一次函数复习题附答案.docx
中考数学复习《一次函数》专项提升训练题-附带答案
中考数学复习《一次函数》专项提升训练题-附带答案学校:班级:姓名:考号:一、选择题1.下列各点在直线y=−2x+6上的是()A.(−1,4)B.(2,10)C.(3,0)D.(−3,0)2.将一次函数y=2x−1的图象沿y轴向上平移4个单位长度,所得直线的解析式为()A.y=2x−5B.y=2x−3C.y=2x+3D.y=2x+43.关于y是x的一次函数y=kx+b2+1(其中k<0,b为任意实数)的图象可能是()A.B.C.D.4.已知一次函数y=−2x+4,那么下列结论正确的是()A.y的值随x的值增大而增大B.图象经过第一、二、三象限C.图象必经过点(1,2)D.当x<2时5.若点A(x1,−1),B(x2,−2),C(x3,3)在一次函数y=−2x+m(m是常数)的图象上,则x1,x2,x3的大小关系是()A.x1>x2>x3B.x2>x1>x3C.x1>x3>x2D.x3>x2>x16.如图,函数y=mx和y=kx+b的图象相交于点P(1,m),则不等式−b≤kx−b≤mx的解集为()A.0≤x≤1B.−1≤x≤0C.−1≤x≤1D.−m≤x≤m7.已知一次函数y=32x+m和y=−12x+n的图象都经过点A(−2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A .2B .3C .4D .68.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中.如图是两人离家的距离y (米)与小明出发的时间x (分)之间的函数图象.下列结论中不正确的是( )A .公园离小明家1600米B .小明出发253分钟后与爸爸第一次相遇C .小明与爸爸第二次相遇时,离家的距离是960米D .小明在公园停留的时间为5分钟二、填空题9.若函数y =(m −1)x |m|−5是一次函数,则m 的值为 .10.一次函数y=(2m ﹣6)x+4中,y 随x 的增大而减小,则m 的取值范围是 .11.弹簧的自然长度为5cm ,在弹簧的弹性限度内,所挂的物体的质量x 每增加1kg ,弹簧的长度y 增加0.5cm ,则y 与x 之间的函数关系式是 .12.如图所示,直线y =kx +b 经过点(−2,0),则关于x 的不等式kx +b >0的解集为 .13.函数y =ax +b 和y =−x +2的图像如图所示,两图像交于点P(−1,m),则二元一次方程组:{y −ax =b y +x =2的解是 .三、解答题14.已知一次函数y=k(x+2)(k≠0).(1)求证:点(−2,0)在该函数图象上;(2)若该函数图象向上平移2个单位后过点(1,−2),求k的值;(3)若该函数图象与y轴的交点在x轴和直线y=−2之间,求k的取值范围.15.为丰富学生的业余生活,学校准备购进甲、乙两种畅销图书.经调查,甲种图书的总费用y(元)与购进本数x之间的函数关系如图所示,乙种图书每本20元.(1)直接写出当0≤x≤100和x>100时,y与x的函数关系式;(2)现学校准备购买300本图书,且两种图书均不少于80本,该如何购买,才能使总费用最少?最少的总费用为多少元?x+m的图象交于点P(n,−2).16.如图,函数y=−2x+3与y=−12(1)求出m,n的值;x+m≤−2x+3的解集;(2)观察图象,写出−12.(3)设△BOC和△ABP的面积分别为S1、S2,求S1S217.A、B两个码头之间航程为24千米,甲、乙两轮船同时出发,甲轮船从A码头顺流匀速航行到B码头后,立即逆流匀速航行返回到A码头,乙轮船从B码头逆流匀速航行到A码头后停止,两轮船在静水中速度均为10千米/时,水流速度不变,两轮船距A码头的航程y(千米)与各自的航行时间x(时)之间的函数图象如图所示.(顺流速度=静水速度+水流速度:逆流速度=静水速度-水流速度)(1)水流速度为千米/时;a值为;(2)求甲轮船从B码头向A码头返回过程中y与x之间的函数关系式;(3)当乙轮船到达A码头时,求甲轮船距A码头的航程.x−6的图象与坐标轴交于点A,B,BC平分∠OBA交x轴与点C,CD⊥AB垂足为18.如图1,一次函数y=34D.(1)求点A,B的坐标;(2)求CD所在直线的解析式;(3)如图2,点E是线段OB上的一点,点F是线段BC上的一点,求EF+OF的最小值.参考答案1.【答案】C2.【答案】C3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】C8.【答案】C9.【答案】-110.【答案】m <311.【答案】y=5+0.5x12.【答案】x >−213.【答案】{x =−1y =314.【答案】(1)证明:当x =−2时y =k(x +2)=k(−2+2)=0 ∴点(−2,0)在y =k(x +2)图象上.(2)解:一次函数y =k(x +2)图象向上平移2个单位得y =k(x +2)+2.将(1,−2)代入得:−2=k(1+2)+2解得k =−43.(3)解:由题意得:该函数图象与y 轴的交点为(0,2k)∵该交点在x 轴和直线y =−2之间∴−2<2k <0∴−1<k <0.15.【答案】(1)解:由图可知:y ={25x(0≤x ≤100)19x +600(x >100)(2)解:设总费用为w 元.根据题意,得80≤x ≤220.当80≤x ≤100时w =25x +20(300−x)=5x +6000.∵k =5>0,w 随x 的增大而增大,∴当x =80时,总费用最少w 最小=5×80+6000=6400元.当100<x ≤220时w =19x +600+20(300−x)=−x +6600.∵k =−1<0,w 随x 的增大而减小,∴当x =220时,总费用最少w 最小=−220+6600=6380元<6400元.∴此时乙种图书为300−220=80本.∴应购买甲种图书220本,乙种图书80本,才能使总费用最少,最少总费用为6380元.16.【答案】(1)解:将点P(n ,−2)代入函数y =−2x +3得:−2n +3=−2 解得n =52∴P(52,−2) 将点P(52,−2)代入函数y =−12x +m 得:−12×52+m =−2解得m =−34.(2)解:不等式−12x +m ≤−2x +3表示的是函数y =−12x +m 的图象位于函数y =−2x +3的图象下方(含交点)则由函数图象可知,−12x +m ≤−2x +3的解集为x ≤52. .(3)解:对于函数y =−12x −34当x =0时y =−34,则OB =34当y =0时−12x −34=0,解得x =−32,则OC =32∴S 1=12×34×32=916 对于函数y =−2x +3当x =0时y =3,则OA =3∴AB =OA +OB =154 ∵P(52,−2) ∴S 2=12×154×52=7516 ∴S 1S 2=9167516=325.17.【答案】(1)2;2(2)解:设甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =kx +b 由图象可得,甲轮船从B 码头向A 码头返回需要3小时∴点(2,24),(5,0)在该函数图象上∴{2k +b =245k +b =0,解得{k =−8b =40即甲轮船从B 码头向A 码头返回过程中y 与x 之间的函数关系式为y =−8x +40;(3)解:由(2)知,当x =3时即当乙轮船到达A 码头时,甲轮船距A 码头的航程为16千米.18.【答案】(1)解:由一次函数y=34x−6的图象与坐标轴交于点A,B 另y=0,则x=8,即A(8,0);另x=0,则y=-6,即B(0,-6).(2)解:根据题意,如图,延长DC交y轴于点G,设CD=m∵BC平分∠OBA,OC⊥OB,CD⊥BD∴OC=CD=m∵OA=8,OB=6∴AB=√62+82=10∴12AB•CD=12AC•OB∵AC=8−m∴12×10m=12×(8−m)×6∴m=3∴点C的坐标为(3,0);∵CD⊥AB∴∠BDG=∠AOB=∠90°又∵OB=BD,∠ABO=∠GBD∴△AOB≌△GBD(ASA)∴BG=AB=10,OG=BG-OB=4即G(0,4)∴设直线CD的解析式为y=kx+4把点C(3,0)代入,则k=−43∴直线CD的解析式为y=−43x+4;(3)解:根据题意,作点E关于直线BC的对称点E′,则EF=FE′,如图:∵BC是角平分线∴点E′恰好落在直线AB上∴EF+OF=E′F+OF≥OE′∴EF+OF的最小值就是OE′的最小值当OE′⊥AB时,OE′为最小值;∵12AB•OE′=12OA•OB∴12×10×OE′=12×8×6∴OE′=245∴EF+OF的最小值为245.。
中考数学复习《一次函数》专项提升训练题-附答案
中考数学复习《一次函数》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.把一次函数的图象向上平移4个单位长度,得到图象表达式是()A.B.C.D.2.小红骑自行车到离家为千米书店买书,行驶了分钟后,遇到一个同学因说话停留分钟,继续骑了分钟到书店.图中的哪一个图象能大致描述她去书店过程中离书店的距离千米与所用时间分之间的关系()A.B.C.D.3.已知直线与x轴的交点在,之间(包括A,B两点),则a的取值范围是()A.B.C.D.4.已知一次函数的图像经过点,且当时,则该函数图象所经过的象限为()A.一、二、三B.二、三、四C.一、三、四D.一、二、四5.已知正比例函数的图象上两点、且,则下列不等式中一定成立的是()A.B.C.D.6.已知一次函数的图象与的图象交于点.则对于不等式,下列说法正确的是()A.当时B.当时C.当且时D.当且时7.如图,已知直线与轴、轴分别交于点和点,是线段上一点,若将沿折叠,点恰好落在x轴上的点处,则直线所对应的函数表达式是()A. B. C. D.8.如图,正方形、正方形、正方形的顶点、与和、与、分别在一次函数的图像和轴上,若正比例函数则过点,则的值是()A.B.C.D.二、填空题9.与直线垂直且过点的直线解析式是.10.已知一次函数的图象经过点,则不等式的解是. 11.已知为整数,且一次函数的图像不经过第二象限,则= .12.某家庭电话月租费为10元,若市内通话费平均每次为0.2元,则该家庭一个月的话费y(元)与通话次数x(次)之间的关系式是.13.如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点B的坐标为(4,3),点D为对角线OB上一点.若OA=OD,则点D到x轴的距离为.三、解答题14.已知是一次函数.(1)求m的值;(2)若,求对应y的取值范围.15.某花农培育甲种樱花 3 株,乙种樱花 2 株,共需要成本 1700 元,乙种樱花 2 株,共需成本 1500 元.(1)求甲、乙两种樱花每株成本分别为多少元?(2)据市场调研,1 株甲种樱花售价为 160 元,1 株乙种樱花售价为 840 元.该花农决定在成本不超过 29000 元的前提下培育甲、乙两种樱花,那么要使总利润不少于 5000 元,花农有哪几种具体的培育方案?(3)求出选何种方案成本最少?16.如图,一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象解决下列问题:(1)求慢车和快车的速度;(2)求线段所表示的y与x之间的函数关系式,并写出自变量x的取值范围.17.为提升学生的文学素养,培养学生的阅读兴趣,某校准备购进A,B两种图书.经调查,购进A 种图书费用y元与购进A种图书本数x之间的函数关系如图所示,B种图书每本20元.(1)当和时,求y与x之间的函数关系式;(2)现学校准备购进300本图书,其中购进A种图书x本,设购进两种图书的总费用为w元.①当时,求出w与x间的函数表达式;②若购进A种图书不少于60本,且不超过B种图书本数的2倍,那么应该怎样分配购买A,B两种图书才能使总费用最少?最少总费用多少元?18.如图,在平面直角坐标系中,直线与轴交于点,直线与轴、轴分别交于点和点,且与直线交于点.(1)求直线的解析式;(2)若点为线段BC上一个动点,过点作轴,垂足为,且与直线交于点,当时,求点的坐标;(3)若在平面上存在点,使得以点A,C,D,H为顶点的四边形是平行四边形,请直接写出点的坐标.参考答案:1.A2.D3.D4.D5.C6.D7.B8.B9.10.11.-3或-212.13.14.(1)解:因为是一次函数,所以且,解得(2)解:由(1)可知,该一次函数的表达式为,因为,所以随的增大而减小.当时;当时,所以当时,.15.(1)解:设甲、乙两种樱花每株成本分别为 x则:解得:故甲种樱花每株成本为 100 元,乙种樱花每株成本为 700元。
