04183概率论与数理统计(经管类)_浙江省2013年7月自考_试题
2013年1-4-7-10月自考概率论与数理统计(经管类)答案详解
全国2013年1月自考概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
解:本题考查的是和事件的概率公式,答案为C.解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂===故选B.解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
解:{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 故选A 。
解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040d =--= 故选D 。
解:若~()X P λ,则()()E X D X λ==,故 D 。
解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+=选A 。
解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= 选C 。
自考概率论与数理统计(经管类)试题及答案
全国年月自考概率论与数理统计(经管类)试题一、单项选择题(本大题共小题,每小题分,共分)解:本题考查的是和事件的概率公式,答案为.解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选.解:本题考查的是分布函数的性质。
由()1F +∞=可知,、不能作为分布函数。
再由分布函数的单调不减性,可知不是分布函数。
所以答案为。
解:选。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选。
解:若~()X P λ,则()()E X D X λ==,故 。
解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选。
解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选。
解:由方差的计算公式22()()()D X E X E X =-, 可得2222()()()E X D X E X nσμ=+=+ ,选。
最新全国07月自学考试04183《概率论与数理统计(经管类)》历年真题参考详解答案
2013年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试卷(课程代码04183)一、单选题(本大题共10小题,每小题2分,共20分) 1、若A B ⊂,2.0)(=A P ,3.0)(=B P ,则=)(A B P ( ) A.0.1 B.0.2 C.0.3 D.0.42、设随机变量A 与B 互不相容,且P(A)>0,P(B)>0,则有 ( ) A.P(A)=1-P(B) B.P(AB)=P(A)P(B) C.P(A ∪B)=1 D.P(BA)=13、设随机变量X 的分布律为P(X=k)=k/10(k=1,2,3,4),则P(0.2<X ≤2.5)= ( ) A.0.1 B.0.3 C.0.5 D.0.64、设随机变量X 的概率密度,,10,0,10,)(2⎪⎩⎪⎨⎧≤>=x x x ax f 则常数a= ( )A.-10B. 5001-C. 5001D.10 5、随机变量(X,Y )的分布律如下表所示,当X 与Y 相互独立时,(a ,b )= ( ) A. ⎪⎭⎫ ⎝⎛92,91 B. ⎪⎭⎫ ⎝⎛181,92 C. ⎪⎭⎫ ⎝⎛181,91 D. ⎪⎭⎫ ⎝⎛91,181 6、设连续型随机变量(X,Y )服从区域G:0≤X ≤2,2≤Y ≤5上的均匀发布,则其概率密度函数=),(y x f ( )A.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,6),(B. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,61),( C.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,4),( D. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,41),(7、设随机变量X 服从参数为3的泊松分布,Y ~B )31,8(,且X,Y 相互独立,则D (X-3Y-4)= ( ) A.0.78 B.4.78 C.19 D.238、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,x 是样本均值,2s 是样本方差,则有 ( )A. 2222)(σμ-=--s xE B. 2222)(σμ+=+-s x E C.22)(σμ+=-s x E D.22)(σμ+=+s x E9、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,要使3216131x ax x ++=∧μ,是未知参数μ 的无偏估计,则常数 =a ( )A. 61B. 31C. 21D. 110、设总数X 服从正态分布,其均值未知,对于需要检验的假设202:0:σσ≤H ,则其拒绝域为 ( )A. )(1-22n x x a >B. )(1-2-12n x x a <C. )(n x x a 22>D. )(n x x a 22< 二、填空题(本大题共15小题,每小题2分,共30分)11、设p )(=A P ,q )(=B P , r )(=B A P ,则=)(B A P12、从一副扑克牌(计52张)中连续抽取2张(不放回抽取),这2张均为红色的概率是13、假设患者从某种心脏外科手术中康复的概率是0.8,现对3位患者施行这种手术,其中恰恰有2人康复的概率是14、设连续型随机变量X 的发布函数,0,00,-1)(3-⎩⎨⎧≤>=x x e x F x 其概率密度为),(x f 则=)1(f 15、设随机变量K ~U (0,5),则关于x 的一元二次方程024X 42=+++K KX 有实根的概率是16、设连续型随机变量X 服从参数为)(0>λλ的泊松分布,且{}{}2210====X P X P ,则参数=λ 17、设二维随机变量(X,Y )服从区域G:0≤X ≤3,0≤Y ≤3上的均匀发布,则概率{}=≤≤=1,1Y X P18、设二维随机变量(X,Y )的概率密度为(),,000,),(2⎩⎨⎧>>=+-其他,y x Ae y x f y x 则常数A=19、设二维随机变量(X,Y )的分布律为 则{}=-==1XY P20、设随机变量X 服从参数为λ的指数分布,已知()82==X E ,则其方差D(X)=21、设随机变量X ~B (10000,0.8),试用切比雪夫不等式计算{}≥<<82007800X P22、设总体X ~N (),(2σμ,4321,,,x x x x 为来自总体X 的样本,i 41i 41x x ∑==,则2i 41i 2)(1x x -∑=σ服从自由度为的2x 分布。
最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案
2008年7月高等教育自学考试全国统一命题考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。
错选、1.设随机事件 A . 0 C . 0.4x ::: 0C .-12 0 0 1/6 5/12 1/3 1/12 0 0 11/36.已知 Y 的联合概率分布如题6表所示概率论与数理统计(经管类)试卷课程代码4183多选或未选均无分。
