平面直角坐标系练习题

合集下载

平面直角坐标系(习题及答案)

平面直角坐标系(习题及答案)

平面直角坐标系(习题)巩固练习1.如图,小明用手盖住的点的坐标可能是()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3) 2.平面直角坐标系中有一点P(a,b),如果a b=0,那么点P的位置在()A.原点B.x 轴上C.y 轴上D.坐标轴上3.在坐标平面内,有一点P(a,b),若a b>0,那么点P的位置在()A.第一象限B.第二象限 C.第一象限或第三象限D.第二象限或第四象限4.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第象限.5.在平面直角坐标系中,如果a<0,b>0,那么点(0,a)在。

;点(b,0)在.6.若点A(n-3,m-1)在x轴上,点B(2n+1,m+4)在y轴上,则点C(m,n)在第象限.7.若过A(4,m),B(n,-3)两点的直线与y轴平行,且A B=2,则m= ,n=_ .8.若点A(m,n)与点B(-3,-2)在同一条垂直于y轴的直线上,点A 到y轴的距离为4,则m= ,n= .9.如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(2,3),(-3,-1),(2,-1),则第四个顶点的坐标为.10.已知点P(4,-3),它到x轴的距离为,到y轴的距离为,到原点的距离为.11.点M在y轴的左侧,距离x轴4个单位长度,距离y轴3个单位长度,则点M的坐标为.12.点P(3,-2)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是,关于原点的对称点的坐标是13.点P(-2a-1,a-1)在y轴上,则点P关于x轴的对称点的坐标为.14.若点P 先向左平移 2 个单位,再向上平移 1 个单位得到P′(-1,3),则点P的坐标是.15.如图,△ABC 内部任意一点P(a,b)平移后的对应点为P′(a+4,b+1),若将△ABC 作同样的平移得到△A′B′C′,则A′,B′,C′的坐标分别为、、.16.作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(3,0),(2,0)的点用线段依次连接起来形成一个图案.回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是;(2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是.17.如图是小刚画的一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成.18.如图,若OA=OC=4,则点A 的坐标是,点C的坐标是.思考小结1.点的位置坐标的特征坐标举例第一象限(+,+)第二象限第三象限第四象限与x 轴平行的直线坐标相同与y 轴平行的直线坐标相同关于x 轴对称横坐标相同,纵坐标(a,b)与(a,-b)关于x 轴对称关于y 轴对称2.在第象限,则点P(a,b)在第象限.3.点(x,y)向左平移a个单位后的坐标为;点(x,y)向下平移b个单位后的坐标为;点(x,y)先向上平移a个单位,再向右平移b个单位后的坐标为.4.在如图所示的平面直角坐标系中,四边形ABCD 各个顶点的坐标分别是A(-3,1),B(3,3),C(4,-3),D(-2,-2).(1)这是一个不规则的四边形,所以要求面积准备采用(填“公式法”或“割补法”或“转化法”);(2)四边形ABCD 的面积为.【参考答案】巩固练习1.B2.D3.C4.四5.y 轴负半轴上;x 轴正半轴上6.四7. -1 或-5,48. 4 或 -4,-29. (-3,3)10. 3,4,511. (-3,4)或(-3,-4)12. (3,2),(-3,-2),(-3,2)13. (0,3 ) 214. (1,2)15. (1,3),(0,0),(5,2)16. 作图略(1)关于y 轴对称;(2)关于x 轴对称17. (1,0)18. ( 2 ,2),(2, 2 )思考小结1.略2.一或三,二或四3. (x-a,y);(x,y-b);(x+b,y+a)4. (1)割补法;(2)#。

初中数学八年级初二上册—平面直角坐标系单元练习题)

初中数学八年级初二上册—平面直角坐标系单元练习题)

初中数学八年级(上)—平面直角坐标系点的坐标专项练习一、选择题(共20小题)1.在平面直角坐标系中,点P (﹣2,12+x )所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.在平面直角坐标系中,将点A (﹣1,﹣2)向右平移3个单位长度得到点B ,则点B 关于x 轴的对称点B′的坐标为( )A .(﹣3,﹣2)B .(2,2)C .(﹣2,2)D .(2,﹣2)3.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)4.点P (4,﹣3)关于原点的对称点是( )A .(4,3)B .(﹣3,4)C .(﹣4,3)D .(3,﹣4)5.在平面直角坐标系中,点(﹣1,2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.点()11+-x x P ,不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限7.如图坐标系中,小正方形边长为1个单位,则点C 的坐标为( )A .(﹣1,5)B .(﹣5,1)C .(5,﹣1)D .(1,﹣5)8.点A 在x 轴上,且到坐标原点的距离是2,则点A 的坐标为( )A .()0,2-B .()0,2C .()20-,或()2,0 D .()()0,20,2或- 9.点P (3,﹣5)关于y 轴对称的点的坐标为( )A .(﹣3,﹣5)B .(5,3)C .(﹣3,5)D .(3,5)10.已知点()a a P +3 ,在第二象限,则a 的取值范围是( )A .0<aB .3->aC .03<<-aD .3-<a11.点M (﹣3,﹣2)到y 轴的距离是( )A .3B .2C .﹣3D .﹣212.在平面直角坐标系中,点P (1,1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限13.已知点P (﹣2,4),与点P 关于x 轴对称的点的坐标是( )A .(4,﹣2)B .(﹣2,﹣4)C .(2,﹣4)D .(2,4)14.在平面直角坐标系中,点P (a 2+1,﹣3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限15.下列各点中,在第二象限的点是( )A .(﹣3,2)B .(﹣3,﹣2)C .(3,2)D .(3,﹣2)16.若m 是任意实数,则点()2,22-+m M 在第( )象限A .一B .二C .三D .四17.若点P (x ,y )的坐标满足0=xy ,则点P 的位置是( )A .在x 轴上B .在y 轴上C .是坐标原点D .在x 轴上或在y 轴上18.点P 在x 轴的下方,且距离x 轴3个单位长度,距离y 轴4个单位长度,则点P 的坐标为( )A .(4,﹣3)B .(3,﹣4)C .(﹣3,﹣4)或(3,﹣4)D .(﹣4,﹣3)或(4,﹣3)19.点P (x ,y )在第二象限,且P 到x 轴、y 轴的距离分别为3,7,则P 点坐标为( )A .(﹣3,7)B .(﹣7,3)C .(3,﹣7)D .(7,﹣3)20.点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( )A .(4,2)B .(﹣2,﹣4)C .(﹣4,﹣2)D .(2,4)二.填空题(共10小题)21.点M (﹣2,1)关于x 轴对称的点N 的坐标是 .22.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为.23.在平面直角坐标系中,点P(﹣2,﹣5)关于x轴的对称点P′的坐标是.24.平面直角坐标系内,点A(n,1﹣n)一定不在.25.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.26.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.27.已知点P(a+1,2a﹣1)关于x轴对称点在第一象限,则a的取值范围为.28.点A(﹣1,2)关于y轴的对称点坐标是.29.若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是.30.点E(a,﹣5)与点F(﹣2,b)关于y轴对称,则a=,b=.三.解答题(共5小题)31.已知点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的所有“整数点A”.32.平面直角坐标系中,△ABC的三个顶点坐标分别为()()()1,,,A.B,C0-3,442(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D、E、F的坐标.33.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.34.已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.35.36.37.38.39.35.已知点()6a-aM,,试分别根据下列条件,求出M点的坐标.3+2(1)点M在x轴上;(2)点N(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.初中数学八年级(上)—平面直角坐标系点的坐标专项练习参考答案与试题解析一.选择题(共20小题)1.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.在平面直角坐标系中,将点A(﹣1,﹣2)向右平移3个单位长度得到点B,则点B关于x轴的对称点B′的坐标为()A.(﹣3,﹣2)B.(2,2)C.(﹣2,2) D.(2,﹣2)【解答】解:点A(﹣1,﹣2)向右平移3个单位长度得到的B的坐标为(﹣1+3,﹣2),即(2,﹣2),则点B关于x轴的对称点B′的坐标是(2,2),故选:B.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2) B.(﹣1,﹣2)C.(1,﹣2) D.(2,﹣1)【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.点P(4,﹣3)关于原点的对称点是()A.(4,3)B.(﹣3,4) C.(﹣4,3) D.(3,﹣4)【解答】解:点P(4,﹣3)关于原点的对称点是(﹣4,3),故选:C.5.在平面直角坐标系中,点(﹣1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(﹣1,2)在第二象限.故选:B.6.点P(x﹣1,x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1),解得x>1,故x﹣1>0,x+1>0,点在第一象限;(2),解得x<﹣1,故x﹣1<0,x+1<0,点在第三象限;(3),无解;(4),解得﹣1<x<1,故x﹣1<0,x+1>0,点在第二象限.故选:D.7.如图坐标系中,小正方形边长为1个单位,则点C的坐标为()A.(﹣1,5) B.(﹣5,1) C.(5,﹣1) D.(1,﹣5)【解答】解:如图所示:点C的坐标为:(﹣1,5).故选:A.8.点A在x轴上,且到坐标原点的距离是2,则点A的坐标为()A.(﹣2,0) B.(2,0)C.(0,﹣2)或(0,2)D.(﹣2,0)或(2,0)【解答】解:∵点A在x轴上,且到坐标原点的距离是2,∴点A的坐标为:(﹣2,0)或(2,0).故选:D.9.点P(3,﹣5)关于y轴对称的点的坐标为()A.(﹣3,﹣5)B.(5,3)C.(﹣3,5) D.(3,5)【解答】解:点P(3,﹣5)关于y轴对称的点的坐标为(﹣3,﹣5),故选:A.10.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣3【解答】解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a<0.故选:C.11.点M(﹣3,﹣2)到y轴的距离是()A.3 B.2 C.﹣3 D.﹣2【解答】解:∵点(﹣3,﹣2)到y轴的距离是其横坐标的绝对值,且|﹣3|=3,∴点到y轴的距离是3.故选A.12.在平面直角坐标系中,点P(1,1)位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(1,1)位于第一象限.故选:A.13.已知:点P(﹣2,4),与点P关于x轴对称的点的坐标是()A.(4,﹣2) B.(﹣2,﹣4)C.(2,﹣4) D.(2,4)【解答】解:与点P(﹣2,4)关于x轴对称的点的坐标是(﹣2,﹣4).故选:B.14.在平面直角坐标系中,点P(a2+1,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵a2为非负数,∴a2+1为正数,∴点P的符号为(+,﹣)∴点P在第四象限.故选:D.15.下列各点中,在第二象限的点是()A.(﹣3,2) B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【解答】解:A、(﹣3,2)在第二象限,故本选项正确;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,﹣2)在第四象限,故本选项错误.故选:A.16.若m是任意实数,则点M(m2+2,﹣2)在第()象限.A.一B.二C.三D.四【解答】解:∵m2≥0,∴m2+2≥2,∴点M(m2+2,﹣2)在第四象限.故选:D.17.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上B.在y轴上C.是坐标原点 D.在x轴上或在y轴上【解答】解:因为xy=0,所以x、y中至少有一个是0;当x=0时,点在y轴上;当y=0时,点在x轴上.当x=0,y=0时是坐标原点.所以点P的位置是在x轴上或在y轴上.故选:D.18.点P在x轴的下方,且距离x轴3个单位长度,距离y轴4个单位长度,则点P的坐标为()A.(4,﹣3) B.(3,﹣4) C.(﹣3,﹣4)或(3,﹣4) D.(﹣4,﹣3)或(4,﹣3)【解答】解:∵点P在x轴的下方,∴点P在第三象限或第四象限,∵点P距离x轴3个单位长度,距离y轴4个单位长度,∴点P的横坐标为4或﹣4,点P的纵坐标为﹣3,∴点P的坐标为(﹣4,﹣3)或(4,﹣3).故选:D.19.点P(x,y)在第二象限,且P到x轴、y轴的距离分别为3,7,则P点坐标为()A.(﹣3,7) B.(﹣7,3) C.(3,﹣7) D.(7,﹣3)【解答】解:∵P到x轴、y轴的距离分别为3,7,∴P的横坐标的绝对值为7,纵坐标的绝对值为3,∵点P(x,y)在第二象限,∴P的坐标为(﹣7,3).故选:B.20.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A.(4,2)B.(﹣2,﹣4)C.(﹣4,﹣2)D.(2,4)【解答】解:∵点P位于x轴下方,y轴左侧,∴点P在第三象限;∵距离y轴2个单位长度,∴点P的横坐标为﹣2;∵距离x轴4个单位长度,∴点P的纵坐标为﹣4;∴点P的坐标为(﹣2,﹣4),故选:B.二.填空题(共10小题)21.点M(﹣2,1)关于x轴对称的点N的坐标是N(﹣2,﹣1).【解答】解:根据题意,M与N关于x轴对称,则其横坐标相等,纵坐标互为相反数;所以N点坐标是(﹣2,﹣1).故答案为:(﹣2,﹣1).22.点P(m+3,m+1)在直角坐标系的x轴上,则P点坐标为(2,0).【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴这点的纵坐标是0,∴m+1=0,解得,m=﹣1,∴横坐标m+3=2,则点P的坐标是(2,0).23.在平面直角坐标系中,点P(﹣2,﹣5)关于x轴的对称点P′的坐标是(﹣2,5).【解答】解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,则点P(﹣2,﹣5)关于x轴的对称点P′的坐标是(﹣2,5).故答案为:(﹣2,5).24.平面直角坐标系内,点A(n,1﹣n)一定不在第三象限和原点.【解答】解:由题意可得、、、,解这四组不等式可知无解,因而点A的横坐标是负数,纵坐标是正数,不能同时成立,即点A一定不在第三象限.又n和1﹣n不能同时为0,故也一定不在原点.故答案为:第三象限和原点.25.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为(﹣3,﹣2).【解答】解:∵点A(3,﹣2)与点B关于y轴对称,∴点B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).26.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是(﹣3,2),(﹣3,﹣2).【解答】解:∵P(x,y)到x轴的距离是2,到y轴的距离是3,∴x=±3,y=±2;又∵点P在y轴的左侧,∴点P的横坐标x=﹣3,∴点P的坐标为(﹣3,2)或(﹣3,﹣2).故填(﹣3,2)或(﹣3,﹣2).27.已知点P(a+1,2a﹣1)关于x轴对称点在第一象限,则a的取值范围为﹣1<a<.【解答】解:∵点P(a+1,2a﹣1)关于x轴对称点在第一象限,∴点P在第四象限,∴,解得:﹣1<a<,故答案为:﹣1<a<.28.点A(﹣1,2)关于y轴的对称点坐标是(1,2).【解答】解:由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数,纵坐标不变,可得:点A关于y轴的对称点的坐标是(1,2).29.若点(m﹣4,1﹣2m)在第三象限内,则m的取值范围是.【解答】解:根据题意可知,解不等式组得,即<m<4.30.点E(a,﹣5)与点F(﹣2,b)关于y轴对称,则a=2,b=﹣5.【解答】解:根据平面直角坐标系中对称点的规律可知,点E(a,﹣5)与点F(﹣2,b)关于y轴对称,则a=2,b=﹣5.故答案为:2;﹣5.三.解答题(共5小题)31.已知:点A(m﹣1,4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”,请写出符合条件的“整数点A”.【解答】解:(1)由题意得,,解不等式①得,m<1,解不等式②得,m>﹣,所以,m的取值范围是﹣<m<1;(2)∵m是整数,∴m取﹣1,0,所以,符合条件的“整数点A”有(﹣2,2),(﹣1,6).32.平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4)B(2,4)C(3,﹣1).(1)试在平面直角坐标系中,标出A、B、C三点;(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称,写出D、E、F的坐标.【解答】解:(1)略;(2)由图形可得:AB=2,AB边上的高=|﹣1|+|4|=5,∴△ABC的面积=×2×5=5.(3)∵A(0,4),B(2,4),C(3,﹣1),△DEF与△ABC关于x轴对称,∴D(0,﹣4)、E(2,﹣4)、F(3,1).33.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.【解答】解:(1)∵点P(3m﹣6,m+1)在y轴上,∴3m﹣6=0,解得m=2,∴m+1=2+1=3,∴点P的坐标为(0,3);(2)点P(3m﹣6,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴3m﹣6=3×(﹣1)﹣6=﹣9,∴点P的坐标为(﹣9,0);(3)∵点P(3m﹣6,m+1)的纵坐标比横坐标大5,∴m+1﹣(3m﹣6)=5,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2);(4)∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上,∴m+1=2,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2).34.已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.【解答】解:由第二象限内的点的横坐标小于零,得a=﹣3.由第二象限内点的纵坐标大于零,得b=8,故P点坐标是(﹣3,8).35.已知点M(3a﹣2,a+6).试分别根据下列条件,求出M点的坐标.(1)点M在x轴上;(2)点N(2,5),且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.【解答】解:(1)∵点M在x轴上,∴a+6=0,∴a=﹣6,3a﹣2=﹣18﹣2=﹣20,a+6=0,∴点M的坐标是(﹣20,0);(2)∵直线MN∥x轴,∴a+6=5,解得a=﹣1,3a﹣2=3×(﹣1)﹣2=﹣5,所以,点M的坐标为(﹣5,5).(3)∵点M到x轴、y轴的距离相等,∴3a﹣2=a+6,或3a﹣2+a+6=0解得:a=4,或a=﹣1,所以点M的坐标为(10,10)或(﹣5,5)考点卡片1.非负数的性质:偶次方偶次方具有非负性.任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于0.2.解一元一次不等式组(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y 轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.4.坐标确定位置平面内特殊位置的点的坐标特征(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P(a,b)的坐标特征:①一、三象限:a=b;②二、四象限:a=﹣b.5.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.6.关于x轴、y轴对称的点的坐标(1)关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).7.坐标与图形变化-平移(1)平移变换与坐标变化①向右平移a个单位,坐标P(x,y)?P(x+a,y)①向左平移a个单位,坐标P(x,y)?P(x﹣a,y)①向上平移b个单位,坐标P(x,y)?P(x,y+b)①向下平移b个单位,坐标P(x,y)?P(x,y﹣b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)8.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.。

