2010年中考数学试题分类(精选版):二次函数
2010年中考数学试题分类(精选版):函数与一次函数
2010年中考数学试题分类汇编 函数与一次函数10.(2010年浙江省东阳县)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( ) 【关键词】函数的意义 【答案】A1、(2010年宁波市)小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O -A -B -C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟。
(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系;(A) (B) (C) (D)1题(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?【关键词】函数与实际问题 【答案】解:(1)15,154 (2)由图像可知,s 是t 的正比例函数 设所求函数的解析式为kt s =(0≠k ) 代入(45,4)得:k 454= 解得:454=k ∴s 与t 的函数关系式t s 454=(450≤≤t ) (3)由图像可知,小聪在4530≤≤t 的时段内s 是t 的一次函数,设函数解析式为n mt s +=(0≠m )代入(30,4),(45,0)得:⎩⎨⎧=+=+045430n m n m解得:⎪⎩⎪⎨⎧=-=12154n m∴12154+-=t s (4530≤≤t ) 令t t 45412154=+-,解得4135=t当4135=t 时,34135454=⨯=S 答:当小聪与小明迎面相遇时,他们离学校的路程是3千米。
5.(2010年安徽省芜湖市)要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B.a >-2且a ≠0 C.a >-2或a ≠0 D.a ≥-2且a ≠0 【关键词】函数自变量的取值范围 【答案】D9.(2010重庆市)小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
2010中考数学试题及答案
2010中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. πB. 0.33333(无限循环)C. √2D. 1/32. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -34. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. -85. 下列哪个选项不是同类项?A. 3x^2 和 5x^2B. 2y 和 3yC. 4a 和 -aD. 7b 和 3c6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π7. 一个长方体的长、宽、高分别是2、3和4,它的体积是:A. 24B. 36C. 48D. 648. 如果一个数列的前三项是1,3,6,那么这个数列是:A. 等差数列B. 等比数列C. 既不是等差也不是等比数列D. 无法确定9. 一个二次方程x^2 - 5x + 6 = 0的根是:A. x = 2, 3B. x = -2, -3C. x = 1, 6D. x = -1, -610. 下列哪个表达式是正确的?A. (a + b)^2 = a^2 + b^2B. (a - b)(a + b) = a^2 - b^2C. a^3 - b^3 = (a - b)(a^2 + ab + b^2)D. a^4 + b^4 = (a + b)^2(a^2 - ab + b^2)二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。
12. 如果一个角是30°,那么它的余角是______。
13. 一个正三角形的内角是______。
14. 一个数的绝对值是5,这个数可以是______。
15. 一个数的立方根是2,这个数是______。
16. 一个数的平方是36,这个数是______。
2010年部分省市中考数学试题分类汇编(共28专题)11.二次函数
新世纪教育网精选资料版权所有@新世纪教育网(2010 台州市 ) 7.梯形 ABCD 中, AD ∥ BC,AB=CD=AD =2,∠ B=60°,则下底BC 的长是(▲ )A.3B.4C. 2 3D.2+23答案: B(2010 年无锡) 17.如图,梯形ABCD 中, AD ∥BC , EF 是梯形的中位线,对角线AC 交EF 于 G,若 BC=10cm , EF=8cm ,则 GF 的长等于▲cm.答案 3A DFEGB C(第 17 题)(2010 年兰州) 17. 如图,直角梯形 ABCD中, AD∥ BC, AB⊥ BC, AD = 2 ,将腰 CD以 D 为中心逆时针旋转90°至 DE,连结 AE、CE,△ ADE的面积为 3,则 BC的长为.答案5(2010 宁波市) 16.如图,在等腰梯形 ABCD 中,AD∥ BC,AB=AD =CD.若∠ ABC =60°,BC= 12,则梯形 ABCD 的周长为 ________30_____ .A DB C第16题10. ( 2010 年金华)如图,在等腰梯形ABCD 中,AB∥CD,对角线 AC⊥BC ,∠B=60o,BCD C=2cm,则梯形 ABCD 的面积为(▲) AA .3 3 cm2B. 6 cm2A B(第 10题图) C.6 3 cm2D. 12 cm215.( 2010 年长沙)等腰梯形的上底是4cm,下底是10 cm ,一个底角是60 ,则等腰梯形的腰长是cm.答案: 6(2010 年眉山) 18.如,已知梯形 ABCD 中, AD∥ BC,∠ B=30°,∠ C=60°,AD=4 , AB= 3 3,下底BC 的__________.A D答案: 1030°60°(2010 陕西省)16、如图,在梯形ABCD 中,B C DC∥AB ,∠ A+ ∠B=90°若 AB=10 ,AD=4,DC=5 ,则梯形 ABCD 的面积为181.( 2010 黄)如,在等腰梯形ABCD 中, AC ⊥ BD ,AC =26cm,等腰梯形ABCD 的面 _____cm .181.( 2010 昆明)已知:如,在梯形ABCD 中, AD ∥BC,∠DCB = 90 °, E 是 AD 的中点,点 P 是 BC 上的点(不与点 B重合), EP 与 BD 订交于点 O.(1)当 P 点在 BC 上运,求:△ BOP∽△ DOE;(2)( 1)中的相像比k,若 AD ︰ BC = 2 ︰ 3. 研究:当形ABPE是什么四形?①当k = 1,是是;③当 k = 3,是k以下三种状况,四;②当 k = 2,.并明 k = 2的....A E D OBP C解:( 1)明:∵ AD ∥ BC∴∠ OBP = ∠ODE⋯⋯⋯⋯⋯1分在△ BOP 和△ DOE 中∠OBP = ∠ ODE∠ BOP = ∠ DOE⋯⋯⋯⋯⋯⋯⋯2分∴△ BOP∽△ DOE (有两个角相等的两三角形相像 )⋯⋯⋯⋯⋯3分( 2)①平行四形⋯⋯⋯⋯⋯⋯⋯4分②直角梯形⋯⋯⋯⋯⋯⋯⋯5分③ 等腰梯形分明:∵ k = 2 ,BPDE⋯⋯⋯⋯⋯⋯⋯6 2∴BP=2DE=AD又∵AD︰BC=2︰ 3BC= 3 AD 2PC=BC - BP=31 AD -AD= AD=ED 22ED ∥ PC , ∴四形 PCDE是平行四形∵∠ DCB = 90°∴四形 PCDE 是矩形⋯⋯⋯⋯⋯⋯⋯7分∴ ∠ EPB = 90°⋯⋯⋯⋯⋯⋯⋯8分又∵在直角梯形ABCD中AD ∥ BC,AB 与DC 不平行∴ AE∥ BP,AB 与 EP不平行四形 ABPE 是直角梯形⋯⋯⋯⋯⋯⋯⋯⋯⋯9分(本其余法参照此准分)(2010 河北省) 25.(本小题满分 12 分)如图 16,在直角梯形 ABCD 中, AD ∥BC , B 90 , AD = 6, BC = 8, AB 33 ,点 M 是 BC 的中点.点 P 从点 M 出发沿 MB 以每秒 1 个单位长的速度向点 B 匀速运动,到 达点 B 后马上以原速度沿 BM 返回;点 Q 从点 M 出发以每秒 1 个单位长的速度在射线 MC上匀速运动.在点 P , Q 的运动过程中,以PQ 为边作等边三角形 EPQ ,使它与梯形 ABCD 在射线 BC 的同侧.点 P , Q 同时出发,当点 P 返回到点 M 时停止运动,点 Q 也随之停止.设点 P ,Q 运动的时间是t 秒 (t > 0).( 1)设 PQ 的长为 y ,在点 P 从点 M 向点 B 运动的过程中,写出y 与 t 之间的函数关系式(不用写 t 的取值范围) .( 2)当 BP = 1 时,求△ EPQ 与梯形 ABCD 重叠部分的面积.( 3)跟着时间 t 的变化,线段 AD 会有一部分被△ EPQ 覆盖,被覆盖线段的长度在某个时辰会达到最大值,请回答:该最大值可否连续一个时段?若能,直接..写出 t的取值范围;若不可以,请说明原因.ADEBP M QC图 16A D解:( 1) y = 2t ;( 2)当 BP = 1 时,有两种情况:BM C(备用图)①如图 6,若点 P 从点 M 向点 B 运动,有 MB =1BC=4,MP = MQ =3,2A∴PQ = 6.连结 EM ,ED∵△ EPQ 是等边三角形, ∴ EM ⊥ PQ .∴ EM 3 3 . ∵AB= 3 3,∴点 E 在 AD 上.B PM Q C图 6∴△ EPQ 与梯形 ABCD 重叠部分就是△ EPQ ,其面积为93.②若点 P 从点 B 向点 M 运动,由题意得t 5 .PQ=BM+MQ BP = 8,PC = 7.设 PE 与 AD 交于点 F ,QE 与 AD 或 AD 的E 延伸线交于点G ,过点 P 作 PH ⊥AD 于点 H ,则AHFG DHP = 3 3 , AH = 1.在 Rt△HPF 中,∠ HPF = 30°,∴HF = 3,PF = 6.∴ FG = FE = 2.又∵ FD = 2,∴点 G 与点 D 重合,如图 7.此时△ EPQ 与梯形 ABCD的重叠部分就是梯形FPCG ,其面积为273 .2( 3)能. 4≤ t≤ 5.(2010 ·浙江温州)10.用若干根同样的火柴棒首尾按序相接围成一个梯形( 供给的火柴棒所有用完 ) ,以下根数的火柴棒不可以围成梯形的是(B).A.5 B.6C.7D.81.(2010,安徽芜湖)在等腰梯形ABCD 中, AD ∥ BC, 对角线 AC ⊥BD 于点 O,AE ⊥ BC,DF⊥BC, 垂足分别为E,F,AD=4,BC=8, 则 AE+EF= ()A.9B.10C.11D.20【答案】 B(2010 ·浙江湖州) 20.(本小题8 分)如图,已知在梯形ABCD 中, DC ∥AB ,AD= BC,BD 均分∠ ABC,∠ A= 60°.(1)求∠ ABD 的度数;D C (2)若 AD=2,求对角线 BD 的长.A B第20题。
最新2010年中考数学真题分类汇编(150套)专题十八·二次函数的图象和性质2
28.(2010广东中山)如图(1),(2)所示,矩形ABCD 的边长AB=6,BC=4,点F 在DC 上,DF=2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、MN 、FN ,当F 、N 、M 不在同一直线时,可得ΔFMN ,过ΔFMN 三边的中点作ΔPQW .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:(1)说明ΔFMN ∽ΔQWP ;(2)设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,ΔPQW 为直角三角形?当x 在何范围时,ΔPQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值..【答案】解:(1)由题意可知P 、W 、Q 分别是ΔFMN 三边的中点,∴PW 是ΔFMN 的中位线,即PW ∥MN∴ΔFMN ∽ΔQWP(2)由题意可得 DM=BN=x ,AN=6-x ,AM=4-x ,由勾股定理分别得 2FM =24x +,2MN =2)4(x -+2)6(x -2FN =2)4(x -+16①当2MN =2FM +2FN 时,2)4(x -+2)6(x -=24x ++2)4(x -+16解得 34=x②当2FN =2FM +2MN 时,2)4(x -+16=24x ++2)4(x -+2)6(x -此方程无实数根③2FM =2MN +2FN 时,24x +=2)4(x -+2)6(x -+2)4(x -+16解得 101=x (不合题意,舍去),42=x综上,当34=x 或4=x 时,ΔPQW 为直角三角形;当0≤x <34或34<x <4时,ΔPQW 不为直角三角形(3)①当0≤x ≤4,即M 从D 到A 运动时,只有当x=4时,MN 的值最小,等于2;②当4<x ≤6时,2MN =2AM +2AN =2)4(-x +2)6(x -=2)5(22+-x当x=5时,2MN 取得最小值2,∴当x=5时,线段MN 最短,MN=2.29.(2010湖南常德)如图9, 已知抛物线212y x bx c =++与x 轴交于A (-4,0) 和B (1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)设E 是线段AB 上的动点,作EF //AC 交BC 于F ,连接CE ,当△CEF 的面积是△BEF 面积的2倍时,求E 点的坐标;(3)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q ,当P 点运动到什么位置时,线段PQ 的值最大,并求此时P 点的坐标.【答案】解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得:221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. 解得: 322b c ⎧=⎪⎨⎪=-⎩,.故所求二次函数的解析式为213222y x x =+-.(2)∵S △CEF =2 S △BEF , ∴1,2BF CF =1.3BF BC =∵EF //AC , ∴B ,EF BAC BFE BCA ∠=∠∠=∠ ,∴△BEF ~△BAC ,∴1,3BE BF BA BC ==得5,3BE =故E 点的坐标为(23-,0).(3)解法一:由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2).若设直线AC 的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭,又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a--=()21222a -++ 即当2a =-时,线段PQ 取大值,此时P 点的坐标为(-2,-3)解法二:延长PQ 交x 轴于D 点,则PD AB ⊥.要使线段PQ 最长,则只须△APC 的面积取大值时即可.设P 点坐标为(),00y x ,则有:ACO DPCO S APC ADP S S S =+-V V V 梯形xyO BC A图9=111()222AD PD PD OC OD OA OC ⋅++⋅-⋅=()()000001112242222x y y y x --+-+⋅--⨯⨯=0024y x ---=20001322422x x x ⎛⎫-+---⎪⎝⎭=2004xx -- =-()22024x ++即02x =-时,△APC 的面积取大值,此时线段PQ 最长,则P 点坐标为(-2,-3)30 .(2010湖南郴州)如图(1),抛物线42y x x =+-与y 轴交于点A ,E (0,b )为y 轴上一动点,过点E 的直线y x b =+与抛物线交于点B 、C .(1)求点A 的坐标;(2)当b =0时(如图(2)),ABE V 与ACE V 的面积大小关系如何?当4b >-时,上述关系还成立吗,为什么? (3)是否存在这样的b ,使得BOC V 是以BC 为斜边的直角三角形,若存在,求出b ;若不存在,说明理由.【答案】(1)将x =0,代入抛物线解析式,得点A 的坐标为(0,-4)(2)当b =0时,直线为y x =,由24y x y x x =⎧⎨=+-⎩解得1122x y =⎧⎨=⎩,2222x y =-⎧⎨=-⎩所以B 、C 的坐标分别为(-2,-2),(2,2)14242ABE S =⨯⨯=V ,14242ACE S =⨯⨯=V所以ABE ACE S S =V V (利用同底等高说明面积相等亦可)当4b >-时,仍有ABE ACE S S =V V 成立. 理由如下由24y x b y x x =+⎧⎨=+-⎩,解得11x y b ⎧=⎪⎨=⎪⎩,22x y b⎧=⎪⎨=⎪⎩所以B 、C 的坐标分别为(-4b +,-4b ++b ),(4b +,4b ++b ),作BF y ⊥轴,CG y ⊥轴,垂足分别为F 、G ,则4BF CG b ==+,而ABE V 和ACE V 是同底的两个三角形,所以ABE ACE S S =V V .(3)存在这样的b .因为90BF CG,BEF CEG,BFE CGE =∠=∠∠=∠=︒所以BEF CEG≅V V所以BE CE =,即E 为BC 的中点所以当OE =CE 时,OBC V 为直角三角形因为44GE b b b b GC =++-=+=所以 24CE b =⋅+,而OE b=所以24b b ⋅+=,解得124,2b b ==-,所以当b =4或-2时,ΔOBC 为直角三角形.31.(2010湖南怀化)图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M(1,-4).(1)求出图象与x 轴的交点A,B 的坐标;(2)在二次函数的图象上是否存在点P ,使MAB PABS S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.【答案】解;(1) 因为M(1,-4) 是二次函数k m x y ++=2)(的顶点坐标,所以324)1(22--=--=x x x y令,0322=--x x 解之得3,121=-=x x .∴A ,B 两点的坐标分别为A (-1,0),B (3,0)(2) 在二次函数的图象上存在点P ,使MAB PAB S S ∆∆=45设),,(y x p 则y y AB S PAB 221=⨯=∆,又8421=-⨯=∆AB S MAB ,图9∴.5,8452±=⨯=y y 即∵二次函数的最小值为-4,∴5=y .当5=y 时,4,2=-=x x 或.故P 点坐标为(-2,5)或(4,5)……………7分(3)如图1,当直线)1(<+=b b x y 经过A 点时,可得.1=b ……………8分当直线)1(<+=b b x y 经过B 点时,可得.3-=b由图可知符合题意的b 的取值范围为13<<-b32.(2010湖北鄂州)如图,在直角坐标系中,A (-1,0),B (0,2),一动点P 沿过B 点且垂直于AB 的射线BM 运动,P 点的运动速度为每秒1个单位长度,射线BM 与x 轴交与点C .(1)求点C 的坐标.(2)求过点A 、B 、C 三点的抛物线的解析式.(3)若P 点开始运动时,Q 点也同时从C 出发,以P 点相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形.(点P 到点C 时停止运动,点Q 也同时停止运动)求t 的值. (4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.