A 与B 互不相=0.2 , P(B)=0.4,贝U P ( B|A )= B . 0.2 D . 12 .设事件A , B 互不相容,已知(A) =0.4, P(B)=0.5,则 P(A B )=(A . 0.1 C . 0.93 .已知事件 A , B 相互独立,且(A) B . D . >0, 0.4 1P (B )>0,则下列等式成立的是A . P(A B)=P(A)+P(B) P(A B)=1-P( A )P(B )C . P(A B)=P(A)P(B)4.某人射击三次, A . 0.002 C . 0.08 其命中率为 0.8,D . 则三次中至多命中一次的概率为(B . D . P(A B)=10.04 0.1045.已知随机变量X 的分布函数为( F(x)=12 23 10 乞 x :::1x _3 斗=题6表1F ( x,y )为其联合分布函数,则 F ( 0,31 121 47.设二维随机变量(X , Y )的联合概率密度为e _(xdy)x >0, y =0f(x,y)=其它2 3 已知随机变量X 服从参数为1 23 4则随机变量 X 的期望为(所满足的切比雪夫不等式为(I —.丿 \ncr 2~2~2 nc~2二2ns 2p { X —n ^>3 h 零A . Z=X 」0匚/ ■ nC. T=X 」0S/J n二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
自考04183概率论与数理统计历年真题共14套-(12006)(20201120200031)
全国 2010 年 7 月高等教育自学考试概率论与数理统计 ( 经管类 ) 试题课程代码: 04183一、单项选择题(本大题共10 小题,每小题2 分 ,共 20 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设 A 、 B 为两事件,已知P(B)=1, P( A B )=2,若事件 A , B 相互独立,则 P(A)=23()A .1B .196C .1D .1232.对于事件 A , B ,下列命题正确的是 ()A .如果 A ,B 互不相容,则A,B 也互不相容B .如果A B ,则A BC .如果A B ,则ABD .如果 A , B 对立,则 A,B 也对立3.每次试验成功率为p(0<p<1) ,则在 3次重复试验中至少失败一次的概率为()A . (1- p) 3B . 1-p3C .3(1- p)D . (1-p)3+p(1- p) 2+p 2(1-p)4.已知离散型随机变量X 的概率分布如下表所示:X -10124P1/101/5 1/101/52/5则下列概率计算结果正确的是()A . P(X=3)=0B . P(X=0)=0C .P(X> -1)=lD . P( X< 4)=l5.已知连续型随机变量X 服从区间 [a , b] 上的均匀分布,则概率2a b)P X(3A . 0B .13C .2D . 136.设 (X , Y )的概率分布如下表所示,当X 与 Y 相互独立时, (p , q)=()Y -11X 01P 151q 1521351011) B . (11A . (,1515, )55C .(1, 2)D . (2,1)101515107.设 (X,Y )的联合概率密度为f ( x, y)k( x y),0x2,0 y 1,则 k=()其他,,A .1B.132C .1D . 38.已知随机变量 X ~ N(0, 1),则随机变量Y=2X-1 的方差为 ()A . 1B . 2C .3D . 49.设随机变量 X 服从参数为0.5 的指数分布,用切比雪夫不等式估计P(|X-2|≥ 3) ≤ ()1B.1A.391 D.1C.210.设 X 1,X 2,X 3,为总体 X 的样本, T1X 11X 2kX 3,已知 T 是 E(x)的无偏估计,则 k=()261 B.1A.364D.1C.29二、填空题 (本大题共15 小题 ,每小题 2 分,共 30 分 )请在每小题的空格中填上正确答案。
7月浙江自考概率论与数理统计试题及答案解析
1浙江省2018年7月自学考试概率论与数理统计试题课程代码:10024一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 与B 为任意两个事件,则(A ∪B )A =( ) A.AB B.A C.BD.A ∪B2.设A 与B 满足P (A )=0.5,P (B )=0.6,P (B |A )=0.8,则P (A ∪B )=( ) A.0.7B.0.8C.0.6D.0.53.设连续型随机变量X 的分布函数是F (x )(-∞<x <∞),则以下描述错误..的是( ) A.F (x )是非连续函数 B.F (x )是可积函数 C.F (x )是可导函数D.F (+∞)=14.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤.,0,2,sin 其他πx a x ,则常数a =( )A.3B.2C.1D.05.设任意二维随机变量(X ,Y )的联合概率密度函数和两个边缘概率密度函数分别为 f (x ,y )f X (x )和f Y (y ),则以下结论正确的是( ) A.f (x ,y )=f X (x )f Y (y ) B.f (x ,y )=f X (x )+f Y (y ) C.⎰+∞∞-f X (x )dx =1D.1),(=⎰+∞∞-dx y x f6.设随机变量X 和Y 独立同分布,X ~N (μ,σ2),则( ) A.2X ~N (2μ,2σ2) B.2X -Y ~N (μ,5σ2) C.X +2Y ~N (3μ,3σ2)D.X -2Y ~N (3μ,5σ2)7.设随机变量X 和Y 相互独立,它们的分布律分别为,则概率P{X=Y}=()A.0B.0.25C.0.5D.18.设E(X2)=8,D(X)=4,则E (X)=()A.1B.2C.3D.49.对任意两个随机变量X和Y,由D(X+Y)=D (X)+D (Y)可以推断()A.X和Y相关B.X和Y相互独立C.X和Y的相关系数等于-1D.D(XY)=D(X)D(Y)10.假设检验时,只减少样本容量,犯两类错误的概率()A.不变B.都减小C.都增大D.一个增大一个减小二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
自考备考:04183 概率论与数理统计(经管类)习题集及答案
成都理工大学自学考试省考课程习题集课程名称:《概率论与数理统计(经管类)》课程代码:04183第一部分 习题一、选择题1. 对于事件A 、B ,下列命题正确的是()A. 如果A 、B 互不相容,则A 、B 也互不相容B. 如果A B ⊂,则A B ⊂C. 如果A B ⊃,则A B ⊃D. 如果A 、B 对立,则A 、B 也对立 2. 设A 、B 为任意两个事件,则有()A. ()AB B A -= B. ()A B B A -= C. ()A B B A -⊂ D. ()A B B A -⊂3.设事件A 与B 互不相容,且()0P A >,()0P B >,则有()A. ()1P AB =B. ()1()P A P B =-C. ()()()P AB P A P B =D. ()1P AB =4.设随机事件A 与B 互不相容,()0.2P A =,()0.4P B =,则(|)P B A =()A. 0B. 0.2C. 0.4D. 15.若A 与B 互为对立事件,则下式成立的是( )A. ()P AB =Ω B. ()()()P AB P A P B = C. ()1()P A P B =- D. ()P AB φ=6.设事件A 与B 相互独立,且1()5P A =,3()5P B =,则()P A B =( )A.325B.1725C. 45D. 23257.设A 、B 相互独立,且()0P A >,()0P B >,则下列等式成立的是()A. ()0P AB =B. ()()()P A B P A P B -=C. ()()1P A P B +=D. (|)0P A B =8.