______.12.小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A型血的有20人,则O型血的有____人.13.一次考试考生有2万人,从中抽取500名考生的成绩进行分析,这个问题的样本是。
平面直角坐标系经典习题(难含答案
欢迎阅读第六章平面直角坐标系水平测试题(一)一、(本大题共10小题,每题3分,共30分.在每题所给出的四个选项中,只有一项为哪一项切合题意的.把所选项前的字母代号填在题后的括号内.相信你必定会选对!)1.某同学的座位号为(2,4),那么该同学的地点是()(A)第2排第4列(B)第4排第2列(C)第2列第4排(D)不好确立2.以下各点中,在第二象限的点是()(A)(2,3)(B)(2,-3)(C)(-2,-3)(D)(-2,3)3.若x轴上的点P到y轴的距离为3,则点P的坐标为()(A)(3,0)(B)(0,3)(C)(3,0)或(-3,0)(D)(0,3)或(0,-3)4.点M(m1,m3)在x轴上,则点M坐标为().(A)(0,-4)(B)(4,0)(C)(-2,0)(D)(0,-2)5.一个长方形在平面直角坐标系中三个极点的坐标为(-1,-1),(-1,2),(3,-1)?,则第四个顶点的坐标为()(A)(2,2)(B)(3,2)(C)(3,3)(D)(2,3)6.线段AB两头点坐标分别为A(1,4),B(4,1),现将它向左平移4个单位长度,获得线段11,则A1、B1的坐标分别为()AB(A)A1(5,0),B1(8,3)(B)A1(3,7),B1(0,5)(C)A(5,4)B(-8,1)(D)A(3,4)B(0,1)11117、点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)8、点P(x,y)位于x轴下方,y轴左边,且x=2,y=4,点P的坐标是()A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)9、点P(0,-3),以P为圆心,5为半径画圆交y轴负半轴的坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)10、将某图形的横坐标都减去2,纵坐标保持不变,则该图形()A.向右平移2个单位B.向左平移2个单位C.向上平移2个单位D.向下平移2个单位11、点E(a,b)到x轴的距离是4,到y轴距离是3,则有()A.a=3,b=4B.a=±3,b=±4C.a=4,b=3D.a=±4,b=±312、假如点M到x轴和y轴的距离相等,则点M横、纵坐标的关系是()A.相等B.互为相反数C.互为倒数D.相等或互为相反数13、已知 P(0,a)在y 轴的负半轴上,则 Q( a 21,a1)在()A 、y轴的左边,x 轴的上方B、y轴的右侧,x 轴的上方14.七年级(2)班教室里的座位共有 7排8列,此中小明的座位在第 3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作 __________. 15.若点P (a , b )在第二象限,则点Q ( ab,a b )在第_______象限.若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标能够是________.17.小华将直角坐标系中的猫的图案向右平移了 3个单位长度,平移前猫眼的坐标为(-4,3),(- 2,3),则挪动后猫眼的坐标为_________.如图,中国象棋中的“象”,在图中的坐标为(1,0),?若“象”再走一步,试写出下一步它可能走到的地点的坐标________. 三、仔细答一答:如图,这是某市部分简图,请成立适合的平面直角坐标系,分别写出各地的坐标.适合成立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段按序连结各点。
人教版七年级数学下册第七章《平面直角坐标系》测试卷(一)(附答卷)
人教版七年级数学下册第七章《平面直角坐标系》测试卷1(附答卷)时间:120分钟满分:120分一、选择题(每小题3分,共30分1.如果(6,3)表示电影票上“6排3号”那么3排6号就表示为 ( )A.(6,3)B.(3,6)C.(-3,-6)D.(-6,-3)2.若点A的坐标为(3,-2),则点A所在的象限是 ( )A第一象限B.第二象限C.第三象限D.第四象限,合3.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)4.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y= ( )A.-1B.1C.5D.-55.若点P(a,b)在第三象限,则点Q(a-3,-b)一定在 ( )A.第一象限B.第二象限C.第三象限D第四象限6.点A的位置如图所示,则关于点A的位置下列说法中正确的是 ( )A.距点05km处B.北偏东60°方向上5km处C.在点O北偏东30°方向上5km处D.在点O北偏东60°方向上5km处7.已知点P在x轴上,且点P到y轴的距离为1,则点P的坐标为 ( )A.(0,1)B.(1,0)C.(0,1)或(0,-1)D.(1,0)或(-1,0)8.将点P(m+2,2m+1)向左平移1个单位长度到P′,且P′在y轴上,那么P′的坐标是 ( )B.(0,-2)A.(0,-1)C.(0.-D.(1,1)3)9.如图,长方形OABC的顶点O为坐标原点,点A在x轴上,点B的坐标为(2,1).如果将长方形OABC平移后,点B与点O重合,得长方形O1A1OC1,那么点O1的坐标为 ( )A.(2,1)B.(-2,1)C.(-2,-1)D.(2,-1)10.如图,点A,B的坐标分别为(-5,6),(3,2),则三角形ABO的面积为 ( )A.12B.14C.16D.18二、填空题(每小题3分,共24分)11.点M(2,-1)到x轴的距离是________.12.点P到x轴的距离是2,到y轴的距离是3,且点P在第三象限,则点P的坐标是___________.13.平面直角坐标系中,点A(-3,2),C(x,y),若AC∥x轴,则点C的纵坐标为 _ __________.14.如图,在平面直角坐标系xOy中,点A(a2-4,3)在y轴上,点B在x轴上,且横坐标为a,则点B的坐标为___________________.15.如图,已知棋子“车”的坐标为(3,2),棋子“炮”的坐标为(-2,1),则棋子“马”的坐标为___________.16.如图,点A,B的坐标分别为(1,2),(2,0),将△AOB沿x轴向右平移,得到△CDE,若DB=1,则点C的坐标为___________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则点A的坐标为___________.18.如图,动点P从坐标原点(0,0)出发,以每秒一个单位长度的速度按图中箭头所示方向运动,第1秒运动到点(1,0),第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2068秒点P所在位置的坐标是________.三、解答题(共66分)19.(6分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公室的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公室和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.20.(8分)已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.21.(8分)点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点” (1)判断点A (-2,2),B (21,-25),C (-1,5)是不是“垂距点” (2)若D (23m ,25m )是“垂距点”,求m 的值.22.(8分)在如图所示的平面直角坐标系中描出下列各点: A (-3,-2),B (2,-2),C (-2,1),D (3,1),连接AB ,CD (1)将点A 向右平移5个单位长度,它将与点_____重合;(2)猜想:AB 与x 轴的位置关系是_________,CD 与AB 的位置关系是_______;(3)线段CD 可以看成是由线段AB 通过怎样的平移得到的?23.(12分)已知△ABC的三个顶点坐标分别为A(4,3),B(3,1),C(1,2)(1)请在平面直角坐标系(如图)中标出这三个点;(2)将△ABC沿x轴的负方向平移5个单位长度,纵坐标不变,得到△A1B1C1,请在图中画出△A1B1C1,并写出△A1B1C1三个顶点的坐标;(3)将△ABC作怎样的平移,得到△A2B2C2,使得这个三角形三个顶点的坐标分别为A2(6,-2),B2(5,-4),C2(3,-3)24.(12分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在x轴上,且△ABP与△ABC的面积相等,求点P的坐标.25.(12分)综合与实践.问题背景:(1)已知A(1,2),B(3,2),C(1,-1),D(-3,-3)在平面直角坐标系中描出这几个点,并分别找到线段AB和CD的中点P1,P2,然后写出它们的坐标,则P1___________, P2____________;探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x1,y1),(x2,y2),则线段的中点坐标为____________;拓展应用:(3)利用上述规律解决下列问题:已知三点E(-1,2),F(3,1),G(1,4),第四个点H(x,y)与点E,点F,点G中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H的坐标.人教版七年级数学下册第七章《平面直角坐标系》测试卷(答卷)时间:120分钟 满分:120分一、选择题(每小题3分,共30分1.如果(6,3)表示电影票上“6排3号”那么3排6号就表示为 ( )A .(6,3)B .(3,6)C .(-3,-6)D .(-6,-3) 2.若点A 的坐标为(3,-2),则点A 所在的象限是 ( ) A 第一象限 B .第二象限 C .第三象限 D .第四象限,合 3.课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0) 表示,小军的位置用(2,1)表示,那么你的位置可以表示成 ( ) A .(5,4) B .(4,5) C .(3,4) D .(4,3)4.若点P (x ,y )在第四象限,且|x |=2,|y |=3,则x +y = ( )A .-1B .1C .5D .-55.若点P (a ,b )在第三象限,则点Q (a -3,-b )一定在 ( ) A .第一象限 B .第二象限 C .第三象限 D 第四象限6.点A 的位置如图所示,则关于点A 的位置下列说法中正确的是 ( ) A .距点O 5km 处 B .北偏东60°方向上5km 处C .在点O 北偏东30°方向上5km 处D .在点O 北偏东60°方向上5km 处7.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为 ( ) A .(0,1) B .(1,0) C .(0,1)或(0,-1) D .(1,0)或(-1,0) 8.将点P (m +2,2m +1)向左平移1个单位长度到P ′,且P ′在y 轴上,那么P ′的坐标是 ( )B D D A B D D A D.(1,1)3)-C.(0. B.(0,-2) A.(0,-1)9.如图,长方形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将长方形OABC 平移后,点B 与点O 重合,得长方形O 1A 1OC 1,那么点O 1的坐标为 ( ) A .(2,1) B .(-2,1) C .(-2,-1) D .(2,-1)10.如图,点A ,B 的坐标分别为(-5,6),(3,2),则三角形ABO 的面积为 ( ) A .12 B .14 C .16 D .18 二、填空题(每小题3分,共24分)11.点M (2,-1)到x 轴的距离是________.12.点P 到x 轴的距离是2,到y 轴的距离是3,且点P 在第三象限,则点P 的坐标是___________.13.平面直角坐标系中,点A (-3,2),C (x ,y ),若AC ∥x 轴,则点C 的纵坐标为 ___________.14.如图,在平面直角坐标系xOy 中,点A (a 2-4,3)在y 轴上,点B 在x 轴上,且横坐标为a ,则点B 的坐标为_____________________.15.如图,已知棋子“车”的坐标为(3,2),棋子“炮”的坐标为(-2,1),则棋子“马”的坐标为___________.16.如图,点A ,B 的坐标分别为(1,2),(2,0),将△AOB 沿x 轴向右平移,得到△CDE ,若DB =1,则点C 的坐标为___________.C B 1 (-3,-2) 2 (2,0)或(-2,0) (1,0) (2,2)17.已知点A (a ,0)和点B (0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则点A 的坐标为_____________________.18.如图,动点P 从坐标原点(0,0)出发,以每秒一个单位长度 的速度按图中箭头所示方向运动,第1秒运动到点(1,0), 第2秒运动到点(1,1),第3秒运动到点(0,1),第4秒运动到点(0,2)……则第2068秒点P 所在位置的坐标是________.三、解答题(共66分)19.(6分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是 (1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公室的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公室和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.20.