2024年中考数学总复习:一次函数(附答案解析)
②每分钟出水3.75L;
③容器中水为25L的时间是8min或 min;
④第2或 min时容器内的水恰为10升;
错误的有( )
A.0个B.1个C.2个D.3个
25.甲、乙两人同时从家里出发,沿同一条笔直的公路向公园进行跑步训练,乙的家比甲的家离公园近100米,5分钟后甲追上乙.此时乙将速度提高到原来的速度的2倍,又经过15分钟后,乙先到达公园并立即返回,但因体力不支,乙返回时的速度又降低到原来的速度,甲跑到公园后也立即掉头回家,整个过程中,甲的速度始终保持不变,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的部分函数关系如图所示,则当乙回到家时,甲离自己的家还有( )
A.30元B.20元C.15元D.10元
19.把y=2x+1的图象沿y轴向下平移5个单位后所得图象的关系式是( )
A.y=2x+5B.y=2x+6C.y=2x﹣4D.y=2x+4
20.正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=﹣x﹣k的图象是( )
A. B.
C. D.
21.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是( )
A.±2B.﹣2C.2D.3
6.已知一次函数y=kx﹣2,若y随x的增大而减小,则它的图象经过( )
A.第一、二、三象限B.第一、二、四象限
C.第二、三、四象限D.第一、三、四象限
7.A,B两地相距30km,甲乙两人沿同一条路线从A地到B地.如图,反映的是两人行进路程y(km)与行进时间t(h)之间的关系,①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4.5个小时到达目的地;③乙比甲迟出发0.5小时;④甲在出发5小时后被乙追上,以上说法正确的个数有( )
一次函数练习题(附答案)
一次函数练习题(附答案)一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题 1.函数y=中,自变量某的取值范围是()某(ab的图象如图所示,那么a的取值范围是()A.a1C.a07.(上海市)如果一次函数yb的图象经过第一象限,且与y轴负半轴相交,那么()A.k0B.k0C.k0D.k08.(陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为()A.y某某某2)9.(浙江湖州)将直线y=2某向右平移2个单位所得的直线的解析式是(。
CA、y=2某+2B、y=2某-2C、y=2(某-2)D、y=2(某+2)10.已知两点M(3,5),N(1,-1),点P是某轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0)3C.(4,0)3D.(3,0)2二、填空题11.若点A(2,,-4)在正比例函数y=k某的图像上,则k=_____。
12.某一次函数的图像经过点(-1,2),且经过第一、二、三象限,请你写出一个符合上述条件的函数关系式_________。
13.在平面直角坐标系中,把直线y=2某向下平移3个单位,所得直线的解析式_14.(福建晋江)若正比例函数y1,2),则该正比例函数的解析式为y36(kPa)时,ya某b1200某y某y2(某5(2)设函数解析式为y=k某,则图像过点(1,1.6),故y=1.6某(某≥0).(3)方案一:80元。
方案二:y=6某60-2=70(元).方案三:y=1.6某60=96(元)5∴选方案二最好。
22解:(1)小李3月份工资=2000+2%某14000=2280(元)小张3月份工资=1600+4%某11000=2040(元)(2)设y2b,取表中的两对数(1,7400),(2,9200)代入解析式,得kk=1800 解得1800某9200b,b=5600(3)小李的工资w12%(1200某24某16005600)1824当小李的工资w218242208,解得,某8答:从9月份起,小张的工资高于小李的工资。
中考数学总复习《一次函数》专项测试卷带答案
中考数学总复习《一次函数》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为( )A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为( )A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是( )A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-35.(2024·北海模拟)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( )A.x≤3B.x≥3C.x≥-3D.x≤06.(2024·青海)如图,一次函数y=2x-3的图象与x轴相交于点A,则点A关于y轴的对称点是( )A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是( )A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为( )A.y =12-0.5xB.y =12+0.5xC.y =10+0.5xD.y =0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式 .10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为( )A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为.13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.参考答案A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为(D)A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为(B)A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是(D)A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是(D)A .x =2B .x =0C .x =-1D .x =-35.(2024·北海模拟)直线y =kx +3经过点A (2,1),则不等式kx +3≥0的解集是(A) A .x ≤3 B .x ≥3 C .x ≥-3 D .x ≤06.(2024·青海)如图,一次函数y =2x -3的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是(A)A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是(C)A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为(B)A.y=12-0.5xB.y=12+0.5xC.y=10+0.5xD.y=0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式y=x+1(答案不唯一).10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;【解析】(1)由表中的数据,x的增加量不变∴y是x的一次函数设y=kx+b由题意得:{k+b=62k+b=8.4,解得:{k=2.4 b=3.6∴y与x之间的函数解析式为y=2.4x+3.6;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?【解析】(2)设碗的数量有x个,则:2.4x+3.6≤28.8,解得:x≤10.5,∴x的最大整数解为10答:碗的数量最多为10个.B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为(C)A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为(3×22 024,√3×22 024).13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于5.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);【解析】(1)描点如图所示:(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);【解析】(2)∵y=kx(k≠0)转化为k=xy=23×156≠24×163≠25×170≠…∴y与x的函数不可能是y=kx故选一次函数y=ax+b(a≠0),将点(23,156),(24,163)代入解析式得:{23a+b=15624a+b=163,解得{a=7 b=−5∴一次函数解析式为y=7x-5.(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.【解析】(3)当x=25.8时,y=7×25.8-5=175.6.答:脚长约为25.8 cm时,估计这个人的身高为175.6 cm.。
一次函数专题训练(含答案)-
一次函数专题训练(含答案)一、填空题:1.若正比例函数y=(m-1)²32-m x 的图象经过二、四象限,则m 的值是 .2.对于函数y=6-2x ,y 随x 的增大而 .3.汽车由南京驶往相距300千米的上海,它的平均速度是100千米/时,则汽车距上海 的路程s (千米)与行驶时间t (小时)的函数关系式是 .4.若直线y=kx+b 经过第一、二、四象限,则直线y=-bx+k 不经过第 象限,5.直线271+-=x y 向下平移3个单位,得直线 . 6.已知三条直线112,34,7-=-=+=x y x y ax y 相交于一点,则a= .7.某城市出租车在2千米以内收10元,以后每100元加收a 元,乘坐距离s ≥2 000 米时,付款y (元)与s 之间的函数关系式是 .8.多边形内角和α与边数n 之间的函数关系式是 ,这是 函 数,自变量取值范围是 .9.等腰三角形顶角y 与底角x 之间的函数关系式是 ,这是 函 数,自变量取值范围是 .10.矩形的一条边长为3cm ,那么它的面积y 与另一条边长x 的函数关系式是 , 当另一条边为长313cm 时,面积为 . 11.函数13-=x y 的图象是 ,它过(0, )与( ,0), y 随x 增大而 .12.若函数k x y -+=34的图象经过原点,那么k= .13.已知等腰三角形ABC 的顶点A 在y 轴上,底边BC 与x 轴重合,直线62+=x y 经 过点A 和B ,则经过点A 和点C 的直线b kx y +=的解析式是 . 14.k= 时,一次函数4)1(2-++=k x k y 的图象经过点(-1,1),且y 随x 的增大而减小.15.若直线1)4(2-+--=m x m m y 与直线32-=x y 平行,则m= . 二、选择题16.下列各题中,变量之间成正比例函数关系的是( )A.正方体的体积V 与边长aB.三角形的面积S 与高hC.如果速度均匀,微机打字个数N 与操作时间t (分)D.轮船航行的路程y (千米)与航行速度x (千米/时)17.