设事件A 、B 相互独立,且1()3P A =,()0P B >,则(|)P A B =( )A.115B.15C. 415D. 139.设A 、B 为两件事件,已知()0.3P A =,则有()A. (|)(|)1P B A P B A +=B. (|)(|)1P B A P B A +=C. (|)(|)1P B A P B A +=D. ()0.7P B =10.设A 、B 为两个随机事件,且B A ⊂,()0P B >,则(|)P A B =( )A. 1B. ()P AC. ()P BD. ()P AB11.设A 、B 为两事件,已知1()3P A =,2(|)3P A B =,3(|)5P B A =,则()P B =() A.15B.25C.35D. 4512.已知()0.4P A =,()0.5P B =,且A B ⊂,则(|)P A B =()A. 0B. 0.4C. 0.8D. 113.设A 与B 相互独立,()0.2P A =,()0.4P B =,则(|)P A B =()A. 0.2B. 0.4C. 0.6D. 0.814.设随机事件A 与B 互不相容,()0.4P A =,()0.5P B =,则()P AB =()A. 0.1B. 0.4C. 0.9D. 115.某人每次射击命中目标的概率为(01)p p <<,他向目标连续射击,则第一次未中第二次命中的概率为( )A. 2pB. 2(1)p -C. 12p -D. (1)p p -16.同时抛掷3枚均匀的硬币,则恰好有三枚均为正面朝上的概率为( ) A. 0.125 B. 0.25 C. 0.375 D. 0.5017.一批产品中有5%的不合格品,且合格品中一等品占60%,从这批产品中任取1件,则该产品是一等品的概率为( ) A. 0.20 B. 0.30 C. 0.38 D. 0.5718设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为1927,则事件A 在一次试验中出现的概率为( ) A. 16 B. 14C. 13D.1219.下列函数中可作为随机变量分布函数的是()A. 1,01()0,x F x ≤≤⎧=⎨⎩其他B. -1,0(),010,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩C. 0,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩D. 0,0(),012,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩20.已知随机变量X 的分布函数为0,01,012()2,1331,3x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩,则{1}P X ==()A.16B.12C.23D. 121.下列各函数中,可作为某随机变量概率密度的是()A. 2,01()0,x x f x <<⎧=⎨⎩其他B. 1,01()20,x f x ⎧<<⎪=⎨⎪⎩其他C. 23,01()1,x x f x ⎧<<=⎨-⎩其他D. 34,11()0,x x f x ⎧-<<=⎨⎩其他22.设随机变量X 的概率密度为3,01()0,ax x f x ⎧≤≤=⎨⎩其他,则常数a =()A.14B.13C. 3D. 423.设随机变量X 的概率密度为,01()2,120,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其他,则{0.2 1.2}P X <<=() A. 0.5B. 0.6C. 0.66D. 0.724.设随机变量X 在[1,2]-上服从均匀分布,则随机变量X 的概率密度为()f x 为()A. 1,12()30,x f x ⎧-≤≤⎪=⎨⎪⎩其他B. 3,12()0,x f x -≤≤⎧=⎨⎩其他C. 1,12()0,x f x -≤≤⎧=⎨⎩其他D. 1,12()30,x f x ⎧--≤≤⎪=⎨⎪⎩其他25.设随机变量(1,4)XN ,()x Φ为标准正态分布函数,已知(1)0.8413Φ=,(0)0.5Φ=,则事件{13}X ≤≤的概率为()A. 0.1385B.0.2413C. 0.2934D. 0.341326.设随机变量X 的概率密度为()f x ,且()()f x f x -=,()F x 是X 的分布函数,则对任意的实数a ,有()A. 0()1()aF a f x dx -=-⎰B. 01()()2aF a f x dx -=-⎰ C. ()()F a F a -=D. ()2()1F a F a -=-27.设随机变量(,)X Y 只取如下数组中的值:1(0,0),(1,1),(1,),(2,0)3--,且相应的概率依次为12c 、1c 、14c 、54c ,则c 的值为( )A. 2B. 3C. 4D. 528.设二维随机变量(,)X Y 的联合分布为则{0}P XY ==()A.14B.512C.34D. 129.设随机变量X则有()A. 12,99αβ== B. 21,99αβ== C. 12,33αβ== D. 21,33αβ== 30.设二维随机变量(,)X Y 的概率密度为,02,02(,)0,c x y f x y ≤≤≤≤⎧=⎨⎩其他,则常数c =()A.14B.12C. 2D. 431设二维随机变量(,)X Y 的概率密度为1,02,02(,)40,x y f x y ⎧<<<<⎪=⎨⎪⎩其他,则{01,01}P X Y <<<<=() A.14B.12C.34D. 132.设二维随机变量(,)X Y 的概率密度为4,01,01(,)0,xy x y f x y ≤≤≤≤⎧=⎨⎩其他,则当01y ≤≤时,(,)X Y 关于Y 的边缘概率密度()Y f y =() A.12xB. 2xC.12yD. 2y33.设随机变量X 与Y 独立同分布,它们取-1、1两个值的概率分别为14、34,则{1}P XY =-=()A.116B.316C.14D.3834.设随机变量X 的概率密度为2(3)4()x f x --=,则()E X 、()D X 分别为( )A. -B. 3,2-C. D. 3,2 35.设随机变量X 服从参数为12的指数分布,则()E X =( ) A.14B.12C. 2D. 436.已知随机变量X 的分布函数为21,0()0,x e x F x -⎧->=⎨⎩其他,则X 的均值和方差为()A. ()2,()4E X D X ==B. ()4,()2E X D X ==C. 11(),()42E X D X ==D. 11(),()24E X D X == 37.设随机变量110,3XB ⎛⎫⎪⎝⎭,则()()D X E X =()A.13B.23C. 1D. 10338.设随机变量()21,3X N ,则下列选项中,不成立的是()A. ()1E X =B. ()3D X =C. {1}0P X ==D. {1}0.5P X <=39.设二维随机变量(,)X Y 的分布律为则()E XY =()A. 19-B. 0C.19D.1340.且()1E X =,则常数x =( ) A. 2B. 4C. 6D. 841.设随机变量X 与Y 相互独立,且(0,9)X N ,(0,1)YN ,令2Z X Y =-,则()D Z =() A. 5B. 7C. 11D. 1342.设()E X ,()E Y 、()D X 、()D Y 及(,)Cov X Y ,则()D X Y -=() A. ()()D X D Y +B. ()()D X D Y -C. ()()2(,)D X D Y Cov X Y +-D. ()()2(,)D X D Y Cov X Y -+43.设1(10,)2XB 、(2,10)YN ,又()14E XY =,则X 与Y 的相关系数XY ρ=( )A. -0.8B. -0.16C. 0.16D. 0.844.设随机变量X 服从参数为0.5的指数分布,利用切比雪夫不等式估算概率{}|2|3P X -≥≤() A.16B.13C.49D.1245.