八年级数学第一学期期中模拟试卷
河北省邯郸市第二十五中学2022-2023学年八年级上学期期中考试数学试卷(含解析)
邯郸市第二十五中学2022-2023学年第一学期期中考试八年级数学一、选择题(1—10题每题3分,11—16题每题2分,共42分)1.下列图形具有稳定性的是()A. B. C. D.【答案】A解析:A .具有稳定性,符合题意;B .不具有稳定性,故不符合题意;C .不具有稳定性,故不符合题意;D .不具有稳定性,故不符合题意,故选:A .2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.【答案】C解析:解:A 、不是轴对称图形,故此选项错误;B 、不是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项正确;D 、不是轴对称图形,故此选项错误.故选C .3.平面直角坐标系中,点()3,4A -关于y 轴的对称点是1A ,点1A 的坐标是()A.()4,3-- B.()3,4- C.()3,4-- D.()3,4【答案】D解析:解:点()3,4A -关于y 轴的对称点的坐标为:()3,4.故选:D .4.如图,点C 在AD 上,,40CA CB A =∠=︒,则BCD ∠等于()A.40︒B.70︒C.80︒D.110︒【答案】C解析:解:CA CB = ,40A ∠=︒,40A B ∴∠=∠=︒,404080BCD A B ∴∠=∠+∠=︒+︒=︒,故选:C .5.如图,△ABE ≌△ACD ,BC =10,DE =4,则DC 的长是()A.8B.7C.6D.5【答案】B解析:解:∵△ABE ≌△ACD ,∴BE =CD ,∴BE +CD =BC +DE =14,∴2CD =14,∴CD =7,故选:B .6.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A. B.C. D.【答案】A解析:解:B ,C ,D 都不是△ABC 的边BC 上的高,A 选项是△ABC 的边BC 上的高,故选:A .7.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC 等于()A.30°B.35°C.45°D.60°【答案】A 解析:解:如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形花环为正六边形,∴∠ABD=×°6(6-2)180=120°,而∠CBD=∠BAC=90°,∴∠ABC=120°-90°=30°.故选:A .8.如图,已知ABC 的周长是20,OB 和OC 分别平分ABC ∠和ACB ∠,OD BC ⊥,垂足为点D ,3OD =,则ABC 的面积是()A.20B.30C.40D.60【答案】B 解析:连接AO ,过点O 分别作OE AB ⊥于点E ,OF AC ⊥于点F ,∵ABC AOB BOC AOC S S S S =++△△△△,111222AB OE BC OD AC OF =++,∵BO 、CO 为角平分线,∴3OE OD OF ===,∴()113203022ABC S OD AB BC AC =++==.故选:B .9.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为A.40海里B.60海里C.70海里D.80海里【答案】D解析:∵根据方向角的意义和平行的性质,∠M =70°,∠N =40°,∴根据三角形内角和定理得∠MPN =70°.∴∠M =∠MPN =70°.∴NP =NM =80(海里).故选D .10.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.10【答案】C 解析:依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C11.如图,在四边形ABCD 中,90A ∠=︒,2AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的值不可能是()A.1.5B.2C.2.5D.3【答案】A 解析:解:如图,过点D 作DH BC ⊥交BC 于点H ,BD CD ⊥ ,90BDC ∴∠=︒,又180C BDC DBC ∠+∠+∠=︒ ,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,ABD CBD ∴∠=∠,BD ∴是ABC ∠的角平分线,又AD AB ⊥ DH BC ⊥,,AD DH =∴,又2AD = ,2DH ∴=,又∵点D 是直线BC 上一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 的长,即DP 的长最小值为2,1.52< ,DP ∴的长不可能是1.5,故选:A .12.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是()A.BAD CAD∠=∠ B.