直线b kx y +=,当k >0,b <0时,它的图象大致是( )18.点A 为正比例函数图象的一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内,则这个正比例函数解析式为( ) A.x y 43= B.x y 43-= C.x y 34= D.x y 34-= 19.已知函数b kx y +=,当x 增加2时,y 减少了2,则k 等于( )A.-1B.-2C.1D.220.直线83+=x y 关于y 轴对称的直线是( )A.83-=x yB.83--=x yC.838+=x y D.83+-=x y 21.若一次函数22m mx y -+=,当x >1时,y <0;而当x <1时,y >0,则m 的值等于 ( )A .2或-1 B.-1 C.2 D.-2或122.若一次函数b kx y +=的图象经过第二、三、四象限,则k ,b 的取值范围是( )A.k >0;b >0B.k >0;b <0C.k <0;b <0D.k <0;b >023.下列各题中的两个变量y 与x 成正比例关系的是( )A.某人的体重y 与他的年龄xB.路程不变;速度y 与时间xC.三角形面积不变,底y 与底边上的高xD.密度不变,物质的质量y 与体积x24.下列函数中为一次函数的是( )A.12-=x yB.21+=xy C.x y 2131-= D.12-=x y 25.如果2)1(m x m y -=是正比例函数,那么m 的值是( )A.0B.1C.-1D.±126.若等腰三角形的周长为12cm ,则腰长y 与底边长x 的函数关系式是( )A.122+-=x yB.6+-=x yC.621+-=x y D.621+=x y 27.若一次函数n mx y +-=随x 的增大而减小,那么( ) A.m >0 B.m <0 C.n >0 D.n <028.如果y 是x 的正比例函数,x 是z 的一次函数,那么y 是z 的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系29.一辆汽车从A 地出发,先行驶了s 0米之后,又以υ米/秒的速度行驶了t 秒,汽车行驶的全部路程s (米)等于( )A.υtB.s 0+υtC.s 0+υ+tD.(s 0+υ)t30.关于x 的函数bc abx y +-=(c 与a ,b 不同号)的图象不通过( )A.第一象限B.第二象限C.第三象限D.第四象限三、解答题31.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需 要购买行李票,行李票费用y (元)是行李质量x (公斤)的一次函数,其图象如图代13-2-9所示.求:(1)y 与x 之间的函数关系式;(1)旅客最多可免费携带行李的公斤数.32.已知:如图代13-2-10,在直角坐标系中,直线AB 交y 轴于点A ,交x 轴于点B ,其解析式为243+-=x y .又O 1是x 轴上一点,且⊙O 1与直线AB 切于点C ,与y 轴切于原点O.(1)求点C 的纵坐标;(2)如图代13-2-11,以AO 为直径作⊙O 2,交直线AB 于D ,交⊙O 1于N ,连ON 并延 长交DC 于G ,求△ODG 的面积;(3)另有一圆过点O1,与y轴切于点O2,与直线AB交于M,P,求证:O1M²O1P=2.33.如图代13-2-12,已知⊙O'与x轴交于A,B两点,与y轴交于C,D两点,圆心的坐标是(1,-1)半径是5.(1)比较线段AB与CD的大小;(2)求A,B,C,D四点的坐标;(3)过点D作⊙O'的切线,求这条切线的解析式.34.如图代13-2-13,A,B分别是x轴上位于原点左、右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D.S△AOP=6(1)求S△COP的面积;(2)求点A的坐标及p的值;(3)若S△BOP=S△DOP,求直线BD的函数解析式.35.某个体商贩以每件200元的价格批量购进紧俏商品A,为了促进他自己商店的其他商品的销售,商贩决定将A以每件不低于购进价,但每件的毛利润又不高于购进价的25%,的可变价格出售(毛利润=售出价-购进价).一学生通过市场调查发现,每当该商贩改变A(1 增加一元,其他商品出售所得的收入是增加,还是减少多少元?(2)如果商贩欲使当天售完200件A 所得的毛利润与出售其他商品所得的收入之和不 少于25 000元,请你为A 确定售出价的范围.36.有两条直线l 1∶y 1=ax+b 和l 2∶y 2=cx+5,学生甲解出它们的交点为(3,-2);学生 乙因把c 抄错而解出它们的交点为(41,43),试写出两条直线函数的表达式. 37.如图代13-2-14,在直角坐标系xOy 中,直线l 过点B (0,3),且x 轴的正半 轴交于点A ,点P ,Q 在线段AB 上,点M ,N 在线段OA 上,且△POM 与△QMN 是相似比为3∶1的两个等边三角形,试求:(1)AM/MO 的值;(2)直线l 的解析式.38.如图代13-2-15,直线133+-=x y 和x 轴、y 轴分别交于点A 、点B ,以线段AB 为边在第一象限内作等边三角形ABC ,如果在第一象限内有一点)21,(m P ,且△ABP 的面积与△ABC 的面积相等,求m 的值.39.已知直线111b x k y +=经过点(1,6)及点(-3,-2),它和x 轴、y 轴的交点是B , A ;直线222b x k y +=经过点(2,-2),且在y 轴上的截距为-3,它和x 轴、y 轴的交点是D ,C.(1)分别写出直线222111,b x k y b x k y +=+=的解析式,并画出它们的图象;(2)计算四边形ABCD 的面积;(3)若直线AB 和直线DC 交于E ,求S △BCE ∶S ABCD 的值.参 考 答 案动手动脑1.∵ -1<x <3,∴ -2<2x <6.∴-2<y <6,即y=2x.又 -2<2x <6.∴-6<-2x <2.∴-2<-2x+4<6.∵ -2<y <6,∴ y=-2x+4.∴y=2x 或y=-2x+4.应选C.2.依题意,得⎪⎩⎪⎨⎧=⋅=+.321,5OB OA OB OA 解方程组,得⎩⎨⎧==⎩⎨⎧==.3,2;2,3OB OA OB OA 或 ∴A (3,0),B (0,2),或A (2,0),B (0,3).故可设y=ax+2或y=ax+3,进而可求:2332-=-=a a 或. ∴函数解析式为232+-=x y 或323+-=x y . 3.C=[2+0.5(P-1)](元)4.(1)经过B ,C 的解析式是:33+=x y .(2)当点E 在线段OC 上移动时,直线BC 与⊙O '有三种位置关系:相离、相切、 相交.当5/52=b 时,直线BE 与⊙O '相切;当5/52<b <3时,直线BE 与⊙O '相交;当0<B <5/52时,直线BE 与⊙O '相离; 5.773+=x y 或777+=x y .【思考】 1.如何根据题意画出示意图?2.如何用代数式表示运往各地的机器台数?3. 如何找出相等关系式?4.一次函数有什么性质?【思路分析】 本例必须依题意画出示意图,把运往各地机器台数列好代数式,再结 合题意便可列出关系式,再借助一次函数性质,思路便可 现.解:(1)运输方案示意图如图代13-2-16.根据示意图,结合题意,得)]10(12[8)6(5)10(43x x x x y --+-+-+=百元,∴ 862+=x y 百元.(2)∵y ≤90,∴206090862≤≤⇒⎭⎬⎫≤≤≤+x x x . ∴x=0,1,2,即有三种调运方案.(3)∵0≤x ≤2,由一次函数的性质可知,x=0时,y 值最小,y min =86(百元),此时 总运费最低,最低运费是86百元,即8 600元.调运方案为:由B 市运往C 市0台,运住D 市6台,由A 市运往C 市10台,运住D 市2台.本例展示了用所学一次函数知识创造性地应用到商品经济中,帮助人们运筹帷幄,决策准确,服务于社会,提高经济效益的例子,这种一次函数应用题,打破了传统应用题的框式,给应用题增加了新的活力,必须转变传统观念,适应商品经济大潮,才能运用所学知识,创造性地解决商海中的问题。
一次函数练习题(附答案)
一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。
5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。
CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。
一次函数练习题及答案
一次函数练习题及答案一、选择题(每题2分,共10分)1. 一次函数y=kx+b的斜率k表示什么?A. 函数的截距B. 函数的增长速度C. 函数的对称轴D. 函数的顶点2. 下列哪个选项不是一次函数?A. y = 3x + 5B. y = x^2 + 1C. y = -2x - 3D. y = 53. 一次函数y=kx+b中,当k>0时,函数的图像在坐标平面内如何变化?A. 从左下角向右上角延伸B. 从左上角向右下角延伸C. 从右上角向左下角延伸D. 从左上角向右上角延伸4. 已知一次函数y=2x-4,当x=3时,y的值是多少?A. 2B. -2C. 0D. 55. 如果一次函数y=kx+b的图像经过点(1,1)和(2,4),那么k和b的值分别是多少?A. k=3, b=-2B. k=2, b=-1C. k=1, b=2D. k=4, b=-3二、填空题(每题2分,共10分)6. 一次函数y=kx+b的图像是一条______。
7. 当k<0时,一次函数y=kx+b的图像会经过第______象限。
8. 一次函数y=kx+b中,如果b>0,则函数的图像与y轴的交点在y轴的______半轴。
9. 已知一次函数y=kx+b的图像经过点(-1,5),且与x轴相交于点(3,0),则k=______。
10. 一次函数y=kx+b的图像与x轴相交于点(x,0),则x=______。
三、解答题(每题5分,共20分)11. 已知一次函数y=kx+b的图像经过点(2,-3)和(-1,6),请求出k和b的值。
12. 一次函数y=kx+b的图像与x轴相交于点(a,0),与y轴相交于点(0,b),若a=4,b=-1,请写出该一次函数的解析式。
13. 已知一次函数y=kx+b的图像经过点(0,5)和(1,10),求出该一次函数的解析式,并判断其增减性。
14. 一次函数y=kx+b的图像与反比例函数y=1/x的图像在第一象限相交于点(2,m),求m的值。
《一次函数》专项练习和中考真题(含答案解析及点睛)
《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。
一次函数综合测试卷试题及含答案.docx
精品文档一次函数测试题一、填空(10× 3′=30′)1、已知一个正比例函数的图象经过点(- 2, 4),则这个正比例函数的表达式是。
2、若函数y= - 2x m+2是正比例函数,则m 的值是。
3、已知一次函数y=kx+5的图象经过点( - 1,2),则 k=。
4、已知 y 与 x 成正比例,且当 x=1 时, y=2,则当 x=3 时, y=____。
5、点 P(a,b)在第二象限,则直线y=ax+b 不经过第象限。
6、已知一次函数 y=kx-k+4 的图象与 y 轴的交点坐标是 (0 , -2) ,那么这个一次函数的表达式是 ______________。
7、已知点 A(-1 , a), B(2 ,b) 在函数 y=-3x+4 的象上 , 则 a 与 b 的大小关系是____。
8、地面气温是 20℃,如果每升高 1000m,气温下降 6℃,则气温(t℃)与高度 h(m)的函数关系式是 __________。
9 、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:。
10 、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。
( 1) y 随着 x 的增大而减小,( 2)图象经过点( 1,-3 )。