(8分)已知平面直角坐标系中有一点M (m -1,2m +3). (1)当点M 到x 轴的距离为1时,求点M 的坐标; (2)当点M 到y 轴的距离为2时,求点M 的坐标.(4,0)或(-4,0) (45,43) xy(1)建立平面直角坐标系如图所示:食堂(-5,5),图书馆(2,5)(2)办公室和教学楼的位置如图所示 (3)宿舍楼到教学楼的实际距离为: 8×30=240(米)教学楼 ·办公楼 ·(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2, ∴点M 的坐标是(-2,1)或(-3,-1)(2)∵|m-1|=2,∴|m-1|=2或|m-1|=-2,解得m=3或m=-1, ∴点M 的坐标是(2,9)或(-2,1)21.(8分)点P 是平面直角坐标系中的一点且不在坐标轴上,过点P 向x 轴、y 轴作垂线段,若垂线段的长度的和为4,则点P 叫做“垂距点”,例如:如图中的点P (1,3)是“垂距点” (1)判断点A (-2,2),B (21,-25),C (-1,5)是不是“垂距点” (2)若D (23m ,25m )是“垂距点”,求m 的值.22.(8分)在如图所示的平面直角坐标系中描出下列各点: A (-3,-2),B (2,-2),C (-2,1),D (3,1),连接AB ,CD(1)将点A 向右平移5个单位长度,它将与点_____重合; (2)猜想:AB 与x 轴的位置关系是_________,CD 与AB 的位置关系是_______; (3)线段CD 可以看成是由线段AB 通过怎样的平移得到的?A ·(1)根据题意,A 所以A 是“垂距点”,对于点B 而言,|21|+|-25|=3,所以B 不是“垂距点”,对于点C 而言≠C 不是“垂距点”(2)由题意可知:|23m|+|25m|=4,①当m>0时,则4m=4,解得m=1;②当m<0时,m=-1;∴m=±1平行 B 平行 D · C · B·(3)线段CD 是由线段AB 先向右平移1个单位长度,再向上平移3个单位长度得到的(答案不唯一)23.(12分)已知△ABC 的三个顶点坐标分别为A (4,3),B (3,1),C (1,2) (1)请在平面直角坐标系(如图)中标出这三个点;(2)将△ABC 沿x 轴的负方向平移5个单位长度,纵坐标不变,得到△A 1B 1C 1,请在图中画出△A 1B 1C 1,并写出△A 1B 1C 1三个顶点的坐标;(3)将△ABC 作怎样的平移,得到△A 2B 2C 2,使得这个三角形三个顶点的坐标分别为A 2(6,-2),B 2(5,-4),C 2(3,-3)24.(12分)如图,在平面直角坐标系中,A (0,1),B (2,0),C (4,3) (1)求△ABC 的面积;(2)设点P 在x 轴上,且△ABP 与 △ABC 的面积相等,求点P 的坐标.(1)点A 、B 、C 三点的位置如图所示 B ·A · C ·(2)△A 1B 1C 1的位置如图所示,A 1(-1,3),B 1(-2,1),C 1(-4,2) (3)将△ABC 先沿x 轴的正方向平移2个单位长度,再沿y 轴的负方向平移5个单位长度可得到△A 2B 2C 2 A 2·C 2· B 2·A 1·C 1· B 1·10或x=-6,∴点P 的坐标为(10,0)或(-6,0))2,2(2121y y x x ++25.(12分)综合与实践. 问题背景:(1)已知A (1,2),B (3,2),C (1,-1),D (-3,-3)在平面直角坐标系中描出这几 个点,并分别找到线段AB 和CD 的中点P 1,P 2,然后写出它们的坐标,则 P 1___________, P 2____________; 探究发现:(2)结合上述计算结果,你能发现若线段的两个端点的坐标分别为(x 1,y 1),(x 2,y 2),则线段的中点坐标为 ; 拓展应用: ____________________(3)利用上述规律解决下列问题:已知三点E (-1,2),F (3,1),G (1,4),第四个 点H (x ,y )与点E ,点F ,点G 中的一个点构成的线段的中点与另外两个端点构成的线段的中点重合,求点H 的坐标.P 1·B · A · P 2·D ·(2, 2) (-1, -2) C ·。
沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)
沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)第11章平面直角坐标系一、填空题(每小题3分,满分30分)1、在平面直角坐标系中,点M(2020,-2020)在()A 第一象限B 第二象限C 第三象限D 第四象限2、已知点P的坐标为(1,-2),则点P到x轴的距离是()A 1B 2C -1D -23、根据下列表述,能确定一个点位置的是()A 北偏东10°B 合肥市长江东路C 解放电影院6排D 东经116°、北纬12°4、已知点A(a-2,2a+7),点B的坐标为(1,5),直线AB//y轴,则a的值是()A 1B 3C -1D 55、若点A(m+2,2m-5)在y轴上,则点A的坐标是()A (0,-9)B (2.5,0)C (2.5,-9)D (-9,0)6、若点A(-3,-2)向右平移5个单位,得到点B,再把点B向上平移4个单位得到点C,则点C的坐标为()A (2,2)B (-2,-2)C (-3,2)D (3,2)7、若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A 第一象限B 第二象限C 第三象限D 第四象限8、在平面直角坐标系中,已知A(-2,3)、B(2,1),将线段AB平移后,A点的坐标变为(-3,2),则点B的坐标变为()A (-1,2)B (1,0)C (-1,0)D (1,2)9、在平面直角坐标系中,到两坐标轴的距离都是3的点有()A 1个B 2个C 3个D 4个10、无论x为何值,P(2x-6,x-5)不可能在()A 第一象限B 第二象限C 第三象限D 第四象限二、填空题(每小题4分,满分20分)11、教室里,大明坐在第3排第5列,用(3,5)表示,小华坐在第6排第4列表示为12、如图表示的象棋盘上,若“士”的坐标是(-2,-2),“相”的坐标是(3,2),则“炮”的坐标是13、已知点P(x,y)位于第四象限,并且x≤y+4(x、y为整数),写出一个符合上述条件的点P的坐标14、已知点M(1-2t,t-5),若点M在x轴的下方,y轴的右侧,则t的取值范围是15、已知点A(0,1)、B(0,2),点C在x轴上,且S△ABC=2,则点C的坐标三、解答题(每小题10分,共50分)16、(10分)已知:点A(m-1,4m+6)在第二象限。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案) (2)
第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位2.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)3.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16)D.(16,44)4.在直角坐标系中,△ABC的顶点A(﹣1,5),B(3,2),C(0,1),将△ABC平移得到△A'B'C',点A、B、C分别对应A'、B'、C',若点A'(1,4),则点C′的坐标()A.(﹣2,0)B.(﹣2,2)C.(2,0)D.(5,1)5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是()A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)第5题图第6题图6.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为() A.(a-2,b+3) B.(a-2,b-3)C.(a+2,b+3) D.(a+2,b-3)7.一个长方形的长为8,宽为4,分别以两组对边中点的连线为坐标轴建立平面直角坐标系,下面哪个点不在长方形上()A.(4,-2) B.(-2,4)C.(4,2) D.(0,-2)8.点P(2-a,2a-1)到x轴的距离为3,则a的值为()A.2 B.-2C.2或-1 D.-19.过A(4,-2)和B(-2,-2)两点的直线一定()A.垂直于x轴B.与y轴相交但不平行于x轴C.平行于x轴D.与x轴,y轴平行10.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式a=b2-9+9-b2b+3+2.若在第二象限内有一点P(m,1),使四边形ABOP的面积与三角形ABC的面积相等,则点P的坐标为()A.(-3,1) B.(-2,1)C.(-4,1) D.(-2.5,1)二、填空题(每小题3分,共24分)11.小李在教室里的座位位置记作(2,5),表示他坐在第二排第五列,那么小王坐在第四列第三排记作________.12.在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为________.13.若第四象限内的点P(x,y)满足|x|=3,y2=4,则点P的坐标是________.14.如图,小强告诉小华图中A,B两点的坐标分别为(-3,5),(3,5),小华一下就说出了C 在同一坐标系下的坐标________.第18题图15.在平面直角坐标系中,正方形ABCD的顶点A,B,C的坐标分别为(-1,1),(-1,-1),(1,-1),则顶点D的坐标为________.16.在平面直角坐标系中,点A(1,2a+3)在第一象限,且到x轴的距离与到y轴的距离相等,则a=________.17.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a 的值是________.18.如图,在平面直角坐标系中,点A1(1,2),A2(2,0),A3(3,-2),A4(4,0)……根据这个规律,探究可得点A2017的坐标是________.三、解答题(共66分)19.(7分)如图,已知单位长度为1的方格中有三角形ABC.(1)请画出三角形ABC向上平移3格再向右平移2格所得的三角形A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,B′的坐标.20.(7分)如图,长方形ABCD在坐标平面内,点A的坐标是A(2,1),且边AB,CD与x 轴平行,边AD,BC与y轴平行,AB=4,AD=2.(1)求B,C,D三点的坐标;(2)怎样平移,才能使A点与原点O重合?21.(8分)若点P(1-a,2a+7)到两坐标轴的距离相等,求6-5a的平方根.22.(10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10米),现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCD的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(10分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D、点B与点E、点C与点F分别是对应点.观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D、点B与点E、点C与点F的坐标,并说出三角形DEF是由三角形ABC经过怎样的变换得到的;(2)若点Q(a+3,4-b)是点P(2a,2b-3)通过上述变换得到的,求a-b的值.24.(12分)已知A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出三角形ABC;(2)求三角形ABC的面积;(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标.25.(12分)如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4cm,OA=5cm,DE=2cm,动点P从点A出发,沿A→B→C路线运动到点C停止;动点Q 从点O出发,沿O→E→D路线运动到点D停止.若P,Q两点同时出发,且点P的运动速度为1cm/s,点Q的运动速度为2cm/s.(1)直接写出B,C,D三个点的坐标;(2)当P ,Q 两点出发112s 时,试求三角形PQC 的面积;(3)设两点运动的时间为t s ,用含t 的式子表示运动过程中三角形OPQ 的面积S (单位:cm 2).参考答案与解析1.D 2.D 3.B 4.D 5.C 6.A 7.B 8.C 9.C10.A 解析:∵a ,b 满足关系式a =b 2-9+9-b 2b +3+2,∴b 2-9=0,b +3≠0,∴b=3,a =2;∴点A (0,2),B (3,0),C (3,4),∴点B ,C 的横坐标都是3,∴BC ∥y 轴,∴BC =4-0=4,S 三角形ABC =12×4×3=6.∵OA =2,点P (m ,1)在第二象限,∴S 四边形ABOP =S 三角形AOP+S 三角形AOB =12×2(-m )+12×2×3=-m +3.∵四边形ABOP 的面积与三角形ABC 的面积相等,∴-m +3=6,解得m =-3,∴点P 的坐标为(-3,1).故选A.11.(3,4) 12.(1,3) 13.(3,-2) 14.(-1,7) 15.(1,1) 16.-1 17.±4 18.(2017,2) 19.解:(1)三角形A ′B ′C ′如图所示.(3分)(2)建立的平面直角坐标系如图所示.(5分)点B 的坐标为(1,2),点B ′的坐标为(3,5).(7分)20.解:(1)∵A (2,1),AB =4,AD =2,∴BC 到y 轴的距离为4+2,(1分)CD 到x 轴的距离2+1=3,(2分)∴点B 的坐标为(4+2,1),点C 的坐标为(4+2,3),点D 的坐标为(2,3).(5分)(2)由图可知,先向下平移1个单位长度,再向左平移2个单位长度(或先向左平移2个单位长度,再向下平移1个单位长度).(7分)21.解:由题意,得1-a =2a +7或1-a +2a +7=0,解得a =-2或-8,(4分)故6-5a =16或46,(6分)∴6-5a 的平方根为±4或±46.