平面直角坐标系练习题及答案

平面直角坐标系练习题及答案

平面直角坐标系练习题及答案6.1.2 平面直角坐标系基础过关作业1.点 P(3,2) 在第一象限。

2.如图,矩形 ABCD 中,A(-4,1),B(2,1),C(2,3),则点D 的坐标为(-4,3)。

3.以点 M(-3,0) 为圆心,以5为半径画圆,分别交 x 轴的正半轴,负半轴于 P、Q 两点,则点 P 的坐标为(4,0),点 Q 的坐标为(-2,0)。

4.点 M(-3,5) 关于 x 轴的对称点 M1 的坐标是(-3,-5);关于y 轴的对称点 M2 的坐标是(3,5)。

5.已知 x 轴上的点 P 到 y 轴的距离为3,则点 P 的坐标为(C) (0,3) 或 (0,-3)。

6.在平面直角坐标系中,点(-1,m2+1) 一定在第二象限。

7.在直角坐标系中,点 P(2x-6,x-5) 在第四象限中,则 x 的取值范围是(B) -3<x<5.8.如图,在所给的坐标系中描出下列各点的位置:A(-4,4)、B(-2,2)、C(3,-3)、D(5,-5)、E(-3,3)、F(0,0)。

这些点没有明显的关系。

综合创新作业9.(综合题) 在如图所示的平面直角坐标系中描出 A(2,3)、B(-3,-2)、C(4,1) 三点,并用线段将 A、B、C 三点依次连接起来,其面积为 12.5.10.如图,是儿童乐园平面图。

建立适当的平面直角坐标系,各娱乐设施的坐标为:滑梯(5,5)、秋千(2,2)、跷跷板(-3,-3)、摇摆(0,0)。

11.(创新题) 在平面直角坐标系中,画出点 A(0,2)、B(-1,0),过点 A 作直线 L1 ∥x轴,过点 B 作 L2 ∥y轴,分析 L1、L2上点的坐标特点,由此,可以总结出在平面直角坐标系中,如果一条直线平行于 x 轴,那么这条直线上的点的 y 坐标相等;如果一条直线平行于 y 轴,那么这条直线上的点的 x 坐标相等。

12.(1) 已知点 P1(a,3) 与 P2(-2,-3) 关于原点对称,则a=2.(2) 在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是(D) (-2,-800)。

2024年第七章平面直角坐标系课堂练习题及答案7.1.2 平面直角坐标系

2024年第七章平面直角坐标系课堂练习题及答案7.1.2   平面直角坐标系

基础通关
能力突破
素养达标
(2)已知点C(m,2),若点B和点C的k系和点为点D,且点D的横坐标等于纵
坐标.
①求m的值;
解:∵点D为B(2,0)和C(m,2)的k系和点,
∴设点D的坐标为(x,y),则x=2k+mk,y=2k,即D(2k+mk,2k).
∵点D的横坐标等于纵坐标,∴2k+mk=2k.∴mk=0.
平面直角坐标系
能力突破
素养达标
能力突破
10.如果点M(m,-n)在第二象限,则点N(m-2,n-2)在 ( C )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
11.[2023·廊坊霸州市部分学校期中]已知点P的坐标是(m+2,2m-4),若点
P在y轴上,则m=
-2
;若点P到x轴的距离是6,则m=
A.(3,1)
B.(2,0)
C.(0,4)
D.(-2,-3)
7.已知点P在第四象限,且到x轴的距离为2,到y轴的距离为4,则点P的坐
标为 ( A )
A.(4,-2)
B.(-4,2)
C.(-2,4)
D.(2,-4)
(2,0)或(0,-2) .
8.若点P(m+3,m+1)在坐标轴上,则点P的坐标为
1
2
3
4Hale Waihona Puke 5678
9
7.1.2
基础通关
平面直角坐标系
能力突破
素养达标
各象限内,坐标轴上点的坐标特点
5.在平面直角坐标系中,点A(6,-7)位于 ( D )
A.第一象限
B.第二象限
C.第三象限