二、选择题 (10×3′=30′)11、下列函数( 1)y=πx (2)y=2x-1(3)y=1(4) y=2-1-3x中,是一次xy函数的有()( A) 4 个( B) 3 个(C)2 个( D) 1 个112、下面哪个点不在函数 y 2 x 3 的图像上()O2x ( A)(-5 ,13)(B)( 0.5 ,2)( C)(3,0)(D)(1,1)13、直线 y=kx+b 在坐标系中的位置如图,则 ()(第13题图)( A)1111 2222 14、下列一次函数中,随着增大而减小而的是()( A)y 3x(B)y 3x 2( C)y 3 2x(D)y3x 215、已知一次函数y=kx+b的图象如图所示,则 k,b的符号是 ()(A) k>0 ,b>0(B) k>0,b<0(C) k<0,b>0(D) k<0,b<0(第 15 题图)16、函数 y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么 m的取值范围是 ()( A)3()3()()1 m B 1 m C m 1 D m4417、一支蜡烛长 20 厘米 ,点燃后每小时燃烧 5 厘米 ,燃烧时剩下的高度 h (厘米 )与燃烧时间 t (时)的函数关系的图象是 ()(A)(B)(C)(D)18、下图中表示一次函数y= mx+n与正比例函数 y= mnx(m ,n 是常数,且 mn<0)图像的是 ( ).19. 一次函数y=ax+1与y=bx-2的图象交于x轴上一点,那么a:b等于113A. 2B.2C.2D.以上答案都不对20. 某公司市场营业员销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示 .由图中给出的信息可知,营销人员没有销售时的收入是A.310B.300C.290D.280三、计算题(21、22、25 各 8 分, 23、24、26 各 12 分)21、已知一个正比例函数和一个一次函数的图象相交于点A(1,4) ,且一次函数的图象与 x 轴交于点 B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;22、已知 y - 2 与 x 成正比,且当 x=1 时, y= - 6(1)求 y 与 x 之间的函数关系式(2)若点 (a,2)在这个函数图象上,求a 的值1 23、已知一次函数y=kx+b的图象经过点 (- 1, - 5),且与正比例函数y=2 x 的图象相交于点 (2, a),求(1)a 的值(2)k, b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。
中考数学专项复习《一次函数》练习题及答案
中考数学专项复习《一次函数》练习题及答案一、单选题1.如图,在一次函数y=﹣x+10的图象上取一点P,作PA⊥x轴,PB⊥y轴,垂足为B,且矩形PBOA的面积为9,则这样的点P个数共有()A.1个B.2个C.3个D.4个2.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.3.有甲、乙两个不同的水箱,容量分别为a升和b升,且已各装了一些水.若将甲中的水全倒入乙箱之后,乙箱还可以继续装20升水才会满;若将乙箱中的水倒入甲箱,装满甲箱后,乙箱里还剩10升水,则a,b之间的数量关系是()A.b=a+15B.b=a+20C.b=a+30D.b=a+404.关于一次函数y=5x-3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.y随x的增大而增大D.图象经过点(-3,0)5.已知函数y=kx(k≠0)的大致图象如图所示,则函数y=kx-k的图象大致是()A.B.C.D.6.防汛期间,下表记录了某水库16h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8h时,达到警戒水位,开始开闸放水,此时,y与xx/h012810121416y/m1414.5151814.412119)A.第1小时B.第10小时C.第14小时D.第16小时7.若点P(2,4)在正比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(−3,4)B.(−2,−4)C.(0.5,4)D.(1,5)8.已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是()A.1B.2C.3D.49.下列y关于x的函数中是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,一次函数y=kx+b与y=﹣x+4的图象相交于点P(m,1),则关于x、y的二元一次方程组{y=kx+by=−x+4的解是()A .{x =3y =1B .{x =2.6y =1C .{x =2y =1D .{x =1y =111.关于函数y=ax 2和函数y=ax+a (a≠0)在同一坐标系中的图象,A ,B ,C ,D 四位同学各画了一种,你认为可能画对的图象是( )A .B .C .D .12.已知一次函数y=kx ﹣k 与反比例函数 y =k x在同一直角坐标系中的大致图象是( )A .B .C .D .二、填空题13.如图,直线y =kx −3与x 轴、y 轴分别交于点B 与点A ,OB =13OA ,点C 是直线AB 上的一点,且位于第二象限,当⊥OBC 的面积为3时,点C 的坐标为 .14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是.15.若直线y=kx+b平行直线y=3x+4,且过点(1,﹣2),则直线的关系式为.16.若函数y=−x+3与y=2x+b的图象相交于x轴上的一点,则b的值为.17.在平面直角坐标系中将直线y=x+2沿着y轴向下平移3个单位长度,平移后的直线所对应的函数解析式为.18.某自行车存车处在星期日的存车为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车总收入y(元)与x的函数关系式是.三、综合题19.作出函数y=2x+6的图象并回答:(1)x取何值时,y=0;(2)x取何值时,y>0?(3)x取何值时,y<0?20.某家电集团公司研制生产的新家电,前期投资200万元,每生产一台这种新家电,后期还需投资0.3万元,已知每台新家电售价为0.5万元.设总投资为P万元,总利润为Q万元(总利润=总产值-总投资),新家电总产量为x台.(假设可按售价全部卖出)(1)试用x的代数式表示P和Q;(2)当总产量达到900台时,该公司能否盈利?(3)当总产量达到多少台时,该公司开始盈利?21.如图所示,已知二次函数y1=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,与y轴的交点为点C.(1)求m的值;(2)若经过点B的一次函数y2=kx+b平分⊥ABC的面积.求k、b的值.22.阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小带根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x >0)的变化情况.下面是小带的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x=32两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完250毫升低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.在平面直角坐标系xOy中直线l1:y1=kx+b与直线y=2x平行,且经过点(1,0).(1)求直线l1的解析式;(2)已知直线l2:y2=mx+1,过点p(n,0)作x轴的垂线,与直线l1交于点M,与直线l2交于点N.结合图象回答:①若m=1,当点M在点N的上方时,直接写出n的取值范围;②若对任意的n>2,都有点M在点N的上方,直接写出m的取值范围.24.如图,已知直线y=﹣2x+12分别与Y轴,X轴交于A,B两点,点M在Y轴上,以点M为圆心的⊥M与直线AB相切于点D,连接MD.(1)求证:⊥ADM⊥⊥AOB;(2)如果⊥M的半径为2 √5,请写出点M的坐标,并写出以(﹣52,292)为顶点,且过点M的抛物线的解析式;(3)在(2)条件下,试问在此抛物线上是否存在点P使以P、A、M三点为顶点的三角形与⊥AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案1.【答案】D2.【答案】D3.【答案】C4.【答案】C5.【答案】A6.【答案】C7.【答案】B8.【答案】B9.【答案】C10.【答案】A11.【答案】D12.【答案】B13.【答案】(−3,6)14.【答案】x<﹣215.【答案】y=3x﹣316.【答案】-617.【答案】y=x-118.【答案】y=-0.1x+120019.【答案】(1)解答: 由图象得:x=-3时,y=0;(2)解答:y=2x+6>0,解x>-3当x>-3时,y>0;(3)解答:y=2x+6<0,解x<-3当x<-3时,y<0.20.【答案】(1)解:P=200+0.3x,Q=0.5x-(200+0.3x)=0.2 x-200.(2)解:当x=900时即当总产量达到900台时,没有盈利,亏了20万元.(3)解:当Q >0时,开始盈利,即0.2x −200>0,解得x >1000 当总产量超过1000台时,公司开始盈利.21.【答案】(1)解:∵ 二次函数y 1=−x 2+2x +m 的图象与x 轴的一个交点为A (3,0)∴0=−9+6+m ∴ m=3; (2)解:如图∵一次函数y 2=kx +b 平分⊥ABC 的面积 ∴一次函数y 2=kx +b 平分线段AC ∴ 一次函数y 2=kx +b 经过AC 的中点E ∵m=3∴−x 2+2x +3=0时,解得x 1=−1 x 2=3 ∴ 点B 的坐标为B (-1,0) 当x =0时,y =3∴ 点C 的坐标为C (0,3) ∴ 点E 的坐标为E (32,32)∵ 一次函数y 2=kx +b 经过点B ∴{0=−k +b32=32k +b 解得:{k =35b =3522.【答案】(1)解:图象如图所示.(2)解:y=-200x2+400x(0≤x≤ 32)或y=225x(x> 32)(3)解:不能.理由如下:把y=20代入反比例函数y=225x得x=11.25.∵晚上20:30经过11.25小时为第二天早上7:45∴第二天早上7:45以后才可以驾车上路∴第二天早上7:00不能驾车去上班23.【答案】(1)解:∵直线l1:y1=kx+b与直线y=2x平行∴k=2把点(1,0)代入直线y=2x+b中得到0=2+b解得b=−2∴直线l1的解析式为y=2x−2;(2)解:如图①若m=1,则直线l2:y2=x+1联立{y=x+1y=2x−2解得{x=3y=4由图象可知当n>3时,点M在点N的上方;②把x=2代入y=2x−2求得y=2把x=2,y=2代入y=mx+1得解得m=1 2∴若对任意的n>2,都有点M在点N的上方,m的取值范围是m⩽12.24.【答案】(1)证明:∵AB是⊥M切线,D是切点∴MD⊥AB.∴⊥MDA=⊥AOB=90°又⊥MAD=⊥BAO∴⊥ADM⊥⊥AOB(2)解:设M(0,m)由直线y=2x+12得,OA=12,OB=6则AM=12﹣m,而DM=2 √5在Rt⊥AOB中AB= √OA2+OB2= √122+62=6 √5∵⊥ADM⊥⊥AOB∴AMDM=ABOB即2√5= 6√56,解得m=2∴M(0,2)设顶点为(﹣52,292)的抛物线解析式为y=a(x+52)2+ 292将M点坐标代入,得a(0+ 52)2+ 292=2解得a=﹣2所以,抛物线解析式为y=﹣2(x+ 52)2+ 292(3)解:存在.①当顶点M为直角顶点时,M、P两点关于抛物线对称轴x=﹣52轴对称此时MP=5,AM=12﹣2=10,AM:MP=2:1,符合题意∴P(﹣5,2);②当顶点A为直角顶点时,P点纵坐标为12,代入抛物线解析式,得﹣2(x+ 52)2+ 292=12解得x=﹣52± √52,此时AP=﹣52± √52,AM=10,不符合题意;③当顶点P为直角顶点时,则由相似三角形的性质可知,P(n,﹣2n+2 )或(2n,﹣n+2)若P(n,2n+2),则﹣2n﹣12n=10,解得n=﹣4,当x=﹣4,y=﹣2(﹣4+52)2+292=10,﹣2n+2=10,符合题意若P(2n,﹣n+2),则﹣n﹣4n=10,解得n=﹣2,而当x=2n=﹣4时,y=﹣2(﹣4+ 52)2+292=10,﹣n+2=4,不符合题意所以,符合条件的P点坐标为(5,2),(4,10).。