(8分)22.解:(1)过B 作BF ⊥x 轴于F ,过A 作AG ⊥x 轴于G ,如图所示.(2分)∴S 四边形ABCO =S三角形BCF +S梯形ABFG +S三角形AGO =⎣⎡⎦⎤12×2×4+12×(4+6)×3+12×2×6×102=2500(平方米).(6分)(2)把四边形ABCO 的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,(8分)故所得到的四边形的面积与原四边形的面积相等,为2500平方米.(10分)23.解:(1)A (2,4),D (-1,1),B (1,2),E (-2,-1),C (4,1),F (1,-2).(3分)三角形DEF 是由三角形ABC 先向左平移3个单位,再向下平移3个单位得到的(或先向下平移3个单位,再向左平移3个单位得到的).(5分)(2)由题意得2a -3=a +3,2b -3-3=4-b ,(7分)解得a =6,b =103,(9分)∴a -b =83.(10分)24.解:(1)三角形ABC 如图所示.(3分)(2)如图,过点C 向x 轴、y 轴作垂线,垂足为D ,E .(4分)∴S 长方形DOEC =3×4=12,S 三角形BCD=12×2×3=3,S 三角形ACE=12×2×4=4,S 三角形AOB=12×2×1=1.(6分)∴S 三角形ABC=S长方形DOEC -S 三角形ACE-S 三角形BCD -S 三角形AOB =12-4-3-1=4.(7分)(3)当点P 在x 轴上时,S 三角形ABP =12AO ·BP =4,即12×1×BP =4,解得BP =8.∵点B 的坐标为(2,0).∴点P 的坐标为(10,0)或(-6,0);(9分)当点P 在y 轴上时,S 三角形ABP =12BO ·AP=4,即12×2·AP =4,解得AP =4.∵点A 的坐标为(0,1),∴点P 的坐标为(0,5)或(0,-3).(11分)综上所述,点P 的坐标为(10,0)或(-6,0)或(0,5)或(0,-3).(12分)25.解:(1)B (4,5),C (4,2),D (8,2).(3分)(2)当t =112s 时,点P 运动的路程为112cm ,点Q 运动到点D 处停止,由已知条件可得BC=OA -DE =5-2=3(cm).∵AB +BC =7cm >112cm ,AB =4cm <112cm ,∴当t =112s 时,点P运动到BC 上,且CP =AB +BC -112=4+3-112=32cm.∴S三角形CPQ =12CP ·CD =12×32×4=3(cm 2).(6分)(3)①当0≤t <4时,点P 在AB 上,点Q 在OE 上,如图①所示,OA =5cm ,OQ =2t cm ,∴S 三角形OPQ =12OQ ·OA =12·2t ·5=5t (cm 2);(8分)②当4≤t ≤5时,点P 在BC 上,点Q 在ED上,如图②所示,过P 作PM ∥x 轴交ED 延长线于M ,则OE =8cm ,EM =(9-t )cm ,PM =4cm ,EQ =(2t -8)cm ,MQ =(17-3t )cm ,∴S 三角形OPQ =S 梯形OPME -S 三角形PMQ -S 三角形OEQ =12×(4+8)·(9-t )-12×4·(17-3t )-12×8·(2t -8)=(52-8t )(cm 2);(10分)③当5<t ≤7时,点P 在BC上,点Q 停在D 点,如图③所示,过P 作PM ∥x 轴交ED 的延长线于M ,则MD =CP =(7-t )cm ,ME =(9-t )cm ,∴S三角形OPQ =S梯形OPME -S三角形PDM -S三角形DOE =12×(4+8)·(9-t )-12×4·(7-t )-12×8×2=(32-4t )(cm 2).综上所述,S =⎩⎪⎨⎪⎧5t (0≤t <4),52-8t (4≤t ≤5),32-4t (5<t ≤7).(12分)。
人教版数学七年级下册 第七章《平面直角坐标系》全章测试题(含答案)
第七章平面直角坐标系检测卷题号一二三总分21 22 23 24 25 26 27 28分数一、单选题(每题3分,共30分)1.若点P(a,b)在第二象限,则点Q(b+5,1﹣a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限2.点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)3.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,1)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)4.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B 的坐标为()A.(﹣2,0)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣1,0)5. 如图,△PQR是△ABC向左平移2个单位长度,再向上平移3个单位长度得到的,若P、Q、R分别对应A、B、C,则点C的坐标是()A. (-1,4) B.(-3,1) C. (2,-3) D. (3,-2)6.如图1,在5×4的方格纸中,每个小正方形的边长均为1,点O,A,B在方格线的交点(格点)上.在第四象限内的格点上找一点C,使三角形ABC 的面积为3,则这样的点C 共有( )图1A.2个B.3个C.4个D.5个 7.到x 轴的距离等于2的点组成的图形是 ( )A.过点(0,2)且与x 轴平行的直线B.过点(2,0)且与y 轴平行的直线C.过点(0,-2)且与x 轴平行的直线D.分别过点(0,2)和点(0,-2)且与x 轴平行的两条直线8.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( ) A .114m -<<- B .74m -<<-C .7m <-D .4m >-9.点P()在平面直角坐标系的轴上,则点P 的坐标为( ) A .(0,2)B .(2,0)C .(0,-2)D .(0,-4)10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…第n 次移动到A n .则△OA 6A 2020的面积是( )A .5052mB .504.52mC .505.52mD .10102m二、填空题(每题3分,共30分)11.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC 的顶点C 的坐标为___________.12.如图,长方形ABCD 中AB=3,BC=4,且点A 在坐标原点,(4,0)表示D 点,那么C 点的坐标为______.13.将点(2,3)P -先向右平移2个单位,再向下平移3个单位,得到点P ',则点P '的坐标为__________.14.中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化,如图,如果“士”所在位置的坐标为()1,2--,“相”所在位置的坐标为()2,2-,那么棋子“炮”的位置的坐标为________________________。
(完整版)八年级数学平面直角坐标系测试题
《平面直角坐标系》练习题一、选择题(4分×6=24分)1.点A(4,3-)所在象限为()A、第一象限B、第二象限C、第三象限D、第四象限2.点B(0,3-)在()上A、在x轴的正半轴上B、在x轴的负半轴上C、在y轴的正半轴上D、在y轴的负半轴上3.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A 、(3,2)B、(3,3-)-)C、(2,3-)D、(2,2-4.若点P(x,y)的坐标满足xy=0,则点P 的位置是()A 在x轴上B在y轴上C是坐标原点D 在x轴上或在y轴上5.某同学的座位号为(4,2),那么该同学的所座位置是()A 第2排第4列B 第4排第2列C 第2列第4排D不好确定6.线段AB两端点坐标分别为A(4,1-),B(1,4-),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()A、A1(0,5-),B1(3-) B 、A1(7,3),B1(0,5),8-C、A1(4,5-)B1(-8,1)D、A1(4,3)B1(1,0)二、填空题(1分×50=50分)7.分别写出数轴上点的坐标:-1A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限 10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
11.如图,写出表示下列各点的有序数对:A ( , );B ( , );C ( , );D ( , );E ( , );F ( , );G ( , );H ( , );I ( , )12.根据点所在位置,用“+”“-”或“0”填表:11109876543113111098741-113.在平面直角坐标系中,将点)5,2(-向右平移3个单位长度,可以得到对应点坐标(,);将点)5-向左平移3个单位长度,2(-可得到对应点(,);将点)5,2(+向上平移3单位长度可得对应点(,);将点)5,2(-向下平移3单位长度可得对应点(,)。
平面直角坐标系测试题
平面直角坐标系测试题1. 坐标点的确定题目:在平面直角坐标系中,点P的坐标为(3,-2)。
请确定点P 位于第几象限,并说明理由。
2. 坐标轴上的点题目:如果点A在坐标轴上,且其横坐标为0,求点A的纵坐标可能的值。
3. 点的平移题目:点B(2,5)向右平移3个单位,再向上平移2个单位,求平移后的坐标。
4. 距离公式的应用题目:已知点M(-1,4)和点N(3,-1),求这两点之间的距离。
5. 中点坐标题目:给定两点A(-3,6)和B(5,-2),求这两点连线的中点坐标。
6. 象限的判断题目:若点C的横坐标为正,纵坐标为负,判断点C位于第几象限。
7. 坐标变换题目:若点D的坐标为(x,y),将点D关于x轴对称,求新点的坐标。
8. 图形的对称性题目:在平面直角坐标系中,给定一个矩形,其顶点坐标分别为A (1,1),B(1,3),C(3,3),D(3,1)。
求矩形关于y轴的对称图形的顶点坐标。
9. 图形的旋转题目:点E(4,0)绕原点顺时针旋转90度,求旋转后的坐标。
10. 坐标系中的图形面积题目:已知三角形ABC,其中A(0,0),B(4,0),C(2,3),求三角形ABC的面积。
11. 坐标系中的图形周长题目:已知圆心位于(2,2),半径为3的圆,求这个圆的周长。
12. 坐标系中的图形问题题目:给定一个平行四边形,其对角线交于点O(2,2),且对角线的长度分别为6和8,求平行四边形的四个顶点可能的坐标。
13. 坐标系中的图形变换题目:给定一个等腰三角形,顶点坐标为A(1,1),B(3,1),C(2,4)。
将这个三角形绕点A顺时针旋转45度,求旋转后顶点B和C的坐标。
14. 坐标系中的函数图像题目:给定函数y = 2x - 3,求当x = 2时,y的值。
15. 坐标系中的函数性质题目:分析函数y = x^2在x轴上的截距,并说明其开口方向。
请注意,这些题目是示例,根据实际需要可以调整难度和具体内容。
平面直角坐标系测试题习题附答案
平面直角坐标系测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为 ( )A .(2,5)B .(5,2)C .(﹣5,2)D .(﹣5,2)或(5,2)【答案】D【分析】根据平行于x 轴的直线上的点纵坐标相同,再根据到y 轴的距离为5,即可判断坐标.【详解】解:∵点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,∴点N 的纵坐标为2,∵点N 到y 轴的距离为5,∴点N 的横坐标为±5,则点N 的坐标为(﹣5,2)或(5,2);故选:D .【点睛】本题考查了平面直角坐标系中点的坐标特征,解题关键是明确平行于x 轴的直线上的点纵坐标相同,到y 轴的距离是横坐标的绝对值.2.如果点P (a ,b )在x 轴上,那么点Q (ab ,﹣1)在( )A .y 轴的正半轴上B .y 轴的负半轴上C .x 轴的正半轴上D .x 轴的负半轴上【答案】B【分析】根据在x 轴上的点的特点可知0b =,即可求得0ab =,进而确定Q 点的坐标.【详解】点P (a ,b )在x 轴上,∴0b =,∴0ab =,∴点Q (ab ,﹣1)在y 轴的负半轴上故选B【点睛】本题考查了坐标轴上的点的特点,掌握坐标轴上的点的特征是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x 轴正半轴上的点:横坐标>0,纵坐标=0;②x 轴负半轴上的点:横坐标<0,纵坐标=0;③y 轴正半轴上的点:横坐标=0,纵坐标>0;④y 轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0. 3.点A (-3,1)到y 轴的距离是( )个单位长度.A .-3B .1C .-1D .3【答案】D【分析】由点到y 轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知(3,1)A -到y 轴的距离为33-=∴(3,1)A -到y 轴的距离是3个单位长度 故选D .【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点(,)A a b 到y 轴的距离=a ;到x 轴的距离=b .4.在平面直角坐标系中,点A (2,﹣4),点B (﹣3,1)分别在( )象限 A .第一象限,第三象限B .第二象限,第四象限C .第三象限,第二象限D .第四象限,第二象限【答案】D【分析】应先判断出点A ,B 的横纵坐标的符号,进而判断点所在的象限.【详解】解:∵20,40,30,10>-<-<>∴点A (2,﹣4)在第四象限,点B (﹣3,1)在第二象限故选:D【点睛】解决本题的关键是记住平面直角坐标系中各个象限内点的符号.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(0,2)C .(﹣1,﹣2)D .