平面直角坐标系-练习试题.docx

平面直角坐标系-练习试题.docx

6.在平面直角坐标系中,3),则顶点C的坐标是A. (3, 7)()B. (5, 3)7.如图,将ZkAOB绕点0逆时针旋转90° ,得到点"的坐标为()A. (a, 一b)B・(b, a) D.8.已知AABC在直角世标系屮的位置如图所示,如果AA' 那么点A的对应点『的坐标为()A. (-3, 4)B. (-3, -4)C. (3, -4)D. (3, 4)9.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示•如C. (-b, a) (-a, b)B ' C与Z\ABC关于y轴对称,平面直角坐标系练习题一、选择题1.在平面直角坐标系中,点P (3, -2)在()A.第一象限B.第二象限C.第三象限D.第四彖限2.如右图,点A关于y轴的对称点的坐标是()A. (3, 3)B.(-3, 3)C. (3, -3)D. (-3, -3)3.点A(m-4, l-2m)在第三象限,则m的取值范围是()1 1A. m>—B.C. —〈m〈4D. m>42 24.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()5.小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下來修车.车修好后,因怕耽误上课,故加快速度继续匀速行驶赶往学校.下图是行驶路程S (米)与时间t(分)的函数图彖,那么符合小明骑车行驶情况的图象大致是()C. (7, 3)D. (8, 2)(2,OB7,若点A的坐标为(a, b),则果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是() A. 8. 6分钟 B. 9分钟 C. 12分钟 D. 16分钟A 点坐标为(3, 4),将OA 绕原点0逆时针旋转90 °得 )二、填空题11・如图,将边长为1的正方形OAPB 沿x 轴正方向连续翻转2006次,点P 依次落在点Pi, P2, P3, Pl,…1)2006 的位置,贝!JP2006 的横坐标 X2OO6- •12.先将一矩形ABCD 置于直角坐 标系中,使点A 与坐标系中原 点重合,边AB 、AD 分别落在x 轴、y 轴上(如图1),再将此 矩形在坐标平面内按逆时针方 向绕原点旋转30° (如图2), 若AB 二4, BC=3,则图1和图2 中点B 的坐标为 ____________ ,点C 的坐标为—二、解答题13.如图,在平面直角坐标系XOY 屮,直角梯形OABC, BC//AO, A (-2,0), B (-1, 1),将直角梯形0ABC 绕点0顺时针旋转90° 后,点A 、B 、C 分别落在A'、、C'处•请你解答下列问题:(1) 在如图直角坐标系XOY 中画出旋转后的梯形(T £ B zC'. (2) 求点A 旋转到A'所经过的弧形路线长.PyB R R\ : % : •・: ・・: •: •.: \:『 二 = -.AB(B) xA. (-4, 3)B. (-3, 4)C. (3, -4)D. (4, -3)(笫11题) 10.如图,在平面直角坐标系中, 到OA ,,则点A'的坐标是(14.如图,在平面直角坐标系中,三角形②、③是由三角形① 依次旋转所得的图形.(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图上画出再次旋转后的三角形④.15.在平面直角坐标系屮描出下列各点A (2, 1), B (0, 1), C (-4,-3), D (6, -3),并将各点用线段依次连接构成一个四边形ABCD.(1)四边形ABCD是什么特殊的四边形?(2)在四边形ABCD内找一点P,使得AAPB、ABPC> ACPD. AAPD都是等腰三角形,请写出P点的坐标.6\y■421 1 1 1 1 1■1 L 1 1-6-4-2 0 2 4—6*-2•-4■-6■平面直角坐标系练习题答案1.在平面直角坐标系中,点P (3, -2)在(D )A.第一象限B.第二象限C.第三象限D.第四象限2.如右图,点A关于y轴的对称点的坐标是(A )A.C.3.点AB. (-3, 3)D・(一3, -3)(3, 3)(3, -3)(m-4, 加)在第三象限,1A. m> —24.学校升旗仪式上,图是下图中的(AB. m<4C.则m的取值范围是(C )—<m<4 D. m>42徐徐上升的国旗的高度与吋间的关系可以用一-幅图近似地刻画,这幅 )5.小明骑自行车上学,开始以正常速度匀速行驶,途中自行车出了故障,他只好停下来修车.车修好后,因怕耽误上课,故加快速度继续匀速行驶赶往学校.下图是行驶路程S (米) 与时间t (分)的函数图彖,那么符合小明骑车行驶情况的图象大致是(D )6.在平面直角坐标系中,3),则顶点C的坐标是(C ) A.(3, 7) B. (5, 3) 3) D. (8, 2)C.⑺(2,OB',若点A的坐标为(/ b),则7.如图,将AAOB绕点0逆时针旋转90° ,得到AA'点A'的坐标为(C )A. (a, -b)B. (b, a)C. (-b, a)8.已知AABC在直角坐标系屮的位置如图所示,如果AA' B ' C'与AABC关于y轴对称, 那么点A的对应点A'的坐标为(A )A. (-3, 4)B. (-3, -4)C. (3, -4)D. (3, 4)9.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是(C )A. 8. 6分钟B. 9分钟C. 12分钟D. 16分钟D. f b)10. 如图,在平而直角坐标系屮,A 点坐标为(3, 4),将0A 绕原点0逆时针旋转90 °得 到OA',则点A ,的坐标是(A )A. (-4, 3)B. (-3, 4)C. (3, -4)D. (4, -3)填空题11. 如图,将边2为1的正方形OAPB 沿x 轴正方向连续翻转2006次,点P 依次落在点IS P2, P3, P4,…P2OO6的位置,贝1|卩2006的横坐标X2W6二2006・12.先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系中原 点重合,边AB 、AD 分别落在x 轴、y 轴上(如图1),再将此 矩形在坐标平面内按逆时针方 向绕原点旋转30° (如图2), 若AB 二4, BC 二3,则图1和图2 中占R 的坐标为(4,0) | (2右,2),点C 的坐标为二13.如图,在平面直角坐标系XOY 中,直角梯形OABC, BC 〃AO, A (-2, 0), B (-1, 1), 将直角梯形0ABC 绕点0顺时针旋转90°后,点A 、B 、C 分别落在A'、、C '处•请 你解答下列问题:(1) 在如图直角坐标系XOY 中画出旋转后的梯形V A z B zC'. (2) 求点A 旋转到A'所经过的弧形路线长.13.解:(1)如图所示,(2 )点A 旋转到A '所经过的弧形路线长2岔 2兀x 2= --------- = -------------- =714 4(DyCD<\^^O(A) bxO(A)Xy: :c•/•AoX14.如图,在平面直角坐标系中,三角形②、③是由三角形①依次旋转所得的图形. (1) 在图中标出旋转中心P 的位置,并写出它的坐标; (2) 在图上画出再次旋转后的三角形④.------------- 图笫」輕) 图(4, 3), ( 4不-3 3巧+ 4 ) :2' -2应用与探究15.在平面直角坐标系中描出下列各点A (2, 1), B (0, 1), C (-4, -3), D (6, -3),并将各点用线段依次连接构成一个四边形ABCD.(1)四边形ABCD是什么特殊的四边形?(2)在四边形ABCD内找一点P,使得AAPB、ABPC. ACPD. AAPD 都是等腰三角形, 请写出P点的坐标.[15.解:画图如右,(1)是等腰梯形;(2)P(1, V7-3)](1)四边形ABCD是等腰梯形。

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题A 卷•基础知识班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-FA-19. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。

坐标练习题加答案

坐标练习题加答案

坐标练习题加答案一、选择题1. 在平面直角坐标系中,点P(3,4)关于x轴的对称点的坐标是:A. (3,-4)B. (-3,4)C. (4,3)D. (-3,-4)答案:A2. 点Q(-1,2)与点R(1,-2)的中点坐标是:A. (0,0)B. (0,2)C. (1,0)D. (-1,0)答案:A3. 若点M的坐标为(2,-3),点N的坐标为(-2,3),则MN的长度是:A. 2√2B. 4√2C. 6√2D. 8√2答案:B二、填空题4. 在平面直角坐标系中,若点A的坐标为(a,b),且点A关于y轴的对称点的坐标为(-a,b),则a的取值范围是______。

答案:a ≠ 05. 已知点P(x,y)在第一象限,若x+y=10,且x>y,则x的取值范围是______。

答案:0 < x < 10三、解答题6. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。

解:根据中点公式,中点的坐标为:\[ M(x_m, y_m) = \left(\frac{x_A + x_B}{2}, \frac{y_A +y_B}{2}\right) \]代入点A和点B的坐标,得到:\[ M = \left(\frac{2 + (-1)}{2}, \frac{3 + (-2)}{2}\right) = (\frac{1}{2}, \frac{1}{2}) \]所以,线段AB的中点坐标为(0.5, 0.5)。

7. 已知点C(4,5)和点D(-3,1),若点E是线段CD的中点,求点E的坐标。

解:同样使用中点公式,代入点C和点D的坐标,得到:\[ E = \left(\frac{4 + (-3)}{2}, \frac{5 + 1}{2}\right) = (0.5, 3) \]因此,点E的坐标为(0.5, 3)。