一次函数真题汇编附答案
一次函数真题汇编附答案一、选择题1.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B【解析】【分析】 作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.2.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A .5B .2C .52D .25【答案】C【解析】【分析】 通过分析图象,点F 从点A 到D 用as ,此时,△FBC 的面积为a ,依此可求菱形的高DE ,再由图象可知,BD=5,应用两次勾股定理分别求BE 和a .【详解】过点D 作DE ⊥BC 于点E.由图象可知,点F 由点A 到点D 用时为as ,△FBC 的面积为acm 2..∴AD=a.∴12DE •AD =a . ∴DE=2.当点F 从D 到B 时,用5s. ∴BD=5. Rt △DBE 中,BE=()2222=521BD DE --=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 2=22+(a-1)2.解得a=52. 故选C .【点睛】 本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.3.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数的位置确定a 、b 的大小,看是否符合ab<0,计算a-b 确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x- 的图象过一、三象限, 所以此选项不正确; B. 由一次函数图象过二、四象限,得a<0,交y 轴正半轴,则b>0,满足ab<0,∴a −b<0,∴反比例函数y=a b x-的图象过二、四象限, 所以此选项不正确; C. 由一次函数图象过一、三象限,得a>0,交y 轴负半轴,则b<0,满足ab<0,∴a −b>0,∴反比例函数y=a b x-的图象过一、三象限, 所以此选项正确; D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小4.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-.∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.5.若点()11,x y ,()22,x y ,()33,x y 都是一次函数1y x =--图象上的点,并且123y y y <<,则下列各式中正确的是( )A .123x x x <<B .132x x x <<C .213x x x <<D .321x x x <<【答案】D【解析】【分析】根据一次函数的性质即可得答案.【详解】∵一次函数1y x =--中10k =-<,∴y 随x 的增大而减小,∵123y y y <<,∴123x x x >>.故选:D .【点睛】本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k >0时,图象经过一、三、象限,y 随x 的增大而增大;当k <0时,图象经过二、四、象限,y 随x 的增大而减小;熟练掌握一次函数的性质是解题关键.6.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时, 根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误;④由图象知x=t 时,动车到达乙地,∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.如图,把 Rt ABC ∆放在直角坐标系内,其中 90CAB ∠=o ,5BC =,点 A 、B 的坐标分别为(1,0)、(4,0),将ABC ∆沿x 轴向右平移,当点 C 落在直线26y x =-上是,线段BC 扫过的面积为( )A.4B.8C.16D.8【答案】C【解析】【分析】根据题目提供的点的坐标求得点C的坐标,当向右平移时,点C的纵坐标不变,代入直线求得点C的横坐标,进而求得其平移的距离,计算平行四边形的面积即可.【详解】∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3,BC=5,∵∠CAB=90°,∴AC=4,∴点C的坐标为(1,4),当点C落在直线y=2x-6上时,∴令y=4,得到4=2x-6,解得x=5,∴平移的距离为5-1=4,∴线段BC扫过的面积为4×4=16,故选C.【点睛】本题考查了一次函数与几何知识的应用,解题关键是题中运用圆与直线的关系以及直角三角形等知识求出线段的长.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【答案】C【解析】【分析】 由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案.【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3),∴-3=-6+b ,解得:b=3,∴一次函数的解析式为y=-6x+3,∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴,∴这个一次函数的图象一定经过一、二、四象限,故选:C .【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3), ∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.11.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A【解析】【分析】 由30kx b ++<即y<-3,根据图象即可得到答案.【详解】∵y kx b =+,30kx b ++<,∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3),∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3,故选:A.【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.12.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C .D .【答案】D【解析】【分析】由y 随x 的增大而减小即可得出m <0,再由m <0、−m >0即可得出一次函数y mx m =-的图象经过第一、二、四象限,对照四个选项即可得出结论. 【详解】解:∵正比例函数y =mx (m≠0)中,y 随x 的增大而减小, ∴m <0, ∴−m >0,∴一次函数y =mx−m 的图象经过第一、二、四象限. 故选:D . 【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k <0,b >0⇔y =kx +b 的图象在一、二、四象限”是解题的关键.13.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k < B .2k >C .0k >D .k 0<【答案】B 【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围. 【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大, ∴k-2>0, ∴k >2, 故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.14.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3A 作x 轴的垂线,交直线2y x =于点3B ;按3B 此规律作下去,则点nB 的坐标为( )A .(2n ,2n-1)B .(12n -,2n )C .(2n+1,2n )D .(2n ,12n +)【答案】B 【解析】 【分析】先根据题意求出点A 2的坐标,再根据点A 2的坐标求出B 2的坐标,以此类推总结规律便可求出点n B 的坐标. 【详解】 ∵1(1,0)A ∴11OA =∵过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ∴()11,2B ∵2(2,0)A ∴22OA =∵过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ∴()12,4B∵点3A 与点O 关于直线22A B 对称 ∴()()334,0,4,8A B以此类推便可求得点A n 的坐标为()12,0n -,点B n 的坐标为()12,2n n - 故答案为:B . 【点睛】本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.15.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B 【解析】 【分析】 【详解】由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm , ∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°, ∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则123k b {507k b =+=+, 解得:3k 5{21b 5=-=.∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .16.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表: 砝码的质量x/g 0 50 100 150 200 250 300 400 500 指针位置y/cm2 345677.57.57.5则下列图象中,能表示y 与x 的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.17.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是()A.B.C.D.【答案】B【解析】【分析】过C作CD⊥AB于D,先求出A,B的坐标,分别为(4,0),(0,3),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=4,则DB=5-4=1,BC=3-n,在Rt△BCD中,利用勾股定理得到n的方程,解方程求出n即可.【详解】过C作CD⊥AB于D,如图,对于直线,当x=0,得y=3; 当y=0,x=4,∴A (4,0),B (0,3),即OA=4,OB=3, ∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上, ∴AC 平分∠OAB , ∴CD=CO=n ,则BC=3-n , ∴DA=OA=4, ∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2, ∴n 2+12=(3-n )2,解得n=, ∴点C 的坐标为(0,). 故选B. 