设12100,,,x x x 为来自总体2(0,4)XN 的一个样本,以x 表示样本均值,则x()A. (0,16)NB. (0,0.16)NC. (0,0.04)ND. (0,1.6)N46.设总体2(,)XN μσ,其中μ未知,1234,,,x x x x 为来自总体X 的一个样本,则以下关于μ的四个估计:112341ˆ()4x x x x μ=+++,2123111ˆ555x x x μ=++,31212ˆ66x x μ=+,411ˆ7x μ=中,哪一个是无偏估计?()A. 1ˆμB. 2ˆμC. 3ˆμD. 4ˆμ47.在假设检验中,0H 为原假设,则显著性水平α的意义是()A. 00{|}P H H 拒绝为真B. 00{|}P H H 接受为真C. 00{|}P H H 接受不真D. 00{|}P H H 拒绝不真48.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验00:H μμ=,10:H μμ≠,则检验统计量为()A.x B.x C.01()x μ-D.0)x μ-49.设总体2(,)XN μσ,其中2σ未知,12,,,n x x x 为来自该总体的样本,2211()1ni i s x x n ==--∑,检验假设2200:H σσ=时采用的统计量为()A. (1)x t t n =-B. ()x t t n =C.22220(1)(1)n s n χχσ-=-D.22220(1)()n s n χχσ-=50.设有一组观测数据(,),1,2,,i i x y i n =,其散点图呈线性趋势,若要拟合一元线性回归方程01ˆˆˆy x ββ=+,且01ˆˆˆ,1,2,,i iy x i n ββ=+=,则估计参数0β、1β时应使( )A. 1ˆ()niii y y=-∑最小 B.1ˆ()niii y y=-∑最大 C.21ˆ()niii y y=-∑最小 D.21ˆ()niii y y=-∑最大二、填空题51. 盒中有10个球,分别编有1至10的号码,设A ={取得球的号码是偶数},B ={取得球的号码小于5},则AB =__________.52. 设随机事件A 与B 互不相容,且()0.2P A =,()0.6P A B =,则()P B =__________. 53.设A 、B 为两事件,已知1()3P A =,2()3P A B =,若事件A 与B 相互独立,则()P B =__________.54.设随机事件A 与B 相互独立,且()0.7P A =,()0.6P A B -=,则()P B =__________.55.设事件A 与B 相互独立,且()0.6P A B =,()0.2P A =,则()P B =__________.56.设A 、B 为两个随机事件,且A 与B 相互独立,()0.3P A =,()0.4P B =,则()P AB =__________.57.设事件A 、B 相互独立,且()0.5P A =,()0.2P B =,则()P A B =__________. 58.设事件A 、B 相互独立,且()0.3P A =,()0.4P B =,则()P A B =__________59.设事件A 、B 相互独立,()0.6P AB =,()0.4P A =,则()P B =__________.60.设A 、B 为两个随机事件,若A 发生必然导致B 发生,且()0.6P A =,则()P AB =__________.61.设A 、B 为随机事件,()0.6P A =,(|)0.3P B A =,则()P AB =__________. 62.设A 、B 为随机事件,且()0.8P A =,()0.4P B =,(|)0.25P B A =,则(|)P A B =__________.63.设1(|)6P A B =,1()2P B =,1(|)4P B A =,则()P A =__________. 64.设随机事件A 、B 互不相容,()0.6P A =,()0.8P AB =,则()P B =__________.65.已知()0.7P A =,()0.3P A B -=,则()P AB =__________. 66.设()0.4P A =,()0.3P B =,()0.4P AB =,则()P AB =__________.67.设A 、B 相互独立且都不发生的概率为19,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则()P A =__________.68.设()0.3P A =,(|)0.6P B A =,则()P AB =__________.69.已知事件A 、B 满足:()()P AB P AB =,且()P A p =,则()P B =__________. 70.设事件A 、B 互不相容,已知()0.3P A =,()0.6P B =,则=)/(B A P __________。
自考04183概率论与数理统计历年真题共14套
全国2010年7月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 、B 为两事件,已知P (B )=21,P (B A )=32,若事件A ,B 相互独立,则P (A )= ( ) A .91B .61C .31D .21 2.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂ C .如果B A ⊃,则B A ⊃D .如果A ,B 对立,则B ,A 也对立3.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3C .3(1-p )D .(1-p )3+p (1-p )2+p 2(1-p )4.已知离散型随机变量X 的概率分布如下表所示:则下列概率计算结果正确的是( ) A .P (X =3)=0 B .P (X =0)=0 C .P (X>-1)=l D .P (X<4)=l5.已知连续型随机变量X 服从区间[a ,b ]上的均匀分布,则概率=⎭⎬⎫⎩⎨⎧+<32b a X P ( )A .0B .31C .32 D .16.设(X ,Y )的概率分布如下表所示,当X 与Y 相互独立时,(p ,q )=( )A .(51,151)B .(151,51)C .(152101,) D .(101152,) 7.设(X ,Y )的联合概率密度为⎩⎨⎧≤≤≤≤+=,,,y ,x ,y x k y ,x f 其他01020)()(则k =( )A .31B.21 C .1D .38.已知随机变量X ~N (0,1),则随机变量Y =2X -1的方差为( ) A .1B .2C .3D .49.设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计P (|X -2|≥3)≤( ) A.91 B.31 C.21 D.110.设X 1,X 2,X 3,为总体X 的样本,3216121kX X X T ++=,已知T 是E (x )的无偏估计,则k =( ) A.61B.31C.94 D.21二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
(完整版)自考作业答案概率论与数理统计04183
概率论与数理统计(经管类)综合试题一(课程代码4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在 题后的括号内。
错选、多选或未选均无分。