四、应用题8. 在平面直角坐标系中,有一个矩形ABCD,其中A(0,0),B(6,0),C(6,8)。

坐标系的相关练习题

坐标系的相关练习题

坐标系的相关练习题一、选择题1. 在平面直角坐标系中,点P(3, 2)关于x轴的对称点坐标是()。

A. (3, 2)B. (3, 2)C. (3, 2)D. (3, 2)2. 在平面直角坐标系中,点A(2, 1)关于原点的对称点坐标是()。

A. (2, 1)B. (2, 1)C. (2, 1)D. (2, 1)3. 已知点B(3, 4),则点B到x轴的距离是()。

A. 3B. 4C. 5D. 74. 在平面直角坐标系中,点C(0, 5)位于()。

A. 第一象限B. 第二象限C. y轴上D. 第四象限5. 若点D在第二象限,且到x轴的距离等于到y轴的距离,则点D的坐标可能是()。

A. (3, 3)B. (4, 2)C. (5, 5)D. (6, 6)二、填空题1. 在平面直角坐标系中,点E(___, ___)关于y轴的对称点坐标是(5, 3)。

2. 已知点F(___, ___),点F到原点的距离是5个单位长度。

3. 在平面直角坐标系中,点G(___, ___)位于第三象限,且到x 轴的距离是4个单位长度。

4. 若点H(___, ___)在第一象限,且到x轴的距离等于到y轴的距离,则点H的坐标是(___, ___)。

5. 点I(___, ___)关于原点对称的点是(___, ___)。

三、解答题1. 在平面直角坐标系中,求点J(4, 3)关于x轴、y轴和原点的对称点坐标。

2. 已知点K(2, 5),求点K到x轴和y轴的距离。

3. 在平面直角坐标系中,点L位于第四象限,且到x轴的距离是3个单位长度,到y轴的距离是4个单位长度,求点L的坐标。

4. 若点M在第二象限,且到x轴的距离是6个单位长度,到y轴的距离是8个单位长度,求点M的坐标。

5. 已知点N在第一象限,且到原点的距离是10个单位长度,求满足条件的点N的坐标(至少写出两个)。

四、作图题1. 在平面直角坐标系中,画出点A(2, 3)、点B(3, 2)、点C(2, 3)和点D(3, 2),并标出每个点的坐标。

平面直角坐标系练习题

平面直角坐标系练习题

平面直角坐标系练习题一(考试时间:100分钟 满分:100分)一、选择题(每小题3分,共30分) 1、点A (3-,3)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限2、点P 位于y 轴左方,距y 轴3个单位长,位于x 轴上方,距x 轴四个单位长,点P 的坐标是( ) A .(3,4-)B .(3-,4)C .(4,3-)D .(4-,3)3、若点P (x ,y )的坐标满足xy =0,则点P 的位置是( )A .在x 轴上B .在y 轴上C .是坐标原点D .在x 轴上或在y 轴上 4、坐标平面内下列各点中,在x 轴上的点是( )A .(0,3)B .(3-,0)C .(1-,2)D .(2-,3-) 5、如果yx<0,),(y x Q 那么在( )象限 A .第四 B .第二 C .第一、三 D .第二、四 6、若点P (m ,n )在第三象限,则点Q (m -,n -)在( )A .第一象限B .第二象限C .第三象限D .第四象限7、线段AB 两端点坐标分别为A (1-,4),B (4-,1),现将它向左平移4个单位长度,得到线段11B A ,则11B A ,的坐标分别为( )A .1A (5-,0),1B (8-,3-) B . 1A (3,7),1B (0,5)C .1A (5-,4),1B (8-,1)D . 1A (3,4),1B (0,1)8、如图:正方形ABCD 中点A 和点C 的坐标分别为(2-,3)和(3,2-),则点B 和点D 的坐标分别为( )A .(2,2)和(3,3)B .(2-,2-)和(3,3)C .(2-,2-)和(3-,3-)D .(2,2)和(3-,3-)9、已知平面直角坐标系内点(x ,y )的纵、横坐标满足2x y =,则点(x ,y )位于( ) A .x 轴上方(含x 轴) B .x 轴下方(含x 轴) C .y 轴的右方(含y 轴) D .y 轴的左方(含y 轴) 10、已知03)2(2=++-b a ,则P (a -,b -)的坐标为( )A .(2,3)B .(2,3-)C .(2-,3)D .(2-,3-)二、填空题(每小题4分,共24分),3(-的横坐标是,纵坐标11、有了平面直角坐标系,平面内的点就可以用一个来表示了.点)4是.12、设点P在坐标平面内的坐标为P(x,y),则当P在第一象限时x____0 ,y____0;当点P在第四象限时,x___0,y____0.13、到x轴距离为2,到y轴距离为3的坐标为.14、在平面直角坐标系中,将点(2,5-)向右平移3个单位长度,可以得到对应点坐标(__,__);将点(2-)向左平移3个单位长度可得到对应点(_,_);将点(2,5)向上平移3单位长度可得对-,5应点(__,___ );将点(2-,5)向下平移3单位长度可得对应点(_ ,_).三、解答题(共5小题,计46分,解答应写出过程)15、(本题7分)在平面直角坐标系中,依次描出下列各点,并将各点用线段依次连接起来;(2,1)(6,1)(6,3)(7,3)(4,6)(1,3)(2,3)16、(本题8分)将下图方格中的图案作下列变换,请画出相应的图案:(1)沿y轴正向平移4个单位;(2)关于y轴轴对称.17、(本题10分)下图中标明了小英家附近的一些地方.以小英家为坐标原点,建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,1-),(0,1-),(1-,2-),(3-,1-)的路线转了一下,又回到家里,写出路上她经过的地方.18、(本题10分)在如图所示的直角坐标系中,四边形ABCD 的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0)确定这个四边形的面积.你是怎样做的?19、(本题11分)用围棋棋子可以在棋盘中摆出许多有趣的图案.如图(1),•在棋盘上建立平面直角坐标系,以直线x y =为对称轴,我们可以摆出一个轴对称图案(其中A 与A ′是对称点),你看它像不像一只美丽的鱼.(1)请你在图(2)中,也用10枚以上..的棋子摆出一个以直线x y =为对称轴的对称图案, 并在所作的图形中找出两组对称点,分别标为B 、B ′、C 、C ′(•注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B 、B ′、C 、C ′的坐标分别是:B ______,B ′______,C _______,C ′_______;根据以上对称点坐标的规律,写出点P (a ,b )关于对称轴x y =的对称点P ′的坐标是________.yxD(12,0)C(9,8)0121110131211987654321987654321B(2,5)A(0,0)10平面直角坐标系练习题精选二一、填空题1.点(-3,2)在第______象限;点(2,-3)在第______象限.2.点(p,q)既在x轴上,又在y轴上,则p=______;q=_________.3.点(p,q)到x轴距离是________;到y轴距离是________.4.点P(a,-a)是在______象限的角平分线上;或在________.5.若P1(x1,y1)、P2(x2,y2)两点关于原点对称,则x1与x2关系为_______,y1与y2•的关系为_______.6.如图1为某地区A、B、C、D四座城市,附近要建一所核电站E,向四座城市供电,试建立适当的直角坐标系,写出各点的坐标_____________________________________________________.二、选择题7.已知P(-4,3),与P关于x轴对称的点的坐标是()A.(-3,4) B.(-4,-3) C.(-3,-4) D.(4,-3)8.已知x轴上一点A(6,0),y轴上一点B(0,b),且AB=10,则b的值为()A.8 B.-8 C.±8 D.以上答案都不对9.一个平行四边形的三个顶点的坐标分别是(0,0)、(2,0)、(1,2),则第四个顶点的坐标为()A.(-1,2) B.(1,-2) C.(3,2)D.(1,-2)或(-1,2)或(3,2)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)11.直角坐标系中,点P(x,y),xy<0,x<y,且P到x轴、y轴的距离分别为3,7,则P点的坐标为() A.(-3,-7) B.(-7,3) C.(3,-7) D.(7,-3)三、解答题12.边长为5的等边三角形ABC,以B点为原点,以BC边所在的直线为x•轴建立直角坐标系写出A、B、C各点的坐标.13.求以点(0,3)为圆心,5为半径的圆与x轴、y轴的四个交点的坐标.14.收集一些校园附近有代表性的建筑,绘制出相关的平面分布图.平面直角坐标系练习题一参考答案1、参考答案:B .考核的知识点:象限内点坐标的特征2、参考答案:B .考核的知识点:点坐标到坐标轴的距离与坐标之间的关系3、参考答案:D .考核的知识点:坐标轴上点的特征4、参考答案:B .考核的知识点:坐标轴上点的特征5、参考答案:C .考核的知识点:象限内点坐标的特征6、参考答案:C .考核的知识点:象限内点坐标的特征7、参考答案:C .考核的知识点:平移的性质8、参考答案:B .考核的知识点:关于坐标轴对称的点坐标的特征 9、参考答案:A .考核的知识点:函数图像上点坐标的特征 10、参考答案:C .考核的知识点:通过计算确定点的坐标 二、填空题(每小题4分,共24分)11、参考答案:坐标(或有序数对);3;4-.考核的知识点:平面直角坐标系的概念 12、参考答案:>,>;>,<.考核的知识点:象限内点坐标的特征 13、参考答案:(3,2)、(3,2-)、(3-,2)、(3-,2-).考核的知识点:平面直角坐标系中的点到坐标轴的距离 14、参考答案:(5,5-);(5-,5-);(2,8);(2-,2).考核的知识点:平面直角坐标系中点坐标平移的特征 三、解答题(共5小题,计46分,解答应写出过程)15、参考答案:如图所示:考核的知识点:平面直角坐标系中点的坐标 16、参考答案:如图所示:考核的知识点:坐标平面内图形的平移 17、参考答案:(1)汽车站(1,1),消防站(2,2-);(2)小英路上经过的地方:游乐场,公园,姥姥家,宠物店,邮局.考核的知识点:平面直角坐标系在生活中的应用18、参考答案:面积为5+10.5+35+12=62.5.用分割法:可将四边形分成三个直角三角形和一个矩形来进行计算. 考核的知识点:点的坐标与四边形面积的综合题 19、参考答案:(1)如图所示:(2)(3,10);(10,3);(7,10);(10,7);(b ,a )yxD(12,0)C(9,8)0121110131211987654321987654321B(2,5)A(0,0)10考核的知识点:坐标平面内对称点的性质平面直角坐标系练习题二参考答案1.二四 2.0 0 3.│q││p│ 4.二、四原点 5.x1+x2=0 y1+y2=0 6.答案不唯一7.B 8.C 9.D 10.A 11.B12.A(2.5,),B1(0,0),C1(5,0);2),B2(0,0),C2(5,0);A2(2.5,-2),B3(0,0),C3(-5,0);A3(-2.5,2A4(-2.5,),B4(0,0),C4(-5,0);13.(4,0),(-4,0),(0,-2),(0,8)14.略。