【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.18.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限 B .第二、三、四象限 C .第一、二、四象限 D .第一、二、三象限【答案】B 【解析】 【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】解:Q 函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >-10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B . 【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.19.如图,已知一次函数3y x b =+与3y ax =-交于点P (-2,-5),则关于x 的不等式33x b ax +>-的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 【解析】 【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可. 【详解】解:∵由函数图象可知,当x >−2时,一次函数y =3x +b 的图象在函数y =ax−3的图象的上方,∴不等式3x +b >ax−3的解集为x >−2, 在数轴上表示为:.故选:C . 【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.20.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<【答案】C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.。
一次函数习题集锦含答案
一次函数习题集锦含答案一、选择题1·下面图象中,不可能是关于 x的一次函数 y= mx-(m-3)图象的是( )参考答案: C说明:图象反映性质,先确定m的符号,然后看此函数图象在两坐标轴上的截距情况是否矛盾,即用排除法;当 m>0时,-(m-3)有可能大于零、小于零、等于零,所以 A、B有可能是函数 y = mx-(m-3)的图象,由此排除 A与B;当 m<0时,-(m-3)>0 ,故可排除 D,因此选 C.2·已知一次函数 y=kx+b 的图象经过第一、三、四象限,那么 ( )A·k>0,b>0 B · k<0,b>0 C · k>0,b<0 D · k<0,b<0参考答案:C说明:由已知得该一次函数的图象不经过第二象限,而当k<0时,一次函数的图象必过第二象限,所以此时k应大于0:另外,不难得出当k>0,b>0时,函数图象也过第二象限,所以 b 不难大于0,而当 b=0 时,图象只过一、三象限,不过第四象限,只有在 b<0时,图象才经过第一、三、四象限,所以参考答案为 C.3·下列图形中,表示一次函数 y=mx+n 与正比例函数 y=mnx(m ,n是常数,且mn≠0)图象是( )参考答案:A说明:从选项 A的图象中可以看出一次函数与正比例函数的函数值都是随着 x的增大而减小,即m<0,mn<0,而图象中还可以看出 n>0,符合条件,所以 A正确;由选项 B中的图象可得 m<0且 n>0, mn>0,产生矛盾, B错;由选项 C中的图象可得 m>0且 n>0, mn<0,产生矛盾, C错;由选项 D中的图象可得 m>0且n<0,mm>0,也产生矛盾,D错;所以正确参考答案为 A.4·如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中 s和 t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A·2.5 米 B ·2米 C · 1.5 米 D · 1米参考答案: C说明:可设这两个一次函数分别为 y=kx+b(k 、 b为常数, k≠0),y=mx(m ≠0为常数);从图中可以看出对于 y=kx+b 来说当x=0 时y=12 ,即b=12 ;当x=8 时,y=64 ,即64=8k+12 ,解得k=6.5 ,即y=6.5x+12 ;而对于 y=mx来说当 x=8 时y=64 ,可解得 m=8,即 y=8x ;这就是说速度慢的每秒 6.5 米,先跑 12米之后,速度快的才以每秒8米的速度出发,8秒后速度快的追上速度慢的;即快者的速度比慢者的速度每秒快8-6.5 = 1.5 米,答案为 C.5·下列说法正确的是 ( )A·正比例函数是一次函数B·一次函数是正比例函数C·函数 y= kx+2(k 为常数)是一次函数D·函数 y=2 是一次函数参考答案: A说明:由一次函数的定义 y= kx+b(k 、 b为常数, k≠0),不难得到当 b=0 时,该一次函数就是正比例函数,即正比例函数是一种特殊的一次函数,选项A正确;而当b≠0时,一次函数就不是正比例函数,所以选项 B错误;只有在 k为不等于 0 的常数时,函数 y= kx+2 才是一次函数,所以选项 C错误;函数 y=2不符合一次函数的定义,因为它不含变量 x的项,所以选项D错误;参考答案为 A.6·如图,1,反映了某公司的销售收入与销售量的关系,|₂反映了该公司产品的销售成本与销售量的关系,当该公司赢利 (收入大于成本 )时,销售量( )A·小于 3吨 B ·大于 3吨 C ·小于 4吨 D ·大于 4吨参考答案:D说明:从图不难出,当x>4时,的图在 l ₂的图上方,当 x=4时,的图与参考答案:A说明:因点 P 按A→B→C→M的顺在边为正方形边运逝以应谈论随 x 的增大而减小,即 2<x< , >y>0,如下(3),并且 y = SΔAPM= ×底×高,或 y = S8·弹的艘与所挂物体的重的关系为次函数,如图示,由图知不挂物体的弹的腹(为 )A·7cm B·8cm1₂的翻産交点,当 x<4时,的閣在 |₂的閣下方,而若要收入大于成本,即 | ₁的圆应在I ₂的图上方,也就是 x>4(参考答案DJ.7·如图P 按A→B→C→M的顺在抛为的正方形边运动 M 是CD 边的中点:设 P 线的程 x 内数,△APM的面积,则数y 的大致翻 (如下图是( )当P 在 AB 边运动 y 随x 的增大而增大,即 1212,0≤y ≤,如下(图) :当P 在 BC上运动 y 随 x 的增大而减小,|521≤14x ≤2,>y ≥,如下(2) :当 P 在CM 上运动 y12正方形-SABP-Suour-SAMCP,1它均是一次函数关系,故选·C·9cmD· 10cm参考答案:D说明:可读一次函数关系式为= kx+b(k 、b 常数, k≠0),因此,由图可得当 x = 5射= 12.5 ,当 x = 20时= 20,即有 12.5 = 5k+b 且 20= 20k+b,可解出 k= 0.5,b= 10:这棵一次函数关系式就是 y=0.5x+10 ,不挂物体的弹簧,即当 x=0射的值得到 y= 10 ,正确参考答案Dy二、解答题1·直线与直线= 2x+1 的交点的横坐梯2,与直线 = -x+2的交点的坐标1,求直线的解析式·参考答案: y=4x -3;说明:可以直线的解析式y 为= kx+b ,由已知不得到直壁,5)和(1,1)两点,即当 x=2时=5 ;当x=1时=1 ;槎有 2k+b=5 且k+b= 1 ,解得 k= 4 , b= -3,即直线的解析式y=4x -3·2·如图某汽布皱路程 s(km) 与阈min) 的函数关系图窥图所提供的信息,解答下列题(1) 汽在前 9分钟的平均速度是多少? (2) 汽在中途停了多时间(3)当 16≤ t≤30球s 与t 的函数式·(2) 汽在中途停了 16-9=7 分钟 (3)s= 2t -20(16≤t≤30)可读函数解析式约= kt+b(16 ≤ t≤30),由图可知:=kt+b ( 16,12)和点(30,40),即当 t= 16时=12 ,t= 308g=40 ;槎有 16k+b = 12 且30k+b= 40,解得 k=2 ,b= -20,所以当 16≤ t≤30日$与t 的函数式$= 2t -20(16≤t≤30)·3·某地锯拨入网有两种收费式,用再任选一: (A)时制: 0.05 元/分: (B)包月制: 50元/月(限一部个人住宅地网 );此外,每种上网方式都得加收通信02元/分;解答: (1)当 t=9日$= 12 ;∴汽在 9分钟的平均速度(km/min) 或480km/ℎ;(1) 请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间 x(小时)之间的函数关系式:(2) 若某用户预计一个月内上网的时间少于20小时,你认为采用哪种方式较为合算?参考答案:(1) 计时制: y= 60 × (0.05+0.02)x= 4.2x ;包月制: y= 50+60 × 0.02x= 50+1.2x(2) 令 y,=y ₂,则4.2x= 50+1.2x ,解得x=1623,N时)=16小时 40分钟:所以当用户一个月上网16 小时40分钟时,选用计时制、包月制均可:当一个月上网时间小于16 小时40分钟时,选用计时制合算:当一个月上网时间大于16小时40分钟时,则选用包月制合算·∴AQ=7-(3-x)=4+x ,∴y=12(BP+AQ)?AB=12(x+4+x)74=4x+8(0<x<3)4·如图,在矩形 ABCD中,AB=4 ,BC=7 ,P是 BC上与B不重合的动点,过点 P的直线交 CD的延长线于 R,交 AD于 Q(Q与 D不重合),且∠RPC= 45o,设 BP=x ,梯形 ABPQ的面积为 y,求y与x之间的函数关系,并求出自变量 x的取值范围·参考答案: ∵∠ C=90 o,∠RPC=45o,∴∠R=45 o,∴∠ R=∠RPC,∴CR=CP,同理 DR=DQ∵BP=x ,BC=7 ,∴PC=CR=7 -x∵CD=AB=4 ,∴RD=3-x,DQ=DR=3 -x,。
八年级一次函数试卷【含答案】
八年级一次函数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 一次函数的图像是一条直线,当斜率k>0时,这条直线是向()倾斜的。
A. 上B. 下C. 左D. 右2. 如果一次函数的表达式为y=3x+2,那么它的截距是()。
A. 3B. 2C. -3D. -23. 一次函数y=2x-5与x轴的交点是()。
A. (2.5, 0)B. (-2.5, 0)C. (0, -2.5)D. (0, 2.5)4. 两个一次函数y=2x+1和y=-0.5x+3的图像()。
A. 总是相交B. 总是平行C. 在y轴相交D. 在x轴相交5. 如果一次函数y=kx+b的图像经过点(1, 4)和(3, 12),那么k的值是()。
A. 3B. 4C. 5D. 6二、判断题(每题1分,共5分)6. 一次函数的图像是一条曲线。
()7. 当一次函数的斜率为0时,函数图像是一条水平线。
()8. 一次函数y=5x-10的图像一定经过点(0, -10)。
()9. 两个一次函数如果斜率相同,那么它们的图像一定平行。
()10. 一次函数y=kx+b中,b表示函数图像与y轴的交点。
()三、填空题(每题1分,共5分)11. 一次函数y=3x-7与x轴的交点是______。
12. 如果一次函数的图像经过点(2, 5)和(4, 11),那么这个函数的斜率是______。
13. 一次函数y=-2x+6的图像是一条______。
14. 一次函数y=kx+b的图像与y轴的交点是______。
15. 如果两个一次函数的斜率相同,那么它们的图像是______。
四、简答题(每题2分,共10分)16. 解释一次函数的斜率代表了什么。
17. 描述一次函数图像与x轴和y轴的交点。
18. 如何确定两个一次函数是否平行。
19. 什么是截距?一次函数有几个截距?20. 解释一次函数图像的斜率和截距是如何决定的。
五、应用题(每题2分,共10分)21. 一次函数y=4x-1的图像与x轴的交点是什么?22. 如果一次函数的图像经过点(3, -2)和(6, 4),求这个函数的表达式。
一次函数知识点总复习含答案
A.
B.
C.
D.