(0,1)【答案】D【分析】 根据题意可得,从A →B →C →D →A 一圈的长度为2(AB +BC )=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标.【详解】解:∵A 点坐标为(1,1),B 点坐标为(﹣1,1),C 点坐标为(﹣1,﹣2), ∴AB =1﹣(﹣1)=2,BC =2﹣(﹣1)=3,∴从A →B →C →D →A 一圈的长度为2(AB +BC )=10.2021÷10=202…1,∴细线另一端在绕四边形第202圈的第1个单位长度的位置,即细线另一端所在位置的点的坐标是(0,1).故选:D .【点睛】本题考查了坐标规律探索,找到规律是解题的关键.6.若点A (a ,b ﹣2)在第二象限,则点B (﹣a ,b +1)在第( )象限.A .一B .二C .三D .四【答案】A【分析】先根据第二象限内点坐标符号可得0,20a b <->,再判断出,1a b -+的符号即可得.解:点(,2)A a b -在第二象限,0,20a b ∴<->,即0,2a b <>,0,130a b ∴->+>>,则点,(1)B a b -+在第一象限,故选:A .【点睛】本题考查了判断点所在象限,熟练掌握各象限内的点坐标符号规律是解题关键. 7.根据下列表述,能确定位置的是( )A .某电影院2排B .宜昌市夷陵路C .北偏东30D .东经118︒,北纬40︒【答案】D【分析】根据有序数对表示点的位置解答.【详解】解:A 选项:第二排有很多座位,不能确定是哪一个,故A 错误;B 选项:宜昌市夷陵路有很多点,不能确定是哪一个,故B 错误;C 选项:北偏东30,这一个方位很广,不能确定是哪个位置,故C 错误;D 选项:东经118︒,北纬40︒,经线和纬线相交为一个点,故D 正确.故选:D .【点睛】此题考查有序数对,正确掌握利用有序数对表示一个点的坐标是解题的关键. 8.如图,在平面直角坐标系中,若三角形ABC 的三个顶点分别为A (2,3),B (3,1),C (﹣2,﹣2),则三角形ABC 的面积为( )A .6.5B .13C .5.5D .11【分析】利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:∵A(2,3),B(3,1),C(﹣2,﹣2),∴1115545531225107.51 6.5222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=---=.故选:A.【点睛】本题考查了坐标与图形,熟练掌握平面直角坐标系中的坐标特点及三角形的面积的求法是解题的关键.二、填空题9.已知ABC的面积为3,且A、B两点的坐标分别为(1,0)、(2,0)-,若点C到y轴距离是1,则点C的坐标为____________.【答案】(1,2)或(-1,2)或(-1,-2)或(1,-2)【分析】以AB=3为底,根据△ABC面积求出其高,进而得到C点的纵坐标的绝对值为2,进而得到C点的纵坐标为2或-2,再由C到y轴距离是1得到其横坐标为1或-1,由此即可求出C点的坐标.【详解】解:∵A、B两点的坐标分别为(1,0)、(2,0)-,∴AB=3,设C点纵坐标为y,且ABC的面积为3,∴1||2ABCS AB y∆=⋅,代入数据,得到:||2y=,∴2y=±,又点C到y轴距离是1,∴C点的横坐标为±1,∴点C的坐标为(1,2)或(-1,2)或(-1,-2)或(1,-2),如下图所示:故答案为:(1,2)或(-1,2)或(-1,-2)或(1,-2) .【点睛】本题考查三角形的面积,平面直角坐标系中点的坐标特点等;本题的关键是通过三角形面积求出点的纵坐标的绝对值,进而确定的点坐标.10.如图,点A、B的坐标分别为(1,2)、(3,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为________.【答案】(3,2)【分析】利用DB=1,B(3,0),得出△AOB沿x轴向右平移了2个单位长度,再利用平移中点的变化规律求解即可.【详解】∵点A. B的坐标分别为(1,2)、(3,0),将△AOB沿x轴向右平移,得到△CDE,DB=1,∴OB=3,∴OD=2,∴△AOB沿x轴向右平移了2个单位长度,∴点C的坐标为:(3,2).故答案为:(3,2).【点睛】本题考查了坐标与图形变化-平移,解题的关键是熟练的掌握平移的相关知识点.11.已知P(1﹣m,m+2)在x轴上,则点P的坐标是______________.【答案】(3,0)【分析】根据x 轴上点的纵坐标为零,可得m 的值,进而可得答案.【详解】解:(1,2)P m m -+在x 轴上,20m ∴+=,解得2m =-,13m ∴-=,∴点P 的坐标是(3,0).故答案为:(3,0).【点睛】本题考查了点的坐标,利用x 轴上点的纵坐标为零得出m 的值是解题关键. 12.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为_______.【答案】(0,-2)【分析】根据伴随点的定义,罗列出部分点A 的坐标,根据点A 的变化找出规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”,根据此规律即可解决问题.【详解】解:观察,发现规律:A 1(3,1),A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,∴A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数). ∵2020=4×504+4,∴点A 2020的坐标为(0,-2).故答案为:(0,-2).【点睛】本题考查了规律型中的点的坐标,解题的关键是发现规律“A 4n +1(3,1),A 4n +2(0,4),A 4n +3(-3,1),A 4n +4(0,-2)(n 为自然数)”.13.已知线段 AB =4,AB ∥x 轴,若点A 坐标为(-1,2),且点B 在第一象限,则B 点坐标为______.【答案】(3,2)【分析】线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB =4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.【详解】解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB =4,∴当B 点在A 点左边时,B (-5,2),B (-5,2)在第二象限,与点B 在第一象限,不相符,舍去;当B 点在A 点右边时,B (3,2);故答案为:(3,2).【点睛】本题考查了平行于x 轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.14.已知点(34,47)A a a -+在第一、三象限的角平分线上,则a 的值为________.若A 在第二、四象限的角平分线上,则a 的值是_________.【答案】11- 37- 【分析】第一、三象限的角平分线上点的横坐标与纵坐标相等,第二、四象限的角平分线上的点的横坐标与纵坐标互为相反数,根据点的坐标特点列方程,解方程即可得到答案.【详解】 解: 点(34,47)A a a -+在第一、三象限的角平分线上,3447,a a ∴-=+11,a ∴=-(34,47)A a a -+在第二、四象限的角平分线上,34470,a a ∴-++=3.7a ∴=- 故答案为:311,.7-- 【点睛】本题考查的是四个象限的角平分线上点的坐标特点,掌握其坐标特点是解题的关键.三、解答题15.如图,在平面直角坐标系中,P (a ,b )是三角形ABC 的边AC 上的一点,三角形ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出经过上述平移后得到的三角形A 1B 1C 1;(2)求线段AC 扫过的面积.【答案】(1)见解析;(2)14【分析】(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积. 【详解】解:(1)如图,各点的坐标为:A (﹣3,2)、C (﹣2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1; ∴1117272AC A S =⨯⨯= ;117272AC C S =⨯⨯=; ∴四边形ACC 1A 1的面积为7+7=14.答:线段AC 扫过的面积为14.【点睛】本题考查平移,涉及的知识点为:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加;解题关键是掌握求四边形的面积通常整理为求几个三角形的面积的和.16.如图,A ,B 两点的坐标分别是()2,1-,()2,1,你能确定()3,3的位置吗?【答案】()3,3的位置是点C .【分析】先根据A 点坐标确定x 轴与y 轴位置,两轴交点为坐标原点O ,然后建立平面直角坐标系,根据点的坐标(3,3)找到点C 即可.【详解】解:点A 向左平移2个单位,是y 轴坐在位置,点A 向上平移一个单位为x 轴坐在位置,两轴相交位置为坐标原点O ,以O 为坐标原点建立平面直角坐标系,如图,从点O 向右平移3个单位,再向上平移3个单位是(3,3)用C 表示.【点睛】本题考查已知点坐标建立平面直角坐标系,根据坐标找点,掌握点的横坐标绝对值是点到y 轴的距离,点的纵坐标绝对值是点到x 轴的距离是解题关键.17.如图,三角形PQR 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点P ,点B 与点Q ,点C 与点R 的坐标,并观察它们之间的关系.三角形ABC 内任意一点M 的坐标为(,)x y ,点M 经过这种变换后得到点N ,点N 的坐标是什么?【答案】三角形ABC 与三角形PQR 各对应点的坐标分别是(4,3)A ,(4,3)P --,(3,1)B ,(3,1)Q --,(1,2)C ,(1,2)R --.三角形PQR 各顶点的横(纵)坐标是三角形ABC 与其对应点横(纵)坐标的相反数.三角形ABC 中任意一点(,)M x y 的对应点N 的坐标是(,)x y --.【分析】根据点在直角坐标系中所在的象限及位置直接可以确定点的坐标,各组点的横纵坐标都是互为相反数,由此得到点M 的对应点N 的坐标.【详解】三角形ABC 与三角形PQR 各对应点的坐标分别是(4,3)A ,(4,3)P --,(3,1)B ,(3,1)Q --,(1,2)C ,(1,2)R --.三角形PQR 各顶点的横(纵)坐标是三角形ABC 与其对应点横(纵)坐标的相反数.三角形ABC 中任意一点(,)M x y 的对应点N 的坐标是(,)x y --.【点睛】此题考查直角坐标系中点的坐标,正确确定各点的坐标及发现规律解决问题是解题的关键.18.如图1,在平面直角坐标系中,正方形OABC 的面积等于4,长方形OADE 的面积等于8,其中点C 、E 在x 轴上,点A 在y 轴上.(1)请直接写出点A ,点B ,点D 的坐标;(2)如图2,将正方形OABC 沿x 轴向右平移,移动后得到正方形O A B C '''',设移动后的正方形O A B C ''''长方形OADE 重叠部分(图中阴影部分)的面积为S ;①当1AA '=时,S =______;当3AA '=时,S =______;当5AA '=时,S =______; ②当1S =时,请直接写出AA '的值.【答案】(1)()0,2A ,()2,2B -,()4,2D ;(2)①2,4,2;②12AA '=或112AA '=. 【分析】(1)由正方形面积求出边长再求出A 、B 点坐标,又由长方形面积求出长再求出D 点坐标.(2)①AA ′=1 时,面积为图2阴影部分;AA ′=3 时,面积为正方形面积;AA ′=5时正方形一半在长方形内,一半在长方形外.②S =1时注意有两种情况:正方形刚进入长方形的时候和正方形快要走出长方形的时候.【详解】解:(1)正方形面积为4∴AB =AO = 2∴()0,2A ,∴()2,2B -,长方形面积为8,AO =2∴AD =8÷2=4∴()4,2D(2)①AA ′=1 时,面积为图2阴影部分,S =AA ′×AO =1×2=2 AA ′=3 时,面积如下图,S =AB′×AO=2×2=4AA ′=5时,面积如下图,S =B'D×BC=1×2=2②正方形刚进入长方形时,可参照图2,阴影部分是AA'O'O ,该部分面积=AA '×AO =AA '×2=1∴AA '=1÷2=12正方形快要走出长方形时,可参照下图,阴影部分是B'DEC ,该部分面积=B'D ×B'C =B'D ×2=1∴B'D=1÷2=12∴A'D=2-12=32∴AA'=4+32=112故答案为AA′=12或AA′=112【点睛】本题考查图形的平移和坐标的知识,准确识图,结合图形灵活运用相关知识是解题的关键.19.图中标明了李明家附近的一些地方.(1)写出书店和邮局的坐标.(2)某星期日早晨,李明同学从家里出发,沿(100,200)-,(100,0),(200,100),(200,200)-,(100,200)--,(0,100)-的路线转了一下,又回到家里,写出他路上经过的地方.(3)连接他在(2)中经过的地点,你能得到什么图形?【答案】(1)书店和邮局的坐标分别是(100,300),(300,100)--;(2)糖果店,汽车站,电影院,消防站,宠物店,姥姥家;(3)如图见解析,得到箭头符号.(1)根据坐标的概念结合图形即可得;(2)由图形及其坐标得出具体的位置;(3)连线可得答案.【详解】解:(1)书店和邮局的坐标分别是(100,300),(300,100)--;(2)糖果店,汽车站,电影院,消防站,宠物店,姥姥家;(3)如图,得到箭头符号.【点睛】本题主要考查坐标确定位置,各象限内点P (a ,b )的坐标特征:①第一象限:a >0,b >0;②第二象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0. 20.已知点(2,28)P a a -+分别根据下列条件求出点P 的坐标.