平面直角坐标系练习题3套带答案

平面直角坐标系练习题3套带答案

一、选择题1,点P (m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为( )A.(0,-2)B.(2,0)C.(0,2)D.(0,-4) 2,在直角坐标系xOy 中,已知A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A.2个B.3个C.4个D.5个3,如图1所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4,在平面直角坐标系中,若点()13-+,m m P 在第四象限,则m 的取值范围为( )A 、-3<m <1B 、m >1C 、m <-3D 、m >-3 5,已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( )A.3B.5C.6D.76,小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向 7、已知如图2中方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格的顶点上确定一 点C ,连结AB ,AC ,BC ,使△ABC 的面积为2平方单位.则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2) 8,如图3,若△ABC 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-3)那么将△ABC 作同榉的平移得到△A 1B 1C 1,则点A 的对应点A 1的坐标是( )A.(4,1)B.(9,一4)C.(一6,7)D.(一1,2)9,已知点A (2,0)、点B (-12,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形.则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10,已知点A (0,-1),M (1,2),N (-3,0),则射线AM 和射线AN 组成的角的度数( )A.一定大于90°B.一定小于90°C.一定等于90°D.以上三种情况都有可能二、填空题11,已知点M (a ,b ),且a ·b >0,a +b <0,则点M 在第___象限. 12,如图4所示,从2街4巷到4街2巷,走最短的路线的走法共有___种.13,如图5所示,进行“找宝”游戏,如果宝藏藏在(4,5)字母牌的下面,那么应该在字母___的下面寻找.14,点P (a ,b )与点Q (a ,-b )关于___轴对称;点M (a ,b )和点N (-a ,b ) 关于___轴对称.15,△ABC 中,A (-4,-2),B (-1,-3),C (-2,-1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度,则对应点A ′、B ′、C ′的坐标分别为___、___、___.16,已知点M (-4,2),将坐标系先向下平移3个单位长度,再向左平移3个单位长度,则点M 在新坐标系内的坐标为___.17,在一座共8层的商业大厦中,每层的摊位布局基本相同.小明的父亲在6楼的位置如图3所示,其位置可以表示为(6,2,3).若小明的母亲在5楼,其摊位也可以用如图6表示,则小明的母亲的摊位的位置可以表示为___.18,观察图象,与如图7中的鱼相比,图5中的鱼发生了一些变化.若图7中鱼上点P 的坐标为(4,3.2),则这个点在如图8中的对应点P 1的坐标为___(图中的方格是1×1).19,长方形ABCD 中,A 、B 、C 三点的坐标分别是A (6,4),B (0,4),C (0,0)则D 点的坐标是 .20,如图9在一个规格为4×8的球台上,有两个小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则O 点的位置可表示为 .三、解答题(共36分)21,如图10所示的直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (0,0),B (3,6),C (14,8),D (16,0),确定这个四边形的面积.22,如图11所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?23,如果│3x +3│+│x +3y -2│=0,那么点P (x ,y )在第几象限?点Q (x +1,y-1)在坐标平面内的什么位置?图4(街)(巷)2354114532图7图8图5(2)A B C D E F G H I J K L M N O P Q R S TU V W X Y图10(3,6)(16,0)(14,8)(0,0)C D B A xy图112365417图3相帅炮图1图3 图2图924,如图12所示,C 、D 两点的横坐标分别为2,3,线段CD =1;B 、D 两点的横坐标分别为-2,3,线段BD =5;A 、B 两点的横坐标分别为-3,-2,线段AB =1.(1)如果x 轴上有两点M (x 1,0),N (x 2,0)(x 1<x 2),那么线段MN 的长为多少?(2)如果y 轴上有两点P (0,y 1),Q (0,y 2)(y 1<y 2),那么线段PQ 的长为多少?25,如图13,三角形ABC 中任意一点P (x 0,y 0),经平移后对称点为P 1(x 0+3,y 0-5),将三角形作同样平移得到三角形A 1B 1C 1,求A 1、B 1、C 1 的坐标, 并在图中画出A 1B 1C 1的位置.26,如图14将图中的点(一5,2)(一3,3)(一1,2)(一4,2)(一2,2)(一2,0)(一4,0)做如下变化:(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?图12图14第6章平面直角坐标系综合练习题(2)一、1,B;2,C;3,C;4,A;5,A;6,B;7,C;8,A;9,C;10,C.二、11,三;12,6;13,X;14,x、y;15,(0,1)、(3,0)、(2,2);16,(-1,5);17,(5,4,2);18,P1(4,2.2);19,(6,0);20,(3,4).三、21,94;22,3个格;23,根据题意可得3x+3=0,x+3y-2=0,解得y=1,x=2-3y=-1,所以点P(x,y),即P(-1,1) 在第二象限Q(x+1,y-1),即Q(0,0)在原点上;24,(1)MN=x2-x1.(2)PQ=y2-y1;25,A1(2,-1),B1(-1,6) C1(4,-4),图略;26,(1)所得的图形与原来的图形相比向下平移了4个单位长度.(2)所得的图形与原来的图形相比向右平移了6个单位长度;27,P2(1,-1) ,P7(1,1) ,P100(1,-3).第6章平面直角坐标系综合练习题(3)一、选择题1,如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5) B.(5,4) C.(4,2) D.(4,3)2,如图2所示,横坐标正数,纵坐标是负数的点是( )A.A 点B.B 点C.C 点D.D 点 3,(2008年扬州市)在平面直角坐标系中,点P (-1,2)的位置在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4,已知点A (-3,2),B (3,2),则A 、B 两点相距( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度5,点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半轴上 6,若点P 的坐标是(m ,n ),且m <0,n >0,则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限7,已知坐标平面内点A (m 、n )在第四象限,那么点B (n 、m )在( )A.第一象限B.第二象限C.第三象限D.第四象限 8,把点P 1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P 2处,则P 2的坐标是( ) A.(5,-1) B.(-1,-5) C.(5,-5) D.(-1,-1)9,如图3,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个的坐标是( )A.(2,2)(3,4)(1,7) B.(一2,2)(4,3)(1,7)C.(一2,2)(3,4)(1,7)D.(2,一2)(3,3)(1,7)10,在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A ′点,则A 与A ′的关系是( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将A 点向x 轴负方向平移一个单位 二、填空题11,电影票上“4排5号”,记作(4,5),则5排4号记作___. 12,点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___.13,在平面直角坐标系中,点(3,-5)在第___象限. 14,已知a <b <0,则点A (a -b ,b )在___象限.15,△ABO 中,OA =OB =5,OA 边上的高线长为4,将△ABO 放在平面直角坐标系中,使点O 与原点重合,点A 在x 轴的正半轴上,那么点B 的坐标是___.16,已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为___.17,△ABC 的三个顶点A (1,2),B (-1,-2),C (-2,3)将其平移到点A ′(-1,-2)处,使A 与A ′重合,则B 、C 两点坐标分别为 , .18,把面积为10cm 2的三角形向右平移5cm 后其面积为 . 19,菱形的四个顶点都在坐标轴上,已知其中两个顶点的坐标分别是(3,0),(0,4),则另两个顶点的坐标是____.20,如图4所示,如果点A 的位置为(-1,0),那么点B 的位置为___,点C 的位置为___,点D 和点E 的位置分别为___、___.三、解答题21,用有序数对表示物体位置时,(-3,2)与(2,-3)表示的位置相同吗?请结合图形说明.22,如果点A 的坐标为(-a2-3,b 2+2),那么点A 在第几象限?说说你理由.23,如图5所示,图中的“马”能走遍棋盘中的任何一个位置吗?.24,在直角坐标系中描出下列各组点,并组各组的点用线段依次连结起来.(1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0); (2)(2,0)、(5,3)、(4,0); (3)(2,0)、(5,-3)、(4,0).观察所得到的图形像什么?如果要将此图形向上平移到x 轴上方,那么至少要向上平移几个单位长度.25,如图6笑脸的图案中,左右两眼的坐标分别为(4,3)和(6,3),嘴角左右端点分别为(4,1)和(6,1)试确定经过下列变化后,左右眼和嘴角左右两端的点的坐标.(1)将笑脸沿x 轴方向,向左平移2个单位的长度. (2)将笑脸沿y 轴方向,向左平移1个单位的长度.图5(1)DCB A五行三行六行六列五列四列三列二列一列图1 图2(3)图4图3图626,如图7,在平面直角坐标系中,已知点为A (-2,0),B (2,0). (1)画出等腰三角形ABC (画出一个即可); (2)写出(1)中画出的ABC 的顶点C 的坐标.27,如图8,△ABC 三个顶点的坐标分别为A (4,3),B (3,1),C (4,1).(1)将三角形ABC 三个顶点的横坐标都减去6,纵坐标不变,分别得到点A 1,B 1,C 1,依次连接A 1,B 1,C 1各点,所得△A 1B 1C 1与三角形ABC 的大小、形状和位置上有什么关系?(2)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点A 2,B 2,C 2,依次连接A 2,B 2,C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系?第6章平面直角坐标系综合练习题(3)一、1,A ;2,B ;3,B ;4,D ;5,A ;6,B ;7,B ;8,C ;9,C ;10,B .二、11,(5,4);12,(0,0);13,四;14,三;15,(3,4)或(3,-4);16,(-3,2);17、B (一3,一6)、C (一4,一1);18,10;19,(-3,0)、(0,-4);20,(-2,3)、(0,2)、(2,1)、(-2,1).三、21,不同,图略;22,第二象限,因为-a 2-3<0,b 2+2>0;23,马能走遍棋盘中的任何一个位置,只需说明马能走到相邻的一个格点即可;24,至少要向上平移3个以单位长度;25,(1)(2,3)、(4,3)、(2,1)、(4,1).(2)(4,4)、(6,4)、(4,2)、(6,2);26,略;27,(1)所得△A 1B 1C 1与△ABC 的大小、形状完全相同,△A 1B 1C 1可以看作△ABC 向左平移6个单位长度得到的.(2)类似地△A 2B 2C 2与△ABC 的大小、形状完全相同,可以看作△ABC 向下平移5个单位长度得到的.图略.图7图8。

坐标练习题

坐标练习题

坐标练习题一、单选题1. 在直角坐标系中,点A的坐标是(2, 3),点B的坐标是(1, 4),则线段AB的中点坐标是:A. (1, 0.5)B. (1, 1)C. (0.5, 1)D. (1, 1)2. 在平面直角坐标系中,点P的坐标是(3, 2),点Q的坐标是(3,2),则点P关于原点的对称点坐标是:A. (3, 2)B. (3, 2)C. (3, 2)D. (3, 2)3. 在平面直角坐标系中,点A的坐标是(5, 6),点B的坐标是(5,6),则线段AB的长度是:A. 10B. 20C. 30D. 404. 在平面直角坐标系中,点P的坐标是(4, 3),点Q的坐标是(4,3),则点P关于x轴的对称点坐标是:A. (4, 3)B. (4, 3)C. (4, 3)D. (4, 3)5. 在平面直角坐标系中,点A的坐标是(0, 5),点B的坐标是(5,0),则线段AB的斜率是:A. 1B. 1C. 0D. 无穷大二、填空题6. 在直角坐标系中,点M的坐标是(3, 2),则点M关于y轴的对称点坐标是______。