1•下列选项正确的是C. (A- B)+B=A2.设 P(A) 0,P(B)则下列各式中A. P(A- B)=P(A)-P(B)B. P(AB)=P(A)P(B)D. P(A+B)=P(A)+P(B)- P(AB)C. P(B| A) P(B)D. P(AB) P(A)A. A B A BB.(A B) B A B 3. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 A 1 1 A. B.— 8 6 4. 一套五卷选集随机地放到书架上, 1 2 则从左到右或从右到左卷号恰为 D. (D ).1,2,3, 4,5顺序的概率为 A.—120).C. 1 55.设随机事件A ,B 满足B A ,贝U 下列选项正确的是 B.—60D.).A. P(A B) P(A) P(B)B. P(A B) P(B)6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ).A. 0 f(x) 1B. f (x)连续C. f (x)dx 1D. f()7.设离散型随机变量 X 的分布律为 b (D ). A. 1 2KP(X k)尹k 值 1,2,...,且b0,则参数C.-5D. 1).D. AB ABC. P(A+B)=P(A)+P(B),x8.设随机变量X, 丫都服从[0, 1]上的均匀分布,则E(X Y)=A.1B.2 9.设总体X 服从正态分布,EXC.1.521,E(X )D.O(D ). A .N( 1,1) B. N(1O,1) C .N ( (A ).2,X 1,X 2,...,X 1O 为样本,则样本秸ii Xi10,2)10.设总体X : N(, 2),(X I ,X2,X 3)是来自 X 的样本,又? 1 D. N( 1,)101 1-X 1 aX 2 - X 3 4 2是参数的无偏估计,则 ). A. 1 B .D.- 3 二、填空题(本大题共15小题,每小题2分,共30分) 格中填上正确答案。
全国高等教育自学考试《概率论与数理统计》试题
全国高等教育自学考试《概率论与数理统计》试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)1.掷一颗骰子,观察出现的点数.止表示“出现3点”,召表示“出现偶数点”,则 A. B A ⊂ B.B A ⊂ C. B A ⊂ D. B A ⊂2.设随机变量X 的分布律为,F(x)为X 的分布函数,则F(0)=A . 0.1B .0.3C . 0.4D .0.63.设二维随机变量(X ,y)的概率密度为 则常数c= A .41 B .21 C .2 D .44.设随机变量J 服从参数为2的泊松分布,则D(9-2X)=A . 1B .4C . 5D .85.设(X,Y)为二维随机变量,则与Cov(X ,Y)=0不等价的是 A. X 与Y 相互独立. B. D(X-Y)=D(X)+ D(Y) C. E(XY)=E(X)E(Y) D. D(X + Y) = D(X) + D(Y)6. 设X 为随机变量,E(X)=0.1,D(X)=0.01,由此切比雪夫不等式可得( )7.设X1,X2,…,Xn 为来自某总体的样本,x 万为样本均值,则=-∑=x x ni i 1A . x n )1(-B .0C . xD .x 8.设总体X 的方差为2σ,1x ,2x ,…,nx 为来自该总体的样本,云为样本均值,则参数2σ的无偏估计为A. ∑=-n i x n 1211B. ∑=n i x n 1211 C. 21)(11x x n n i i ∑=-- D. 21)(1x x n n i i ∑=-9.设1x ,2x ,…,nx 为来自正态总体)1,(ηN 的样本,x 为样本均值,2s 为样本方差.检验 假设00:μμ=H ,1:μμ≠H 则采用的检验统计量应为A.n s x /μ- B. n s x /0μ- C.)(μ-x n D.)(0μ-x n10.设一元线性回归模型为ii i i x y εββ++=0,),0(~2σεN i ,n i ,,2,1 =,则=)(i y EA. 0βB. i i x βC. i i x ββ+0D. i i i x εββ++0 二、填空题(本大题共15小题,每小题2分,共30分)11.设A,B 为随机事件,,则P(AB)=12.设随机事件A 与B 相互独立,P(A)=0.3,P(B)=0.4,则P(A-B)= 13.设A,B 为对立事件,则B A =14.设随机变量X 服从区间[1,5]上的均匀分布,F(x)为X 的分布函数,当1≤x ≤5时,F(x)=15.设随机变量X 的概率密度为 16.已知随机变量X —N(4,9),,则常数c=17.设二维随机变量(X ,Y)的分布律为则常数a=18.设随机变量X 与r 相互独立,且X~N(0,1),Y~N(-1,1),记Z=X-Y ,则Z~ 19.设随机变量X 服从参数为2的指数分布,则E (X )2=20.设X,Y 为随机变量,且E (X )= E (Y )=1, D(X)=D(X)=5,P XY =0.8,E (XY )=21.设随机变量X-B (100,0.2),为标准正态分布函数,,应用中心极限定理,可得22.设总体X —N(0,1),1x ,2x ,3x ,4x 为来自总体X 的样本,则统计量21x +22x +23x +24x =23.设样本的频数分布为,则样本均值x =24. 设总体,卢未知,1x ,2x ,…,16x ,为来自该总体的样本,x 为样本均值,为标准正态分布的上侧分位数.当卢的置信区间是时,则置信度为25. 某假设检验的拒绝域为W ,当原假设成立时,样本值(1x ,2x ,…,n x )落入的概率为0.1,则犯第一类错误的概率为 .26.设二维随机变量(X ,Y)的概率密度为求:(1)(X ,Y)关于X 的边缘概率密度27.设二维随机变量(X ,Y)的分布律为四、综合题(本大题共2小题,每小题12分,共24分)28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球.从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率. 29.设随机变量(3) Y 的概率密度.五、应用题(本大题共1小题,每小题10分,共10分)30.某项经济指标,将随机调查的11个地区的该项指标1x ,2x ,…,11x 作为样本,算得样本方差.问可否认为该项指标的方差仍为2?(显著水平)。
04183概率论与数理统计(经管类)(有答案)
04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。
A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
A .21)0(=≤+Y X P B .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。
04183 概率论与数理统计(经管类)
课程名称:概率论与数理统计(经管类)课程代码:04183第一章随机事件及其概率一、单项选择题1.设当A和B同时发生时,事件C必发生,则()。
A.B.C.D.2.设A.0.1B.0.2C.0.3D.0.43.设A、B、C为三个随机事件,且A.0.15B.0.25C.0.35D.0.454.设对于事件A、B、C有则A、B、C至少发生一个的概率为()。
A.3/8B.5/8C.7/8D.1/25.设两个相互独立的事件A与B都不发生的概率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=()A.2/9B.5/9C.2/3D.1/36.若A.0.7B.0.8C.0.9D.0.17.设A,B为随机事件,则()。
A.AB.BC.ABD.φ8.对掷一枚硬币的试验, “出现正面”称为()。
A.样本空间B.必然事件C.不可能事件D.随机事件9.事件A,B相互独立,且P(A)=0.7,P(B)=0.6,P(A-B)=()。
A.0.28B.0.42C.0.88D.0.1810.事件A,B相互独立,且P(A)=0.7,P(B)=0.2,P(A-B)=()。
A.0.46B.0.42C.0.56D.0.1411.设A,B为两个随机事件,且P(B)>0,P(A│B)=1则有()。