△BCD 是等边三角形C.AD 垂直平分BCD.ABDC S AD BC= 【答案】D解析:解:∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD==∴ABD ACD≅△△∴BAD CAD∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC=∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和∴12ABCD S AD BC =⋅故选项D 错误.故选:D .13.如图,在正方形网格中有M ,N 两点,在直线l 上求一点P ,使PM PN +最短,则点P 应选在()A.A 点B.B 点C.C 点D.D 点【答案】C 解析:解:如图,点M '是点M 关于直线l 的对称点,连接M N ',则M N '与直线l 的交点,即为点P ,此时PM PN +最短,M N ' 与直线l 交于点C ,∴点P 应选C 点.故选:C .14.如图,在ABC 中,30,90A C ∠=︒∠=︒,AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是()A.DE DC= B.AD DB = C.AD BC = D.BC AE=【答案】C 解析:解:∵ 30, 90A C ∠=︒∠=︒,∴60ABC ∠=︒,∵DE 垂直平分AB ,∴AD BD =,AE BE =,故B 选项正确,不符合题意;C 选项错误,符合题意;∴30ABD A ∠=∠=︒,∴30CBD ∠=︒,∴CBD ABD ∠=∠,∵90,C DE AB ∠=︒⊥,∴DE DC =,故A 选项正确,不符合题意;∵ 30, 90A C ∠=︒∠=︒,∴12BC AB =,∴BC AE =,故D 选项正确,不符合题意;故选:C15.如图,D 为ABC 内一点,CD 平分ACB ∠,BE CD ⊥,垂足为D ,交AC 于点E ,A ABE ∠=∠.若5AC =,3BC =,则BD 的长为()A.2.5B.1.5C.2D.1【答案】D 解析:解:∵CD 平分ACB ∠,BE CD ⊥,∴ECD BCD ∠=∠,90BDC EDC ∠=∠=︒,在BCD △与ECD 中,90ECD BCD CD CD BDC EDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ASA BCD ECD ∴≌ ,BC CE ∴=,BEC ∴ 是等腰三角形,∴12BD BE =,又A ABE ∠=∠ ,ABE ∴ 是等腰三角形,AE BE ∴=,()111222BD BE AE AC CE ∴===-,∵5AC =,3BC =,()15312BD ∴=⨯-=.故选:D .16.如图,已知等边三角形ABC ,2AB =,点D 在AB 上,点F 在AC 的延长线上,,BD CF DE BC =⊥于E ,FG BC ⊥于G ,DF 交BC 于点P ,则下列结论:①BE CG =;②EDP GFP ≌;③60EDP ∠=︒;④1EP =.其中一定正确的是()A.①③B.②④C.①②③D.①②④【答案】D 解析:解:ABC 是等边三角形,AB BC AC ∴==,60A B ACB ∠=∠=∠=︒.ACB GCF ∠=∠ ,DE BC ⊥ ,FG BC ⊥,90DEB FGC DEP ∴∠=∠=∠=︒.在DEB 和FGC △中,DEB FGC B GCF BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEB FGC ∴△≌△BE CG ∴=,DE FG =,故①正确;在DEP 和FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEP FGP ∴△≌△,故②正确;PE PG ∴=,EDP ∠不一定等于60︒,当PD AB ⊥时,60EDP ∠=︒,故③错误;PG PC CG =+ ,PE PC BE ∴=+.2PE PC BE ++= ,1PE ∴=.故④正确.正确的有①②④,故选:D .二、填空题(17,18题每题3分,19题每空2分,共10分)17.如图,ABC 中,D ,E 分别是BC ,AD 的中点,ABC 的面积是20,则阴影部分的面积是______.【答案】5解析:解:ABC 中,D 、E 分别是BC ,AD 的中点,AD ∴是ABC 的中线,CE 是ADC △的中线,2ABC ADC S S ∴= ,2ADC AEC S S = ,4ABC AEC S S ∴= ,ABC 的面积是20,AEC ∴ 的面积为5,即阴影部分的面积是5.故答案为:5.18.如图,已知8AO =,P 是射线ON 上一动点(即Р点可在射线ON 上运动),60AON ∠=︒,则OP =_______时,AOP 为直角三角形.