7. 在平面直角坐标系中,点P的坐标是(2, 3),点Q的坐标是(2, 3),则线段PQ的中点坐标是______。

8. 在平面直角坐标系中,点A的坐标是(7, 8),点B的坐标是(7,8),则线段AB的长度是______。

9. 在平面直角坐标系中,点P的坐标是(1, 2),点P关于x轴的对称点坐标是______。

10. 在平面直角坐标系中,点A的坐标是(3, 4),点B的坐标是(3, 4),则线段AB的斜率是______。

三、判断题11. 在平面直角坐标系中,任意一点关于x轴的对称点,其横坐标不变,纵坐标取相反数。

()12. 在平面直角坐标系中,任意一点关于y轴的对称点,其纵坐标不变,横坐标取相反数。

()13. 在平面直角坐标系中,任意一点关于原点的对称点,其坐标变为原来的相反数。

()14. 在平面直角坐标系中,两点之间的距离等于它们坐标差的平方和的平方根。

平面直角坐标系练习题

平面直角坐标系练习题

平面直角坐标系练习题1.已知点P的坐标为(﹣3,﹣4),则点P到y轴的距离为()A.﹣3B.3C.4D.﹣42.点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<04.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)5.已知点P(x,y)在第四象限,且到y轴的距离为3,到x轴的距离为5,则点P的坐标是()A.(3,﹣5)B.(5,﹣3)C.(﹣3,5)D.(﹣5,3)6.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,5)D.(44,2)7.在平面直角坐标系中,在第三象限的点是()A.(﹣3,5)B.(1,﹣2)C.(﹣2,﹣3)D.(1,1)8.已知点P(2﹣x,3x+6),且点P到两坐标轴的距离相等,则点P的坐标为()A.(﹣6,6)B.(3,﹣3)C.(6,﹣6)或(3,3)D.(﹣6,6)或(﹣3,﹣3)9.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)10.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如果P(m+3,2m+1)在y轴上,那么点P的坐标是.12.已知点P(x,y)的坐标满足|x|=5,y=,则xy<0,则点P的坐标是.13.已知M(3a﹣2,a+6),若点M到两坐标轴的距离相等,则a的值为.14.若点P(1﹣a,1+b)在第四象限,则点(a﹣1,b)在第象限.15.若点P(a+5,2a+1)在第二、四象限角平分线上,则a=.16.若点P(a,b)到x轴的距离是4,到y轴的距离是3,且|a﹣b|=b﹣a,则点P的坐标是.17.在平面直角坐标系中,点P(m2+1,﹣3)在第象限.18.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.19.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC.20.在平面直角坐标系中,有A(0,a),B(b,0)两点,且a,b满足b=(1)求A,B两点的坐标;(2)若点P在x轴上,且△P AB的面积为6,求点P的坐标.函数练习题一:平面直角坐标系答案1.已知点P的坐标为(﹣3,﹣4),则点P到y轴的距离为()A.﹣3B.3C.4D.﹣4【解答】解:∵点P的坐标为(﹣3,﹣4),∴点P到y轴的距离为:|﹣3|=3.故选:B.2.点(2,﹣2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由题可得,点(2,﹣2)所在的象限是第四象限,故选:D.3.若点P(a﹣2,a)在第二象限,则a的取值范围是()A.0<a<2B.﹣2<a<0C.a>2D.a<0【解答】解:由题意得:,解得:0<a<2,故选:A.4.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(﹣1,﹣1),“马”位于点(2,﹣1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)【解答】解:如图所示:则“兵”位于(﹣3,2).故选:B.5.已知点P(x,y)在第四象限,且到y轴的距离为3,到x轴的距离为5,则点P的坐标是()A.(3,﹣5)B.(5,﹣3)C.(﹣3,5)D.(﹣5,3)【解答】解:∵点P(x,y)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∵点P到x轴的距离为5,∴点P的纵坐标是﹣5,∴点P的坐标(3,﹣5);故选:A.6.如图,一个粒子在第一象限内及x轴、y轴上运动,在第一分钟,它从原点运动到点(1,0);第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个单位长度,那么在第2021分钟时,这个粒子所在位置的坐标是()A.(44,4)B.(44,3)C.(44,5)D.(44,2)【解答】解:由题知(0,0)表示粒子运动了0分钟,(1,1)表示粒子运动了2=1×2分钟,将向左运动,(2,2)表示粒子运动了6=2×3分钟,将向下运动,(3,3)表示粒子运动了12=3×4分钟,将向左运动,...于是会出现:(44,44)点粒子运动了44×45=1980分钟,此时粒子将会向下运动,∴在第2021分钟时,粒子又向下移动了2021﹣1980=41个单位长度,∴粒子的位置为(44,3),故选:B.7.在平面直角坐标系中,在第三象限的点是()A.(﹣3,5)B.(1,﹣2)C.(﹣2,﹣3)D.(1,1)【解答】解:A、(﹣3,5)在第二象限,不符合题意;B、(1,﹣2)在第四象限,不符合题意;C、(﹣2,﹣3)在第三象限,符合题意;D、(1,1)在第一象限,不符合题意,故选:C.8.已知点P(2﹣x,3x+6),且点P到两坐标轴的距离相等,则点P的坐标为()A.(﹣6,6)B.(3,﹣3)C.(6,﹣6)或(3,3)D.(﹣6,6)或(﹣3,﹣3)【解答】解:∵点P(2﹣x,3x+6)到两坐标轴的距离相等,则①2﹣x+3x+6=0 解得:x=﹣4,∴点P的坐标为(6,﹣6)②2﹣x=3x+6,解得:x=﹣1,∴点P的坐标为(3,3),综上:点P的坐标为(3,3),(6,﹣6),故选:C.9.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是()A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)【解答】解:如图所示:市场的位置是(5,3),故选:D.10.在平面直角坐标系中,若点A(a,﹣b)在第三象限,则点B(﹣ab,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点A(a,﹣b)在第三象限,∴a<0,﹣b<0,∴b>0,∴﹣ab>0,∴点B(﹣ab,b)所在的象限是第一象限.故选:A.11.如果P(m+3,2m+1)在y轴上,那么点P的坐标是(0,﹣5).【解答】解:∵P(m+3,2m+1)在y轴上,∴m+3=0,解得m=﹣3,即2m+1=﹣6+1=﹣5.即点P的坐标为(0,﹣5).故答案为:(0,﹣5).12.已知点P(x,y)的坐标满足|x|=5,y=,则xy<0,则点P的坐标是(﹣5,).【解答】解:∵|x|=5,∴x=5或﹣5,∵xy<0,y=,∴x=﹣5,∴点P的坐标为(﹣5,).故答案为:(﹣5,).13.已知M(3a﹣2,a+6),若点M到两坐标轴的距离相等,则a的值为4或﹣1.【解答】解:∵M(3a﹣2,a+6),若点M到两坐标轴的距离相等,∴|3a﹣2|=|a+6|,∴3a﹣2=a+6或3a﹣2=﹣(a+6),∴a=4或a=﹣1,故答案为4或﹣1.14.若点P(1﹣a,1+b)在第四象限,则点(a﹣1,b)在第三象限.【解答】解:∵点P(1﹣a,1+b)在第四象限,∴1﹣a>0,1+b<0,∴a<1,b<﹣1,∴a﹣1<0,b<0,∴(a﹣1,b)在第三象限,故答案为:三.15.若点P(a+5,2a+1)在第二、四象限角平分线上,则a=﹣2.【解答】解:由点P(a+5,2a+1)点在第二、四象限的角平分线上,得a+5+2a+1=0,解得a=﹣2,故答案为:﹣2.16.若点P(a,b)到x轴的距离是4,到y轴的距离是3,且|a﹣b|=b﹣a,则点P的坐标是(3,4)或(﹣3,4).【解答】解:∵点P(a,b)到x轴的距离是4,到y轴的距离是3,∴a=±3,b=±4,∵|a﹣b|=b﹣a,∴b﹣a>0,则b>a,当b=4,则a=±3,当b=﹣4,a的值不合题意,故点P的坐标是:(3,4)或(﹣3,4).故答案为:(3,4)或(﹣3,4).17.在平面直角坐标系中,点P(m2+1,﹣3)在第四象限.【解答】解:因为m2+1≥1,所以点P(m2+1,﹣3)在第四象限.故答案为:四.18.在给出的平面直角坐标系中描出点A(﹣3,4),B(﹣3,﹣3),C(3,﹣3),D(3,4),并连接AB,BC,CD,AD.【解答】解:如图,描出点A(﹣3,4)、B(﹣3,3)、C(3,﹣3)、D(3,4),19.如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标;(2)求出S△ABC.【解答】解:(1)A(﹣1,﹣1),B(4,2),C(1,3);(2)S△ABC=4×5﹣=7.20.在平面直角坐标系中,有A(0,a),B(b,0)两点,且a,b满足b=(1)求A,B两点的坐标;(2)若点P在x轴上,且△P AB的面积为6,求点P的坐标.【解答】解:(1)依题意,得:,解得a=﹣2;则b=﹣3.所以A(0,﹣2),B(﹣3,0);(2)设P(x,0),由题意知,|x+3|×2=6.解得x=3或x=﹣9.所以点P的坐标(3,0)或(﹣9,0).。

平面直角坐标系-基础练习(含答案).doc

平面直角坐标系-基础练习(含答案).doc

D. mW — 2 A.第一象限 B.第二象限 C.第三象限 D.第四象限)C .点CD .点。

平面直角坐标系练习一、选择题1. 点F(m, 1)在第二象限内,则点Q(-m, 0)在( )A. x 轴正半轴上B.工轴负半轴上C. _y 轴正半轴上D. y 轴负半轴上2. 点P(2m-1,3)在第二象限,则仞的取值范围是()A. m > —B. m —C. m < — 22 2 3.对任意实数x,点P(x, x 2 - 2x)-定不在( ) • •4. 如图,小明从点。

出发,先|可西走40米,再向南走30米到达点如果点M 的位置用(-40, -30)表示,那么(10, 20)表示的位置是(A .点AB .点B5. 在平面直角坐标系中,将点A(l, 2)的横坐标乘以一1,纵坐标不变,得到点则点A 与点/T 的关系是()A.关于x 轴对称B.关于),轴对称C.关于原点对称D.将点A 向x 轴负方向平移一个单位得点A'6. 如图,。

为矩形ABCD 的中心,将直角三角板的直角顶点与。

点重合,转动三角板使两直角边始终与BC 、相交,交点分别为M 、N.如果AB=4, AD=6,。

M= x , ON= y 则y 与x 的关系是 A 2 口 6 厂c 3 A.y = —x B. y = — C. y = x D. y = —x 3 x 2二、填空题7. 若初为整数,且点(12—4用,14一3梢在第二象限,则m 2 +2009 =8. 在直角坐标系尤。

〉中,点P (4, y)在第一象限内,且。

户与尤轴正半轴的夹角为60",则y 的值是:9.在平面直角坐标系中,点A的坐标为(1,1),点B的坐标为(11,1),点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.10.在平面直角坐标系中,有A(0, 1), 5(-1, 0), C(l, 0)三点坐标.若点。

与A, B, C三点构成平行四边形,请写出所有符合条件的点。

坐标练习题

坐标练习题

一、坐标系基础1. 坐标系中,点A的坐标为(2, 3),点B的坐标为(1, 5),求线段AB的长度。

2. 在直角坐标系中,点P的坐标为(3, 4),点Q的坐标为(1, 2),求线段PQ的中点坐标。

3. 已知点M的坐标为(0, 0),点N的坐标为(6, 8),求直线MN的斜率。

4. 在平面直角坐标系中,点A的坐标为(4, 6),点B的坐标为(8, 2),求直线AB的方程。

5. 已知点C的坐标为(3, 2),直线y=2x+1,求点C到直线的距离。

二、平面几何6. 在平面直角坐标系中,三角形ABC的三个顶点坐标分别为A(1, 2),B(4, 6),C(7, 1),求三角形ABC的面积。

7. 已知点D的坐标为(2, 3),点E的坐标为(5, 7),求线段DE的中垂线方程。

8. 在平面直角坐标系中,点F的坐标为(1, 3),点G的坐标为(3, 1),求线段FG的长度。

9. 已知点H的坐标为(0, 0),点I的坐标为(4, 0),点J的坐标为(0, 4),求三角形HIJ的周长。

10. 在平面直角坐标系中,点K的坐标为(2, 1),点L的坐标为(1, 3),求线段KL的长度。

三、解析几何11. 已知直线y=3x+2,求该直线与x轴和y轴的交点坐标。

12. 在平面直角坐标系中,直线l的方程为y=2x+5,求直线l与直线y=4的交点坐标。

13. 已知点M的坐标为(2, 3),直线l的方程为y=x+1,求点M到直线l的距离。

14. 在平面直角坐标系中,直线l的方程为2x+3y6=0,求直线l与x轴和y轴的交点坐标。

15. 已知直线l的方程为y=2x1,求直线l与直线y=x+3的交点坐标。

四、坐标系变换16. 将点P(3, 4)绕原点逆时针旋转90度,求旋转后点P'的坐标。

17. 将点Q(2, 3)绕点A(1, 1)顺时针旋转180度,求旋转后点Q'的坐标。

18. 将点R(5, 2)沿x轴方向平移3个单位,求平移后点R'的坐标。

平面直角坐标系练习题(打印版)

平面直角坐标系练习题(打印版)