【答案】(1)点C 的坐标是(4,0); (2)设过点A 、B 、C 三点的抛物线的解析式为y =ax 2+bx +c (a ≠0),将点A 、B 、C 三点的坐标代入得:020164a b c c a b c =-+⎧⎪=⎨⎪=++⎩解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式是:y = 12-x 2+32x +2.(3)设P 、Q 的运动时间为t 秒,则BP =t ,CQ =t .以P 、Q 、C 为顶点的三角形为等腰三角形,可分三种情况讨论.①若CQ =PC ,如图所示,则PC = CQ =BP =t .∴有2t =BC =25,∴t =5.②若PQ =QC ,如图所示,过点Q 作DQ ⊥BC 交CB 于点D ,则有CD =PD .由△ABC ∽△QDC ,可得出PD =CD =25t ,∴4525t t =-,解得t =40105-.③若PQ =PC ,如图所示,过点P 作PE ⊥AC 交AC 于点E ,则EC =QE =25PC ,∴12t =25(25-t ),解得t =32540-.(4)当CQ =PC 时,由(3)知t =5,∴点P 的坐标是(2,1),∴直线OP 的解析式是:y =12x ,图1因而有12x =12-x 2+32x +2,即x 2-2x -4=0,解得x =1±5,∴直线OP 与抛物线的交点坐标为(1+5,15+)和(1-5,15-).33.(2010湖北省咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠).(1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.【答案】(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根.根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-.∴2b m =,23c m =.∴224312c b m ==.(2)解:依题意,12b-=,∴2b =-.由(1)得2233(2)344c b ==⨯-=.∴2223(1)4y x x x =--=--.∴二次函数的最小值为4-.34.(2010湖北恩施自治州) 如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】解:(1)将B 、C 两点的坐标代入得⎩⎨⎧-==+33c c b解得:⎩⎨⎧-=-=32c b所以二次函数的表达式为:322--=x x y(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322--x x ),PP /交CO 于E若四边形POP /C 是菱形,则有PC =PO .连结PP /则PE ⊥CO 于E ,∴OE=EC =23∴y =23-.∴322--x x =23-解得1x =2102+,2x =2102-(不合题意,舍去)∴P 点的坐标为(2102+,23-)…………………………8分(3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,322--x x ),易得,直线BC 的解析式为3-=x y则Q 点的坐标为(x ,x -3).EB QP OE QP OC AB S S S S CPQ BPQ ABC ABPC ⋅+⋅+⋅=++=∆∆∆212121四边形 3)3(2134212⨯+-+⨯⨯=x x =87523232+⎪⎭⎫ ⎝⎛--x当23=x 时,四边形ABPC 的面积最大此时P 点的坐标为⎪⎭⎫⎝⎛-415,23,四边形ABPC 的面积875的最大值为.35.(2010北京)在平面直角坐标系xOy 中,抛物线23454122+-++--=m x x mx m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交与点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧做等等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点做x 轴的垂线,与直线AB 交与点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N点也随之运动).若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.【答案】解:(1)∵抛物线23454122+-++--=m m x m x m y 经过原点,∴m 2—3m +2=0.解的m 1=1,m 2=2. 由题意知m ≠1. ∴m =2,∴抛物线的解析式为xx y 25412+-=∵点B (2,n )在抛物线x x y 25412+-=,n=4.∴B 点的坐标为(2,4)(2)①设直线OB 的解析式为y =k 1x求得直线OB 的解析式y =2x∵A 点是抛物线与x 轴的一个交点,可求得A 点的坐标为(10,0),设P 点的坐标为(a ,0),则E 点的坐标为(a ,2a ).根据题意做等腰直角三角形PCD ,如图1.可求得点C 的坐标为(3a ,2a ),有C 点在抛物线上,得2a =-41x (3a )2+25x 3a .即49a 2— 211a =0解得 a 1=922,a 2=0(舍去)∴OP =922②依题意作等腰直角三角形QMN .设直线AB 的解析式y =k 2x +b由点A (10 ,0),点B (2,4),求得直线AB 的解析式为y =-21x +5当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:第一种情况:CD 与NQ 在同一条直线上,如图2所示,-1 yx O(第24题) 1234 -2 -4 -33 -1-2 -3 -4 4 1 2可证△DPQ为等腰直角三角形.此时QP、OP、AQ的长可依次表示为t、4t、 2t个单位.∴PQ = DP = 4t∴t+4t+2t=10∴t=710第二种情况:PC与MN在同一条直线上,如图3所示.可证△PQM为等腰直角三角形.此时OP、AQ的长依次表示为t、2t个单位,∴OQ = 10 - 2t∵F点在直线AB上∴FQ=t∵MQ=2t∴PQ=MQ=CQ=2t∴t+2t+2t=10∴t=2.第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示,此时OP、AQ的长依次表示为t、2t个单位.∴t+2t=10∴t=310综上,符合题意的值分别为710,2,310.36.(2010云南红河哈尼族彝族自治州)二次函数2xy=的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式.(2)求经过两次平移后的图像与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?【答案】解:画图如图所示:依题意得:2)1(2--=xy=2122-+-xx=122--xx∴平移后图像的解析式为:122--xx(2)当y=0时,122--x x =02)1(2=-x 21±=-x 212121+=-=x x ,∴平移后的图像与x 轴交与两点,坐标分别为(21-,0)和(21+,0)由图可知,当x<21-或x>21+时,二次函数2)1(2--=x y 的函数值大于0.37.(2010云南楚雄)已知:如图,抛物线2y ax bx c =++与x 轴相交于两点A (1,0),B (3,0).与y 轴相较于点C (0,3).(1)求抛物线的函数关系式; (2)若点D (7,2m )是抛物线2y ax bx c =++上一点,请求出m 的值,并求处此时△ABD 的面积.【答案】解:(1)由题意可知09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得143a b c =⎧⎪=-⎨⎪=⎩所以抛物线的函数关系式为243y x x =-+.(2)把D (7,2m )代人函数解析式243y x x =-+中,得2775()43224m =-⨯+=.所以155(31)244ABD S ∆=⨯-⨯=.38.(2010湖北随州)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图).(1)求字母a ,b ,c 的值;(2)在直线x =1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形; (3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出t值,若不存在请说明理由.【答案】(1)a =-1,b =2,c =031241234O1-2-1-2-xy(2)过P 作直线x=1的垂线,可求P 的纵坐标为14,横坐标为1132+.此时,MP =MF =PF =1,故△MPF 为正三角形.(3)不存在.因为当t <54,x <1时,PM 与PN 不可能相等,同理,当t >54,x >1时,PM 与PN 不可能相等.39.(2010河南)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,一4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.【答案】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),则有1640,4,420.a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得1,21,4.a b c ⎧=⎪⎪=⎨⎪=-⎪⎩∴抛物线的解析式y =12x 2+x ﹣4(2)过点M 作MD ⊥x 轴于点D .设M 点的坐标为(m ,n ).则AD =m +4,MD =﹣n ,n =12m 2+m -4 .∴S = S △AMD +S 梯形DMBO -S △ABO=12( m +4) (﹣n )+12(﹣n +4) (﹣m ) -12×4×4= ﹣2n -2m -8= ﹣2(12m 2+m -4) -2m -8= ﹣m 2-4m (-4< m < 0)∴S 最大值 = 4(3)满足题意的Q 点的坐标有四个,分别是:(-4 ,4 ),(4 ,-4),(-2+252-5,(-2-52+2540.(2010四川乐山)如图(13.1),抛物线y =x2+bx+c 与x 轴交于A ,B 两点,与y 轴交于点C(0,2),连接AC ,若tan ∠OAC =2. (1)求抛物线对应的二次函数的解析式; (2)在抛物线的对称轴l 上是否存在点P ,使∠APC =90°,若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(13.2)所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点,过点M 作直线l ′∥l ,交抛物线于点N ,连接CN 、BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?【答案】解:(1)∵抛物线y=x2+bx+c过点C(0,2). ∴x=2又∵tan∠OAC=OCOA=2, ∴OA=1,即A(1,0).又∵点A在抛物线y=x2+bx+2上. ∴0=12+b×1+2,b=-3∴抛物线对应的二次函数的解析式为y=x2-3x+2(2)存在过点C作对称轴l的垂线,垂足为D,如图所示,∴x=-332212ba-=-=⨯.∴AE=OE-OA=32-1=12,∵∠APC=90°,∴tan∠PAE= tan∠CPD∴PE CDEA DP=,即12PE322PE=-,解得PE=12或PE=32,∴点P的坐标为(32,12)或(32,32)。
2010年各地中考压轴题二次函数
如图,已知抛物线y =-12x 2+x +4交x 轴的正半轴于点A ,交y 轴于点B .(1)求A 、B 两点的坐标,并求直线AB 的解析式; (2)设P (x ,y )(x >0)是直线y =x 上的一点,Q 是OP 的中点(O 是原点),以PQ 为对角线作正方形PEQF ,若正方形PEQF 与直线AB 有公共点,求x 的取值范围; (3)在(2)的条件下,记正方形PEQF 与△OAB 公共部分的面积为S ,求S 关于x 的函数解析式,并探究S 的最大值.24.如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示2x -1x ,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴...围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图226.(12分)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.题图26备用图(本小题满分14分)已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与 x轴平行,O为坐标原点.(1)求直线AB和这条抛物线的解析式;(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.(第28题)324.(本题满分l2分)将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(–3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.x524.(本小题满分14分)如图,在平面直角坐标系中放置一矩形ABCO ,其顶点为A (0,1)、B (-33,1)、C (-33,0)、O (0,0).将此矩形沿着过E (-3,1)、F (-433,0)的直线EF 向右下方翻折,B 、C 的对应点分别为B ′、C ′. (1)求折痕所在直线EF 的解析式;(2)一抛物线经过B 、E 、B ′三点,求此二次函数解析式;(3)能否在直线EF 上求一点P ,使得△PBC 周长最小?如能,求出点P 的坐标;若不能,说明理由. 解:25.(本题满分12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、B(0,—3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.726.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C和点D 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.24. (本小题满分12分)在平面直角坐标系xOy 中,抛物线的解析式是y =241x +1, 点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物 线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1:2时,求t 的值.(第24题)928.(本题满分12分)已知:函数y =ax 2+x +1的图象与x 轴只有一个公共点. (1)求这个函数关系式;(2)如图所示,设二次..函数y =ax 2+x +1图象的顶点为B ,与y 轴的交点为A ,P 为图象上的一点,若以线段PB 为直径的圆与直线AB 相切于点B ,求P 点的坐标;(3)在(2)中,若圆与x 轴另一交点关于直线PB 的对称点为M ,试探索点M 是否在抛物线y =ax 2+x +1上,若在抛物线上,求出M 点的坐标;若不在,请说明理由.28.(本题满分11分)如图1,已知矩形ABCD 的顶点A 与点O 重合,AD 、AB 分别在x 轴、y轴上,且AD=2,AB=3;抛物线c bx x y ++-=2经过坐标原点O 和x 轴上另一点E (4,0)(1)当x 取何值时,该抛物线的最大值是多少?(2)将矩形ABCD 以每秒1个单位长度的速度从图1所示的位置沿x 轴的正方向匀速平行移动,同时一动点P 也以相同的速度从点A 出发向B 匀速移动.设它们运动的时间为t 秒(0≤t ≤3),直线AB 与该抛物线的交点为N (如图2所示). ① 当411=t 时,判断点P 是否在直线ME 上,并说明理由;② 以P 、N 、C 、D 为顶点的多边形面积是否可能为5,若有可能,求出此时N 点的坐标;若无可能,请说明理由.图1 第28题图 图219(10江苏泰州)27.(12分)11xx20(10江苏泰州)28.(14分)如图,⊙O 是O y kx b =+交坐标轴于A 、B 两点。
2010年中考数学真题分类汇编(150套)专题十八·二次函数的图象和性质2(可编辑)