(1)点P 在x 轴上;(2)点Q 的坐标为(1,5),直线PQ ∥y 轴;【答案】(1)()6,0-;(2)()1,14 【分析】 (1)根据点在数轴上的特点,令280a +=,即可求得a ,进而求得P 的坐标; (2)根据平行与y 轴的直线的特点,令21a -=,即可求得a ,进而求得P 的坐标; 【详解】 (1)点P 在x 轴上, ∴280a +=,2426a ∴-=--=-∴点P 的坐标()6,0-(2)点Q 的坐标为(1,5),直线PQ ∥y 轴,∴21a -=解得3a =286814a ∴+=+=∴点P 的坐标()1,14 【点睛】 本题考查了平面直角坐标系中坐标轴上的点的坐标特点,掌握以上知识是解题的关键. 21.如图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(﹣1,3),点C 的坐标为(1,﹣1).(1)请在图中画出平面直角坐标系;(2)把三角形ABC 向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的三角形A 1B 1C 1,并写出平移后各顶点的坐标.【答案】(1)见解析;(2)见解析; A 1(2,1),B 1(﹣1,﹣1),C 1(4,﹣3).【分析】(1)根据已知两点的坐标,即可判断横轴和纵轴的位置,从而画出平面直角坐标系; (2)分别将三角形的三个点向下平移2个单位长度,再向右平移3个单位长度,然后将平移后的对应点顺次连接即可.【详解】解:(1)平面直角坐标系如图所示;(2)如图所示:三角形A 1B 1C 1即为所求,A 1(2,1),B 1(﹣1,﹣1),C 1(4,﹣3).【点睛】本题考查平面直角坐标系内的平移作图,以及知道点的坐标确定平面直角坐标系的位置,牢记相关的知识点并能准确应用是解题关键.22.如图,这是一所学校的平面示意图,建立适当的平面直角坐标系,并用坐标表示教学楼、图书馆、校门、实验楼、国旗杆的位置.类似地,你能用坐标表示你自己学校各主要建筑物的位置吗?【答案】图见解析,校门、国旗杆、教学楼、实验楼、图书馆的位置分别是()0,0,()3,0,()6,0,()6,3-,()5,3.【分析】得出原点位置进而建立坐标系得出各点坐标.【详解】解:如图所示:以校门为原点,正东方向为x 轴正方向,正北方向为y 轴正方向建立平面直角坐标系,规定一个单位长度代表1m ,则校门、国旗杆、教学楼、实验楼、图书馆的位置分别是:()0,0,()3,0,()6,0,()6,3-,()5,3.【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.23.在直角坐标系中,写出下列各点的坐标:(1)点A 在x 轴上,位于原点的左侧,距离坐标原点4个单位长度;(2)点B 在y 轴上,位于原点的上侧,距离坐标原点4个单位长度;(3)点C 在y 轴的左侧,在x 轴的上侧,距离每个坐标轴都是4个单位长度.【答案】(1)()4,0A -;(2)()0,4B ;(3)()4,4C -.【分析】(1)根据x 轴上的点的纵坐标等于0得出答案;(2)利用在y 轴上点的坐标性质得出即可;(3)利用点的位置进而得出C 点坐标.【详解】(1)∵点A 在x 轴上,∴点A 的纵坐标为0,∵点A 位于原点左侧,距离原点4个单位长度,∴点A 的横坐标为-4,∴点A 的纵坐标为(-4,0);(2)∵点B 在y 轴上,∴点B 的横坐标为0,∵点B 位于原点的上侧,距离坐标原点4个单位长度∴点B的纵坐标为4∴点B的纵坐标为(0,4);(3)∵点C在y轴的左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度.∴C的纵坐标为(-4,4).【点睛】此题考查了平面内的点到坐标轴的距离和点的坐标的关系.注意:平面内一点到x轴的距离是它的纵坐标的绝对值,到y轴的距离是它的横坐标的绝对值.24.已知点P(2a+3,a-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【答案】(1)点P的坐标为(-11,-8);(2)P点坐标为(-1,-3).【分析】(1)建立方程a-1=2a+3+3,解方程确定a值,代入计算即可;(2)根据平行x轴的点的纵坐标相等建立方程求解即可.【详解】(1)∵点P(2a+3,a-1),且点P的纵坐标比横坐标大3,∴a-1=2a+3+3,解得a=-7,∴点P(-11,-8);(2)∵点P在过A(2,-3)点,且与x轴平行的直线上,∴a-1=-3,解得a=-2,∴点P(-1,-3).【点睛】本题考查了坐标之间的关系,坐标与平行线的关系,熟练建立方程并灵活解方程是解题的关键.。
2022年沪教版七年级数学第二学期第十五章平面直角坐标系达标测试练习题(精选含解析)
七年级数学第二学期第十五章平面直角坐标系达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、已知点A (x +2,x ﹣3)在y 轴上,则x 的值为( ) A .﹣2B .3C .0D .﹣32、已知点(,2)A a 关于x 轴的对称点A '与点(3,)B b 关于y 轴的对称点B '重合,则a b +=( ) A .5B .1C .1-D .5-3、如图,直角坐标平面xOy 内,动点P 按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P 第2021次运动到点( )A .(2020,﹣2)B .(2020,1)C .(2021,1)D .(2021,﹣2)4、在平面直角坐标系中,点()2,1-关于x 轴的对称点的坐标是( )A .()2,1-B .()2,1C .()2,1--D .()1,2-5、已知点A (n ,3)在y 轴上,则点B (n -1,n +1)在第()象限 A .四B .三C .二D .一6、点M (2,4)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( ) A .(-1,6)B .(-1,2)C .(-1,1)D .(4,1)7、在平面直角坐标系xOy 中,若ABC 在第三象限,则ABC 关于x 轴对称的图形所在的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限8、第24届冬季奥林匹克运动会将于2022年2月4日~20日在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( ) A .离北京市100千米 B .在河北省C .在怀来县北方D .东经114.8°,北纬40.8°9、上海是世界知名金融中心,以下能准确表示上海市地理位置的是( ) A .在中国的东南方 B .东经12129',北纬3114' C .在中国的长江出海口 D .东经121.510、若点P (2,b )在第四象限内,则点Q (b ,-2)所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点A (﹣3,1)绕原点逆时针旋转180°得到的点A '的坐标是 _____.2、在平面直角坐标系内,点A (a ,﹣3)与点B (1,b )关于原点对称,则a +b 的值_________.3、在平面直角坐标系中,已知点(2,8)A a b --与点(2,3)B a b -+关于原点对称,则=a ________,b =________.4、已知点M 坐标为()4,7--,点M 到x 轴距离为______.5、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A (1,3)、B (3,1),则轰炸机C 的坐标是_________.三、解答题(10小题,每小题5分,共计50分)1、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC 是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△A 1B 1C 1向下平移5个单位长度得到的△A 2B 2C 2;(3)若点B 的坐标为(4,2),请写出点B 经过两次图形变换的对应点B 2的坐标. 2、如图,在平面直角坐标系xOy 中,A (1,﹣2). (1)作△ABC 关于y 轴的对称图形△A ′B ′C ′; (2)写出B ′和C ′的坐标;(3)求△ABC的面积.3、(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O.(2)如图②所示,已知△ABC的三个顶点的坐标分别为A(4,﹣1),B(1,1),C(3,﹣2).将△ABC绕原点O旋转180°得到△A1B1C1,请画出△A1B1C1,并写出点A1的坐标.4、如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点A 1的坐标; (2)请画出△ABC 绕点B 顺时针旋转90°后的△A 2BC 2; (3)求出(2)中△A 2BC 2的面积.5、如图,ABC 的顶点坐标分别为(4,5),(5,2),(3,4)A B C ---画出ABC 绕点()1,1--顺时针旋转90︒,得到111A B C △并直接写出111A B C △的面积.6、如图,在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (﹣1,﹣2),B (﹣2,﹣4). (1)画出线段AB 关于y 轴对称的线段A 1B 1,再画出线段A 1B 1关于x 轴对称的线段A 2B 2; (2)点A 2的坐标为 ;(3)若此平面直角坐标系中有一点M (a ,b ),点M 关于y 轴对称的对称点M 1,点M 1关于x 轴对称的对称点M 2,则点M 2的坐标为 .7、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点B'、C'的位置,并写出他们的坐标:B',C';归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P'的坐标为(不必证明);运用与拓广:(3)已知两点D(1,﹣3)、E(﹣3,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.8、在平面直角坐标系xOy中,对于任意图形G及直线l1,l2,给出如下定义:将图形G先沿直线l1翻折得到图形G1,再将图形G1沿直线l2翻折得到图形G2,则称图形G2是图形G的<l1,l2>伴随图形.例如:点P(2,1)的<x轴,y轴>伴随图形是点P'(-2,-1).(1)点Q(-3,-2)的<x轴,y轴>伴随图形点Q'的坐标为;(2)已知A(t,1),B(t-3,1),C(t,3),直线m经过点(1,1).①当t=-1,且直线m与y轴平行时,点A的<x轴,m>伴随图形点A'的坐标为;②当直线m经过原点时,若△ABC的<x轴,m>伴随图形上只存在两个与x轴的距离为1的点,直接写出t的取值范围.9、如图所示的方格纸中,每个小正方形的边长都是1个单位长度,三角形ABC的三个顶点都在小正方形的顶点上.(1)画出三角形ABC向左平移4个单位长度后的三角形DEF(点D、E、F与点A、B、C对应),并画出以点E为原点,DE所在直线为x轴,EF所在直线为y轴的平面直角坐标系;(2)在(1)的条件下,点D坐标(﹣3,0),将三角形DEF三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P、Q、M(点P、Q、M与点D、E、F对应),画出三角形PQM,并直接写出点P的坐标.10、如图,在平面直角坐标系中,ABC的顶点坐标为A(﹣1,1),B(﹣3,2),C(﹣2,4).(1)在图中作出ABC向右平移4个单位,再向下平移5个单位得到的A 1B1C1;(2)在图中作出A 1B1C1关于y轴对称的A2B2C2;(3)经过上述平移变换和轴对称变换后,ABC内部的任意一点P(a,b)在A 2B2C2内部的对应点P2的坐标为.-参考答案-一、单选题1、A【分析】根据y轴上点的横坐标为0列方程求解即可.【详解】解:∵点A(x+2,x﹣3)在y轴上,∴x+2=0,解得x=-2.故选:A.本题考查了点的坐标,熟记y 轴上点的横坐标为0是解题的关键. 2、D 【分析】点(,2)A a 关于x 轴的对称点A '(a ,-2),点(3,)B b 关于y 轴的对称点B '(-3,b ),根据A '(a ,-2)与点B '(-3,b )是同一个点,得到横坐标相同,纵坐标相同,计算a ,b 计算即可.【详解】∵点(,2)A a 关于x 轴的对称点A '(a ,-2),点(3,)B b 关于y 轴的对称点B '(-3,b ),A '(a ,-2)与点B '(-3,b )是同一个点, ∴a =-3,b =-2, ∴a b +=-5, 故选D . 【点睛】本题考查了坐标系中点的轴对称,熟练掌握对称时坐标的变化规律是解题的关键. 3、B 【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可. 【详解】解:点P 的运动规律是每运动四次向右平移四个单位,202150541=⨯+,∴动点P 第2021次运动时向右505412021⨯+=个单位, ∴点P 此时坐标为(2020,1),【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.4、B【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:点P(2,-1)关于x轴的对称点的坐标为(2,1),故选:B.【点睛】此题主要考查了关于x轴的对称点的坐标,关键是掌握点的坐标的变化规律.5、C【分析】直接利用y轴上点的坐标特点得出n的值,进而得出答案.【详解】解:∵点A(n,3)在y轴上,∴n=0,则点B(n-1,n+1)为:(-1,1),在第二象限.故选:C.【点睛】本题主要考查了点的坐标,正确得出n的值是解题关键.6、A【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】+=,∵231-=-,426-.∴得到的点的坐标是(1,6)故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7、B【分析】设ABC内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.【详解】解:∵设ABC内任一点A(a,b)在第三象限内,∴a<0,b<0,∵点A关于x轴对称后的点B(a,-b),∴﹣b>0,∴点B(a,-b)所在的象限是第二象限,即ABC在第二象限.