平面直角坐标系练习题(打印版)一、基础题1. 坐标点的表示在平面直角坐标系中,点A的坐标为(3, 4),请写出点B的坐标,使得AB垂直于x轴。

2. 坐标点的移动如果点P的坐标为(-2, 5),它向右移动3个单位,向下移动1个单位,求新坐标。

3. 坐标系中的图形画出一个以(0, 0)为中心,半径为5的圆,并标出圆上任意两点的坐标。

二、中等题4. 距离的计算已知点A(1, 2)和点B(4, 6),求AB两点之间的距离。

5. 直线的方程若点C(2, -1)和点D(-3, 4)在同一直线上,求这条直线的方程。

6. 中点的坐标已知线段AB,A(3, -1)和B(-2, 5),求线段AB的中点坐标。

三、提高题7. 斜率的计算已知直线l过点E(-1, 3),且斜率为4/3,求直线l的方程。

8. 平行线的性质若直线m的方程为y = 2x + 1,求与m平行且在y轴上截距为-3的直线方程。

9. 垂直平分线已知点F(-4, 2)和点G(6, -3),求线段FG的垂直平分线方程。

四、拓展题10. 坐标变换将平面直角坐标系中的点H(2, -3)绕原点顺时针旋转90度,求旋转后点H'的坐标。

11. 图形的对称性若点I(-1, 4)关于x轴对称,求对称点I'的坐标。

12. 坐标系中的图形面积已知矩形的顶点坐标为A(0, 0),B(0, 5),C(3, 5),求矩形ABCD的面积。

答案提示:- 对于基础题,可以通过直接观察和简单的计算得出答案。

- 中等题需要运用距离公式、直线方程的求法以及中点坐标公式。

- 提高题涉及到斜率的概念、平行线和垂直平分线的性质。

- 拓展题可能需要使用坐标变换和对称性的概念,以及计算图形的面积。

请同学们认真思考,逐步解答这些问题,以加深对平面直角坐标系的理解。

中考数学《平面直角坐标系》专项练习题及答案

中考数学《平面直角坐标系》专项练习题及答案

中考数学《平面直角坐标系》专项练习题及答案一、单选题1.对于任意实数m,点P(m﹣1,9﹣3m)不可能...在()A.第一象限B.第二象限C.第三象限D.第四象限A.(2,−2)B.(−2,0)C.(0,2)D.(0,0)3.CD是⊙O的一条弦,作直径AB,使AB⊙CD,垂足为E,若AB=10,CD=8,则BE的长是()A.8B.2C.2或8D.3或74.下列数据不能确定物体位置的是()A.4行5列B.东北方向C.青年东路25号D.东经118°,北纬40°5.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.(100,99)6.对于以下四个命题:①若直角三角形的两条边长与3与4,则第三边的长是5;②(√a)2=a;③若点P(a,b)在第三象限,则点Q(−a,−b)在第一象限;④两边及其第三边上的中线对应相等的两个三角形全等,正确的说法是()A.只有①错误,其他正确B.①②错误,③④正确C.①④错误,②③正确D.只有④错误,其他正确7.已知平面内有一点P,它的横坐标与纵坐标互为相反数,且与原点的距离是2,则P点的坐标为()A.(-1,1)或(1,-1)B.(1,-1)C.(−√2,√2)或(√2,−√2)D.(√2,−√2)8.如图,A的坐标是(2,2),若点P在x轴上,且⊙APO是等腰三角形,则点P的坐标不可能是()A.(2,0)B.(4,0)C.(-2√2,0)D.(3,0)9.如图,在平面直角坐标系中,正方形OABC的顶点O、B的坐标分别是(0,0),(2,0),则顶点C的坐标是()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)10.如图,若車的位置是(5,1),那么兵的位置可以记作()A .(1,5)B .(4,3)C .(3,4)D .(3,3)11.已知点P(m ,n),且mn >0,m+n <0,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限12.在平面直角坐标系中,下面的点在第一象限的是( )A .(1,2)B .(﹣2,3)C .(0,0)D .(﹣3,﹣2)二、填空题13.如图,在平面直角坐标系中,矩形纸片OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,将纸片沿过点C 的直线翻折,使点B 恰好落在x 轴上的点B ′处,折痕交AB 于点D .若OC =9, OC BC=35,则折痕CD 所在直线的解析式为 .14.如图,点A 、B 在反比例函数y =k x的图象上,AC ⊥y 轴,垂足为D ,BC ⊥AC .若四边形AOBC 间面积为6,AD AC =12,则k 的值为 .15.如图,平行四边形OABC 的顶点A ,C 的坐标分别为(5,0),(2,3),则顶点B 的坐标为 .16.剧院里5排2号可用(5,2)表示,则(7,4)表示.17.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=√5,BCOC=12,求点A′的坐标为.18.已知点P的坐标为(5,a),且点P在第二、四象限角平分线上,则a=。

七年级数学下册平面直角坐标系(用坐标表示平移)练习题

七年级数学下册平面直角坐标系(用坐标表示平移)练习题

七年级数学下册平面直角坐标系(用坐标表示平移)练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.2.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数t ,将得到的点先向右平移a 个单位,再向上平移b 个单位(a >0,b >0),得到正方形A B C D ''''及其内部的点,其中点A ,B 的对应点分别为A ',B '.①a =__,b =__;①已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,则点F 的坐标是 __.3.如图,平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D 的位置用数对表示为 ________.4.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC 的三个顶点均在格点(网格线的交点)上.以原点O 为位似中心,画出111A B C △,使它与△ABC 的相似比为2,且它与△ABC 在位似中心O 的两侧,并写出点B 的对应点1B 的坐标是______.二、单选题5.如图,平移①ABC 到①BDE 的位置,且点D 在边AB 的延长线上,连接EC ,CD ,若AB =BC ,那么在以下四个结论:①四边形ABEC 是平行四边形;①四边形BDEC 是菱形;①AC DC ⊥;①DC 平分①BDE ,正确的有( )A .1个B .2个C .3个D .4个6.将点P (﹣5,4)先向右平移4个单位长度,再向下平移2个单位长度后的坐标是( )A .(﹣1,6)B .(﹣9,6)C .(﹣1,2)D .(﹣9,2)7.如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--8.已知1y =4x y +的平方根为( )AB .C .2D .±29.在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比( ) A .向右平移了2个单位B .向左平移了2个单位C .向上平移了2个单位D .向下平移了2个单位10.在平面直角坐标系中,将点A ()21,m 沿着y 轴的正方向向上平移()24+m 个单位后得到点B .有四个点E()21,-m , F ()224,+m m , M ()21,3+m , N ()21,4m ,一定在线段AB 上的是( )A .点EB .点FC .点MD .点N 11.如图,在平面直角坐标系中,点M 到y 轴的距离为2,到x 轴的距离比到y 轴距离的2倍少1,则点M 的坐标为( )A .()3,2B .()3,2-C .()2,3-D .()2,3-12.将点P (3,4)向下平移1个单位长度后,落在函数k y x =的图象上,则k 的值为( ) A .12k = B .10k = C .9k = D .8k13.A B C '''∆是由ABC ∆平移得到的,点()1,4A -的对应点为()1,7A ',点()1,1B 的对应点为()3,4B ',则点()4,1C --的对应点C '的坐标为( )A .()6,2-B .()6,4--C .()2,2-D .()2,4--三、解答题14.如图,能否通过平移、轴对称或旋转,由ABC 得到DEC ?15.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且①EAF=45°.解决下列问题:(1)图(1)中的线段BE、EF、FD之间的数量关系是______.(2)图(2),已知正方形ABCD的边长为8,E、F分别是BC、CD边上的点,且①EAF=45°,AG①EF于点G,求①EFC的周长.参考答案:1.(8,-4)【分析】直接利用平移中点的变化规律求解即可.【详解】解:原来点的横坐标是5,纵坐标是-2,向右平移3个单位,再向下平移2个单位得到新点的横坐标是5+3=8,纵坐标为-2-2=-4.则点B的坐标为(8,-4).故答案为:(8,-4).【点睛】本题主要考查了坐标与图形变化-平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.2. 12##0.5 2 (1,4)【分析】首先根据点A 到A ',B 到B '的点的坐标可得方程组3102t a t b -+=-⎧⎨⨯+=⎩,3202t a t b +=⎧⎨⨯+=⎩,解可得t 、a 、b 的值,设F 点的坐标为(x ,y ),点F '点F 重合可列出方程组,再解可得F 点坐标.【详解】解:①由点A 到A ',可得方程组3102t a t b -+=-⎧⎨⨯+=⎩; 由B 到B ',可得方程组3202t a t b +=⎧⎨⨯+=⎩, 解得12122t a b ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, 故答案为:12,2①设F 点的坐标为(x ,y ),点F '点F 重合得到方程组1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得14x y =⎧⎨=⎩, 即F (1,4).故答案为:(1,4).【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组. 3.(8,6)【分析】根据平行四边形的性质:对边平行且相等,得出点的平移方式,解答即可.【详解】解:∵平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3), 由A ,B 坐标可得B 向右平移3个单位,向上平移3个单位,可以得到点A①点D 可由点C 向右平移3个单位,向上平移3个单位得到,∵点C 坐标为(5,3)则点D 坐标为(8,6);故答案为:(8,6).【点睛】此题考查了坐标与图形,涉及了平行四边形的性质以及点的平移,掌握平行四边形的性质以及点的平移规律是解题的关键.4.图见解析,点1B 的坐标是(-4,-2)【分析】直接利用位似图形的性质画出三角形顶点的对应点,再顺次连接即可画出图形,根据点1B 的位置写出坐标即可.【详解】解:如图所示:111A B C △就是所要求画的,点B 的对应点1B 的坐标是(-4,-2),故答案为:(-4,-2).【点睛】此题主要考查了位似变换,正确得出对应点位置是解题关键.5.D【分析】利用平移的性质、平行四边形的判定、菱形的判定与性质逐项判断即可.【详解】解:①平移①ABC 到①BDE 的位置,且点D 在边AB 的延长线上,①AD CE AC BE ∥,∥,①四边形ABEC 是平行四边形,故①正确;①平移①ABC 到①BDE 的位置,①AB =BD=CE ,BC =DE ,①AB =BC ,①AB =BD=CE =BC =DE ,①四边形BDEC 是菱形,故①正确;①四边形BDEC 是菱形,①BE CD ⊥,①AC BE ,AC CD ∴⊥,故①正确;①四边形BDEC 是菱形,①DC 平分①BDE ,故①正确;①正确的有4个.故选D .【点睛】本题主要考查了平移的性质、平行四边形的判定、菱形的判定与性质.6.C【分析】直接利用平移中点的变化规律求解即可.【详解】将点()54P ﹣,先向右平移4个单位长度,再向下平移2个单位长度后的坐标是()5442+﹣,﹣,即()12﹣,, 故选:C .【点睛】本题主要考查了坐标与图形的变化-平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同,平移点的变化规律是:横坐标右移加、左移减;纵坐标上移加、下移减.7.C【分析】先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.【详解】解:先画出①ABC 平移后的①DEF ,再利用旋转得到①A 'B 'C ',由图像可知A '(-1,-3),故选:C .【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.8.B【分析】根据二次根式有意义列不等式组410140xx-≥⎧⎨-≥⎩,求出14x=与1y=,再求代数式的值,然后求平方根即可.【详解】解:410 140xx-≥⎧⎨-≥⎩,解得14x=,当14x=时,1y=,①144124x y+=⨯+=,①4x y+的平方根为:故选B.【点睛】本题考查二次根式有意义的条件,代数式的值,平方根,掌握二次根式有意义条件,代数式的值,平方根是解题关键.9.B【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,可得答案.【详解】解:在平面直角坐标系中,将四边形格点的横坐标都减去2,纵坐标保持不变,所得图形与原图形相比向左平移了2个单位.故选:B.【点睛】此题主要考查了坐标与图形变化﹣平移,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.C【分析】根据平移的过程以及四个点的坐标进行分析比较即可判断.【详解】解:①将A(1,m2)沿着y的正方向向上平移m2+4个单位后得到B点,①B(1,2m2+4),①m2≥0,①2m2+4>0,①线段AB在第一象限,点B在点A上方,且与y轴平行,距离y轴1个单位,因为点E(1,-m2)在点A下方,当m=0时,E点可以跟A点重合,点E不一定在线段AB上.点F(m2+4,m2)距离y轴(m2+4)个单位,不在线段AB上;点M(1,m2+3)在点A上方,且距离y轴1个单位,在线段AB上;点N(1,4m2)是将A沿着y的正方向向上平移3m2个单位后得到的,不一定在线段AB上,有可能在线段AB延长线上.所以一定在线段AB上的是M点.故选:C.【点睛】本题考查了坐标与图形的变化-平移,解决本题的关键是掌握平移的性质.11.D【分析】根据题意得出点M到x轴的距离为2×2-1=3,然后结合图象即可确定点的坐标.【详解】解:①点M到y轴的距离为2,到x轴的距离比到y轴距离的2倍少1,①点M到x轴的距离为2×2-1=3,①点M在第四象限,①M(2,-3),故选:D.【点睛】题目主要考查坐标系中点到坐标轴的距离,理解题意,结合函数图象求解是解题关键.12.C【分析】首先求出P点平移后得到的点的坐标为(3,3),再利用待定系数法把点代入反比例函数关系式,即可求得k的值.【详解】解:点P(3,4)向下平移1个单位长度后得到点(3,3),把(3,3)代入函数kyx中,得k=9,故选C.【点睛】此题主要考查了求反比例函数解析式,根据平移方式求点的坐标,正确求出P点平移后的点的坐标是解题的关键.13.C【分析】直接利用平移中点的变化规律求解即可.【详解】由点A(−1,4)的对应点为A′(1,7)知平移方式为向右平移2个单位、向上平移3个单位,①点C(−4,−1)的对应点C′的坐标为(−2,2),故选C.【点睛】此题考查坐标与图形变化-平移,解题关键在于得到平移的方式.14.左图中①ACB绕着点C顺时针旋转90°能得到①DCE.右图中①ACB绕着点C顺时针旋转90°,再沿着BC翻折,能得到①DCE.【分析】根据旋转以及轴对称的性质解答即可.【详解】解:左图中①ACB绕着点C顺时针旋转90°得到①DCE.右图中①ACB绕着点C顺时针旋转90°,再沿着BC翻折,得到①DCE.【点睛】本题考查了图形的旋转以及对称翻折,熟知旋转以及轴对称的性质是解题的关键.15.(1)EF=BE+DF(2)过程见解析【分析】对于(1),先将①DAF绕点A顺时针旋转90°,得到①BAH,可得①ADF①①ABH,再根据全等三角形的性质得AF=AH,①EAF=①EAH,然后根据“SAS”证明①F AE①①HAE,根据全等三角形的对应边相等得出答案;对于(2),先根据(1),得①F AE①①HAE,可得AG=AB=AD,再根据“HL”证明Rt①AEG①Rt①ABE,得EG=BE,同理GF=DF,可得答案.(1)EF=BE+DF.理由如下:如图,将①DAF绕点A顺时针旋转90°,得到①BAH,①①ADF①①ABH,①①DAF=①BAH,AF=AH,第 11 页 共 11 页 ①①EAF=①EAH=45°.①AE=AE ,①①F AE ①①HAE ,①EF=HE=BE+HB ,①EF=BE+DF ;(2)由(1),得①F AE ①①HAE ,AG ,AB 分别是①F AE 和①HAE 的高,①AG=AB=AD=8.在Rt ①AEG 和Rt ①ABE 中,AE AE AG AB =⎧⎨=⎩, ①Rt ①AEG ①Rt ①ABE (HL ),①EG=BE ,同理GF=DF ,①①EFG 的周长=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=16.【点睛】这是一道关于正方形和旋转的综合题目,考查了旋转的性质,正方形的性质,全等三角形的判定和性质等.。