2010年中考数学真题分类汇编(150套)专题十八·二次函数的图象和性质228.2010广东中山如图12所示矩形ABCD的边长AB 6BC 4点F在DC上DF 2.....答案①当时解得②当时此方程无实数根③时解得不合题意舍去综上当或时ΔPQW为直角三角形当0≤x<或<x<4时ΔPQW不为直角三角形3①当0≤x≤4即M从D到A运动时只有当x 4时MN的值最小等于2②当4<x≤6时当x 5时取得最小值2∴当x 5时线段MN最短MN .29.2010湖南常德如图已知抛物线与轴交于A -4 和B 10 两点与轴交于C点.求此抛物线的解析式设E是线段AB上的动点作EFAC交BC于F连接CE当△CEF的面积是△BEF 面积的2倍时求E点的坐标若P为抛物线上AC两点间的一个动点过P作轴的平行线交AC于Q当P点运动到什么位置时线段PQ的值最大并求此时P点的坐标.解1由二次函数与轴交于两点可得解得故所求二次函数的解析式为.2∵S△CEF 2 S△BEF ∴∵EFAC ∴∴△BEF~△BAC∴得故E点的坐标为 0 3解法一由抛物线与轴的交点为则点的坐标为0-2.若设直线的解析式为则有解得故直线的解析式为.若设点的坐标为又点是过点所作轴的平行线与直线的交点则点的坐标为.则有==即当时线段取大值此时点的坐标为-2-3解法二延长交轴于点则.要使线段最长则只须△的面积取大值时即可设点坐标为则有======-即时△的面积取大值此时线段最长则点坐标为-2-3与y轴交于点AE0b为y轴上一动点过点E的直线与抛物线交于点BC1求点A的坐标2 当b 0时如图2与的面积大小关系如何当时上述关系还成立吗为什么3是否存在这样的b使得是以BC为斜边的直角三角形若存在求出b若不存在说明理由答案1将x 0代入抛物线解析式得点A的坐标为0-42当b=0时直线为由解得所以BC的坐标分别为-2-222所以利用同底等高说明面积相等亦可当时仍有成立理由如下由解得所以BC的坐标分别为--bb作轴轴垂足分别为FG则而和是同底的两个三角形所以3存在这样的b因为所以所以即E为BC的中点所以当OE CE时为直角三角形因为所以而所以解得所以当b=4或-2时ΔOBC为直角三角形31.2010湖南怀化图9是二次函数的图象其顶点坐标为M 1-41求出图象与轴的交点AB的坐标2在二次函数的图象上是否存在点P使若存在求出P点的坐标若不存在请说明理由3将二次函数的图象在轴下方的部分沿轴翻折图象的其余部分保持不变得到一个新的图象请你结合这个新的图象回答当直线与此图象有两个公共点时的取值范围答案解 1 因为M 1-4 是二次函数的顶点坐标所以令解之得∴AB两点的坐标分别为A-10B302 在二次函数的图象上存在点P使设则又∴∵二次函数的最小值为-4∴当时故P点坐标为-25或457分3如图1当直线经过A点时可得8分当直线经过B点时可得由图可知符合题意的的取值范围为解得∴抛物线的解析式是y x2x2.3设PQ的运动时间为t秒则BP tCQ t.以PQC为顶点的三角形为等腰三角形可分三种情况讨论.①若CQ PC如图所示则PC CQ BP t.∴有2t BC ∴t .②若PQ QC如图所示过点Q作DQ⊥BC交CB于点D则有CD PD.由△ABC∽△QDC可得出PD CD ∴解得t .③若PQ PC如图所示过点P作PE⊥AC交AC于点E则EC QE PC∴t -t解得t .4当CQ PC时由3知t ∴点P的坐标是21∴直线OP的解析式是y x因而有x x2x2即x2-2x-4 0解得x 1±∴直线OP与抛物线的交点坐标为1和1-.33.2010湖北省咸宁已知二次函数的图象与轴两交点的坐标分别为00.1证明2若该函数图象的对称轴为直线试求二次函数的最小值.1证明依题意是一元二次方程的两根.根据一元二次方程根与系数的关系得.∴.∴.2解依题意∴.由1得.∴.∴二次函数的最小值为.的图象与x轴交于AB两点 A点在原点的左侧B点的坐标为30与y轴交于C0-3点点P是直线BC下方的抛物线上一动点1求这个二次函数的表达式.2连结POPC并把△POC沿CO翻折得到四边形POPC 那么是否存在点P使四边形POPC为菱形若存在请求出此时点P的坐标若不存在请说明理由.3当点P运动到什么位置时四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积答案解1将BC两点的坐标代入得解得所以二次函数的表达式为2存在点P使四边形POPC为菱形.设P点坐标为xPP交CO于E若四边形POPC是菱形则有PC=PO.连结PP 则PE⊥CO于E∴OE EC∴.∴解得不合题意舍去∴P点的坐标为8分3过点P作轴的平行线与BC交于点Q与OB交于点F设Px易得直线BC的解析式为则Q点的坐标为xx-3当时四边形ABPC的面积最大此时P点的坐标为四边形ABPC的面积.35.2010北京在平面直角坐标系xOy中抛物线与x轴的交点分别为原点O 和点A点B2n在这条抛物线上.1求B点的坐标2点P在线段OA上从O点出发向A点运动过P点作x轴的垂线与直线OB交与点E延长PE到点D使得ED PE以PD为斜边在PD右侧做等等腰直角三角形PCD 当P点运动时C点D点也随之运动.①当等腰直角三角形PCD的顶点C落在此抛物线上时求OP的长②若P点从O点出发向A点作匀速运动速度为每秒1个单位同时线段OA 上另一个点Q从A点出发向O点作匀速运动速度为每秒2个单位当Q点到达O 点时停止运动P点也同时停止运动.过Q点做x轴的垂线与直线AB交与点F延长QF到点M使得FM QF以QM为斜边在QM的左侧作等腰直角三角形QMN当Q点运动时M点N点也随之运动.若P点运动到t秒时两个等腰直角三角形分别有一条边恰好落在同一条直线上求此刻t的值.解1∵抛物线经过原点∴m23m2 0解的m1 1m2 2由题意知m≠1∴m 2∴抛物线的解析式为∵点B2n在抛物线n 4∴B点的坐标为242①设直线OB的解析式为y k1x求得直线OB的解析式y 2x∵A点是抛物线与x轴的一个交点可求得A点的坐标为100设P点的坐标为a0则E点的坐标为a2a.根据题意做等腰直角三角形PCD如图1可求得点C的坐标为3a2a有C点在抛物线上得2a -x3a2x3a即a2 a 0解得 a1 a2 0舍去∴OP②依题意作等腰直角三角形QMN设直线AB的解析式y k2xb由点A 10 0 点B24求得直线AB的解析式为y -x5当P点运动到t秒时两个等腰直角三角形分别有一条边恰好落在同一条直线上有以下三种情况第一种情况CD与NQ在同一条直线上如图2所示可证△DPQ为等腰直角三角形.此时QPOPAQ的长可依次表示为t 4t 2t个单位.∴PQ DP 4t∴t4t2t 10∴t第二种情况PC与MN在同一条直线上如图3所示.可证△PQM为等腰直角三角形.此时OPAQ的长依次表示为t2t个单位∴OQ 10 - 2t∵F点在直线AB上∴FQ t∵MQ 2t∴PQ MQ CQ 2t∴t2t2t 10∴t 2第三种情况点PQ重合时PDQM在同一条直线上如图4所示此时OPAQ的长依次表示为t2t个单位.∴t2t 10∴t综上符合题意的值分别为2.红河自治州二次函数的图像如图8所示请将此图像向右平移1个单位再向下平移2个单位1画出经过两次平移后所得到的图像并写出函数的解析式2求经过两次平移后的图像与x轴的交点坐标指出当x满足什么条件时函数值大于0解画图如图所示依题意得∴平移后图像的解析式为2当y 0时 0∴平移后的图像与x轴交与两点坐标分别为0和0由图可知当x 时二次函数的函数值大于02010云南楚雄已知如图抛物线与轴相交于两点A 10 B 30 与轴相较于点C03.1求抛物线的函数关系式2若点D是抛物线上一点请求出的值并求处此时△ABD 的面积.答案解1由题意可知解得所以抛物线的函数关系式为.2把D代人函数解析式中得.所以.顶点为C11且过原点O过抛物线上一点Pxy向直线作垂线垂足为M 连FM如图1求字母abc的值2在直线x=1上有一点求以PM为底边的等腰三角形PFM的P点的坐标并证明此时△PFM为正三角形3对抛物线上任意一点P是否总存在一点N1t使PM=PN恒成立若存在请求出t值若不存在请说明理由答案1a=-1b=2c=02过P作直线x 1的垂线可求P的纵坐标为横坐标为此时MP=MF=PF=1故△MPF为正三角形3不存在因为当t<x<1时PM与PN不可能相等同理当t>x>1时PM与PN 不可能相等39.2010河南在平面直角坐标系中已知抛物线经过A 40 B 0一4 C 20 三点1 求抛物线的解析式2 若点M为第三象限内抛物线上一动点点M的横坐标为m△AMB的面积为S 求S关于m的函数关系式并求出S的最大值3 若点P是抛物线上的动点点Q是直线y -x上的动点判断有几个位置能使以点PQB0为顶点的四边形为平行四边形直接写出相应的点Q的坐标答案1设抛物线的解析式为y ax2bxc a≠0 则有解得∴抛物线的解析式y x2x-42过点M作MD⊥x轴于点D设M点的坐标为mn则AD m4MD -nn m2+m-4∴S S△AMDS梯形DMBO-S△ABOm4 -n +-n+4 -m -×4×4-2n-2m-8-2 m2+m-4 -2m-8-m2-4m -4 m 0∴S最大值 43满足题意的Q点的坐标有四个分别是-4 4 4 -4-22--2-2+40.2010四川乐山如图 131 抛物线y=x2bxc与x轴交于AB两点与y轴交于点C 02 连接AC若tan∠OAC=2.1 求抛物线对应的二次函数的解析式2 在抛物线的对称轴l上是否存在点P使∠APC=90°若存在求出点P的坐标若不存在请说明理由3 如图 132 所示连接BCM是线段BC上不与BC重合的一个动点过点M 作直线l′‖l交抛物线于点N连接CNBN设点M的横坐标为t.当t为何值时△BCN的面积最大最大面积为多少答案解1∵抛物线y x2+bx+c过点C 02 ∴x 2又∵tan∠OAC 2 ∴OA 1即A 10又∵点A在抛物线y x2+bx+2上∴0 12+b×1+2b -3∴抛物线对应的二次函数的解析式为y x2-3x+22存在过点C作对称轴l的垂线垂足为D如图所示∴x -∴AE OE-OA -1 ∵∠APC 90°∴tan∠PAE tan∠CPD∴即解得PE 或PE∴点P的坐标为或备注可以用勾股定理或相似解答3如图易得直线BC的解析式为y -x+2∵点M是直线l′和线段BC的交点∴M点的坐标为t-t2 0<t<2∴MN -t2- t2-3t+2 - t2+2t∴S△BCM S△MNCS△MNB MNtMN 2-tMN t2-t MN - t2+2t 0<t<2∴S△BCN - t2+2t - t-1 21∴当t 1时S△BCN的最大值为141.2010江苏徐州如图已知二次函数y的图象与y轴交于点A与轴交于BC两点其对称轴与轴交于点D连接AC.1 点A的坐标为点C的坐标为2 线段AC上是否存在点E使得△EDC为等腰三角形若存在求出所有符合条件的点E的坐标若不存在请说明理由3 点P为轴上方的抛物线上动连接PAPC若所得△PAC的面积为S则S取何值时相应的点P有2个三点1求此抛物线的解析式2以OA的中点M为圆心OM长为半径作⊙M在1中的抛物线上是否存在这样的点P过点P作⊙M的切线l 且l与x轴的夹角为30°若存在请求出此时点P的坐标若不存在请说明理由注意本题中的结果可保留根号答案解1设抛物线的解析式为由题意得解得∴抛物线的解析式为2存在抛物线的顶点坐标是作抛物线和⊙M如图⊙M相切于点C连接MC过C作CD⊥ x 轴于D ∵ MC OM 2 ∠CBM 30° CM⊥BC∴∠BCM 90°∠BMC 60° BM 2CM 4 ∴B -2 0 在Rt△CDM中∠DCM ∠CDM - ∠CMD 30°∴D 1 CD ∴ C 1设线的解析式为点BC在上可得∴切线BC的解析式为∵点P为抛物线与切线的交点由解得∴点P的坐标为∵抛物线的对称轴是直线此抛物线⊙M都与直线成轴对称图形于是作切线 l 关于直线的对称直线 l′如图得到BC关于直线的对称点B1C1l′满足题中要求由对称性得到P1P2关于直线的对称点即为所求的点∴这样的点P共有4个43.2010陕西西安如图在平面直角坐标系中抛物线经过A10B30C01三点 1求该抛物线的表达式2点Q在y轴上点P在抛物线上要使以点QPAB为顶点的四边形是平行四边形求所有满足条件的点P的坐标答案解1设该抛物线的表达式为根据题意得解之得∴所求抛物线的表达式为2①当AB为边时只要PQAB且PQ AB 4即可又知点Q在y轴上∴点P的横坐标为4或-4这时将合条件的点P有两个分别记为P1P2而当x 4时此时②当AB为对角线时只要线段PQ与线段AB互相平分即可又知点Q在y轴上且线段AB中点的横坐标为1∴点P的横坐标为2这时符合条件的点P只有一个记为P3而当x 2时y -1此时P32-1综上满足条件的点44.2010四川内江如图抛物线y=x2―2mx―3m m>0 与x轴交于AB两点与y轴交于C点1抛物线AB两点2△BCM与△A的面积比不变求出这个比值3抛物线答案解1y=x2―2mx―3m=m x2―2x―3 =m x-1 2―4m∴抛物线―4m 2分∵抛物线y=x2―2mx―3m m>0 与x轴交于AB两点∴当y=0时mx2―2mx―3m=0∵m>0∴x2―2x―3=0解得x1=-1x2=3∴AB两点2y=―3C的坐标为0-3∴S△ABC=××-3=6=6mMD⊥x轴于D ∴S△BCM=S△+SOCMD-S△= OC+DM ·OD-OB·OC=×2×4m+3m+4-=∴ S△BCMS△A=1 8分3抛物线CN=OD=1①如果△BCM是Rt△且∠BMC=90°时CM2+BM2=BC2 即1+m2+4+16m2=9+9m2解得m=±∵m>0∴m=∴存在抛物线y=x2-x使得△BCM是Rt△ 10分②①如果△BCM是Rt△且∠BCM=90°时BC2+CM2=BM2即9+9m2+1+m2=4+16m2解得m=±1∵m>0∴m=1∴存在抛物线y=x2-x-3使得△BCM是Rt△③如果△BCM是Rt△且∠CBM=90°时BC2+BM2=CM2即9+9m2+4+16m2=1+m2整理得m2=-此方程无解∴以∠CBM为直角的直角三角形不存在或∵9+9m2>1+m24+16m2>1+m2∴以∠CBM为直角的直角三角形不存在综上的所述存在抛物线y=x2-x和y=x2-x-3使得△BCM是Rt△45.2010广东东莞已知二次函数的图象如图所示它与轴的一个交点坐标为-10与轴的交点坐标为03⑴求出bc的值并写出此时二次函数的解析式⑵根据图象写出函数值y为正数时自变量x的取值范围.答案⑴根据题意得解得所以抛物线的解析式为⑵令解得根据图象可得当函数值y为正数时自变量x的取值范围是-1<<3.46.2010 福建三明已知抛物线经过点B20和点C08且它的对称轴是直线 1求抛物线与轴的另一交点A坐标2分2求此抛物线的解析式3分3连结ACBC若点E是线段AB上的一个动点与点A点B不重合过点E作EF‖AC交BC于点F连结CE设AE的长为m△CEF的面积为S求S与m之间的函数关系式4在3的基础上试说明S是否存在最大值若存在请求出S的最大值并求出此时点E的坐标判断此时△BCE的形状若不存在请说明理由答案1∵抛物线的对称轴是直线∴由对称性可得A点的坐标为-60 2分2∵点C08在抛物线的图象上将A-60B20代入表达式得解得∴所求解析式为[也可用] 5分3依题意AE m则BE 8-m∵OA 6OC 8∴AC 10∵EFAC ∴≌过点F作FG⊥AB垂足为G则10分4存在理由如下∴当m 4时S有最大值S最大值 8 12分∵m 4∴点E的坐标为-20为等腰三角形14分47.2010湖北襄樊如图7四边形ABCD是平行四边形AB 4OB 2抛物线过ABC 三点与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA 向点A运动运动到点A停止同时一动点Q从点D出发以每秒3个单位长度的速度沿DC向点C运动与点P同时停止.1求抛物线的解析式2若抛物线的对称轴与AB交于点E与x轴交于点F当点P运动时间t为何值时四边形POQE是等腰梯形3当t为何值时以PBO为顶点的三角形与以点QBO为顶点的三角形相似图7答案解得∴所求抛物线的解析式为.2将抛物线的解析式配方得.∴抛物线的对称轴为x 2.∴D80E22F20.欲使四边形POQE为等腰梯形则有OP QE.即BP FQ.∴t 6-3t即t .3欲使以PBO为顶点的三角形与以点QBO为顶点的三角形相似∵∠PBO ∠BOQ 90°∴有或即PB OQ或OB2 PB·QO.①若PQ在y轴的同侧.当PB OQ时t 8-3t∴t 2.时.②若PQ在y轴的侧.当PB OQ时∴t 4.时.∵t 0.故舍去∴t .∴当t 2或t 或t 4或t 秒时以PBO为顶点的三角形与以点QBO为顶点的三角形相似.48.2010 山东东营如图已知二次函数的图象与坐标轴交于点A-1 0和点B0-5.1求该二次函数的解析式2已知该函数图象的对称轴上存在一点P使得△ABP的周长最小.请求出点P的坐标.答案解1根据题意得2分 3分.4分的图象与x轴的另一个交点坐标C5 05分由于P是对称轴上一点连结AB由于要使△ABP的周长最小只要最小6分由于点A与点C关于对称轴对称连结BC交对称轴于点P则 BPPC BC根据两点之间线段最短可得的最小值为BC因而BC与对称轴的交点P就是所求的点8分设直线BC的解析式为根据题意可得解得所以直线BC的解析式为9分因此直线BC与对称轴的交点坐标是方程组的解解得所求的点P的坐标为2-310分49.2010 四川绵阳如图抛物线y ax2 bx 4与x轴的两个交点分别为A -40B20与y轴交于点C顶点为D.E12为线段BC的中点BC的垂直平分线与x 轴y轴分别交于FG.1求抛物线的函数解析式并写出顶点D的坐标2在直线EF上求一点H使△CDH的周长最小并求出最小周长3若点K在x轴上方的抛物线上运动当K运动到什么位置时△EFK的面积最大并求出最大面积.答案1由题意得解得b -1.所以抛物线的解析式为顶点D的坐标为-1.2设抛物线的对称轴与x轴交于点M.因为EF垂直平分BC即C关于直线EG 的对称点为B连结BD交于EF于一点则这一点为所求点H使DH CH最小即最小为DH CH DH HB BD .而.∴△CDH的周长最小值为CD DR CH .设直线BD的解析式为y k1x b则解得 b1 3.所以直线BD的解析式为y x 3.由于BC 2CE BC∕2 Rt△CEG∽△COB得 CE CO CG CB所以 CG 25GO 15.G015.同理可求得直线EF的解析式为y x .联立直线BD与EF的方程解得使△CDH的周长最小的点H.3设KtxF<t<xE.过K作x轴的垂线交EF于N.则 KN yK-yN -t .所以 S△EFK S△KFN S△KNE KNt 3KN1-t 2KN -t2-3t 5 -t 2 .即当t -时△EFK的面积最大最大面积为此时K-.50.2010 湖北孝感如图已知二次函数图像的顶点坐标为20直线与二次函数的图像交于AB两点其中点A在y轴上1二次函数的解析式为y 3分2证明点不在1中所求的二次函数的图像上3分3若C为线段AB的中点过C点作轴于E点CE与二次函数的图像交于D点①y轴上存在点K使以KADC为顶点的四边形是平行四边形则K点的坐标是 2分②二次函数的图像上是否存在点P使得若存在求出P点坐标若不存在请说明理由4分答案1解3分2证明设点的图像上则有4分整理得∴原方程无解5分的图象上6分说明由从而判断点不在二次函数图像上的同样给分3解①8分②二次函数的图象上存在点P使得如图过点B作轴于F则BFCEAO又C为AB中点9分设由题意有10分解得11分12分说明在求出得到△POE的边OE上的高为16即点P的纵坐标为16然后由可求出P点坐标2010 江苏镇江运算求解已知二次函数的图象C1与x轴有且只有一个公共点1求C1的顶点坐标2将C1向下平移若干个单位后得抛物线C2如果C2与x轴的一个交点为A30求C2的函数关系式并求C2与x轴的另一个交点坐标3若的取值范围答案1 1分轴有且只有一个公共点∴顶点的纵坐标为0∴C1的顶点坐标为10 2分2设C2的函数关系式为把A30代入上式得∴C2的函数关系式为 3分∵抛物线的对称轴为轴的一个交点为A30由对称性可知它与x轴的另一个交点坐标为10 4分3当的增大而增大当 5分52. 2010江苏苏州本题满分9分如图以A为顶点的抛物线与y轴交于点B.已知AB两点的坐标分别为 30 04 .1 求抛物线的解析式2 设M mn 是抛物线上的一点 mn为正整数且它位于对称轴的右侧.若以MBOA为顶点的四边形四条边的长度是四个连续的正整数求点M的坐标3 在 2 的条件下试问对于抛物线对称轴上的任意一点PPA2PB2PM2>28是否总成立请说明理由.答案53.2010广东广州2112分已知抛物线y=-x22x+2.1该抛物线的对称轴是顶点坐标选取适当的数据填入下表并在图7的直角坐标系内描点画出该抛物线的图象x y 若该抛物线上两点Ax1y1Bx2y2的横坐标满足x1>x2>1试比较y1与y2的大小答案解x=113x -1 0 1 2 3 y -1 2 3 2 -1因为在对称轴x=1右侧y随x的增大而减小又x1>x2>1所以y1<y2CCD 平行于轴交抛物线于点D写出D点的坐标并求ADBC的交点E的坐标3 若抛物线的顶点为PPCPD可设抛物线的解析式为则解得∴抛物线的解析式为4分⑵的坐标为 5分直线的解析式为直线的解析式为由求得交点的坐标为 8分⑶连结交于的坐标为又∵∴且∴四边形是菱形12分55.2010江苏南京7分已知点A11在二次函数图像上1用含的代数式表示2如果该二次函数的图像与轴只有一个交点求这个二次函数的图像的顶点坐标答案56.2010江苏盐城本题满分12分已知函数y ax2x1的图象与x轴只有一个公共点.1求这个函数关系式2如图所示设二次函数y ax2x1图象的顶点为B与y轴的交点为AP为图象上的一点若以线段PB为直径的圆与直线AB相切于点B求P点的坐标3在 2 中若圆与x轴另一交点关于直线PB的对称点为M试探索点M是否在抛物线y ax2x1上若在抛物线上求出M点的坐标若不在请说明理由.答案解1当a 0时y x1图象与x轴只有一个公共点 1分当a≠0时△ 1- 4a 0a 此时图象与x轴只有一个公共点.∴函数的解析式为y x1 或y x2x13分2设P为二次函数图象上的一点过点P作PC⊥x轴于点C.