A.P(A∪B)>P(A)B.P(A∪B)>P(B)C.P(A∪B)=P(A)D.P(A∪B)=P(B)12.设A,B为两随机事件,且,则下列式子正确的是()。
A.P(A∪B)=P(B)B.P(AB)=P(B)C.P(B|A)=P(B)D.P(B-A)=P(B)-P(A)13.从装有2只红球,2只白球的袋中任取两球,记:A=“取到2只白球”则=()。
A.取到2只红球B.取到1只红球C.没有取到白球D.至少取到1只红球14.设对于随机事件A、B、C,有P(A)=P(B)=P(C)=1/4,且P(AB)=P(BC)=0,,则三个事件A、B、C, 至少发生一个的概率为()。
自考04183 概率论与数理统计(经管类) 练习题07
第七章测试题一、单项选择题1.矩估计必然是()A.无偏估计B.总体矩的函数C.样本矩的函数D.极大似然估计2.设X1、X2…X n是取自正态总体N(μ,σ2)的样本,μ和σ2都未知,则不是()A.σ2的无偏估计B.σ2的极大然估计C.σ2的矩估计D.不是σ2的无偏估计3.设X1,X2,X3是来自总体X的样本,则______不是总体X的均值E(X)的无偏差估计量。
()4.设X1,X2…X20,是来自总体N(μ,σ2)的样本,则统计量_____为σ2的无偏估计量。
()5.设X1,X2…X n是来自总体X的一个样本,X具有期望值μ,那么下列统计量中_____是μ的最有效的无偏估计。
()6.设X1,X2是来自正态总体(μ,1)的容量为2的样本,其中μ为未知参数,下面四个关于μ的估计量中,只有_____才是μ的无偏估计。
()7.对总体X~N(μ,σ2)的均值μ作区间估计,得到置信度为95%的置信区间,其意是指这个区间()A.平均含总体95%的值B.平均含样本95%的值C.有95%的机会含μ的值D.有95%的机会含样本的值8.设X1,X2…X n是取值自X~N(μ,σ2)的样本,其中σ2已知,二、填空题。
1.糖厂用自动包装糖果,包得的袋装糖重是一个随机变量,今随机地抽查12袋,称得净重为(单位:克):1001 1004 1003 1000 997 999 1004 1000 996 1002 998 999则总体均值μ的矩估计值为_______,方差σ2的矩估计值为_______,样本方差s2为_______。
2.总体X~N(μ,σ2),则2+μ的极大似然估计值为_______。
3.设4.设总体X~N(μ,1),X1,X2,X3为总体X的一个样本,若为未知参数μ的无偏估计量,则常数C=_______。
5.设总体X的方差为1,根据来自总体X的容量为100的简单随机样本,测得样本均值=5,则数学期望的置信度为0.95的置信区间为_______。
04183概率论与数理统计(经管类)浙江省2013年7月自考试题
浙江省2013年7月高等教育自学考试月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183 一、单项选择题一、单项选择题((本大题共10小题,每小题2分,共20分) 1.设A,B 为两个互不相容事件,则以下等式中错误..的是的是 A.P (AB )=0. B.P (A ∪B )=P (A )+P (B ). C.P (AB )=P (A )P (B ). D.P (B -A )=P (B ). 2.设A 、B 是两个随机事件,已知P (B )>0,P (A |B )=1,则必有,则必有 A.P (A ∪B )=P (A ). B.A ÌB. C.P (A )=P (B ). D.P (AB )=P (A ). 3.设F (x )是随机变量X 的分布函数,则使得P {x 1<X <x 2)=F (x 2)-F (x 1)成立的随机变量X 必为A.任意随机变量. B.连续型随机变量. C.非离散连续型随机变量. D.离散型随机变量. 4.设随机变量X 服从正态分布N (0,1),则概率P (X <1)= A.0. B.12p . C.1. D.12. 5.设二维随机变量(X ,Y )的分布律为)的分布律为X Y1 2 3 0 0.1 0.1 0.3 1 0.25 0 0.25 则概率P {X ·Y =0}= A.0.1. B.0.3. C.0.5. D.0.75. 6.设二维随机变量(X ,Y )具有联合密度函数)具有联合密度函数(),02,02;,0,C x y f x y <<<<ì=íî其他其他..则常数C = A.1/4. B.1/3. C.1/2. D.1. 7.设二维随机变量(X ,Y )的分布律为的分布律为Y X0 1 1 1/3 1/3 2 1/3 0 则E (XY )= A.-19. B.0. C. 19. D. 13. 8.设X ~N (1,2),Y ~N (0,1),且X 与Y 相互独立,则E (XY )= A.-1. B.0. C.1. D.2. 9.设总体X 服从区间[θ,2θ]上的均匀分布,θ>0是未知参数,X 1,X 2,…,X n 为取自X 的样本,11=n i i X X n =å,则T =23X A.是θ的矩估计,且是无偏估计. B.是θ的矩估计,且是有偏估计. C.不是θ的矩估计,但是无偏估计. D.不是统计量,不能做为θ的估计. 10.设总体X ~N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,在显著性水平α=0.01下接受了假设检验问题H 0:μ=μ0,H 1:μ≠μ0中的H 0.若将α改为0.05,下面结论成立的是,下面结论成立的是 A.必拒绝H 0. B.必接受H 0. C.犯第二类错误概率变大. D.不能判定. 二、填空题(本大题共15小题,每空2分,共30分)11.现有55个由两个不同的英文字母组成的单子.若从26个英文字母中任取两个不同的字母来排列,则能排成与上述55个单子中某一个相同的概率p =______. 12.设P (A )=0.3,P (A -B )=0.2,则P (BA )=______. 13.设盒中有5只蓝球、3只红球和2只白球,从中任取3球,则球的颜色均不相同的概率为______. 14.从0,1,2,…,9等10个数字中任意选取4个排成一列,则“四个数恰排成一偶数”的概率是______. 15.设X 为连续型随机变量,则P {X =1/3}=______. 16.设连续型随机变量X 的概率密度为f (x ),则当y >0时,Y =e X 的概率密度f Y (y )为______. 17.已知二维随机变量(X ,Y )服从区域G :0≤x ≤2,0≤y ≤2上的均匀分布,则P (X ≤1,Y ≥1)=______. 18.设X ~N (1,1),Y ~N (1,1),且X 与Y 相互独立.则Z =X -2Y ~______. 19.设随机变量X 的概率分布为的概率分布为X-2 0 2 P0.4 0.3 0.3 则E (3X 2)=______. 20.设E (X )=3,E (Y )=2,E (XY )=8,则Cov (X ,Y )=______. 21.设随机变量X 的数学期望E (X )=μ,方差D (X )=σ2(σ>0),则由切比雪夫不等式可知则由切比雪夫不等式可知 P {|X -μ|<3σ}≥______. 22.设总体X ~N (10,10),x 1,x 2,…,x n 为来自该总体的样本,则11()ni i E x n=å=______. 23.设x 1,x 2,…,x n 为来自总体X ~N (μ, σ2)( σ>0)的样本,若P {X >a }=0.5,则常数a =______. 24.设样本x 1,x 2,…,x n 来自正态总体X ~N (μ, σ2)(σ>0,μ未知),x 、s 2分别为样本均值和样本方差对假设检验问题H 0:μ=0,H 1:μ≠0,在显著性水平α下,使用的统计量是______. 25.设α和β分别是假设检验中犯第一类和第二类错误的概率,H 0为原假设,H 1为备择假设,则在H 0成立的条件下接受H 1的概率为______. 三、计算题(本大题8分)26.某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手一人,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9、0.7、0.5、0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率. 四、证明题(本大题8分)27.设A 、B 为两个相互独立的随机事件,P (A )+P (B )=1,证明P (A ∪B )≥34. 五、综合题(本大题共2小题,每小题12分,共24分) 28.设二维随机变量(X ,Y )的联合密度函数为的联合密度函数为()34,0,0;,0;x yke x y p x y ì=íî--≥≥其它求(1)常数k ;(2)P (0<X ≤1,0<Y ≤2);(3)P (X =Y );(4)P (X ≥1). 29.设随机变量(X ,Y )的分布律为)的分布律为X Y-1 0 1 -1 18 1818 0 18 0 18 1 181818。