人教版七下数学7.1平面直角坐标系专题练习(含答案)

人教版七下数学7.1平面直角坐标系专题练习(含答案)

平面直角坐标系【诊断自测】1、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.2、在直角坐标系中,点(2,﹣3)在第象限.3、若点A(x,2)在第二象限,则x的取值范围是.4.在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第象限.【考点突破】类型一: 点的坐标特征例1、在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限例2、若点A(﹣3,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限类型二:点到坐标轴的距离例3、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.类型三:平行或垂直于坐标轴直线上的点坐标特征例4、经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C..经过原点D.无法确定类型四:点坐标的规律性例5、如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A.(14,44)B.(15,44)C.(44,14)D.(44,15)例6、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.类型五:坐标与面积例7、已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定例8、如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.类型六:坐标与几何变换例9、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.例10、已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1) B.B(1,7)C.(1,1) D.(2,1)例11、如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是.类型七:坐标确定位置例12、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)例13.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2) C.(0,3) D.(1,3)【易错精选】1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()2、定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1 B.2 C.3 D.43、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.4.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.【精华提炼】1、常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11、在平面直角坐标系中,将三角形各点的纵坐标 都减去3,横坐标保持不变,所得图形与原图形相比 ()
A.向右平移了3个单位 B.向左平移了3个单位 C.向上平移了3个单位 D.向下平移了3个单位
12、在直角坐标系内顺次连结下列各点,不能得到正方 形的是( )
A、(-2,2) (2,2) (2,-2) (-2,-2) (-2,2); B、(0,0) (2,0) (2,2) (0,2) (0,0); C、(0,0) (0,2) (2,-2) (-2,0) (0,0); D、(-1,-1) (-1,1) (1,1) (1,-1) (-1,-1)。
第11章平面直角坐标系基础训练题
一、填空题
1、原点O的坐标是 ,x轴上的点的坐标的特点是
点是
;点M(a,0)在 轴上。
,y轴上的点的坐标的特
2、点A(﹣1,2)关于
y 轴的对称点坐标是
点A关于原点的对称点的坐标是 轴对称的点的坐标为
。点A关于x
x 3、已知点M x, y 与点N 2,3 关于
轴对称,则
6、过A(4,-2)和B(-2,-2)两点的直线一定 ( )
A.垂直于x轴 B. 平行于x轴
7、已知点A
B.与Y轴相交但不平于x轴
D.与x轴、y轴平行
x 3a,2b y 在
轴上方,
轴的左边,则点
A到x轴、轴的距离分别为( )
A、
y
3a,2b B、
3a,2b
C、2b,3a
D、 2b,3a
8、如图3所示的象棋盘上,
若将△OA3B3变换成△OA4B4,则A4的坐标是____, B4的坐标是____。 (2)若按第(1)题找到的规律将△OAB进行n次变换,
得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,
找出规律,推测An的坐标是__,Bn的坐标是__。
4、在平面直角坐标系中描出下列各组点,并将各组内的 点用线段依次连接起来:
三、解答题
1、在图所示的平面直角坐标系中表示下面各点:A(0,3); B(1,-3);C(3,-5);D(-3,-5);E(3,5); F(5,7);G(5,0)
(1)A点到原点O的距离是 (2)将点C向
y
X轴的负方向平移6个单位,
它与点
重合。
x

(3)连接CE,则直线CE与
y
y轴是什么关系?
(4)点F分别到
(4,7); (5)(2,5),(0,3),(3,3),(3,0),(4,0),
(4,3),(7,3),(5,5)。 观察所得的图形,您觉得它象什么?
7、在平面直角坐标系内,把点P(-5,-2)先向左平移
2个单位长度,再向上平移4个单位长度后得到的点的坐标


8、将点P(-3,y)向下平移3个单位,向左平移2个单位后
得到点Q(x,-1),则xy=___________ 。
9、已知AB∥x轴,A点的坐标为(3,2),并且AB=5,
则B的坐标为

10、A(– 3,– 2)、B(2,– 2)、C(– 2,1)、 D(3,1)是坐标平面内的四个点,则线段AB与CD的 关系是_________________。
试写出一个符合条件的点P 。点K在第三象限,且横
坐标与纵坐标的积为8,写出两个符合条件的点

20、已知点A(a,0)和点B(0,5)两点,且直线AB与
坐标轴围成的三角形的面积等于10,则a的值是____。
21、已知
mn 0 ,则点(m,n)在
二、选择题
1、在平面直角坐标系中,点
1, m2 1 一定在( )
13、已知三角形的三个顶点坐标分别是(-1,4), (1,1),(-4,-1),现将这三个点先向右平移2个 单位长度,再向上平移3个单位长度,则平移后三个顶 点的坐标是( )
A、(-2,2),(3,4),(1,7); B、(-2,2),(4,3),(1,7); C、(2,2),(3,4),(1,7); D、(2,-2),(3,3),(1,7)
4、若 a 5, b 4,且点M(a,b)在第二象限,则点
M的坐标是( )
A、(5,4) B、(-5,4) C、(-5,-4) D、(5,-4) 5、△DEF(三角形)是由△ABC平移得到的, 点A(-1,-4)的对应点为D(1,-1),则点 B(1,1)的对应点E、点C(-1,4)的对应点F的 坐标分别为( ) A、(2,2),(3,4) B、(3,4),(1,7) C、(-2,2),(1,7) D、(3,4),(2,-2
11、在平面直角坐标系内,有一条直线PQ平行于y轴,
已知直线PQ上有两个点,坐标分别为(-a,-2)和
(3,6),则
a

12 、点A在x轴上,位于原点左侧,距离坐标原点7个单位 长度,则此点的坐标为 ;
13、在Y轴上且到点A(0,-3)的线段长度是4的点B的 坐标为___________________。 14、在坐标系内,点P(2,-2)和点Q(2,4)之间的 距离等于 个单位长度。线段PQ的中点的坐标是____。 15、已知P点坐标为(2-a,3a+6),且点P到两坐标轴 的距离相等,则点P的坐标是______________。
16、已知点A(-3+a,2a+9)在第二象限的角平分线上, 则a的值是____________。 17、已知点P(x,-y)在第一、三象限的角平分线上, 由x与y的关系是
18、若点B(a,b)在第三象限,则点C(-a+1,3b-5) 在
第____________象限。
19、已知点P在第二象限,且横坐标与纵坐标的和为1,
X 、 y轴的距离是多少?
Y
2、如图所示的
直角坐标系中,
C
三角形ABC的顶
点坐标分别是
A(0,0),
B(6,0),C(5,5)。
(1)求三角形ABC的
面积;
(2)如果将三角形ABC向上平移A1个单位长度,得三角 B
XA
形A1B1C1,再向右平移2个单位长度,得到三角形A2B2C2。 试求出A2、B2、C2的坐标; (3)三角形A2B2C2与三角形ABC的大小、形
x y ______
4、已知点P 轴对称,则
a 3b,3 与点Q 5, a 2b x关于
a _____b ______
5、点P到x轴的距离是2,到y轴的距离是3,则P点的坐标


6、线段CD是由线段AB平移得到的。点A(–1,4)的对 应点为C(4,7),则点B(–4,–1)的对应点D的坐 标为______________。
A、第果点A(a.b)在第三象限,则点B(-a+1,3b-5)
关于原点的对称点是( )A第一象限 B第二象限
C第三象限 D第四象限
3、点P(a,b)在第二象限,则点Q(a-1,b+1)在( ) (A) 第一象限 (B) 第二象限
(C) 第三象限 (D)第四象限
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3), (-6,5);
(2)(-9,3),(-9,0),(-3,0),(-3,3); (3)(3.5,9),(2,7),(3,7),(4,7),(5,7),
(3.5,9); (4)(3,7),(1,5),(2,5),(5,5),(6,5),
若帅位于点(1,-2)上,
相位于点(3,-2)上,
则炮位于点(

A(-1,1) B(-1,2)
C(-2,1) D(-2,2)
炮 帅相
9、一个长方形在平面直角坐标系中三个顶点的坐标 为(– 1,– 1)、(– 1,2)、(3,– 1),则第四 个顶点的坐标为( )
A.(2,2) B.(3,2) C.(3,3) D.(2,3) 10、若x轴上的点P到y轴的距离为3,则点P的坐标为 () A.(3,0) B.(3,0)或(–3,0) C.(0,3) D.(0,3)或(0,–3)
状有什么关系。
y
3、如图,
在平面直角
坐标系中,
5
第一次将 △OAB变换
4A
3
A2 A3
B B B B 成第△变△ 二 O换AO次成1AB将△11BO1A, 2B2,第三次21将0 △1O2A23B2变4 换15 成6△7OA832B93。10
11
12
13
14
15
16
3 17
18
x
(1)观察每次变换前后的三角形的变化规律,
相关文档
最新文档