∵是二次函数由1知该函数关系式为y x2x1则顶点为B-20图象与y轴的交点坐标为A014分∵以PB为直径的圆与直线AB相切于点B ∴PB⊥AB 则∠PBC ∠BAO ∴Rt△PCB∽Rt△BOA∴故PC 2BC5分设P点的坐标为 xy ∵∠ABO是锐角∠PBA是直角∴∠PBO是钝角∴x -2 ∴BC -2-xPC -4-2x即y -4-2x P点的坐标为 x-4-2x∵点P在二次函数y x2x1的图象上∴-4-2x x2x16分解之得x1 -2x2 -10∵x -2 ∴x -10∴P点的坐标为 -1016 7分3点M不在抛物线上8分由2知C为圆与x 轴的另一交点连接CMCM与直线PB的交点为Q过点M作x 轴的垂线垂足为D取CD的中点E连接QE则CM⊥PB且CQ MQ∴QE‖MDQE MDQE⊥CE∵CM⊥PBQE⊥CE PC⊥x 轴∴∠QCE ∠EQB ∠CPB∴tan∠QCE tan∠EQB tan∠CPBCE 2QE 2×2BE 4BE又CB 8故BE QE∴Q点的坐标为 -可求得M点的坐标为 11分∵≠∴C点关于直线PB的对称点M不在抛物线上12分其它解法仿此得分57.2010辽宁市如图平面直角坐标系中有一直角梯形OMNH点H的坐标为-80点N的坐标为-6-4.1画出直角梯形OMNH绕点O旋转180°的图形OABC并写出顶点ABC的坐标点M的对应点为A 点N的对应点为B 点H的对应点为C2求出过ABC三点的抛物线的表达式3截取CE OF AG m且EFG分别在线段COOAAB上求四边形BEFG的面积S与m 之间的函数关系式并写出自变量m的取值范围面积S是否存在最小值若存在请求出这个最小值若不存在请说明理由4在3的情况下四边形BEFG是否存在邻边相等的情况若存在请直接写出此时m的值并指出相等的邻边若不存在说明理由.1 利用中心对称性质画出梯形OABC. 1分∵ABC三点与MNH分别关于点O中心对称∴A04B64C80 3分写错一个点的坐标扣1分2设过ABC三点的抛物线关系式为∵抛物线过点A04∴.则抛物线关系式为. 4分将B64 C80两点坐标代入关系式得解得所求抛物线关系式为.7分3∵OA 4OC 8∴AF 4-mOE 8-m. 8分∴OAABOCAFAGOE·OFCE·OA0<<4 10分∵.∴当时S的取最小值.又∵0<m<4∴不存在m值使S的取得最小值. 2分4当时GB GF当时BE BG.14分的抛物线交轴于点交轴于两点点在点的左侧已知点坐标为1求此抛物线的解析式2过点作线段的垂线交抛物线于点如果以点为圆心的圆与直线相切请判断抛物线的对称轴与⊙有怎样的位置关系并给出证明3已知点是抛物线上的一个动点且位于两点之间问当点运动到什么位置时的面积最大并求出此时点的坐标和的最大面积答案1解设抛物线为∵抛物线经过点03∴∴∴抛物线为 2 答与⊙相交证明当时∴为20为60∴设⊙与相切于点连接则∵∴又∵∴∴∽∴∴∴6分∵抛物线的对称轴为∴点到的距离为2∴抛物线的对称轴与⊙相交3 解过点作平行于轴的直线交于点求的解析式为设点的坐标为则点的坐标为∴∵∴当时的面积最大为此时点的坐标为359.2010甘肃兰州本题满分11分如图1已知矩形ABCD的顶点A与点O重合ADAB分别在x轴y轴上且AD 2AB 3抛物线经过坐标原点O和x轴上另一点E401当x取何值时该抛物线的最大值是多少2将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动同时一动点P也以相同的速度从点A出发向B匀速移动设它们运动的时间为t秒0≤t≤3直线AB与该抛物线的交点为N如图2所示①当时判断点P是否在直线ME上并说明理由②以PNCD为顶点的多边形面积是否可能为5若有可能求出此时N点的坐标若无可能请说明理由.图1 图2答案经过坐标原点O00和点E40故可得c 0b 4所以抛物线的解析式为1分由得当x 2时该抛物线的最大值是4 2分2①点P不在直线ME上已知M点的坐标为 24 E点的坐标为 40设直线ME的关系式为y kxb于是得解得所以直线ME的关系式为y -2x8 3分由已知条件易得当时OA AP 4分∵ P点的坐标不满足直线ME的关系式y -2x8 [来源ZxxkCom] ∴当时点P不在直线ME上 5分②以PNCD为顶点的多边形面积可能为5∵点A在x轴的非负半轴上且N在抛物线上∴ OA AP t∴点PN的坐标分别为 tt t-t 24t 6分∴ AN -t 24t 0≤t≤3∴ AN-AP -t 24 t - t -t 23 t t 3-t ≥0 ∴ PN -t 23 t7分ⅰ当PN 0即t 0或t 3时以点PNCD为顶点的多边形是三角形此三角形的高为AD∴ S DC·AD ×3×2 3ⅱ当PN≠0时以点PNCD为顶点的多边形是四边形∵ PN‖CDAD⊥CD∴ S CDPN ·AD [3 -t 23 t ]×2 -t 23 t38分当-t 23 t3 5时解得t 129分而12都在0≤t≤3范围内故以PNCD为顶点的多边形面积为5综上所述当t 12时以点PNCD为顶点的多边形面积为5当t 1时此时N点的坐标1310分当t 2时此时N点的坐标2411分说明ⅱ中的关系式当t 0和t 3时也适合故在阅卷时没有ⅰ只有ⅱ也可以不扣分60.2010山东青岛已知把Rt△ABC和Rt△DEF按如图1摆放点C与点E重合点BCEF在同一条直线上.∠ACB∠EDF 90°∠DF 45°AC 8 cmBC6 cmEF9 cm.△DEF从图1的位置出发以1 cms的速度沿CB△ABC匀速移在△DEF移的同时点P从△ABC的顶点B出发以2 cms的速度沿BA向点A动△DEF的顶点D移动到AC边上时△DEF停止移.DE与AC相交于点Q连接PQ设动时间为ts0<t<45.1当t为何值时点A在线段PQ的垂直平分线上2连接PE设四边形APE的面积为ycm2求y与之间的函数关系式是否存在某一时刻t使面积y最小若存在求出y的最小值若不存在说明理由.3是否存在某一时刻t使PQF三点在同一条直线上若存在求出此时t的值若不存在说明理由.答案解1∵点A在线段PQ的垂直平分线上∴AP AQ∵∠DEF 45°∠ACB 90°∠∠ACB+∠EQC 180°∴∠EQC 45°∴∠DEF ∠EQC∴CE CQ由题意知CE tBP 2 t。
2010年中考数学分类汇编:二次函数分类
第3题图第5题图 第4题图2010年中考数学分类汇编:二次函数分类一 .选择题1.二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4)2.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( )A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 3.如图,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( )A .(2,3)B .(3,2)C .(3,3)D .(4,3)5.如图,两条抛物线12121+-=x y 、12122--=x y 与分别经过点()0,2-,()0,2且平行于y 轴的两条平行线围成的阴影部分的面积为( ) A.8 B.6 C.10 D.46.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限7.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )8.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( )(A )21y x =+ (B )2(1)y x =+ (C )21y x =- (D )2(1)y x =- 9.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是( )A .x <-1 B .x >2 C .-1<x <2 D .x <-1或x >2x yO10.给出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =.0<x 时,y 随x 的增大而减小的函数有( )A .1个 B .2个 C .3个D .4个11.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +>;④930a b c ++<. 其中,正确结论的个数是( )A.1 B.2 C.3 D.412.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2),则当函数值y =8时,自变量x 的值是( ) A .±6 B .4 C .±6或4 D .4或-6 二.填空题1.已知实数y x y x x y x +=-++则满足,033,2的最大值为 .2.如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c <0的解集是 .3.若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x ;4.(1)将抛物线y 1=2x 2向右平移2个单位,得到抛物线y 2的图象,则y 2= ; (2)如图,P 是抛物线y 2对称轴上的一个动点,直线x =t 平行于y 轴,分别与直线y =x 、 抛物线y 2交于点A 、B .若△ABP 是以点A 或点B 为直角顶点的等腰直角三角形,求满足条 件的t 的值,则t = .5.如图,已知⊙P 的半径为2,圆心P 在抛物线1212-=x y 上运动,当⊙P 与x 轴相切时,圆心P 的坐标为___________。
【三年中考】2010-2012全国各地中考数学试题分类汇编 汇编 第13章二次函数
2012年全国各地中考数学真题分类汇编第13章 二次函数一.选择题1.(2012菏泽)已知二次函数2y ax bx c =++的图像如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中的图像大致是( )A .B .C .D .考点:二次函数的图象;一次函数的图象;反比例函数的图象。
解答:解:∵二次函数图象开口向下, ∴a <0, ∵对称轴x=﹣<0,∴b <0,∵二次函数图象经过坐标原点, ∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数ay x=位于第二四象限, 纵观各选项,只有C 选项符合.2.(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个考点: 二次函数的性质。
专题: 常规题型。
分析: 结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.2解答: 解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误; ③其图象顶点坐标为(3,1),故本小题错误; ④当x <3时,y 随x 的增大而减小,正确; 综上所述,说法正确的有④共1个. 故选A . 点评: 本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.(2012•广州)将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )A .y=x 2﹣1B .y=x 2+1C .y=(x ﹣1)2D .y=(x+1)2考点: 二次函数图象与几何变换。
专题: 探究型。
分析: 直接根据上加下减的原则进行解答即可.解答: 解:由“上加下减”的原则可知,将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x 2﹣1. 故选A . 点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.(2012泰安)将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 考点:二次函数图象与几何变换。
2010年中考数学试题及答案
2010年中考数 学 试 卷*考试时间120分钟 试卷满分150分一、选择题(本大题共7小题,每小题4分,共28分)每题所给的四个选项中只有一项是符合题目要求的,请将所选项的代号字母填在答卷的相应位置处. 1) A. BC.-D2.反比例函数23m y x--=的图象位于( )A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限3.从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( ) A .12对 B .6对 C .5对 D .3对4.把多项式2288x x -+分解因式,结果正确的是( ) A .()224x -B .()224x -C .()222x -D .()222x +5.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( ) A .9cm B .12cm C .15cm D .12cm 或15cm6.一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是A .2x >-;B .0x >;C .2x <-;D .0x <7.若0a >且2x a =,3y a =,则x ya -的值为( )A .1-B .1C .23D .32二、填空题(本大题共6小题,每小题4分,共24分)把答案直接填在答卷的相应位置处.xb +8.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 .9.幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.10.李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用水总量为 吨.11.我们知道利用相似三角形可以计算不能直接测量的物体的高度,阳阳的身高是1.6m ,他在阳光下的影长是 1.2m ,在同一时刻测得某棵树的影长为 3.6m ,则这棵树的高度约为 m . 12.如图所示的半圆中,AD 是直径,且3AD =,2AC =,则sin B 的值是 .13.某个圆锥的侧面展开图形是一个半径为6cm ,圆心角为︒120的扇形,则这个圆锥的底面半径为______________cm .三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分)解答时应在答卷的相应位置处写出文字说明、证明过程或演算过程. Ⅰ.(本题满分12分,第14题6分,第15题6分)14.计算:230116(2)(πtan60)3-⎛⎫--÷-+-- ⎪⎝⎭.15.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =. Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)C BD A16.如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径; (2)求图中阴影部分的面积.17.响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超..过.132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1 200元/台、1 600元/台、2 000元/台.(1)至少购进乙种电冰箱多少台?(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?18.甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间C OABD的函数图象如图所示,根据图象所提供的信息解答问题:(1) 他们在进行 米的长跑训练,在0<x <15的时段内,速度较快的人是 ;(2) 求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3) 当x =15时,两人相距多少米?在15<x <20的时段内,求两人速度之差.Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分)19.把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是4的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当2张牌面数字相同时,小王赢;当2张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.20.如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河分)岸b 上的A 处测得30DAB ∠= ,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).21.三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:试问:(1)这三个厂家的广告,分别利用了统计中的哪一个特征数(平均数、中位数、众数)进行宣传?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.Ⅳ(本题满分8分)BED CFab A22.如图, 已知等边三角形ABC 中,点D ,E ,F 分别为边AB ,AC ,BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动) . (1)如图①,当点M 在点B 左侧时,请你判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?都请直接....写出结论,不必证明或说明理由; (2)如图②,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;(3)若点M 在点C 右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN 与MF 的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.Ⅴ(本题满分14分)图① 图② 图③A·BCD EF··N MFEDCB ANMF EDCBA·23.如图,在平面直角坐标系中,以点(11)C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在C 上.(1)求ACB 的大小;(2)写出A B ,两点的坐标; (3)试确定此抛物线的解析式;(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐标;若不存在,请说明理由.2010年中考数学试题参考答案及评分标准二、填空题(本大题共6小题,每小题4分,共24分) 8.(00),;9.152;10.210;11.4.8;12.23;13.4 三、解答题(本大题Ⅰ—Ⅴ题,共10小题,共98分) Ⅰ.(本题满分12分,第14题6分,第15题6分) 14.解:原式=9-16÷(-8)+1-23×23……………………2分 =9+2+1-3.……………………………………4分 =9 ………………………………6分15.解:原式211(1)1(1)(1)1x x x x x -=-++-+······································································ 2分 2211(1)(1)1(1)(1)x x x x x x -+--=-=+++ ······························································· 4分 22(1)x =+ ········································································································ 5分当1x =时,原式23== ··································································· 6分 Ⅱ.