故选:B.【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.8、D【分析】若将地球看作一个大的坐标系,每个位置同样有对应的横纵坐标,即为经纬度.【详解】离北京市100千米、在河北省、在怀来县北方均表示的是位置的大概范围,东经114.8°,北纬40.8°为准确的位置信息.故选:D.【点睛】本题考查了实际问题中的坐标表示,理解经纬度和横纵坐标的本质是一样的是解题的关键.9、B【分析】根据有序数对的性质解答.【详解】解:能准确表示上海市地理位置的是东经12129',北纬3114',故选:B.【点睛】此题考查了表示平面上点的位置的方法:有序数对,需用两个有序数量来表示某一位置,掌握有序数对的性质是解题的关键.10、C【分析】根据点P(2,b)在第四象限内,确定b的符号,即可求解.【详解】解:点P(2,b)在第四象限内,∴0b ,所以,点Q (b ,-2)所在象限是第三象限,故选:C .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.二、填空题1、(3,﹣1)【分析】由条件可知A 点和A ′点关于原点对称,可求得答案.【详解】解:∵将OA 绕原点O 逆时针旋转180°得到OA ′,∴A 点和A ′点关于原点对称,∵A (﹣3,1),∴A ′(3,﹣1),故答案为:(3,﹣1).【点睛】本题主要考查旋转的定义,由条件求得A 和A′关于原点对称是解题的关键.2、2【分析】根据点关于原点对称的坐标特点即可完成.【详解】∵点A (a ,﹣3)与点B (1,b )关于原点对称∴13a b ,∴132a b +=-+=故答案为:2【点睛】本题考查了平面直角坐标系中关于原点对称的点的坐标特征,即横、纵坐标均互为相反数,求代数式的值;掌握这个特征是关键.3、2 2【分析】关于原点对称的两个点的横纵坐标都互为相反数,根据特点列式求出a 、b 即可求得答案.【详解】解:∵点()2,8A a b --和点()2,3B a b -+关于原点对称,∴2238a b a b -=⎧⎨+=⎩, ∴22a b =⎧⎨=⎩, 故答案为:2;2.【点睛】本题主要考查了关于原点对称点的坐标特征,解二元一次方程组,熟记关于原点对称点的坐标特征并运用解题是关键.4、7【分析】根据点(x ,y )到x 轴的距离等于|y |求解即可.【详解】解:点M ()4,7--到x 轴距离为|-7|=7,故答案为:7.【点睛】本题考查点到坐标轴的距离,熟知点到坐标轴的距离与点的坐标的关系是解答的关键.--5、(1,2)【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示,建立平面直角坐标系,∴轰炸机C的坐标为(-1,-2),故答案为:(-1,-2).【点睛】此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..三、解答题1、(1)见解析;(2)见解析;(3)(﹣4,﹣3)【分析】(1)分别作出A,B,C 的对应点A1,B1,C1即可.(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.(3)根据所画图形,直接写出坐标即可.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)点B2的坐标为(﹣4,﹣3).【点睛】本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、(1)见解析;(2)B′(﹣5,6),C′(-7,2);(3)16【分析】(1)利用轴对称的性质分别作出A,B,C的对应点A′,B′,C′即可;(2)根据点的位置写出坐标即可;(3)把三角形面积看成长方形面积减去周围三个三角形面积即可.【详解】解:(1)如图,△A′B′C′即为所求;(2)B′(﹣5,6),C′(-7,2);(3)S△ABC=8×6﹣12×8×4﹣12×2×4﹣12×6×4=16.【点睛】本题考查作图﹣轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,学会用分割法求三角形面积.3、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1).【分析】(1)根据对称中心的性质可得对应点连线的交点即为对称中心;(2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标.【详解】(1)如图所示,点O即为要求作的对称中心.(2)如图所示,△A1B1C1即为要求作的三角形,由点A1的在平面直角坐标系中的位置可得,点A1的坐标为(-4,1).【点睛】此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质.4、(1)见解析,(﹣2,4);(2)见解析;(3)3.5【分析】(1)利用关于y轴对称的点的坐标特征写出A、B、C的对应点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出A、C的对应点A2和C2即可;(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△A2BC2的面积.【详解】解:(1)如图,△A1B1C1为所作,点A1的坐标为(﹣2,4);(2)如图,△A2BC2为所作;(3)△A 2BC 2的面积=3×3﹣12×3×1﹣12×2×1﹣12×3×2=3.5.【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.5、图见解析,面积为2【分析】先求出旋转后A 1(5,2),B 1(2,3),C 1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.【详解】解:∵ABC 的顶点坐标分别为(4,5),(5,2),(3,4)A B C ---,ABC 绕点()1,1--顺时针旋转90︒,得到111A B C △, ∴点A 1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A 1(5,2),∴点B 1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B 1(2,3),∴点C 1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C 1(4,1),在平面直角坐标系中描点A 1(5,2),B 1(2,3),C 1(4,1),顺次连结A 1B 1, B 1C 1,C 1A 1,则△A 1B 1C 1为所求;1111111111ΔΔΔΔA B C B DA C EA B FC B FED S S S S S =---矩形, =11123311122222⨯-⨯⨯-⨯⨯-⨯⨯, =316222---, =2.【点睛】本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.6、(1)见详解;(2)(1,2);(3)(-a ,-b ).【分析】(1)分别作出A 、B 二点关于y 轴的对称点A 1、B 1,再分别作出A 1、B 1二点关于x 轴的对称点A 2、B 2即可;(2)根据图示得出坐标即可;(3)根据轴对称的性质得出坐标即可.【详解】解:(1)如图所示:线段A1B1和线段A2B2即为所求;(2)点A2的坐标为(1,2);(3)点M(a,b),关于y轴对称的对称点M1(-a,b),点M1关于x轴对称的对称点M2(-a,-b),故点M2的坐标为(-a,-b).【点睛】本题考查作图-轴对称变换,轴对称-最短问题,两点之间线段最短等知识,解题的关键是熟练掌握轴对称的概念,利用对称解决最短问题,属于中考常考题型.7、(1)(3,5),(5,﹣2);(2)(b,a);(3)Q(-3,-3)【分析】(1)根据点关于直线对称的定义,作出B、C两点关于直线l的对称点B′、C′,写出坐标即可.(2)通过观察即可得出对称结论.(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,此时QE+QD的值最小.【详解】解:(1)B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置如图所示.B ′(3,5),C ′(5,﹣2).故答案为B ′(3,5),C ′(5,﹣2).(2)由(1)可知点P (a ,b )关于第一、三象限的角平分线l 的对称点P ′的坐标为P ′(b ,a ).(3)作点E 关于直线l 的对称点E ′(﹣4,﹣3),连接DE ′交直线l 于Q ,∵两点之间线段最短∴此时QE +QD 的值最小,由图象可知Q 点坐标为(-3,-3).【点睛】本题考查了坐标系中的轴对称变化,点()P a b ,关于第一、三象限角平分线对称的点的坐标为()b a ,;关于第二、四象限角平分线对称的点的坐标为(b -,)a -.8、(1)(3,2)(2)①(3,-1);②-1<t <1或2<t <4【分析】(1)点Q 先关于x 轴对称的点坐标为()3,2-,再关于y 轴对称的点坐标为()3,2,故可得点的伴随图形点Q '坐标;(2)①1t =-时,A 点坐标为()1,1-,直线m 为1x =,此时点A 先关于x 轴对称的点坐标为()1,1--,再关于m 轴对称的点坐标为()3,1-,进而得到点的伴随图形点'A 坐标;②由题意知直线m 为直线y x =,A 、B 、C 三点的x <轴,m >的伴随图形点坐标依次表示为:()1,t -,()1,3t --,()3,t -,由题意可得1t <,或31t -<解出t 的取值范围即可.(1)解:由题意知()3,2--沿x 轴翻折得点坐标为()3,2-;()3,2-沿y 轴翻折得点坐标为()3,2故答案为:()3,2.(2)①解:.1t =-,A 点坐标为()1,1-,直线m 为1x =,()1,1-沿x 轴翻折得点坐标为()1,1--()1,1--沿直线1x =翻折得点坐标为()()()1211,1-+---即为()3,1-故答案为:()3,1-②解:∵直线m 经过原点∴直线为y x =∴A 、B 、C 的伴随图形点坐标先沿x 轴翻折,点坐标依次为(),1t -,()3,1t --,(),3t -; 然后沿直线y x =翻折,点坐标依次表示为:()1,t -,()1,3t --,()3,t - 由题意可知:1t <或31t -<解得:11t -<<或24t <<【点睛】本题考查了直角坐标系中的点对称,几何图形翻折.解题的关键在于正确的将翻折后的点坐标表示出来.9、(1)见解析;(2)画图见解析,点P 的坐标为(-5,3)【分析】(1)根据平移的特点先找出D 、E 、F 所在的位置,然后根据题意建立坐标系即可;(2)将三角形DEF 三个顶点的横坐标都减去2,纵坐标都加上3,分别得到点P 、Q 、M ,即点P 可以看作是点D 向左平移2个单位,向上平移3个单位得到的,由此求解即可.【详解】解:(1)如图所示,即为所求;(2)如图所示,△PQM 即为所求;∵P 是D (-3,0)横坐标减2,纵坐标加3得到的,∴点P 的坐标为(-5,3).【点睛】本题主要考查了平移作图,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的特点.10、(1)见解析;(2)见解析;(3)(﹣a﹣4,b﹣5)【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可;(3)利用平移变换的性质,轴对称变换的性质解决问题即可.【详解】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)由题意得:P(﹣a﹣4,b﹣5).故答案为:(﹣a﹣4,b﹣5);【点睛】本题考查作图−轴对称变换,平移变换的性质等知识,解题的关键是掌握轴对称的性质,平移变换的性质,属于中考常考题型.。
人教版2019-2020学年七年级数学第二学期第七章《平面直角坐标系》测试卷(含答案)
第七章《平面直角坐标系》测试题一、单选题(每小题只有一个正确答案)1.下面的有序数对的写法正确的是()A.(1、3) B.(1,3) C.1,3 D.以上表达都正确2.线段EF是由线段PQ平移得到的,点P(-1,4)的对应点为E(4,7).则点Q(-3,1)的对应点F的坐标为( )A.(-8,-2) B.(-2,-2) C.(2,4) D.(-6,-1)3.平面直角坐标系中有5个点:(2,3),(1,0),(0,-2),(0,0),(-3,2),其中不属于任何象限的有( )A.1个 B.2个 C.3个 D.4个4.在如图所示的单位正方形网格中,经过平移后得到,已知在上一点平移后的对应点为,则点的坐标为( )A.(1.4,-1) B.(-1.5,2) C.(-1.6,-1) D.(-2.4,1) 5.根据下列表述,能确定位置的是( )A.孝义市府前街B.南偏东C.美莱登国际影城3排D.东经,北纬6.点P()在平面直角坐标系的轴上,则点P的坐标为( )A.(0,2) B.(2,0) C.(0,-2) D.(0,-4)7.下列说法中,正确的是( )A.平面直角坐标系是由两条互相垂直的直线组成的B.平面直角坐标系是由两条相交的数轴组成的C.平面直角坐标系中的点的坐标是唯一确定的D.在平面上的一点的坐标在不同的直角坐标系中的坐标相同8.下列与(2,5)相连的直线与y轴平行的是()标是()A.(5,-3)或(-5,-3)B.(-3,5)或(-3,-5)C.(-3,5)D.(-3,-3)10.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4)B.(3,4)C.(-4,-3)D.(4,3)11.雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°) B.(4,150°) C.(﹣2,150°) D.(2,150°)12.若P(m,n)与Q(n,m)表示同一个点,那么这个点一定在()A.第二、四象限 B.第一、三象限C.平行于x轴的直线上 D.平行于y轴的直线上二、填空题13.早上8点钟时室外温度为2 ℃,我们记作(8,2),则晚上9点时室外温度为零下3 ℃,我们应该记作______.14.若点B(a,b)在第三象限,则点C(-a+1,3b-5)在第________象限.15.已知点A在x轴的下方,且到x轴的距离为5,到y轴的距离为3,则点A的坐标为_____.16.到轴的距离是________,到轴的距离是________,到原点的距离是________.17.如图,平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”第2 019个点的坐标为________.三、解答题18.如图是某动物园的平面示意图,借助刻度尺、量角器,解决如下问题:(1)猴园和鹿场分别位于水族馆的什么方向?(2)与水族馆距离相同的地方有哪些场地?(3)如果用(5,3)表示图上的水族馆的位置,那么猛兽区怎样表示?(7,5)表示什么区?,19.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?请分别写出这些路线。