全国2013年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183
2013年4月《概率论与数理统计》(经管类)答案解析课程代码:041831. 【答案】D【解析】“命中目标”=“甲命中目标”或“乙命中目标”或“甲、乙同时命中目标”,所以可表示为“A∪B”,故选择D.【提示】注意事件运算的实际意义及性质:(1)事件的和:称事件“A,B至少有一个发生”为事件A与B的和事件,也称为A 与B的并A∪B或A+B.性质:①,;②若,则A∪B=B.(2)事件的积:称事件“A,B同时发生”为事件A与B的积事件,也称为A与B的交,记做F=A∩B或F=AB.性质:①,;② 若,则AB=A.(3)事件的差:称事件“A发生而事件B不发生”为事件A与B的差事件,记做A-B.性质:①;②若,则;③.(4)事件运算的性质(i)交换律:A∪B=B∪A, AB=BA;(ii)结合律:(A∪B)∪C=A∪(B∪C), (AB)C=A(BC);(iii)分配律:(A∪B)∩C=(A∩C)∪(B∩C)(A∩B)∪C=(A∪C)∩(B∪C).(iv)摩根律(对偶律),2.【答案】A【解析】,,故选择A.【提示】见1题【提示】(3).3. 【答案】D【解析】根据分布函数的定义及分布函数的性质,选择D.详见【提示】. 【提示】1.分布函数定义:设X为随机变量,称函数,为的分布函数.2.分布函数的性质:①0≤F(x)≤1;②对任意x1,x2(x1< x2),都有;③F(x)是单调非减函数;④,;⑤F(x)右连续;⑥设x为f(x)的连续点,则f′(x)存在,且F′(x)=f(x).3.已知X的分布函数F(x),可以求出下列三个常用事件的概率:①;②,其中a<b;③.4.设二维随机变量(X,Y)的分布律为则()A.0B.0.1C.0.2D.0.3【答案】D【解析】因为事件,所以,= 0 + 0.1 + 0.2 = 0.3故选择D【提示】1.本题考察二维离散型随机变量的边缘分布律的求法;2.要清楚本题的三个事件的概率为什么相加:因为三事件是互不相容事件,而互不相容事件的概率为各事件概率之和.5. A.0.25 B.0.5 C.0.75 D.1【答案】A【解析】积分区域D:0<X≤0.5,0<Y≤1,所以故选择A.【提示】1.二维连续型随机变量的概率密度f(x,y)性质:①f(x,y)≥0;②;③若f(x,y)在(x,y)处连续,则有,因而在f(x,y)的连续点(x,y)处,可由分布函数F(x,y)求出概率密度f(x,y);④(X,Y)在平面区域D内取值的概率为.2.二重积分的计算:本题的二重积分的被积函数为常数,根据二重积分的几何意义可用简单方法计算:积分值=被积函数0.5×积分区域面积0.5.6. A.﹣0.8 B.﹣0.2 C.0 D.0.4【答案】B【解析】E(X)=(﹣2)×0.4+0×0.3+2×0.3=﹣0.2故选择B.【提示】1.离散型一维随机变量数学期望的定义:设随机变量的分布律为,1,2,….若级数绝对收敛,则定义的数学期望为.2.数学期望的性质:①E(c)=c,c为常数;②E(aX)=aE(x),a为常数;③E(X+b)=E(X+b)=E(X)+b,b为常数;④E(aX+b)=aE(X)+b,a,b为常数.7. 【答案】C【解析】根据连续型一维随机变量分布函数与概率密度的关系得,所以,=,故选择C.【提示】1.连续型一维随机变量概率密度的性质①;②;③; ④;⑤设x为的连续点,则存在,且.2.一维连续型随机变量数学期望的定义:设连续型随机变量X的密度函数为,如果广义积分绝对收敛,则随机变量的数学期望为.8. 【答案】C【解析】,,而均匀分布的期望为,故选择C.【提示】1.常用的六种分布(1A.两点分布①分布列②数学期望:E(X)=P③方差:D(X)=pq.B.二项分布:X~B(n,p)①分布列:,k=0,1,2,…,n;②数学期望: E(X)=nP③方差: D(X)=npq.C.泊松分布:X~①分布列:,0,1,2,…②数学期望:③方差:=(2)常用连续型随机变量的分布(三种):A.均匀分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=.B.指数分布:X~①密度函数:,②分布函数:,③数学期望:E(X)=,④方差:D(X)=. C.正态分布(A)正态分布:X~①密度函数:,-∞+∞②分布函数:③数学期望:=,④方差:=,⑤标准化代换:若X~,,则~.(B)标准正态分布:X~①密度函数:,-∞+∞②分布函数:,-∞+∞③数学期望:E(X)=0,④方差:D(X)=1.2.注意:“样本”指“简单随机样本”,具有性质:“独立”、“同分布”.9. 【答案】A【解析】易知,,故选择A.【提示】点估计的评价标准:(1)相合性(一致性):设为未知参数,是的一个估计量,是样本容量,若对于任意,有,则称为的相合(一致性)估计.(2)无偏性:设是的一个估计,若对任意,有则称为的无偏估计量;否则称为有偏估计.(3)有效性设,是未知参数的两个无偏估计量,若对任意有样本方差,则称为比有效的估计量.若的一切无偏估计量中,的方差最小,则称为的有效估计量.10. 【答案】A【解析】查表得答案.【提示】关于“课本p162,表7-1:正态总体参数的区间估计表”记忆的建议:①表格共5行,前3行是“单正态总体”,后2行是“双正态总体”;②对均值的估计,分“方差已知”和“方差未知”两种情况,对方差的估计“均值未知”;③统计量顺序:, t, x2, t, F.二、填空题(本大题共15小题,每小题2分,共30分)11. 【答案】0.1【解析】由加法公式P (A∪B)= P (A)+ P (B)-P (AB),则P (AB)= P (A)+ P (B)-P (A∪B)=0.1故填写0.1.12. 【答案】【解析】设第三次取到0的概率为,则故填写.【提示】古典概型:(1)特点:①样本空间是有限的;②基本事件发生是等可能的;(2)计算公式.13. 【答案】0.8【解析】因为随机事件A与B相互独立,所以P (AB)=P (A)P (B)再由条件概率公式有=所以,故填写0.8.【提示】二随机事件的关系(1)包含关系:如果事件A发生必然导致事件B发生,则事件B包含事件A,记做;对任何事件C,都有,且;(2)相等关系:若且,则事件A与B相等,记做A=B,且P (A)=P (B);(3)互不相容关系:若事件A与B不能同时发生,称事件A与B互不相容或互斥,可表示为=,且P (AB)=0;(4)对立事件:称事件“A不发生”为事件A的对立事件或逆事件,记做;满足且.显然:①;②,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2013年7月高等教育自学考试
概率论与数理统计(经管类)试题
课程代码:04183
一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设A,B 为两个互不相容事件,则以下等式中错误..的是 A.P (AB )=0.