(本题满分28分,第16题7分,第17题10分,第18题11分)16.(1)连结OC ,则 OC AB ⊥. …………………………………………………1分∵OA OB =,∴1122AC BC AB ===⨯ ………………………………………2分在Rt AOC △中,3OC ===.∴ ⊙O 的半径为3. …………………………………………………………3分 (2)∵ OC =12OB , ∴ ∠B =30o , ∠COD =60o . ……………………………………5分 ∴扇形OCD 的面积为OCD S 扇形=260π3360⨯⨯=32π. …………………………………5分阴影部分的面积为:Rt Δ=OBC OCD S S S -阴影扇形=12OC CB ⋅-3π2-3π2.…………………………7分 17.解:(1)设购买乙种电冰箱x 台,则购买甲种电冰箱2x 台,丙种电冰箱(803)x -台,根据题意,列不等式: ································································ 1分120021600(803)2000132000x x x ⨯++-⨯≤. ···························································· 3分解这个不等式,得14x ≥. ·································································································· 4分 ∴至少购进乙种电冰箱14台. ····························································································· 5分 (2)根据题意,得2803x x -≤. ····················································································· 6分 解这个不等式,得16x ≤. ·································································································· 7分 由(1)知14x ≥. 1416x ∴≤≤. 又x 为正整数, 141516x ∴=,,. ···················································································································· 8分 所以,有三种购买方案:方案一:甲种电冰箱为28台,乙种电冰箱为14台,丙种电冰箱为38台; 方案二:甲种电冰箱为30台,乙种电冰箱为15台,丙种电冰箱为35台; 方案三:甲种电冰箱为32台,乙种电冰箱为16台,丙种电冰箱为32台. ··················· 10分 18.解:(1)5000…………………………………2分甲 ………………………………4分(2)设所求直线的解析式为:y =kx +b (0≤x ≤20), ………5分由图象可知:b =5000,当x =20时,y =0, ∴0=20k +5000,解得k = -250. …7分即y = -250x +5000 (0≤x ≤20) ……………7分(3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ………8分 两人相距:(5000 -1250)-(5000-2000)=750(米)………………9分 两人速度之差:750÷(20-15)=150(米/分)……………11分Ⅲ.(本题满分36分,第19题12分,第20题12分,第21题12分) 19解:(1)P (抽到牌面数字是4)13=; ········································································ 2分(2)游戏规则对双方不公平. ················································································· 5分 理由如下:由上述树状图或表格知:所有可能出现的结果共有9种. P (抽到牌面数字相同)=3193=, P (抽到牌面数字不相同)=6293=.∵1233<,∴此游戏不公平,小李赢的可能性大. ············································ 12分 (说明:答题时只需用树状图或列表法进行分析即可)20.解:过点C 作CE AD ∥,交AB 于E CD AE ∥,CE AD ∥ ····································································································· 2分∴四边形AECD 是平行四边形 ······························································································ 4分 50AE CD ∴==m ,50EB AB AE =-=m ,30CEB DAB ∠=∠= ···························· 6分又60CBF ∠=,故30ECB ∠=,50CB EB ∴==m ···················································· 8分∴在Rt CFB △中,sin 50sin 6043CF CB CBF =∠=≈m ········································ 11分 答:河流的宽度CF 的值为43m . ······················································································ 12分21.答:(1)甲厂的广告利用了统计中的平均数. ····························································· 2分乙厂的广告利用了统计中的众数. ············································································ 4分 丙厂的广告利用了统计中的中位数. ············································································ 7分分…………………………8分11F B C (2) 选用甲厂的产品. 因为它的平均数较真实地反映灯管的使用寿命 ······················· 10分 或选用丙厂的产品.因为丙厂有一半以上的灯管使用寿命超过12个月 ··························· 10分Ⅳ.(本题满分8分)22.(1)判断:EN 与MF 相等 (或EN=MF ),点F 在直线NE 上, ········ 2分(2)成立. ······························ 3分 证明:法一:连结DE ,DF .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点,∴DE ,DF ,EF 为三角形的中位线.∴DE =DF =EF ,∠FDE =60°.又∠MDF +∠FDN =60°, ∠NDE +∠FDN =60°,∴∠MDF =∠NDE .在△DMF 和△DNE 中,DF =DE ,DM =DN , ∠MDF =∠NDE ,∴△DMF ≌△DNE . 8∴MF =NE . ·························· 6分法二:延长EN ,则EN 过点F .∵△ABC 是等边三角形, ∴AB =AC =BC .又∵D ,E ,F 是三边的中点, ∴EF =DF =BF .∵∠BDM +∠MDF =60°, ∠FDN +∠MDF =60°,∴∠BDM =∠FDN .又∵DM =DN , ∠ABM =∠DFN =60°,∴△DBM ≌△DFN .∴BM =FN .∵BF =EF , ∴MF =EN . ·························· 6分(3)画出图形(连出线段NE ), 6MF 与EN 相等的结论仍然成立(或MF =NE 成立). ·············· 8分Ⅴ.(本题满分14分)23.解:(1)作CHN C A B F M D E NC A B F MD E12 1CH = ,半径2CB = ·························································· 1分60BCH ∠= ,120ACB ∴∠= ········································· 3分(2)1CH = ,半径2CB =HB ∴=(1A ,················································ 5分(1B ··············································································· 6分 (3)由圆与抛物线的对称性可知抛物线的顶点P 的坐标为(13), ······································· 7分 设抛物线解析式2(1)3y a x =-+ ·························································································· 8分把点(1B 代入上式,解得1a =- ·············································································· 9分 222y x x ∴=-++ ·············································································································· 10分 (4)假设存在点D 使线段OP 与CD 互相平分,则四边形OCPD 是平行四边形 ·········· 11分 PC OD ∴∥且PC OD =.PC y ∥轴,∴点D 在y 轴上. ····················································································· 12分又2PC = ,2OD ∴=,即(02)D ,. 又(02)D ,满足222y x x =-++, ∴点D 在抛物线上 ··············································································································· 13分 所以存在(02)D ,使线段OP 与CD 互相平分. ·································································· 14分。
2010年中考数学试题分类汇编(150套)专题六·二次根式.doc
一、选择题1.(2010安徽芜湖)要使式子a +2a有意义,a 的取值范围是() A .a ≠0 B .a >-2且a ≠0 C .a >-2或a ≠0 D .a ≥-2且a ≠0 【答案】D2.(2010广东广州,9,3分)若a <1,化简2(1)1a --=( )A .a ﹣2B .2﹣aC .aD .﹣a【答案】D 3.(2010江苏南京)如图,下列各数中,数轴上点A 表示的可能是A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【答案】C4.(2010江苏南通)9的算术平方根是 A .3B .-3C .81D .-81【答案】A5.(2010江苏南通) 36x -在实数范围内有意义,则x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠【答案】C6.(2010江苏盐城)使2-x 有意义的x 的取值范围是 ▲ . 【答案】x ≥27.(2010山东济宁) 4的算术平方根是A . 2B . -2C . ±2D . 4 【答案】A8.(2010四川眉山)2(3)-A .3B .3-C .3±D . 9 【答案】A9.(2010台湾)计算1691+36254之值为何? (A) 2125 (B) 3125 (C) 4127 (D) 5127。
【答案】B10.(2010浙江杭州)4的平方根是A. 2B. ± 2C. 16D. ±16 【答案】B11.(2010浙江嘉兴)设0>a 、0>b ,则下列运算中错误..的是( ▲ ) (A )b a ab ⋅=(B )b a b a +=+(C )a a =2)((D )ba ba =【答案】B 12.(2010 福建德化)下列计算正确的是( )A 、20=102B 、632=⋅ C 、224=- D 3=-【答案】B 13.(2010湖南长沙)4的平方根是( ).A B 、2 C 、±2 D 、±【答案】C.14.(2010福建福州)若二次根式x -1有意义,则x 的取值范围为( ) A .x ≠1 B .x ≥1 C .x <l D .全体实数 【答案】B15.(2010( )A .3B .3-C .3±D 【答案】A16.(2010江苏无锡)有意义的x 的取值范围是( )A .13x >B .13x >-C . 13x ≥D .13x ≥-【答案】C17.(2010 山东莱芜)已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为 A .4B .2C . 2D . ±2【答案】B18.(2010江西)的结果是( )A .3B .-3C .【答案】A 19.(2010江苏常州)下列运算错误的是= B. = = D.2(2=【答案】A20.(2010江苏淮安) A .2 B .3 C .4 D .5 【答案】B21.(2010 山东滨州).4的算术平方根是( )A.2B. ±4C.±2D.4 【答案】A22.(2010湖北荆门)若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为 A .2 B .0 C .-2D .以上都不对【答案】C 23.(2010山东潍坊)下列运算正确的是( ).A .=B .-=C .a=D -=【答案】D 24.(2010广东中山)下列式子运算正确的是 ( )A .123=-B .248=C .331=D .1321321=-++【答案】D25.(2010湖北恩施自治州)()24-的算术平方根是:A. 4B. 4±C. 2D. 2± 【答案】A 26.(2010 四川巴中)下列命题是真命题的是( )A .若2a =2b ,则a =b B .若x =y ,则2-3x ﹥2-3yC .若2x =2,则x D .若3x =8,则x =±2【答案】C 27.(2010湖北襄樊)下列说法错误的是( )A 2B 是无理数C 是有理数D .2是分数 【答案】D28.(2010湖北襄樊)的结果估计在( ) A .6至7之间B .7至8之间C .8至9之间D .9至10之间【答案】B 29.(2010 山东东营) 64的立方根是( )(A )4 (B )-4 (C )8 (D )-8 【答案】A30.(2010 四川绵阳)要使1213-+-x x 有意义,则x 应满足( ).A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤3 【答案】D31.(2010 四川绵阳)下列各式计算正确的是( ). A .m 2 · m 3 = m 6 B .33431163116=⋅= 53232333=+=+ D .a aa a a --=-⋅--=--111)1(11)1(2(a <1)【答案】D32.(2010 湖南湘潭)下列计算正确的是A.3232=+B.32a a a =+C.a a a 6)3()2(=⋅D.2121=- 【答案】D33.(2010 贵州贵阳)下列式子中,正确的是(A )10<127<11 (B )11<127<12 (C )12<127<13 (D )13<127<14 【答案】B34.(2010 四川自贡)若式子5x +在实数范围内有意义,则x 的取值范围是( )。
2010年中考数学总复习:二次函数图像
2010年中考数学总复习 二次函数图像 样卷:小明从如图8的二次函数y =ax 2+bx +c 图象中,观察得出了下面的五条信息:①a <0;②c =0;③函数的最小值为-3,④当x <0时,y >0;⑤当0<x 1<x 2<2时,y 1>y 2。
你认为其中正确结论的个数是( )A .2个B .3个C .4个D .5个1、(08鄂州)小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个2、(08龙岩)已知函数c bx ax y ++=2的图象如图所示,则下列结论正确的是( )A .a >0,c >0B .a <0,c <0C .a <0,c >0D .a >0,c <0 3、(08巴中)二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列说法不正确的是( )A .240b ac ->B .0a >C .0c >D .02b a-< 4、(08四川乐山)已知二次函数2y ax bx c =++的图象如图所示,令|42||||2||2|M a b c a b c a b a b =-++++-++-,则( )A .M>0 B. M<0 C. M=0 D. M 的符号不能确定5、(08长沙)二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->6、(08天门) 已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b <0;③a -b +c <0;④a +c >0,其中正确结论的个数为( ).A 、4个B 、3个C 、2个D 、1个7、(08兰州)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >;②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个 8、(08滨州)若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A 、y 1<y 2<y 3B 、y 2<y 1<y 3C 、y 3<y 1<y 2D 、y 1<y 3<y 29、已知:二次函数y=ax 2+bx+c 的图象如图所示,下列结论中:①b >0;②c<0;③4a+2b+c > 0;④(a+c)2<b 2,其中正确的个数是( )A 、4个B 、3个C 、2个D 、1个10、二次函数y=ax 2+bx+c 的图象如图,下列结论中:①abc >0;②b=2a ;③a+b+c <0;④a+b -c >0; ⑤a -b+c >0正确的个数是( )A 、2个B 、3个C 、4个D 、5个 11、如图所示,二次函数2(0)y ax bx c a =++≠的图象经过点(12)-,,且与x 轴交点的横坐标分别为12x x ,,其中121x -<<-,201x <<,下列结论:①420a b c -+<;②20a b -<;③1a <-;④284b a ac +>. 其中正确的有( )A .1个B .2个C .3个D .4个12、抛物线y=ax 2+bx+c(a <0=过点(-1,0),且满足4a +2b +c >0.以下结论:①a +b >0;②a +c >0;③-a +b +c >0;④b 2-2ac>5a 2.其中正确的个数有( )A 1个B 2个C 3个D 4个13、(07南充)如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac;0 1 1- 22- x②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( )A ②④B ①④C ②③D ①③14、(08安徽)如图为二次函数2y ax bx c =++的图象,在下列说法中:①0ac <;②方程20ax bx c ++=的根为11x =-,23x =;③0a b c ++>;④当1x >时,y 随着x 的增大而增大.正确的说法有 .(请写出所有正确说法的序号)15、(07湖北孝感)二次函数y =ax 2+bx +c 的图象如图所示,且P =| a -b +c |+| 2a +b |,Q =| a +b +c |+| 2a -b |,则P 、Q 的大小关系为 .16、(07天津)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个17、已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =-1,与x 轴的一个交点为(x 1,0),且0<x 1<1,下列结论:①9a -3b +c >0;②b <a ;③3a +c >0。