【答案】4或16##16或4解析:解:当90APO ∠=︒时,9030OAP AOP ∠︒∠=︒=-,142OP OA ∴==,当90OAP ∠=︒时,9030OPA AOP ∠=︒-∠=︒,216OP OA ∴==,故答案为:4或16.19.如图,已知()()3,0,0,1A B -,连接AB ,过B 点作AB 的垂线段BC ,使BA BC =,连接AC ,C 点坐标为__________;Р点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ V ,连接CQ ,当C 、P 、Q 三点共线时Р点的坐标为___________.【答案】①.(1,4)-②.(1,0)解析:解:如图,过C 作CH y ⊥轴于H ,则90BCH CBH ∠+∠=︒,∵()()3,0,0,1A B -,∴3OA =,1OB =,AB BC ⊥ ,90ABC ∴∠=︒,90ABO CBH ∴∠+∠=︒,ABO BCH ∴∠=∠,在ABO 和BCH V 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABO BCH ∴≌△△,3BH OA ∴==,1CH OB ==,4OH OB BH ∴=+=,C ∴点坐标为(1,4)-;BPQ △是等腰直角三角形,90PBQ ABC ∴∠=∠=︒,PBQ ABQ ABC ABQ ∴∠-∠=∠-∠,即PBA QBC ∠=∠,在PBA △和QBC △中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,(SAS)PBA QBC ∴△≌△,135BPA BQC ∴∠=∠=︒,BPQ △是等腰直角三角形,45BQP ∴∠=︒,当C 、P ,Q 三点共线时,135BQC ∠=︒,18013545OPB ∴∠=︒-︒=︒,1OP OB ∴==,P ∴点坐标为(1,0),故答案为:(1,4)-,(1,0).三、解答题(共68分)20.求出下列图形中x 的值.【答案】(1)70x =;(2)60x =解析:解:(1)∵40180x x ++=,解得70x =;(2)∵()7010x x x +=++,解得60x =.21.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出ABC 关于y 轴对称的111A B C △;(2)写出点111,,A B C 的坐标(直接写答案);(3)在y 轴上画出点P ,使PB+PC 最小.【答案】(1)图见解析;(2)111(3,2),(4,3),(1,1)A B C --;(3)图见解析.解析:(1)先根据轴对称的性质分别描出点111,,A B C ,再顺次连接即可得到111A B C △,如图所示:(2)点坐标关于y 轴对称的变化规律:横坐标变为相反数,纵坐标不变3,24,3(),(),()1,1A B C ----- 1113,24,(),(),(3)1,1A B C ∴--;(3)由轴对称的性质得:1PB PB =则1PB PC PB PC+=+由两点之间线段最短得:当1,,C P B 三点共线时,1PB PC +取得最小值,最小值为1CB 如图,连接1CB ,与y 轴的交点P 即为所求.22.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BF =CE .试说明:AB ∥DE .【答案】见解析解析:证明:BF CE = ,BF CF CE CF ∴+=+,即BC EF =,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ≅∆∆∴,B E ∴∠=∠,//AB DE ∴.23.如图,ABC 和ADE V 中,AB AD =,B D ∠=∠,BC DE =.边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD异侧.(1)若30B ∠=︒,70APC ∠=︒,求CAE ∠的度数;(2)当30B ∠=︒,AB AC ⊥,6AB =时,设AP x =,请用含x 的式子表示PD ,并写出PD 的最大值【答案】(1)40︒(2)6PD x =-;当3x =时,PD 有最大值,即3PD =【小问1详解】解:在ABC 与ADE V 中,AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC ADE ∴≌△△,BAC DAE ∴∠=∠,BAC DAC DAE DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠,30B ∠=︒ ,70APC ∠=︒,703040CAE BAD APC B ∴∠=∠=∠-∠=︒-︒=︒;【小问2详解】解:AB AC ⊥ ,90BAC ∴∠=︒,6AB = ,AP x =,()SAS ABC ADE ≌,6AB AD ∴==,∴当AD BC ⊥时,x 最小,PD 最大,6PD x =-,30B ∠=︒ ,AD BC ⊥,90APB ∴∠=︒,132AP AB ∴==,3AP x ∴==时,PD 有最大值,即633PD AD AP =-=-=.24.