新人教(七下)第7章 平面直角坐标系 综合水平测试题2及答案
第七章平面直角坐标系水平测试题(二)(时间:100分钟满分:100分)一、填空题(每小题3分,共30分)1、七年级⑵班座位有7排8列,张艳的座位在2排4列,简记为(2,4),班级座次表上写着王刚(5,8),那么王刚的座位在__________;2、点A(3,-4)到y轴的距离为_______,到x轴的距离为_____,到原点距离为_____.3、与点A(3,4)关于x轴对称的点的坐标为_______,关于y轴对称的点的坐标为_______,关于原点对称的点的坐标为_____.4、若点M(a,b)在第二象限,则点N(-b,b-a)在第________象限.5、如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋的坐标应该是________.6、四边形OABC是平行四边形,O是坐标原点,A,C坐标分别是(1,2),(3,0),则B点坐标是____________7、由坐标平面内的三点A(1,1),B(3,-1),C(1,-3)构成的△ABC是____________三角形。
8、已知△ABC三顶点坐标分别是A(-7,0)、B(1,0)、C(-5,4),那么△ABC的面积等于______.9、在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点. 观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有_____个.10、一束光线从y轴上点A(0,1)出发,经过x轴上某点C反射后经过点 B(3,3),光线从A点到B点所经过的路线长为_________;二、选择题(每小题2分,共20分)11、如图是沈阳市地图简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是( )E6,D7A、D7,E6B、D6,E7C、E7,D6D、12、平面直角坐标系中,一个四边形各顶点坐标分别为A(-1,2),B(4,-2),C(4,3),D(-1,3),则四边形ABCD的形状是()A、梯形B、平行四边形C、正方形D、无法确定13、如果P(m+3,2m+4)y轴上,那么点P的坐标是()A、(-2,0)B、(0,-2)C、(1,0)D、(0,1)14、下列关于A、B两点的说法中,(1)如果点A与点B关于y轴对称,则它们的纵坐标相同;(2)如果点A与点B的纵坐标相同,则它们关于y轴对称;(3)如果点A与点B的横坐标相同,则它们关于x轴对称;(4)如果点A与点B关于x轴对称,则它们的横坐标相同.正确的个数是( )A、1个B、2个C、3个D、4个15、在海战中,欲确定每艘战舰的位置,需要知道每艘战舰对我方潜艇的( )A、距离B、方位角C、方位角和距离D、以上都不对16、如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是3 ②实验楼的坐标是(3,3)③实验楼的坐标为(4,4)④实验楼在校门的东北方向上,距校门大约283米A、1个B、2个C、3个D、4个17、如果直线AB平行于y轴,则点A、B的坐标之间的关系是()A、横坐标相等B、纵坐标相等C、横坐标的绝对值相等D、纵坐标的绝对值相等18、在平面直角坐标系中,依次描出下列各点,并将各组内的点依次连接起来:⑴(2,1),(2,0),(3,0),(3,4);⑵(3,6),(0,4),(6,4),(3,6)。
八年级上册沪科版数学 第11章平面直角坐标系测试卷(含答案)
第11章测试卷(时间:120分钟满分:150分)题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,将点(2,1)向右平移3个单位,则所得的点的坐标是( )A.(0,5)B.(5,1)C.(2,4)D.(4,2)2.下列说法正确的是( )A.点 P(-3,5)到x轴的距离为3B.在平面直角坐标系中,点(-3,1)和(1,-3)在同一象限内C.若x=0,则点 P(x,y)在x轴上D.在平面直角坐标系中,有且只有一个点既在横轴上,又在纵轴上3.如果点A(1—a,b+1)在第三象限,那么点 B(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.点P 在第二象限,点 P到x轴的距离是5,到y轴的距离是2,那么点 P的坐标为( )A.(-5,2)B.(-2,-5)C.(-2,5)D.(2,-5)5.已知点 P(-3,-3),Q(-3,4),则直线 PQ( )A.平行于x轴B.平行于y轴C.垂直于y轴D.以上都不正确6.已知点 A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点 A 的对应点的坐标为((−2,1),则点 B 的对应点的坐标为( )A.(5,3)B.(−1,−2)C.(-1,-1)D.(0,−1)7.(2019·兰州中考)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形.A₁B₁C₁D₁,已知A(−3,5),B(−4,3),A₁(3,3),则B₁的坐标为( )A.(1,2)B.(2,1)C.(1,4)D.(4,1)8.在如图所示的平面直角坐标系内,画在透明胶片上的四边形ABCD 的点A 的坐标是(0,2).现将这张胶片平移,使点 A落在点.A′(5,−1)处,则此平移可以是( )A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位9.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(--1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=( )A.(2,—3)B.(—2,3)C.(2,3)D.(-2,-3)10.如图,长方形BCDE 的各边分别平行于x 轴与y轴,物体甲和物体乙由点 A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒的速度匀速运动,物体乙按顺时针方向以2个单位/秒的速度匀速运动,则两个物体运动后的第 2 021次相遇地点的坐标是 ( )A.(1,—1)B.(2,0)C.(—1,1)D.(-1,-1)二、填空题(本大题共4小题,每小题5分,满分20分)11.已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点 P 的坐标.12.线段AB=3,且AB∥x轴,若点A的坐标为(1,—2),则点B的坐标为 ·13.如果点 P(x,y)的坐标满足 xy>0,那么点 P 在第象限.如果满足xy=0,那么点P在.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56 个点的坐标为 .三、(本大题共2小题,每小题8分,满分16分)15.如图,是某次海战中敌我双方舰艇对峙示意图.对我方潜艇来说:(1)北偏东 40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距我方潜艇图上距离1 cm的敌方战舰有哪几艘?(3)敌方战舰C和A 在我方潜艇什么方向?(4)要确定每艘敌方战舰的位置,各需要几个数据?16.已知点A(m+2,3)和点B(m−1,2m−4),且AB‖x轴.(1)求m的值;(2)求 AB的长.四、(本大题共2小题,每小题8分,满分16分)17.已知四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在如图的平面直角坐标系中,画出此四边形;(2)求此四边形的面积.18.已知点P(2m+4,m−1),试分别根据下列条件,求出点 P 的坐标.(1)点 P 在y 轴上;(2)点 P 的纵坐标比横坐标大3;(3)点 P 在过点.A(2,−4)且与x轴平行的直线上.五、(本大题共2小题,每小题10分,满分20分)19.在平面直角坐标系中,已知点.A(−5,0),点B(3,0),点C在y轴上,三角形ABC的面积为12,试求点C的坐标.20.如图,已知三角形ABC三个顶点的坐标分别是.A(−4,−4),B(−2,−3),C(−3,−1).(1)将三角形ABC三个顶点的横坐标都加上5,纵坐标不变,分别得到点A₁,B₁,C₁,请画出三角形.A₁B₁C₁,它与三角形ABC在大小、形状和位置上有什么关系?(2)将三角形ABC三个顶点的纵坐标都加上4,横坐标不变,分别得到点A₂,B₂,C₂,,请画出三角形A₂B₂C₂,,它与三角形ABC在大小、形状和位置上有什么关系?(3)由三角形A₁B₁C₁能通过一次平移得到三角形A₂B₂C₂吗?若能,各对应点的坐标发生了怎样的变化?六、(本题满分12分)21.如图,A(-1,0),C(1,4),点B在x轴上,且AB=4.(1)求点 B 的坐标;(2)求三角形ABC的面积;(3)在y轴上是否存在点 P,使以A,B,P三点为顶点的三角形的面积为 7?若存在,请写出点 P 的坐标;若不存在,请说明理由.七、(本题满分12分)22.当m,n是正数,且满足m+n=mn时,我们称点Q(m,m n)为“完美点”.(1)若点 P(2019,a)是一个完美点,试确定a的值;(2)若点M(x,y)是“完美点”且满足.x+y=5,过M作MH⊥x轴于点H,求三角形OMH的面积.八、(本题满分14分)23.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(−2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为a,b+c,d=a+c,b+d.解决问题:(1)计算:3,1+1,2;1,2+3,1;(2)动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到点 A,再按照“平移量”{1,2}平移到点 B;若先把动点 P 按照“平移量”{1,2}平移到点C,再按照“平移量”{3,1}平移,最后的位置还是点 B吗? 在图1中画出四边形OABC;(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头 P 航行到码头Q(5,5),最后回到出发点 O.请用“平移量”加法算式表示它的航行过程.第11章测试卷1. B2. D3. D4. C5. B6. C7. B8. B9. B 10. D11.(1,-2)(答案不唯一) 12.(4,-2)或(-2,-2)13.一、三 坐标轴上 14.(11,10)15.解(1)北偏东40°的方向上有敌方战舰B 和小岛.要想确定敌方战舰B 的位置,还需要知道我方潜艇到敌方战舰B 的距离.(2)距我方潜艇图上距离1 cm 处有敌方战舰B.(3)敌方战舰C 在我方潜艇正东方向,敌方战舰A 在我方潜艇正南方向.(4)要确定每艘敌方战舰的位置,各需要方向和距离两个数据.16.解(1)因为点A 的坐标为(m+2,3),点 B 的坐标为(m-1,2m-4),且AB∥x 轴,所以2m-4=3,所以 m =72.(2)由(1)可知 m =72,所以 m +2=112,m−1=52,2m−4=3,所以点A 的坐标为( 112,3),.点B的坐标为( 52,3).因为 112−52=3,所以AB 的长为3.17.解(1)四边形ABCD 如图所示.(2)四边形的面积 =9×7−12×2×7−12×2×5−12×2×7=63-7-5-7=44.18.解(1)∵点P(2m+4,m-1)在y 轴上,∴2m+4=0,解得m=-2,则m--1=-3.∴P(0,-3).(2)由题意,得m--1--(2m+4)=3,解得m=--8.∴P(-12,-9).(3)点P 在过点A(2,-4)且与x 轴平行的直线上,则其纵坐标为-4,即m--1=-4,解得m=-3,∴P(-2,-4).19.解设点C 的坐标为(0,b),所以OC=|b|.因为A(-5,0),B(3,0),所以AB=8.因为 S ±用∗ABC =12AB ⋅OC =12,所以 12×8×|b|=12,所以|b|=3,所以b=3或-3,所以点C 的坐标为(0,3)或(0,—3).20.解(1)平移后的图形如图所示,所得三角形 A ₁B ₁C ₁与三角形ABC 的大小、形状 完 全 相同,三 角 形A ₁B ₁C ₁可以看成是三角形A BC 向右平移5个单位得到的.(2)平移后的图形如图所示,所得三角形A ₂B ₂C ₂与三角形ABC 的大小、形状完全相同,三角形 A ₂B ₂C ₂ 可以看成是三角形ABC 向上平移4个单位得到的.(3)三角形 A₁B₁C₁能通过一次平移得到三角形 A₂B₂C₂,三角形 A₁B₁C₁的各点的横坐标都减去5,纵坐标都加上4.21.解(1)因为 A (−1,0),点B 在x 轴上,且 AB =4,所以 −1−4=−5,−1+4=3.所以点B 的坐标为(-5,0)或(3,0).(2)因为C(1,4),AB=4,所以 S z→甲ABC =12AB ⋅|y c |=12×4×4=8.(3)假设存在,设点P 的坐标为(0,m),因为 S ±β对ABP =12AB ⋅|y P |=12×4×|m|=7,所以 m =±72.所以在y 轴上存在点 P (0,72)或 P (0,−72),使以A,B,P 三点为顶点的三角形的面积为7.22.解(1)由题意知 2019+n =2019n,∴n =20192018.∴a =2019÷20192018=2018.(2)∵M(x,y)是“完美点”, ∴x +n =xn.∴n =xx−1.∴y =x ÷x x−1=x−1.联立 {x +y =5,y =x−1,解得 {x =3,y =2.∴M(3,2).∴OH=3,HM=2.∴三角形OMH 的面积为 12×2×3=3.23.解(1){3,1}+{1,2}={3+1,1+2}={4,3};{1,2}+{3,1}={1+3,2+1}={4,3}.(2)最后的位置仍是点B ,如图所示.(3)从O 出发,先向右平移2 个单位,再向上平移3个单位,可知平移量为{2,3},同理得到 P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.。