2010年中考数学试题分类大全55_动态综合型问题
一、选择题1.(2010重庆市潼南县)如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( ) 【答案】B2.(2010江苏宿迁)如图,在矩形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ =y ,那么y 与x 之间的函数图象大致是【答案】D3.(2010 福建德化)已知:如图,点P 是正方形ABCD 的对角线AC 上xyO46 3 Ax yO2.26 3 Dx yO3 64C2.2x yO6 3 BM QDCBPNA(第8题)的一个动点(A 、C 除外),作AB PE ⊥于点E ,作BC PF ⊥于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( ).【答案】A4.(2010 四川南充)如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B .点M 和点N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误..的是( ). (A )433MN =(B )若MN 与⊙O 相切,则3AM = (C )若∠MON =90°,则MN 与⊙O 相切 (D )l 1和l 2的距离为2 【答案】Bl 1l 2ABM N O (第10题) 1x yAx y 0Dxy 0B yx 0C PD A BC E F5.(2010 山东济南)如图,在ABC △中,2AB AC ==,20BAC ∠=.动点P Q ,分别在直线BC 上运动,且始终保持100PAQ ∠=.设B P x =,CQ y =,则y 与x 之间的函数关系用图象大致可以表示为 ( )【答案】A6.(2010湖北鄂州)如图所示,四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴,y 轴的正半轴上, 点D在OA 上,且D点的坐标为(2,0),P 是OB 上的一个动点,试求PD +PA 和的最小值是( )A .102B .10C .4D .6【答案】A7.(2010湖北宜昌)如图,在圆心角为90°的扇形MNK 中,动点P 从点M 出发,沿MN →⌒NK →KM 运动,最后回到点M 的位置。
10年中考试题汇编 二次函数的应用(含答案)
2010年全国各地数学中考试题分类汇编二次函数的应用一、选择题1.(2010 甘肃)向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2bx+c (a ≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A .第8秒B .第10秒C .第12秒D .第15秒 【答案】B2.(2010湖北十堰)如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )【答案】C3.(2010 重庆江津)如图,等腰Rt △ABC (∠ACB =90º)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一直线上,开始时点C 与点D 重合,让△ABC 沿这条直线向右平移,直到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y ,则y 与x 之间的函数关系的图象大致是( )(第10题) C DE FABA .B .C .D .(第10题分析图) C DEF AB P【答案】A4.(2010广西南宁)如图3,从地面竖立向上抛出一个小球,小球的高度h (单位:m )与 小球运动时间t (单位:s )之间的关系式为2530t t h -=,那么小球从抛出至回落到地面所需要的时间是:(A )6s (B )4s (C )3s (D )2s【答案】A 二、填空题1.(2010甘肃兰州) 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.【答案】212.(2010 四川成都)如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm /s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过_____________秒,四边形APQC 的面积最小.【答案】33.(2010 内蒙古包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2. 【答案】252或12.5 4.(2010青海西宁)小汽车刹车距离s (m )与速度v (km/h )之间的函数关系式为21001v s =,一辆小汽车速度为100km/h ,在前方80m 处停放一辆故障车,此时刹车 有危险(填“会”或“不会”). 【答案】不会5.(2010云南昭通)某种火箭被竖直向上发射时,它的高度h (m)与时间t (s)的关系可以用公式h =-5t 2+150t +10表示.经过______s ,火箭达到它的最高点. 【答案】15 三、解答题1.(2010安徽蚌埠二中)已知:如图在Rt △ABC 中,斜边AB =5厘米,BC =a 厘米,AC =b 厘米,a >b ,且a 、b 是方程2(1)40x m x m --++=的两根。
2010年中考数学一轮复习——二次函数及其图象
二次函数及其图象◆【课前热身】1.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的?()A.第8秒 B.第10秒 C.第12秒 D.第15秒2.在平面直角坐标系中,将二次函数22xy=的图象向上平移2个单位,所得图象的解析式为()A.222-=xy B.222+=xy C.2)2(2-=xy D.2)2(2+=xy3.抛物线3)2(2+-=xy的顶点坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)4.二次函数2(1)2y x=++的最小值是().A.2 B.1 C.-3 D.2 35.抛物线y=-2x2-4x-5经过平移得到y=-2x2,平移方法是() A.向左平移1个单位,再向下平移3个单位B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位D.向右平移1个单位,再向上平移3个单位【参考答案】1. B2. B3. A4. A5. D◆【考点聚焦】〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向〖大纲要求〗1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系.◆【备考兵法】〖考查重点与常见题型〗1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图象经过原点,则m的值是2.综合考查正比例、反比例、一次函数、二次函数的图象,习题的特点是在同一直角坐标系内考查两个函数的图象,试题类型为选择题,如:如图,如果函数y=kx+b的图象在第一、二、三象限内,那么函数y=kx2+bx-1的图象大致是()A B C D3.考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式.4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:已知抛物线y =ax 2+bx +c (a ≠0)与x 轴的两个交点的横坐标是-1、3,与y 轴交点的纵坐标是-32 (1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.5.考查代数与几何的综合能力,常见的作为专项压轴题. 抛物线的平移抛物线的平移主要是移动顶点的位置,将y=ax 2沿着y 轴(上“+”,下“-”)平移k (k>0)个单位得到函数y=ax 2±k ,将y=ax 2沿着x 轴(右“-”,左“+”)平移h (h>0)个单位得到y=a (x ±h )2.•在平移之前先将函数解析式化为顶点式,再来平移,若沿y•轴平移则直接在解析式的常数项后进行加减(上加下减),若沿x 轴平移则直接在含x 的括号内进行加减(右减左加).◆【考点链接】1. 二次函数2()y a x h k =-+的图象和性质a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .3. 二次函数2()y a x h k =-+的图象和2ax y =图象的关系.4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定. ◆【典例精析】例1 已知:二次函数为y=x 2-x+m ,(1)写出它的图象的开口方向,对称轴及顶点坐标;(2)m 为何值时,顶点在x 轴上方,(3)若抛物线与y 轴交于A ,过A 作AB ∥x 轴交抛物线于另一点B ,当S △AOB =4时,求此二次函数的解析式.【分析】(1)用配方法可以达到目的;(2)顶点在x 轴的上方,•即顶点的纵坐标为正;(3)AB ∥x 轴,A ,B 两点的纵坐标是相等的,从而可求出m 的值.【解答】(1)∵由已知y=x 2-x+m 中,二次项系数a=1>0,∴开口向上, 又∵y=x 2-x+m=[x 2-x+(12)2]-14+m=(x -12)2+414m -∴对称轴是直线x=12,顶点坐标为(12,414m -).(2)∵顶点在x 轴上方, ∴顶点的纵坐标大于0,即414m ->0∴m>14∴m>14时,顶点在x 轴上方.(3)令x=0,则y=m .即抛物线y=x 2-x+m 与y 轴交点的坐标是A (0,m ). ∵AB ∥x 轴∴B 点的纵坐标为m .当x 2-x+m=m 时,解得x 1=0,x 2=1. ∴A (0,m ),B (1,m )在Rt △BAO 中,AB=1,OA=│m │. ∵S △AOB =12OA ²AB=4.∴12│m │²1=4,∴m=±8故所求二次函数的解析式为y=x 2-x+8或y=x 2-x -8.【点评】正确理解并掌握二次函数中常数a ,b ,c•的符号与函数性质及位置的关系是解答本题的关键之处.会用待定系数法求二次函数解析式例2(2009年湖北武汉)如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标; (3)在(2)的条件下,连接B D ,点P 为抛物线上一点,且45DBP ∠=°,求点P 的坐标.【分析】(1)中用待定系数法求出抛物线的解析式;(2)中考查象限,点关于直线的对称点求法;(3)中主要是做出正确的辅助线求解,进而求出点的坐标.【答案】解:(1) 抛物线24y ax bx a =+-经过(10)A -,,(04)C ,两点, 404 4.a b a a --=⎧∴⎨-=⎩,解得13.a b =-⎧⎨=⎩,∴抛物线的解析式为234y x x =-++.(2) 点(1)D m m +,在抛物线上,2134m m m ∴+=-++, 即2230m m --=,1m ∴=-或3m =.点D 在第一象限,∴点D 的坐标为(34),.由(1)知45OA OB CBA =∴∠=,°. 设点D 关于直线BC 的对称点为点E .(04)C ,,CD AB ∴∥,且3CD =,45ECB DCB ∴∠=∠=°,E ∴点在y 轴上,且3CE CD ==.1OE ∴=,(01)E ∴,. 即点D 关于直线BC 对称的点的坐标为(0,1).(3)方法一:作PF AB ⊥于F ,DE BC ⊥于E .由(1)有:445OB OC OBC ==∴∠=,°, 45DBP CBD PBA ∠=∴∠=∠ °,.(04)(34)C D ,,,,CD OB ∴∥且3CD =.45DCE CBO ∴∠=∠=°,2D E C E ∴==4OB OC ==,BC ∴=,2B E BC C E ∴=-=,3tan tan 5D E P B F C B D B E∴∠=∠==.设3PF t =,则5BF t =,54OF t ∴=-,(543)P t t ∴-+,. P 点在抛物线上,∴23(54)3(54)4t t t =--++-++,0t ∴=(舍去)或2225t =,266525P ⎛⎫∴-⎪⎝⎭,. 方法二:过点D 作B D 的垂线交直线P B 于点Q ,过点D 作DH x ⊥轴于H .过Q 点作Q G D H ⊥于G .45PBD Q D D B ∠=∴= °,. Q D G BD H ∴∠+∠90=°,又90D Q G Q D G ∠+∠=°,D Q G BD H ∴∠=∠.Q D G D BH ∴△≌△,4Q G D H ∴==,1DG BH ==. 由(2)知(34)D ,,(13)Q ∴-,. (40)B ,,∴直线B P 的解析式为31255y x =-+.解方程组23431255y x x y x ⎧=-++⎪⎨=-+⎪⎩,,得1140x y =⎧⎨=⎩,;222566.25x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴点P 的坐标为266525⎛⎫- ⎪⎝⎭,.◆【迎考精练】 一、选择题1.(2009年上海市)抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --,2.(2009年陕西省)根据下表中的二次函数cbx axy ++=2的自变量x 与函数y 的对应值,可判断二次函数的图像与x 轴( )A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点3.(2009年湖北荆门)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )4.(2009年广东深圳)二次函数cbx axy++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是()A.21yy <B .21y y =C .21y y >D .不能确定D .5.(2009年湖北孝感)将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为A .1B .2C .3D .46.(2009年天津市)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( )A .22y x x =--+ B .22y x x =-+-C.22y x x =-++ D .22y x x =++7.(2009年四川遂宁)把二次函数3412+--=x x y 用配方法化成()kh x a y+-=2的形式A.()22412+--=x y B. ()42412+-=x yC.()42412++-=x y D. 321212+⎪⎭⎫ ⎝⎛-=x y8.(2009年河北)某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x=(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( )A .40 m/sB .20 m/sC .10 m/sD .5 m/s二、填空题1.(2009年北京市)若把代数式223x x --化为()2x m k -+的形式,其中,m k 为常数,则m k += .2.(2009年安徽)已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 3.(2009年湖南郴州)抛物线23(1)5y x =--+的顶点坐标为__________.4.(2009年内蒙古包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.5.(2009年湖北襄樊)抛物线2y x bx c =-++则此抛物线的解析式为 .6.(2009年湖北荆门)函数(2)(3)y x x =--取得最大值时,x =______. 三、解答题1.(2009年湖南衡阳)已知二次函数的图象过坐标原点,它的顶点坐标是(1,-2),求这个二次函数的关系式.2.(2009年湖南株洲)已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段A B 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结P Q 并延长交BC 于点E ,连结B Q 并延长交AC 于点F ,试证明:(FC AC5题3.(2009年湖南常德)已知二次函数过点A (0,2-),B (1-,0),C (5948,).(1)求此二次函数的解析式; (2)判断点M (1,12)是否在直线AC 上?(3)过点M (1,12)作一条直线l 与二次函数的图象交于E 、F 两点(不同于A ,B ,C三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.4. (2009年陕西省) 如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).(1)求点B 的坐标;(2)求过点A 、O 、B 的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得S △ABP =S △ABO .第3题5.(2009年湖北黄冈)新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB 为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?6.