【答案】C 【解析】 【分析】 根据 k、b 的符号来求确定一次函数 y=kx+b 的图象所经过的象限. 【详解】 ∵k<0, ∴一次函数 y=kx+b 的图象经过第二、四象限. 又∵b>0 时, ∴一次函数 y=kx+b 的图象与 y 轴交与正半轴. 综上所述,该一次函数图象经过第一象限. 故答案为:C. 【点睛】 考查一次函数图象在坐标平面内的位置与 k、b 的关系.解答本题注意理解:直线 y=kx+b 所在的位置与 k、b 的符号有直接的关系.k>0 时,直线必经过一、三象限.k<0 时,直 线必经过二、四象限.b>0 时,直线与 y 轴正半轴相交.b=0 时,直线过原点;b<0 时, 直线与 y 轴负半轴相交.
∵一次函数 y=kx b 的图象与正比例函数 y=﹣6x 的图象平行,
∴k=-6,
∵一次函数 y 6x b 经过点 A(1,-3),
∴-3=-6+b, 解得:b=3, ∴一次函数的解析式为 y=-6x+3, ∵-6<0,3>0, ∴一次函数图象经过二、四象限,与 y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C. 【点睛】 本题考查了两条直线平行问题及一次函数的性质:若直线 y=k1x+b1 与直线 y=k2x+b2 平行, 则 k1=k2;当 k>0 时,图象经过一、三象限,y 随 x 的增大而增大;当 k<0 时,图象经过 二、四象限,y 随 x 的增大而减小;当 b>0 时,图象与 y 轴交于正半轴;当 b<0 时,图 象与 y 轴交于负半轴.
∴A( 2 ,0),B(0,2), 3
∴OA= 2 ,OB=2, 3
∴S
最全一次函数图像专题(带解析)完整版.doc
2018/06/10一.选择题(共15小题)1.(2016•武汉)下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.42.函数y=(m﹣2)x n﹣1+n是一次函数,m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=2 C.m≠2且n=2 D.m=2且n=03.已知函数y=3x+1,当自变量x增加m时,相应函数值增加()A.3m+1 B.3m C.m D.3m﹣14.在一次函数y=kx+b中,k为()A.正实数B.非零实数 C.任意实数 D.非负实数5.(2017•台湾)如图的坐标平面上有四直线L1、L2、L3、L4.若这四直线中,有一直线为方程式3x﹣5y+15=0的图形,则此直线为何?()A.L1B.L2C.L3D.L46.(2017•清远)一次函数y=x+2的图象大致是()A .B .C .D .7.(2017•滨州)关于一次函数y=﹣x+1的图象,下列所画正确的是()A .B .C .D .8.(2016•台湾)如图,有四直线L1,L2,L3,L4,其中()是方程式13x﹣25y=62的图象.A.L1B.L2C.L3D.L49.(2016•贵阳)一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是()A.x>0 B.x<0 C.x>2 D.x<210.(2015•芜湖)关于x的一次函数y=kx+k2+1的图象可能正确的是()A .B .C .D .11.(2017•乐山)若实数k,b满足kb<0且不等式kx<b的解集是x >,那么函数y=kx+b的图象只可能是()A .B .C .D .12.(2015•江津区)已知一次函数y=2x﹣3的大致图象为()1A. B.C.D.13.(2014•河北)如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A.B.C.D.14.(2017•达州)函数y=kx+b的图象如图所示,则当y<0时x的取值范围是()A.x<﹣2 B.x>﹣2 C.x<﹣1 D.x>﹣115.(2016•安徽)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()A.B.C.D.二.填空题(共10小题)16.(2017•丽水)已知一次函数y=2x+1,当x=0时,函数y的值是_________.17.已知一次函数y=(k﹣1)x|k|+3,则k=_________.18.当m=_________时,函数y=(m﹣3)x2+4x﹣3是一次函数.19.已知2x﹣3y=1,若把y看成x的函数,则可表示为_________.20.已知函数y=(m﹣1)+1是一次函数,则m=_________.21.若函数y=(m﹣)+m是一次函数,则m的值是_________.22.已知函数是一次函数,则m=_________,此函数图象经过第_________象限.23.根据图中的程序,当输入数值x为﹣2时,输出数值y为_________.24.在函数y=﹣2x﹣5中,k=_________,b=_________.25.购某种三年期国债x元,到期后可得本息和为y元,已知y=kx,则这种国债的年利率为(用含k的代数式表示)_________.三.解答题(共5小题)26.已知函数是一次函数,求k和b的取值范围.27.已知+(b﹣2)2=0,则函数y=(b+3)x﹣a+1﹣2ab+b2是什么函数?当x=﹣时,函数值y是多少?28.已知是y关于x的一次函数,并且y的值随x值的增大而减小,求m的值.29.说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数.①汽车以40千米/小时的平均速度从A站出发,行驶了t小时,那么汽车离开A站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数;②汽车离开A站4千米,再以40千米/小时的平均速度行驶了t小时,那么汽车离开A站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为_________,它是_________函数.30.已知函数y=(m﹣3)x|m|﹣2+3是一次函数,求解析式.答案与评分标准一.选择题(共15小题)1.下列函数:①y=x;②y=;③y=;④y=2x+1,其中一次函数的个数是()A.1 B.2 C.3 D.4考点:一次函数的定义。
一次函数专题复习(含答案)
一次函数专题复习一、填空题1.已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .2.若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .3.在同一直角坐标系内,直线3y x =+与直线23y x =-+都经过点 .4.当m 满足 时,一次函数225y x m =-+-的图象与y 轴交于负半轴.5.函数312y x =-,如果0y <,那么x 的取值范围是 .6.一个长120m ,宽100m 的矩形场地要扩建成一个正方形场地,设长增加xm ,宽增加ym ,则y 与x 的函数关系是 .自变量的取值范围是 .且y 是x 的 函数.7.如图1是函数152y x =-+的一部分图像,(1)自变量x 的取值范围是 ; (2)当x 取 时,y 的最小值为 ; (3)在(1)中x 的取值范围内,y 随x 的增大而 .8.已知函数y=(k-1)x+k 2-1,当k______时,它是一次函数,当k=_____•时,它是正比例函数. 9.已知一次函数y kx b =+的图象经过点(2,5)-,且它与y 轴的交点和直线32x y =-+与y 轴的交点关于x 轴对称,那么这个一次函数的解析式为 .10.一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .11.一次函数1y kx b =+-的图象如图2,则3b 与2k 的大小关系是 ,当b = 时,1y kx b =+-是正比例函数.12.b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上.13.已知直线42y x =-与直线3y m x =-的交点在第三象限内,则m 的取值范围是 . 14.要使y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足 , .15.y=23x 与y=-2x+3的图像的交点在第_________象限.二、选择题1.图3中,表示一次函数y m x n =+与正比例函数(y mx m =.n 是常数,且0,0)m n ≠<的图象的是( )2.直线y kx b =+经过一.二.四象限,则直线y bx k =-的图象只能是图4中的( )3.若直线11y k x =+与24y k x =-的交点在x 轴上,那么12k k 等于( ).4A .4B - 1.4C 1.4D -4.直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ).,1A p q r ==.,0B p q r == .,1C p q r =-= .,0D p q r =-=5.直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )A. 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b << 6.如果0ab >,0a c<,则直线a c y x b b=-+不通过( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( )A .7m >B .1m >C .17m ≤≤D .都不对8.如图,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )9.已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则A B C ∆的面积为( )A .4B .5C .6D .710.已知直线(0)y kx b k =+≠与x 轴的交点在x 轴的正半轴,下列结论:① 0,0k b >>若则;②0,0k b ><若则;③0,0k b <>若则;④0,0k b <<若则,其中正确的个数是( )A .1个B .2个C .3个D .4个 11.已知(0,0)b c a c a b k b a b c abc+++===>++=,那么y kx b =+的图象一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限12.如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P处,若再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发x小时,距A站y千米,则y 与x之间的关系可用图象表示为()三、解答题m+(m-4)是一次函数?1.当m为何值时,函数y=-(m-2)x322.一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数.3.已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.4.已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?5.某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?6.判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.参考答案: 一、填空题: 1.m=-32.163.(0,3)4. 2.5m <5. 23x <6. 20y x =+ 0x ≥ 一次函数7.(1)05x <≤ (2)5;2.5 (3)减小8. 1k ≠k=-1 9. 43y x =--10.-1, 2b >11. 32b k >;1 12. 83b =-13. 23m <-14.n=2; 2m ≠ 15.第一象限二、选择题: 1~6 D B D B C A7~12 A A C B C A三、解答题:1.解:∵函数y=(m-2)x32-m +(m-4)是一次函数,∴⎩⎨⎧≠--=-,0)2(,132m m ∴m=-2.∴当m=-2时,函数y=(m-2)x 32-m +(m-4)是一次函数.2.