11.1平面直角坐标系水平测试题
《平面直角坐标系》水平测试题A 卷 (满分:120分 时间:60分钟)一、慎重选择,展示技巧!(每小题3分,共30分)1.在平面直角坐标系中,已知点A (0,4),B (-1,0),C (0,-3),D (0.6,0),E (0,0),F (0.1,0.1),其中在y 轴上的有…( ) A.1个 B.2个 C.3个 D.4个2.如果点P (5,y )在第一象限,则y 的取值范围是…( )A.y <0B.y ≤0C.y >0D.y ≥0 3.如果点M (x ,4)不在..第一象限,则x 应满足…( ) A.x >0 B.x ≥0 C.x <0 D.x ≤04.已知点A (0,a )到x 轴的距离是3,则a 为…( )A.3B.-3C.±3D.±65.无论m 取什么实数,点(-1,-m 2-1)一定在…( )A.第一象限B.第二象限C.第三象限D.第四象限6.如果点P (m ,n )是第三象限内的点,则点Q (-n ,0)在…( ) A.x 轴正半轴上 B.x 轴负半轴上 C.y 轴正半轴上 D.y 轴负半轴上7.点P 在第二象限,并且到x 轴和y 轴的距离都是2,那么点P 的坐标为…( )A.(2,2)B.(2,-2)C.(-2,2)D.(-2,-2)8.将点P (3,-5)先向左平移2个单位,再向上平移4个单位,得到的点的坐标为…( )A.(5,-1)B.(1,-9)C.(5,-9)D.(1,-1)9.将点A (2,1)先向右平移( )个单位,再向下平移( )个单位可得到点A ’(6,-2).其中括号里应填的数分别为…( )A.2,1B.0,-1C.4,3D.3,410.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为…( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4) 二、精心填空,展示耐心!((每小题4分,共44分) 11.在平面直角坐标系中,点(2,-3)位于第 象限.12.在平面直角坐标系中,若点(x-2,6)在y 轴上,则x= .13.在平面直角坐标系中,将点(2,-4)向右平移 个单位,再向 平移 个单位,所得点的坐标为(4,2).14.已知正方形ABCD 中,A (-3,1),B (1,1),C (1,-3),则D 点的坐标是 . 15.已知P (2m-6,m+1)在第二象限,则m 的取值范围是 .16.在平面直角坐标系中,点(3,0)与点(x ,0)之间的距离为5,则x= .17.通过平移将点A (-7,6)移到点A ’(-2,2),若按同样的方式移动点B (3,1)到点B ’,则点B ’的坐标是 . 18.点P 到x 轴的距离是2,到y 轴的距离是3,且在y 轴的左侧,则P 点的坐标是 .19.在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是 .20.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy=___________.21.已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 . 三、全面作答,展示智慧!(共36分)22.(6分)有序实数对(3,2)和(2,3)表示的意义相同吗?如果有序实数对(a ,)b 表示某班位于第a 行第b 列的座位,那么有序实数对(3,2)和(2,3)分别代表什么?23.(6分)在如图所示的坐标系中描出下列各组点,并将各组内的点分别用线段依次连接起来. ①(-2,2),(-2,-1);②(-1,2),(-1,-1),(0,-1),(0,2); ③(1,2),(1,-1),(2,-1),(2,2). 观察所得的图形,你觉得它像什么?24.(8分)在平面直角坐标系中描出以下各点A (-2,0)、B (-1,3)、C (2,2)、D (2,-1).①顺次连接A 、B 、C 、D 得到四边形ABCD ; ②计算四边形ABCD 的面积.25.(8分)如图,A 点坐标为(3,4),将三角形ABC 先向下平移四个单位得到三角形A ’B ’C ’,再将三角形A ’B ’C ’向左平移三个单位得到三角形A ”B ”C ”. ①请你在图上画出三角形A ’B ’C ’和三角形A ”B ”C ”; ②观察所画的图形写出A ’和A ”的坐标;③计算三角形ABC 的面积.26.(8分)如果点A(1,3),B(1,-1),点C在x轴上,且三角形ABC的面积是10,求C 点的坐标.四、拓广探索!(10分)22.如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.⑴图中“象”的位置可表示为 .⑵根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.《平面直角坐标系》水平测试题参考答案1.C2.C3.D4.C5.C6.A7.C8.D9.C 10.C11.四 12. 2 13. 2,上,6 14.(-3,-3) 15.8或-2 16.(8,-3)17.不同;(3,2)代表位于第3行第2列的座位;(2,3)代表位于第2行第3列的座位.18.描点画图略,数字100.19.描点画图略,四边形ABCD的面积是11.(提示:用长方形包围法)20.①略② A’(3,0) A”(0,0)③ 6 (提示:用长方形包围法)21.(6,0)或(-4,0).22. ⑴“象”的位置为(5,3);⑵“马”下一步可到达的位置有(1,1)、(3,1)、(4,2)、(1,5)、(3,5)、(4,4);“象”下一步可到达的位置有(7,1)、(3,1)、(3,5)、(7,5).备用题:1.在平面直角坐标系中,横坐标和纵坐标相等点的位置在…()A.第一象限B.第三象限C.第一或第三象限D.非以上答案2.在平面直角坐标系中,关于y轴对称的两个点的坐标的特点是…()A.横坐标相等,纵坐标互为相反数B.横坐标相等,纵坐标也相等C.横坐标互为相反数,纵坐标相等D.横坐标、纵坐标都互为相反数3.点A在y轴上,并且到点(0,3)的距离是2,则点A的坐标为 .4.已知P(2m-6,m+1)在第二象限,则m的取值范围是 .5.如图是一个位于平面直角坐标系中的箭头图案.①将该箭头图案平移,使顶点A平移到B处;(在图上画出平移后的图案,并用阴影表示)②说出新图案是原图案怎样平移得到的;③再将原图案平移,使顶点A平移到C处,并且把图案的各边长都放大一倍.....(在图上画出放大后的图案,并用阴影表示)备用题答案:1.D2.C3.(0,5)或(0,1)4.-1<m<35.①略②先向右平移2个单位,再向上平移四个单位③略.第22题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平面直角坐标系》测试题
(满分:100分时间:120分钟)
姓名:
一、慎重选择,展示技巧!(每小题3分,共30分)
1.在平面直角坐标系中,已知点A(0,4),B(-1,0),C(0,-3),D(0.6,0),E (0,0),F(0.1,0.1),其中在y轴上的有…()
A.1个
B.2个
C.3个
D.4个
2.如果点P(5,y)在第一象限,则y的取值范围是…()
A.y<0
B.y≤0
C.y>0
D.y≥0
3.如果点M(x,4)不在
..第一象限,则x应满足…()
A.x>0
B.x≥0
C.x<0
D.x≤0
4.已知点A(0,a)到x轴的距离是3,则a为…()
A.3
B.-3
C.±3
D.±6
5.无论m取什么实数,点(-1,-m2-1)一定在…()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
6.如果点P(m,n)是第三象限内的点,则点Q(-n,0)在…()
A.x轴正半轴上
B.x轴负半轴上
C.y轴正半轴上
D.y轴负半轴上
7.点P在第二象限,并且到x轴和y轴的距离都是2,那么点P的坐标为…()
A.(2,2)
B.(2,-2)
C.(-2,2)
D.(-2,-2)
8.将点P(3,-5)先向左平移2个单位,再向上平移4个单位,得到的点的坐标为…()
A.(5,-1)
B.(1,-9)
C.(5,-9)
D.(1,-1)
9.将点A(2,1)先向右平移()个单位,再向下平移()个单位可得到点A’(6,-2).其中括号里应填的数分别为…()
A.2,1
B.0,-1
C.4,3
D.3,4
10.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B
(-4,-1)的对应点D的坐标为…()
A.(2,9)
B.(5,3)
C.(1,2)
D.(-9,-4)
二、精心填空,展示耐心!((每小题2分,共22分)
11.在平面直角坐标系中,点(2,-3)位于第象限.
12.在平面直角坐标系中,若点(x-2,6)在y轴上,则x= .
13.在平面直角坐标系中,将点(2,-4)向右平移个单位,再向平移
个单位,所得点的坐标为(4,2).
14.已知正方形ABCD中,A(-3,1),B(1,1),C(1,-3),则D点的坐标是 .
15.已知P(2m-6,m+1)在第二象限,则m的取值范围是 .
16.在平面直角坐标系中,点(3,0)与点(x,0)之间的距离为5,则x= .
17.通过平移将点A(-7,6)移到点A’(-2,2),若按同样的方式移动点B(3,1)
到点B’,则点B’的坐标是 .
18.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标
是 .
19.在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位长度,再向上平
移4个单位长度后得到的点的坐标是 .
20.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则
xy=___________.
21.已知AB ∥x 轴,A 点的坐标为(3,2),并且AB =5,则B 的坐标为 .
三、全面作答,展示智慧!(共48分)
22.(6分)有序实数对(3,2)和(2,3)表示的意义相同吗?如果有序实数对(a ,
)b 表示某班位于第a 行第b 列的座位,那么有序实数对(3,2)和(2,3)分别代表什么?
23.(6分)在如图所示的坐标系中描出下列各组点,并将各组内的点分别用线段依
次连接起来.
①(-2,2),(-2,-1);
②(-1,2),(-1,-1),(0,-1),(0,2);
③(1,2),(1,-1),(2,-1),(2,2).
观察所得的图形,你觉得它像什么?
24.(8分)在平面直角坐标系中描出以下各点A (-2,0)、B (-1,3)、C (2,2)、
D (2,-1).
①顺次连接A 、B 、C 、D 得到四边形ABCD ;
②计算四边形ABCD 的面积.
第19题图
25.(10分)如图,A点坐标为(3,4),将三角形ABC先向下平移四个单位得到三
角形A’B’C’,再将三角形A’B’C’向左平移三个单位得到三角形A”B”C”.
①请你在图上画出三角形A’B’C’和三角形A”B”C”;
②观察所画的图形写出A’和A”的坐标;
③计算三角形ABC的面积.
第20题图
26.(8分)如果点A(1,3),B(1,-1),点C在x轴上,且三角形ABC的面积是10,求C点的坐标.
四、拓广探索!(10分)
22.如图是中国象棋棋盘的一部分,棋盘中“马”所在的位置用(2,3)表示.
⑴图中“象”的位置可表示为 .
⑵根据象棋的走子规则,“马”只能从“日”字的一角走到与它相对的另一角;“象”只能从“田”字的一角走到与它相对的另一角.请按此规则分别写出“马”和“象”下一步可以到达的位置.
第22题图
《平面直角坐标系》水平测试题参考答案
1.C
2.C
3.D
4.C
5.C
6.A
7.C
8.D
9.C 10.C 11.四 12. 2 13. 2,上,6 14.(-3,-3) 15.8或-2 16.(8,-3)
17.不同;(3,2)代表位于第3行第2列的座位;(2,3)代表位于第2行第3列的座位.18.描点画图略,数字100.
19.描点画图略,四边形ABCD的面积是11.(提示:用长方形包围法)
20.①略② A’(3,0) A”(0,0)③ 6 (提示:用长方形包围法)21.(6,0)或(-4,0).22. ⑴“象”的位置为(5,3);
⑵“马”下一步可到达的位置有(1,1)、(3,1)、(4,2)、(1,5)、(3,5)、(4,4);“象”下一步可到达的位置有(7,1)、(3,1)、(3,5)、(7,5).
备用题:
1.在平面直角坐标系中,横坐标和纵坐标相等点的位置在…()
A.第一象限
B.第三象限
C.第一或第三象限
D.非以上答案
2.在平面直角坐标系中,关于y轴对称的两个点的坐标的特点是…()
A.横坐标相等,纵坐标互为相反数
B.横坐标相等,纵坐标也相等
C.横坐标互为相反数,纵坐标相等
D.横坐标、纵坐标都互为相反数
3.点A在y轴上,并且到点(0,3)的距离是2,则点A的坐标为 .
4.已知P(2m-6,m+1)在第二象限,则m的取值范围是 .
5.如图是一个位于平面直角坐标系中的箭头图案.
①将该箭头图案平移,使顶点A平移到B处;
(在图上画出平移后的图案,并用阴影表示)
②说出新图案是原图案怎样平移得到的;
③再将原图案平移,使顶点A平移到C处,并且把图案的各边长
都放大一倍
.....(在图上画出放大后的图案,并用阴影表示)
备用题答案:
1.D
2.C
3.(0,5)或(0,1)
4.-1<m<3
5.①略②先向右平移2个单位,再向上平移四个单位③略.。