(2009年内蒙古包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.7.(2009年福建漳州)如图1,已知:抛物线与轴交于两点,与轴交于点C,经过B、C两点的直线是,连结.(1)B、C两点坐标分别为B(_____,_____)、C(_____,_____),抛物线的函数关系式为______________;(2)判断的形状,并说明理由;(3)若内部能否截出面积最大的矩形(顶点在各边上)?若能,求出在边上的矩形顶点的坐标;若不能,请说明理由.[抛物线的顶点坐标是]【参考答案】 选择题 1. B 2. B 3. C【解析】本题考查函数图象与性质,当0a >时,直线从左向右是上升的,抛物线开口向上,D 是错的,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),所以C 是正确的,故选C . 4. C 5. B 6. C 7. D 8. C 填空题 1. -32. 2y x x =+,21133y x =-+3. (1,5)4. 4【解析】本题考查二次函数图象的画法、识别理解,方程根与系数的关系筀等知识和数形结合能力.根据题意画大致图象如图所示,由2y ax bx c =++与X 轴的交点坐标为(-2,0)得()()2220a b c ⨯-+⨯-+=,即 420a b c -+=所以①正确;由图象开口向下知0a <,由2y a x b x c =++与X 轴的另一个交点坐标为()1,0x 且112x <<,则该抛物线的对称轴为()121222x b x a-+=-=>-由a<0得b>a,所以结论②正确;由一元二次方程根与系数的关系知12.2c x x a=<-,结合a<0得20a c +>,所以③结论正确;由420a b c -+=得22c a b -=-,而0<c<2,,∴102c -<-< ∴-1<2a-b<0 ∴2a-b+1>0,所以结论④正确.点拨: 420a b c -+=是否成立,也就是判断当2x =-时,2y ax bx c =++的函数值是否为0;判断2y ax bx c =++中a 符号利用抛物线的开口方向来判断,开口向上a>0,开口向下a<0;判断a 、b 的小关系时,可利用对称轴2bx a=-的值的情况来判断;判断a 、c的关系时,可利用由一元二次方程根与系数的关系12.cx x a=的值的范围来判断;2a-b+1的值情况可用420a b c -+=来判断. 5. 223y x x =-++【解析】本题考查二次函数的有关知识,由图象知该抛物线的对称轴是1x =,且过点(3,0),所以12930bb c ⎧-=⎪-⎨⎪-++=⎩,解得23b c =⎧⎨=⎩,所以抛物线的解析式为223y x x =-++,故填223y x x =-++ 6. 52【解析】本题考查二次函数的最值问题,可以用配方法或二次函数顶点坐标公式求出当x 为何值时二次函数取得最大值,下面用配方法,22549(2)(3)5624y x x x x x ⎛⎫=--=-+-=--+⎪⎝⎭,所以当52x =时,函数(2)(3)y x x =--取得最大值,故填52解答题1. 解:设这个二次函数的关系式为得:解得:∴这个二次函数的关系式是,即2. (1)由(3,)B m 可知3OC =,BC m =,又△ABC 为等腰直角三角形,∴AC BC m ==,3OA m =-,所以点A 的坐标是(3,0m -). (2)∵45ODA OAD ∠=∠=︒ ∴3OD OA m ==-,则点D 的坐标是(0,3m -). 又抛物线顶点为(1,0)P ,且过点B 、D ,所以可设抛物线的解析式为:2(1)y a x =-,得:22(31)(01)3a ma m ⎧-=⎪⎨-=-⎪⎩ 解得14a m =⎧⎨=⎩ ∴抛物线的解析式为221y x x =-+ (3)过点Q 作Q M A C ⊥于点M ,过点Q 作Q N BC ⊥于点N ,设点Q 的坐标是2(,21)x x x -+,则2(1)QM CN x ==-,3M C Q N x ==-.∵//Q M C E ∴P Q M ∆∽PEC ∆ ∴Q M P M E C P C=即2(1)12x x EC --=,得2(1)EC x =-∵//Q N FC ∴B Q N ∆∽BFC ∆ ∴Q N B N F CB C=即234(1)4x x FC---=,得41FC x =+又∵4AC = ∴444()[42(1)](22)2(1)8111FC AC EC x x x x x x +=+-=+=⋅+=+++即()FC AC EC +为定值8.3. (1)设二次函数的解析式为c bx ax y ++=2(0a ≠), 把A (0,2-),B (1-,0),C (5948,)代入得2092558164c a b c a b c⎧⎪=-⎪=-+⎨⎪⎪=++⎩解得 a =2 , b =0 , c =-2, ∴222y x =-(2)设直线AC 的解析式为(0)y kx b k =+≠ , 把A (0,-2),C (5948,)代入得29584b k b=-⎧⎪⎨=+⎪⎩, 解得522k b ==-, ,∴522y x =- 当x =1时,511222y =⨯-=∴M (1,12)在直线AC 上(3)设E 点坐标为(1322--,),则直线EM 的解析式为4536y x =-由 2453622y x y x ⎧=-⎪⎨⎪=-⎩化简得2472036x x --=,即17()(2)023x x +-=,∴F 点的坐标为(713618,).过E 点作EH ⊥x 轴于H ,则H 的坐标为(102-,). ∴3122EH BH ==, ∴2223110()()224BE =+=,类似地可得 222131********()()186324162B F =+==,222401025001250()()186324162E F=+==,∴2221084512504162162B E B F E F +=+==,∴△BEF 是直角三角形.4. 解:(1)过点A 作AF ⊥x 轴,垂足为点F ,过点B 作BE ⊥x 轴,垂足为点E ,则AF =2,OF =1.∵OA ⊥OB ,∴∠AOF+∠BOE =90°. 又 ∵∠BOE+∠OBE =90°,∴∠AOF =∠OBE . ∴Rt △AFO ∽Rt △OEB . ∴2===OAOB AFOE OFBE .∴BE =2,OE =4. ∴B(4,2).(2)设过点A(-1,2),B(4,2),O(0,0)的抛物线为y=ax 2+bx+c .∴⎪⎩⎪⎨⎧==++=+-.0,2416,2c c b a c b a 解之,得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.0,23,21c b a∴所求抛物线的表达式为xx y 23212-=.(3)由题意,知AB ∥x 轴.设抛物线上符合条件的点P 到AB 的距离为d ,则S △ABP =AFAB d AB ⋅=⋅2121.∴d =2.∴点P 的纵坐标只能是0或4. 令y =0,得23212=-x x,解之,得x =0,或x =3.∴符合条件的点P 1(0,0),P 2(3,0). 令y =4,得423212=-x x,解之,得2413±=x.∴符合条件的点P 3(2413-,4),P 4(2413+,4).∴综上,符合题意的点有四个: P 1(0,0),P 2(3,0),P 3(2413-,4),P 4(2413+,4).(评卷时,无P 1(0,0)不扣分)5.解:(1)当时,线段O A 的函数关系式为;当时,由于曲线AB 所在抛物线的顶点为A (4,-40),设其解析式为在中,令x=10,得;∴B (10,320)∵B (10,320)在该抛物线上 ∴解得∴当时,=综上可知,(2) 当时,当时,当时,(3) 10月份该公司所获得的利润最多,最多利润是110万元.6. 解:(1)根据题意得解得.所求一次函数的表达式为.(2),抛物线的开口向下,当时,随的增大而增大,而,当时,.当销售单价定为87元时,商场可获得最大利润,最大利润是891元.(3)由,得,整理得,,解得,.由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而,所以,销售单价的范围是.7. (1)(4,0),..(2)是直角三角形.证明:令,则...解法一:..是直角三角形.解法二:,..,.即.是直角三角形.(3)能.当矩形两个顶点在上时,如图1,交于.,..解法一:设,则,,.=.当时,最大..,.,.解法二:设,则..当时,最大..,.,.当矩形一个顶点在上时,与重合,如图2,,..解法一:设,,.=.当时,最大.,.解法二:设,,,,..=∴当时,最大,..∴综上所述:当矩形两个顶点在上时,坐标分别为,(2,0);当矩形一个顶点在上时,坐标为。
2010年中考二次函数题集
2010年湖北省宜昌市初中毕业生学业考试数 学 模 拟 试 题(5)本试卷共24小题,满分120分,考试时间120分钟.注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效.考试结束,请将本试题卷和答题卡一并上交. 以下数据、公式供参考:二次函数y =ax 2+bx +c 图象的顶点坐标是2424()b ac b aa--, ;=n l R π弧长 (R 为半径,l 为弧长);S 扇形=Rn π2(n 为圆心角,R 为半径)一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 本大题共15小题,每题3分,计45分) 1.下列四个数中,在1-和2之间的数是( )A .0B .2-C .3-D .32. 电影院大厅内设计呈阶梯或下坡形状的主要原因是( ).A .为了美观B .减小盲区C .增大盲区D .地势决定3.用计算器求32值时,需相继按“2”,“∧”,“3”,“=,“2”,“∧”,“4”,“=”键,则输出结果是( )A .4B .5C .6D .164.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=32o,则∠2度数是( )A.32oB.58oC.68oD.60o5.用一平面截一几何体,截面一定是圆的几何体是( )A .圆锥 B.长方体 C.圆柱体 D.球体6.要调查某校九年级550名学生周日的睡眠时间,下列调查对象选取最合适的是( )A .选取该校一个班级的学生B .选取该校50名男生C .选取该校50名女生D .随机选取该校50名九年级学生7.如图,ACB A C B '''△≌△,BCB '∠=30°,则ACA '∠的度数为( ) A .20°B .30°C .35°D .40°8.六箱苹果的质量分别为(单位:千克):18,20,19,23,19,21. 则这六箱苹果质量的平均数和中位数分别为( ) A .19和20B .20和19C .20和20D .20和19.59.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是( )A .16B.13C.12D.2310. 杨伯家小院子的四棵小树E F G H 、、、刚好在其院子ABCD 各边 中点上,若在四边形EFGH 种上小草,则这块草地形状是( ) A .平行四边形 B .矩形 C .正方形 D .菱形 11.某商品的原售价为a 元,按此价的8折出售,仍可获利b%,则此商品的进价为( )A.0.8a b% B.0.8a1+b%C.0.8a ×b%D.0.8a (1+b%) 12.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )A.120ºB.约156ºC.180ºD.约208º13.若1O ⊙与2O ⊙相切,且125O O =,1O ⊙的半径12r =,则2O ⊙的半径2r 是( )A . 3B . 5C . 7D . 3 或714. P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上的两点,则下列判断正确的是( )A .y 1>y 2B .y 1<y 2C .当x 1<x 2时,y 1>y 2D .当x 1<x 2时,y 1<y 215.如图,小林从P 点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共 走了108米回到点P ,则α( ) A .30° B .40° C .80° D .不存在Pαα第15题第10题第7题B二、解答题(本大题共9小题,计75分)16.(6分)在三个整式2222,2,x xy y xy x ++中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.17.(6分)如图所示,△ABC 是等边三角形,D 点是AC 的中点,延长BC 到E ,使CE =CD . (1)用尺规作图的方法,过D 点作DM ⊥BE ,垂足是M (不写作法,保留作图痕迹); (2)求证:BM =EM .18. (7分) 深受海内外关注的沪杭磁悬浮交通项目近日获得国务院批准。
2010年中考数学模拟试题分类汇编——二次函数
二次函数一、选择题1.(2010年山东宁阳一模)在平面直角坐标系中,先将抛物线22-+=x x y 关于x 轴作轴对称变换,再将所得抛物线关于y 轴作轴对称变换,经过两次变换后所得的新抛物线解析式为( )A .22+--=x x yB .22-+-=x x yC .22++-=x x yD .22++=x x y 答案:C2.(2010年江西省统一考试样卷)若抛物线y =2x 2向左平移1个单位,则所得抛物线是( ) A .y =2x 2+1 B .y =2x 2-1 C .y =2(x +1)2D .y =2(x -1)2答案:C3. (2010年河南中考模拟题1)某校运动会上,某运动员掷铅球时,他所掷的铅球的高与水平的距离,则该运动员的成绩是( )A. 6mB. 10mC. 8mD. 12m答案:D 4.(2010年河南中考模拟题4)二次函数2y ax bx c =++(0a ≠)的图象如图所示,则正确的是( )A .a <0B .b <0C .c >0D .以答案上都不正确 答案:A5.(2010年河南中考模拟题3)已知二次函数y=ax 2+bx+c 的图像如图所示,则下列条件正确的是( ) A .ac <0 B.b 2-4ac <0 C. b >0 D. a >0、b <0、c >0 答案:D6.(2010年江苏省泰州市济川实验初中中考模拟题)抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表所示.x给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧; ③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小. 从表中可知,下列说法正确的个数有( ) A .1个B .2个C .3个D .4个7.(2010天水模拟)二次函数y=ax2+bx+c 的图像如图所示,则关于此二次函数的下列四个结论①a<0②a>0③b 2-4ac>0④0<ab中,正确的结论有( ) A.1个 B.2个 C.3个 D.4个 答案:C8.(2010年厦门湖里模拟)抛物线y =322+-x x 与坐标轴交点为 ( ) A .二个交点 B .一个交点 C .无交点 D .三个交点 答案:B9.(2010年厦门湖里模拟)如图,抛物线)0(2>++=a c bx ax y 的P (3,0),则对称轴是直线1=x ,且经过点的值为A. 0B. -1C. 1D. 2 答案:A10.(2010年杭州月考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①0<abc ②当1x =时,函数有最大值。
2010年各省二次函数中考题摘要
2010年各省二次函数中考题摘要一、选择题(每小题3分,共39分)1.(泸州市2004年中考)抛物线()2232y x =-+-的开口 ( )A.向上B.向下C.不能确定D.以上说法都不对 2.(南通市2004年中考)抛物线4412-+-=x x y 的对称轴是 ( ) A .x =-2B.x =2C.x =-4D.x =43.(江苏省宿迁市2004年中考)抛物线y =x 2+2x -2的顶点坐标是 ( )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3) 4.(嘉兴市2004年中考)关于二次函数3)2(2-+=x y 的最大(小)值描述正确的是( )A .当2=x 时,y 有最大值3- B.当2-=x 时,y 有最大值3- C.当2=x 时,y 有最小值3- D.当2-=x 时,y 有最小值3-5.(宁安市实验区2004年中考)函数42-=x y 的图象与y 轴的交点坐标是 ( )A.(2,0)B.(2-,0)C.(0,4)D.(0,4-)6.(富阳市2004年中考)二次函数2332+-=x x y 的图象与x 轴交点的个数是( ) A.0个 B.1个 C.2个 D.不能确定7.(浙江省台州.温州市2004年中考)抛物线y=2x 2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是( )A.y=2(x+1)2+3 B. y=2(x -1)2-3 C. y=2(x+1)2-3 (D) y=2(x -1)2+38.(北京英才苑2004中考)函数c bx ax y ++=2的图象如图所示,则a.b.ac b 42-的取值范围是( ) A .04002<->>ac b b a B .04002>-<>ac b b a C .0402>->>ac b b aD .0402<-<>ac b b a9.陕西省2004年中考)二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a.b.c 间的关系判断正确的是( )A.ab <0 B .bc <0 C.a+b+c >0 D.a-b+c <0 10.(日照市2004年中考)己知二次函数)0(2≠++=a c bx ax y 的图象如图所示,则下列结论:(1)0>+-c b a (2)方程02=++c bx ax 两根之和大于零(3)y 随x 的增大而增大(4)一次函数bc x y +=的图象一定不过第二象限;其中正确的个数是( ) A .1个 B.2个 C.3个 D.4个 11.(浙江省湖州市2004年中考) 已知抛物线和直线l 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=1-,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线l 上的点,且1-<x 1<x 2,x 3<1-,则y 1,y 2,y 3的大小关系为( )A. y 1<y 2<y 3B. y 3<y 1<y 2C. y 3<y 2<y 1D. y 2<y 1<y 312.(北京丰台2004中考)若0,0>>c b ,则二次函数c bx ax y ++=2的图象大致( )第8题图第10题图第16题图13.(河北省2004年中考)在同一直角坐标系中,一次函数y =ax +c 和二次函数y =ax 2+c 的图象大致为( )二、填空题(每小题3分,共18分)14.(河北2004年中考)若将二次函数y =x 2-2x +3配方为y =(x 的形式,则y = .15.(扬州市2004年中考)知抛物线y=ax 2+b x +c 经过(-1,2)和(3两点,则4a +2b+3的值为 .16.(潍坊市2004年中考)抛物线c bx ax y ++=2如图所示,则它关于轴对称的抛物线的解析式是__________.17.