解:(l )y=15+0.5x .(2)自变量x 的取值范围是0≤x ≤18.(3)y 是x 的一次函数.3.解:(1)由于y-3与x 成正比例,所以设y-3=kx .把x=2,y=7代入y-3=kx 中,得7-3=2k ,∴k =2.∴y 与x 之间的函数关系式为y-3=2x ,即y=2x+3. (2)当x=4时,y=2×4+3=11.(3)当y =4时,4=2x+3,∴x=21.4.解:(1)y 是x 的一次函数.∵y+a 与x+b 是正比例函数,∴设y+a=k(x+b)(k 为常数,且k ≠0)整理得y=kx+(kb-a ).∵k ≠0,k ,a ,b 为常数,∴y=kx+(kb-a)是一次函数. (2)当kb-a=0,即a=kb 时,y 是x 的正比例函数.5.解:(1)y 1=50+0.4x (其中x ≥0,且x 是整数)y 2=0.6x (其中x ≥0,且x 是整数)(2)∵两种通讯费用相同,∴y 1=y 2,即50+0.4x=0.6x .∴x =250. ∴一个月内通话250分时,两种通讯方式的费用相同.(3)当y 1=200时,有200=50+0.4x ,∴x=375(分).∴“全球通”可通话375分.当y 2=200时,有200=0.6x ,∴x=33331(分).∴“神州行”可通话33331分.∵375>33331,∴选择“全球通”较合算.6.解:设过A ,B 两点的直线的表达式为y=kx+b .由题意可知,⎩⎨⎧+=-+=,02,31b b k ∴⎩⎨⎧-==.2,1b k∴过A ,B 两点的直线的表达式为y=x-2. ∴当x=4时,y=4-2=2. ∴点C (4,2)在直线y=x-2上. ∴三点A (3,1), B (0,-2),C (4,2)在同一条直线上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数复习题姓名 __________ 成绩 ______-、选择1、 •个正比例函数的图象经过点 (3, —2),它的解析式为(3 2A 、 y =——xB 、 y = —x" 2 - 3 2、直线y = kx-\—^定经过点(C 、D 、y — 2——X3A 、第一.二.三象限B 、第一、二、四彖限 C.第二.三、四彖限 D 、第一.三.四彖限5、己知一次函数y=kx+b 的图彖经过第一、二、三彖限,则b 的值对以是( )A. —2B. —1C ・ 0D ・ 26、在平而直角坐标系中,把直线y=x 向左平移一个单位长度后,其直线解析式为()7、一次函数y = kx + b 的图象如图,当y>0时,x 的取值范用是( )A 、x<2B N X >2C 、x<0D N X >08、 如图,过点Q (0, 3.5)的一次函数与正比例函数y=2x 的图彖相交于点P,能表示这个一次函数图象的方程是()A^ 3x —y+3.5=0 B 、3x —y —3.5=0 C 、3x —y+7=0D 、3x+2y —7=0 9、 已知点A (x P yj 、B (X2,y2)在一次函数y= (—k 2—1) x —2的图象上, 且 Xi<X 2,则()A 、y )>y 2B 、% > y 2c 、yi<y 210、小敏从A 地出发向B 地彳亍走,同时小聪从B 地出发和A 地行走,如 图,相交于点P 的两条线段仃,仏分别表示小敏、小聪离B 地的距离y (km ) 与已用时间x (h )之间的关系,则小敏、小聪的速度分别是( ) A 、3km/h 和 4km/h3km/h 和 3km/h C^ 4km/h 和 4km/h D 、4km/h 和 3km/h二、填空1、 ____________________________________________________ 一次函数y=2x-1的图彖经过点(a, 3),则a= ____________________________________________ 。
2、 一次函数y=2x —3的图彖不经过第 _____________ 象限。
A 、(1, 0)B 、 (1, k)C 、 (0, k) 3、关于一次函数y-x+1的图像,下列所画正确的是(D 、 (0, —1) )4、直线y = x-1的图象经过的象限是(4、如图,直线经过点A (0, —1)、B ( 1,0),则该直线的解析式是 _____________________________ 5、 ________________________________________________________________________________ 将直线y=2x —1向上平移3个单位后,所得的直线的解析式是 _________________________________ 。
6、己知关于x 的一次函数)‘=& + 4比一2伙H0),若图象经过原点,贝Uk= _____________ •次函数y 二也+ 3的图象如图,则不等式总+ 3 < 0的解集是.9、一次函数y = kx + h 的图象经过点M (0, 2), N ( 1, 3)两点,则它与x 轴的交点坐标是 ______ 10、平面直角坐标系屮的一条直线经过点(1, 3), (3, 1),它与x 轴的交于点A,与y 轴交于点B, 则厶AOB的面积是 ___________________________ o 三、解答题1、某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查结果分析显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y (万吨)随着时间x (年)逐年成直线上升,y 与x 之间的关系如图所示.(1) 求y 与xZ 间的关系式;(2) 请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?2、“震灾无情人有请”,玉树地震牵动了全国人民的心,武警部队接到命令,运送一批救灾物资到 灾区,货车在公路A 处加满油后,以60千米/小时的速度匀速行使,前往与A 处相距360 T"米 的灾区B 处.下表记录的是货车一次加满汕后汕箱内余汕量(升)与行使时间兀(小时)之间的 关系:行使时间兀(小时) 0 1 23 4 余汕罐y (升)150 120 90 60 30(1)7、 第7题将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案,设菱形屮较小的角为x 度, 平行四边形中较大的角为y 度,则y 与x 的关系是 ___________________________________ o8、 y要求写出自变量的収值范围)•;(2)如果货车的行使速度和每小时的耗汕量都不变,货车行使4小时后到达C处,C的前方12 千米的D处有一加汕站,那么在D处至少加多少升汕,才能使货车到达灾区B处卸去货物后能顺利返回D处加油?(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)3、2010年秋冬北方严重干旱,凤凰社区人备饮用水紧张,每天需从社区外调运饮用水120吨.有关部(1)若某天总运费为26700元,则从卬、乙两水厂各调运了多少吨饮用水?(2)若每天甲厂最多可调出80吨,乙厂最多可调出90吨.设从甲厂调运饮用水兀吨,总运费为W 元•试写出W关于与x的函数关系式,怎样安排调运方案,才能使每天的总运费最省?、一家蔬菜公司收购到某种绿色蔬菜吨,准备加工后销售,销售后获利情况如下表已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工方式不能同进进行。
受季节等条件的限制,公司必须在一定的时间内将这批蔬菜全部加工后销售完。
(1)如果要求12犬刚好加工完这批蔬菜,则公司应该分别安排儿天粗加工,儿犬精加工?(2)如果先进行精加工,然后进行精加工。
①试求出销传利润w元与精加工的蔬菜吨数m之间的函数关系式;②若耍注在不超过10天的吋间内,将140吨蔬菜全部加工完后销售,则加工这批蔬菜最多可获得多少利润?此时如何进行时间分配?5、如图,某个体户购进一批时令水果,20犬销售完毕.他将本次销售情况进行了跟踪记录,根据 所记录的数据可绘制的函数图象,其中H 销售量y (千克)与销售吋间x (天)之间的函数关系如 图甲所示,销售单价P (元/千克)与销售时间x (天)之间的函数关系如图乙所示.(1) 总接写出y 与x 之间的函数关系式; (2) 分别求出第10天和第15天的销售金额;(3) 若口销售最不低于24千克的时间段为“最佳销竹期〃,贝眦次销售过程屮“最佳销伟期"共有多 少天?在此期间销售单价授高为多少元?10 8■ aai • ■ M B Ir--*t111 01020 X(天) (元千克)图乙参考答案第一、二、三象限B 、第一、二、四象限 C 、第二、三、四象限 D 、第一、三、四象限 已知一次畅数y=kx+b 的图象经过第一.二、三象限.则b 的值可以是(D )-次函数y = kx + b 的图象如图,当y>0时,x 的取值范围是(A ) A> x<2B 、x>2C 、x<0D 、x>08、如图,过点Q (0, 3.5)的一次两数与正比例函数y=2x 的图象相交于点P, 能表示这个一次函数图象的方程是(D )A 、3x 一y+3.5=0B 、3x —y —3.5=0C 、3x 一y+7=0D^ 3x+2y —7=0解:因为点P 在y=2x 的图象上,所以点P 处标为(1, 2)o 设一次函数为y = kx + b °即 3x+2y-7=Oo9、已知点A (X],力)、B (X2,y2)在一次函数y= (一k 2一1) x 一2的图象上,二、填空1、A 、 一个正比例函数的图象经过点 3门2y =——%B 、 y = —%23(3, —2),它的解析式为(D )2 D 、 y =——x 32、直线y = kx-l 一定经过点(D) A 、 5、 A. 6、—2B. —1在平面直角坐标系中,把直线y=x 向左平移-个单位长度后,其直线解析式为(A ) y=x+1 B. y=x 一1 C. y=x D. y=x-2C. 0D. 27、 所以 所以一次函数为 y = —1.5x + 3.5 ,即 1.5x+y-3.5=0o且 X 1<X2,贝( A ) A 、yi>y 2B 、y { > y 2C^ yi<y 210、小敏从A 地出发向B 地行走,同时小聪从B 地出发和A 地行走,如 图,相交于点P 的两条线段a, b 分别表示小敏、小聪离B 地的距离y (km ) 与已用时间x (h ) Zl'可的关系,则小敏、小聪的速度分别是(D ) A 、3 km/h 和 4km/h3km/h 和 3km/h C 、4km/h 和 4km/hB> (1, k) C 直线y = X -l 的图彖经过的象限是(D ) D^ (0» —1))A 、 (1, 0) 3、关于一次函数y 二-x+1的图像,下列所画正确的是4、 C 、(0, k) -1.5 3.5Zb",解得 b = 35y km D 、儿 < y 2D 、4km/h 和 3 km/h1、一次函数y=2x—1的图象经过点(a, 3),则旷_2_________ 。
2、一-次函数y=2x—3的图象不经过第二象限。
3、一次函数y=—2x+3中,y的值随x的增人而减小。
4、如图,直线经过点A (0, 一1)、B (1, 0),则该直线的解析式是_____________5、将直线y=2x—1向上平移3个单位后,所得的育线的解析式是一y=2x+2 。
6、已知关于x的一次函数y = kx + 4k-2伙工0),若图象经过原点,则1<=丄。
2 灾区,货车在公路4处加满油后,以60千米/小吋的速度匀速行使,丽往与A处相距360千米的灾区B处.下表记录的是货车一次加满汕后汕箱内余汕量y(升)与行使时间兀(小时)Z间的关系:行使时间x(小时)012347、•次]浙数);二也+ 3的图象如图,则不等式也+ 3 v 0的解集是x>1.58、将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案,设菱形中较小的角为x度,平行四边形中较大的角为y度,则y与x的关系是y = *x + 90。
解:由平行可得:(180-y)x2 + x = 180=>2y = x + 1809、一次函数y = kx + b的图象经过点M (0, 2), N (1, 3),贝!]它与x轴的交点坐标是(一2, 0)。