B.P (A ∪B )=P (A )+P (B ).
C.P (AB )=P (A )P (B ).
D.P (B -A )=P (B ).
2.设A 、B 是两个随机事件,已知P (B )>0,P (A |B )=1,则必有 A.P (A ∪B )=P (A ). B.A ⊂B. C.P (A )=P (B ).
D.P (AB )=P (A ).
3.设F (x )是随机变量X 的分布函数,则使得P {x 1<X <x 2)=F (x 2)-F (x 1)成立的随机变量X 必为
A.任意随机变量.
B.连续型随机变量.
C.非离散连续型随机变量.
D.离散型随机变量.
4.设随机变量X 服从正态分布N (0,1),则概率P (X <1)= A.0.
B.
1
2π
. C.1.
D.
12
. 5.设二维随机变量(X ,Y )的分布律为
X Y
1 2 3 0 0.1 0.1 0.3 1
0.25
0.25
则概率P {X ·Y =0}= A.0.1. B.0.3. C.0.5.
D.0.75.
6.设二维随机变量(X ,Y )具有联合密度函数
(),02,02;
,0,C x y f x y <<<<⎧=⎨⎩
其他.
则常数C =
A.1/4.
B.1/3.
C.1/2.
D.1.
7.设二维随机变量(X ,Y )的分布律为
Y X
0 1 1 1/3 1/3 2
1/3
则E (XY )= A.-19
. B.0. C.
19. D.
13
. 8.设X ~N (1,2),Y ~N (0,1),且X 与Y 相互独立,则E (XY )= A.-1. B.0. C.1.
D.2.
9.设总体X 服从区间[θ,2θ]上的均匀分布,θ>0是未知参数,X 1,X 2,…,X n 为取自X 的
样本,11=n i i X X n =∑,则T =2
3
X
A.是θ的矩估计,且是无偏估计.
B.是θ的矩估计,且是有偏估计.
C.不是θ的矩估计,但是无偏估计.
D.不是统计量,不能做为θ的估计.
10.设总体X ~N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,在显著性水平α=0.01下接受了假设检验问题H 0:μ=μ0,H 1:μ≠μ0中的H 0.若将α改为0.05,下面结论成立的是 A.必拒绝H 0.
B.必接受H 0.
C.犯第二类错误概率变大.
D.不能判定.
二、填空题(本大题共15小题,每空2分,共30分)
11.现有55个由两个不同的英文字母组成的单子.若从26个英文字母中任取两个不同的字母来排列,则能排成与上述55个单子中某一个相同的概率p =______. 12.设P (A )=0.3,P (A -B )=0.2,则P (BA )=______.
13.设盒中有5只蓝球、3只红球和2只白球,从中任取3球,则球的颜色均不相同的概率为______.
14.从0,1,2,…,9等10个数字中任意选取4个排成一列,则“四个数恰排成一偶数”的概率是______.
15.设X 为连续型随机变量,则P {X =1/3}=______.
16.设连续型随机变量X 的概率密度为f (x ),则当y >0时,Y =e X 的概率密度f Y (y )为______. 17.已知二维随机变量(X ,Y )服从区域G :0≤x ≤2,0≤y ≤2上的均匀分布,则P (X ≤1,Y ≥1)=
______.
18.设X ~N (1,1),Y ~N (1,1),且X 与Y 相互独立.则Z =X -2Y ~______. 19.设随机变量X 的概率分布为
X -2 0 2 P
0.4
0.3
0.3
则E (3X 2)=______.
20.设E (X )=3,E (Y )=2,E (XY )=8,则Cov (X ,Y )=______.
21.设随机变量X 的数学期望E (X )=μ,方差D (X )=σ2(σ>0),则由切比雪夫不等式可知 P {|X -μ|<3σ}≥______.
22.设总体X ~N (10,10),x 1,x 2,…,x n 为来自该总体的样本,则1
1()n
i i E x n =∑=______.
23.设x 1,x 2,…,x n 为来自总体X ~N (μ, σ2)( σ>0)的样本,若P {X >a }=0.5,则常数a =______. 24.设样本x 1,x 2,…,x n 来自正态总体X ~N (μ, σ2)(σ>0,μ未知),x 、s 2分别为样本均值和样本方差.对假设检验问题H 0:μ=0,H 1:μ≠0,在显著性水平α下,使用的统计量是______. 25.设α和β分别是假设检验中犯第一类和第二类错误的概率,H 0为原假设,H 1为备择假设,则在H 0成立的条件下接受H 1的概率为______. 三、计算题(本大题8分)
26.某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手一人,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9、0.7、0.5、0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率. 四、证明题(本大题8分)
27.设A 、B 为两个相互独立的随机事件,P (A )+P (B )=1,证明P (A ∪B )≥34
. 五、综合题(本大题共2小题,每小题12分,共24分) 28.设二维随机变量(X ,Y )的联合密度函数为
()34,0,0;
,0;x y ke x y p x y ⎧=⎨⎩
--≥≥其它
求(1)常数k ;(2)P (0<X ≤1,0<Y ≤2);(3)P (X =Y );(4)P (X ≥1). 29.设随机变量(X ,Y )的分布律为
X Y
-1
1
-1 1
8 18
18 0
18
18
1 1
8
1
8
1
8
(1)求二维随机变量(X,Y)关于X和Y的边缘分布律;
(2)试问随机变量X和Y是否相关?为什么?
六、应用题(本大题10分)
30.考察某饲养场一群动物的重量。
测量其中16个动物的重量(单位:kg),得到样本均值为x=2.125,样本均方差为s=0.0171,设该种动物的重量服从正态分布,试求该动物重量的置信度为90%的置信区间.结果精确到小数点后第4位.
(附:t0.05(15)=1.7531,t0.05(16)=1.7459,t0.025(15)=2.1315,t0.025(16)=2.1199)。