(浙江省湖州市2004年中考)二次函数y=ax2+bx+c 的图象的一部分如图所示,则a的取值范围是_______.18.(上海市民办八校2004年联考)抛物线y=x 2-3x+c 不过第三象限,则c 的取值范围是_________.19.(宁波市2004年中考)已知二次函数c bx ax y ++=2的图象交x 轴于A .B 两点,交y 轴于C 点,且ABC ∆是直角三角形,请写出符合要求的一个二次函数的解析式:____________ .A B C D三、解答题(20-22每小题10分,23-25每小题11分共63分)20.(连云港市2004年中考)有一个运算装置,当输入值为x 时,其输出值为y ,且y 是x 的二次函数,已知输入值为2-,0,1时, 相应的输出值分别为5,3-,4-.(1)求此二次函数的解析式;(2)在所给的坐标系中画出这个二次函数的图象, 并根据图象写出当输出值y 为正数时输入值x 的取值范围. 21.(厦门市2004年中考)已知抛物线y =a x 2+(b -1)x +2. (1)若抛物线经过点(1,4).(-1,-2), 求此抛物线的解析式; (2) 若此抛物线与直线y =x 有两个不同的交点P,Q,且点P,Q 关于原点对称. ① 求b 的值;② 请在横线上填上一个符合条件的a 的值: a = ,并在此条件下画出该函数的图象.22.(河北试验区2004年中考)如图1:是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:(1)请你以上表中的各对数据(x ,y )作为点的坐标, 尝试在图2所示的坐标系中画出y 关于x 的函数图象; (2)①填写下表:第22题图1②根据所填表中数据呈现的规律,猜想出用x表示y 的二次函数的表达式: .(3)当水面宽度为36米时,一艘吃水深度(船底部到水面的距离)为 1.8米的货船能否在这个河段安全通过?为什么?23.(宿迁市2003年中考)某开发商对去年市场上一种商品销售数量及其销售利润情况进行了调查,发现:①销售数量y1(万件)与时间x(月份)具有满足下表的一次函数关系:PNMCBAOyx②每一件的销售利润y 2(元)与时间x (月份)具有如图所示的关系: 请根据以上信息解答下列问题:(1) 在三月份,销售这种商品可获利润多少万元? (2) 哪一个月的销售利润最大?请说明理由.24.(浙江省台州.温州市2004年中考)已知抛物线y=-x 2+2(m -3)x+m -1与x 轴交于B,A两点,其中点B 在x 轴的负半轴上,点A 在x 轴的正半轴上,该抛物线与y 轴于点C. (1)写出抛物线的开口方向与点C 的坐标(用含m 的式子表示); (2)若tan ∠CBA=3,试求抛物线的解析式;(3)设点P(x,y)(其中0<x <3=是(2)中抛物线上的一个动点,试求四边形AOCP 的面积的最大值及此时点P 的坐标. 25.(苏州市2004年中考)如图,平面直角坐标系中,四边形OABC为矩形,点A.B 的坐标分别为(3,0),(3,4).动点M.N 分别从O.B 同时出发,以每秒1个单位的速度运动.其中,点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动.过点N 作NP ⊥AC ,交AC 于P ,连结MP.已知动点运动了x 秒.(1)P 点的坐标为( , );(用含x 的代数式表示) (2)试求 ⊿MPA 面积的最大值,并求此时x 的值. (3)请你探索:当x 为何值时,⊿MPA 是一个等腰三角形?你发现了几种情况?写出你的研究成果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年中考数学试题分类汇编 二次函数21、(2010年浙江省东阳县)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半. (1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C 距守门员多少米?(取734≈)(3)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取562≈) 【关键词】二次函数的应用 【答案】(1)y=-4)6(1212+-x (2)y=0, x=6+43︽13 (3)设y=2)(1212+-m x m=13+26︽ y=0, x=18±26︽23 ∴ 再向前跑10米1、(2010年宁波市)如图,已知二次函数c bx x y ++-=221 的图象经过A (2,0)、B (0,-6)两点。
(1)求这个二次函数的解析式(2)设该二次函数的对称轴与x 轴交于点C , 连结BA 、BC ,求△ABC 的面积。
【关键词】二次函数【答案】解:(1)把A (2,0)、B (0,-6)代入c bx x y ++-=221 得:⎩⎨⎧-==++-622c c b解得⎩⎨⎧-==64c b∴这个二次函数的解析式为64212-+-=x x y第20题(2)∵该抛物线对称轴为直线4)21(24=-⨯-=x∴点C 的坐标为(4,0) ∴224=-=-=OA OC AC ∴6622121=⨯⨯=⨯⨯=∆OB AC S ABC10.(2010年安徽省芜湖市)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是() A . B . C . D .【关键词】二次函数、一次函数、反比例函数图像的性质 【答案】B20.(2010年安徽省芜湖市)(本小题满分8分)用长度为20m 的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m .当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积. 解:【关键词】二次函数的应用【解】根据题意可得:等腰直角三角形的直角边为x 2cm ,矩形的一边长为x 2cm .其相邻边长为x x)22(102)224(20+-=+-.........2分该金属框围成的面积[]x x x x S 2221)22(102∙⨯++-∙==x x 20)223(2++- (25100-<<x )【此处未注明x 的取值范围不扣分】........4分 当2203022310-=+=x 时, 金属框围成的面积最大,此时矩形的一边是220602-=x (m ),相邻边长为10210)223(10)22(10-=-⨯+-(m) ...........7分 ∴)22-(3100=最大S (2m ).......................8分 答:(略)8(2010年浙江省金华). 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( ) A. 最小值 -3B. 最大值-3C. 最小值2D. 最大值2【关键词】二次函数、最大值问题 【答案】B15. (2010年浙江省金华)若二次函数k x x y ++-=22的部分图象如图所示,则关于x 的一元二次方程022=++-k x x 的一个解31=x ,另一个解=2x ;【关键词】二次函数、对称轴、交点坐标 【答案】-1(第15题图)20(2010年浙江省金华).(本题8分)已知二次函数y =ax 2+bx -3的图象经过点A (2,-3),B (-1,0). (1)求二次函数的解析式;(2)填空:要使该二次函数的图象与x 轴只有一个交点,应把图象沿y 轴向上平移 ▲ 个单位.【关键词】二次函数、二元一次方程组、根的判别式【答案】(1)由已知,有⎩⎨⎧=---=-+033324b a b a ,即⎩⎨⎧=-=+3024b a b a ,解得⎩⎨⎧-==21b a∴所求的二次函数的解析式为322--=x x y . (2) 410.(2010年浙江台州市)如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为(▲)A .-3B .1C .5D .8【关键词】对称轴与二次函数与X 轴交点关系 【答案】D24.(2010江西)如图,已知经过原点的抛物线向右平移m (m >0)个单位,所得抛物线与x(1)求点A 的坐标,并判断△PCA 存在时它的形状(不要求说理)(2)在x 轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用含m 的式子表示);若不存在,请说明理由; (3)△CDP 的面积为S ,求S 关于m 的关系式。
【关键词】二次函数、图形的平移、等腰三角形、面积等【答案】解:(1)令-2x 2+4x=0得x 1=0,x 2=2 ∴点A 的坐标是(2,0), △PCA 是等腰三角形, (2)存在。
OC=AD =m ,OA=CD =2,(3)当0<m<2时,如图1,作PH ⊥x 轴于H ,设(,)P P P x y , ∵A (2,0),C (m,0),∴AC =2-m, ∴CH =222AC m-=, ∴P x =OH = 22m m -+= 22m +.把P x =22m +代入y=-2x 2+4x ,得P y =2122m -+,∵CD=OA =2,∴2211112(2)22222S CD HP m m ==⨯-+=-+g .当m >2时,如图2作PH ⊥x 轴于H ,设(,)P P P x y , ∵A (2,0),C (m,0),∴AC =m-2,∴AH =22m - ∴P x =OH = 22m m -+= 22m +,把把P x =22m +代入y=-2x 2+4x ,得得, P y =2122m -+∵CD=OA =2, ∴21112()2222P S CD HP y m ==⨯-=--g .(2010年广东省广州市)已知抛物线y =-x 2+2x +2.(1)该抛物线的对称轴是 ,顶点坐标 ;(2)选取适当的数据填入下表,并在图7的直角坐标系内描点画出该抛物线的图象;(3)若该抛物线上两点A (x 1,y 1),B (x 2,y 2)的横坐标满足x 1>x 2>1,试比较y 1与y 2的大小.【关键词】抛物线的顶点、对称轴、描点法画图、函数增减性 【答案】解:(1)x =1;(1,3)(2)(3)因为在对称轴x =1右侧,y 随x 的增大而减小,又x 1>x 2>1,所以y 1<y 2.(2010年四川省眉山)如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(3-,0)、(0,4),抛物线223y x bx c =++经过B 点,且顶点在直线52x =上. (1)求抛物线对应的函数关系式;(2)若△DCE 是由△ABO 沿x 轴向右平移得到的,当四边形ABCD 是菱形时,试判断点C和点xD 是否在该抛物线上,并说明理由;(3)若M 点是CD 所在直线下方该抛物线上的一个动点,过点M 作MN 平行于y 轴交CD于点N .设点M 的横坐标为t ,MN 的长度为l .求l 与t 之间的函数关系式,并求l 取最大值时,点M 的坐标.【关键词】抛物线、菱形、最值【答案】 解:(1)由题意,可设所求抛物线对应的函数关系式为225()32y x m =-+ …(1分)∴2254()32m =⨯-+∴16m =- ……………………………………………………………(3分)∴所求函数关系式为:22251210()432633y x x x =--=-+ …………(4分)(2)在Rt △ABO 中,OA =3,OB =4,∴5AB = ∵四边形ABCD 是菱形∴BC =CD =DA =AB =5 ……………………………………(5分) ∴C 、D 两点的坐标分别是(5,4)、(2,0). …………(6分)当5x =时,2210554433y =⨯-⨯+=当2x =时,2210224033y =⨯-⨯+=∴点C 和点D 在所求抛物线上. …………………………(7分) (3)设直线CD 对应的函数关系式为y kx b =+,则5420k b k b +=⎧⎨+=⎩解得:48,33k b ==-.∴4833y x =- ………(9分)∵MN ∥y 轴,M 点的横坐标为t , ∴N 点的横坐标也为t . 则2210433M y t t =-+, 4833N y t =-,……………………(10分)∴22248210214202734()3333333322N M l y y t t t t t t ⎛⎫=-=---+=-+-=--+ ⎪⎝⎭∵203-<, ∴当72t =时,32l =最大, 此时点M 的坐标为(72,12). ………………………………(12分)25.(2010年重庆)今年我国多个省市遭受严重干旱.受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:进入51周的2.8 元/千克下降至第2周的 2.4 元/千克,且y 与周数x 的变化情况满足二次函数c bx x y ++-=2201. (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y 与x 所满足的函数关系式,并求出5月份y 与x 所满足的二次函数关系式; (2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为2.141+=x m ,5月份的进价m (元/千克)与周数x 所满足的函数关系为251+-=x m .试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜.从5月的第3周起,由于受暴雨的影响,此种蔬菜的可销售量将在第2周销量的基础上每周减少%a ,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨%8.0a .若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.(参考数据:1369372=,1444382=,1521392=,1600402=,1681412=)【答案】.解:(1)4月份y 与x 满足的函数关系式为8.12.0+=x y . 把8.2,1==y x 和4.2,2==y x 分别代入c bx x y ++-=2201,得⎪⎩⎪⎨⎧=++⨯-=++-4.224201,8.2201c b c b 解得⎩⎨⎧=-=.1.3,25.0c b∴五月份y 与x 满足的函数关系式为.1.325.005.02+--=x x y(2)设4月份第x 周销售此种蔬菜一千克的利润为1W 元,5月份第x 周销售此种蔬菜一千克的利润为2W 元..6.005.0)2.141()8.12.0(1+-=+-+=x x x W∵-0.05<0,∴1W 随x 的增大而减小. ∴当1=x 时,1W 最大=-0.05+0.6=0.55.2W ==+--+--)251()1.325.005.0(2x x x .1.105.005.02+--x x∵对称轴为,5.0)05.0(205.0-=-⨯-=x 且-0.05<0,∴x >-0.5时,y 随x 的增大而减小. ∴当x=1时,2W 最大=1.所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元.(3)由题意知:()[]().1004.2%8.014.22%1100⨯=+⨯+-a a整理,得0250232=-+a a .解得2152923±-=a .∵1521392=,1600402=,而1529更接近1521,∴391529≈. ∴31-≈a (舍去)或8≈a . 答:a 的整数值为8.5.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 【答案】C【关键词】一次函数、反比例函数、二次函数的增减性27.(2010江苏泰州,27,12分)如图,二次函数c x y +-=221的图象经过点D ⎪⎭⎫ ⎝⎛-29,3,与x 轴交于A 、B 两点. ⑴求c 的值;⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)【答案】⑴ ∵抛物线经过点D (29,3-) ∴29)3(212=+-⨯-c ∴c=6.⑵过点D 、B 点分别作AC 的垂线,垂足分别为E 、F ,设AC 与BD 交点为M , ∵AC 将四边形ABCD 的面积二等分,即:S △ABC =S △ADC ∴DE =BF 又∵∠DME =∠BMF , ∠DEM =∠BFE ∴△DEM ≌△BFM∴DM =BM 即AC 平分BD ∵c =6. ∵抛物线为6212+-=x y ∴A (0,32-)、B (0,32)∵M 是BD 的中点 ∴M (49,23) 设AC 的解析式为y =kx +b ,经过A 、M 点∴⎪⎩⎪⎨⎧=+=+-4923032b k b k 解得⎪⎪⎩⎪⎪⎨⎧==591033b k ∴直线AC 的解析式为591033+=x y . ⑶存在.设抛物线顶点为N (0,6),在Rt △AQN 中,易得AN=,于是以A 点为圆心,AB=为半径作圆与抛物线在x 上方一定有交点Q ,连接AQ ,再作∠QAB 平分线AP 交抛物线于P ,连接BP 、PQ ,此时由“边角边”易得△AQP ≌△ABP .【关键词】二次函数、一次函数、解直角三角形及其知识的综合运用(2010年浙江省绍兴市)如图,设抛物线C 1:()512-+=x a y ,C 2:()512+--=x a y ,C 1与C 2的交点为A , B ,点A 的坐标是)4,2(,点B 的横坐标是-2.(1)求a 的值及点B 的坐标;(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H ,在DH 的右侧作正三角形DHG . 记过C 2顶点M的 直线为l ,且l 与x 轴交于点N .① 若l 过△DHG 的顶点G ,点D 的坐标为 (1, 2),求点N 的横坐标; ② 若l 与△DHG 的边DG 相交,求点N 的横 坐标的取值范围.【答案】解:(1)∵ 点A )4,2(在抛物线C 1上,∴ 把点A 坐标代入()512-+=x a y 得 a =1.∴ 抛物线C 1的解析式为422-+=x x y ,设B (-2,b ), ∴ b =-4, ∴ B (-2,-4) . (2)①如图1,∵ M (1, 5),D (1, 2), 且DH ⊥x 轴,∴ 点M 在DH 上,MH =5.第24题图过点G 作GE ⊥DH ,垂足为E,由△DHG 是正三角形,可得EG=3, EH =1, ∴ ME =4. 设N ( x , 0 ), 则 NH =x -1, 由△MEG ∽△MHN ,得HNEGMH ME =, ∴1354-=x , ∴ =x 1345+, ∴ 点N 的横坐标为1345+.② 当点D移到与点A 重合时,如图2, 直线l 与DG 交于点G ,此时点N的横坐标最大. 过点G,M作x 轴的垂线,垂足分别为点Q,F , 设N(x ,0),∵ A (2, 4), ∴ G (322+, 2), ∴ NQ =322--x ,NF =1-x , GQ =2, MF =5. ∵ △NGQ ∽△NMF , ∴MFGQNF NQ =, ∴521322=---x x ,∴ 38310+=x . 当点D 移到与点B 重合时,如图3, 直线l 与DG 交于点D ,即点B , 此时点N 的横坐标最小.∵ B (-2, -4), ∴ H (-2, 0), D (-2, -4), 设N (x ,0), ∵ △BHN ∽△MFN , ∴MFBHFN NH =, ∴5412=-+x x , ∴ 32-=x .第24题图1第24题图2第24题图3∴ 点N 横坐标的范围为 32-≤x ≤38310+.(2010年宁德市)(本题满分12分)如图1,抛物线341412++-=x x y 与x 轴交于A 、C 两点,与y 轴交于B 点,与直线b kx y +=交于A 、D 两点。