如图:已知等边ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE CD =.(1)求E ∠的度数.(2)求证:DBE 是等腰三角形.【答案】(1)30︒(2)见解析【小问1详解】解: ABC 是等边三角形,60ACB ABC ∠=∠=︒∴,又CE CD = ,E CDE ∴∠=∠,又ACB E CDE ∠=∠+∠ ,1302E ACB ∴∠=∠=︒;【小问2详解】证明: 等边ABC 中,D 是AC 的中点,11603022DBC ABC ∴∠=∠=⨯︒=︒由(1)知30E ∠=︒,30DBC E ∴∠=∠=︒,DB DE ∴=,即DBE 是等腰三角形.25.如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456……n ∠α的度数______°_____°______°______°……_____°(2)根据规律,计算正八边形中的∠α的度数.(3)是否存在正n 边形使得∠α=21°?若存在,请求出n 的值,若不存在,请说明理由.【答案】(1)60,45,36,30°,180n;(2)22.5;(3)不存在.解析:(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456…n ∠α的度数60°45°36°30°…(1808)°(2)根据规律,计算正八边形中的∠α=(1808)°=22.5°;(3)不存在,理由如下:设存在正n 边形使得∠α=21°,得∠α=21°=(180n)°.解得n=847,n 是正整数,n=847(不符合题意要舍去),不存在正n 边形使得∠α=21°.26.如图,已知:在ABC 中,4AC BC ==,120ACB ∠=︒,将一块足够大的直角三角尺()90,30PMN M MPN ∠=︒∠=︒按如图放置,顶点Р在线段AB 上滑动(且不与A 、B 重合),三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当α=______°,PN BC ∥,此时APD ∠=______°(2)点Р在滑动时,当AP 长为多少时,ADP △与BPC △全等,为什么?(3)点Р在滑动时,PCD 的形状可以是等腰三角形吗?若可以,直接写出夹角α的大小;若不可以,请说明理由.【答案】(1)30,30(2)4AP =时,ADP △与BPC △全等,理由见解析(3)45α∠=︒或90︒时,PCD 的形状可以是等腰三角形【小问1详解】若PN BC ∥,则MPN α∠=∠,30MPN ∠=︒,∴30MPN α∠=∠=︒,120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,30α∠=︒,303060APC B α∴∠=∠+∠=︒+︒=︒,30MPN ∠=︒,603030APD APC MPN ∠=∠-∠=︒-︒=︒,故答案为:30,30;【小问2详解】当4AP =时,ADP BPC ≌ ,理由如下:120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,APC ∠ 是BPC △的一个外角,30APC B αα∴∠=∠+∠=︒+∠,30APC DPC APD APD ∠=∠+∠=︒+∠ ,APD α∴∠=∠,4AP BC == ,在ADP △和BPC △中,A B AP BC APD BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ADP BPC ∴≌ ;【小问3详解】PCD QV 是等腰三角形,120PCD α∠=-°,30CPD ∠=︒,①当PC PD =时,()118030752PCD PDC ∴∠=∠=︒-︒=︒,即12075α-=°°,45α∴∠=︒;②当PD CD =时,PCD 是等腰三角形,30PCD CPD ∴∠=∠=︒,即12030α-=°°,90α∴=︒;③当PC CD =时,PCD 是等腰三角形,30CDP CPD ∴∠=∠=︒,180230120PCD ∴∠=︒-⨯︒=︒,即120120α-=°°,0α∴=︒,此时点P 与点B 重合,点D 和A 重合,∵点P 不与A ,B 重合,0α∴=︒,舍去,综合所述:当PCD 是等腰三角形时,45α=︒或90︒.20。
八年级数学期中模拟卷(湖北省卷专用)(全解全析)
(考试时间:120分钟 试卷满分:1202024-2025学年八年级数学上学期期中模拟卷(湖北省卷专用)分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第11章三角形+第12章全等三角形+第13章轴对称。
5.难度系数:0.65。
第一部分(选择题 共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列长度的三条线段能首尾相接构成三角形的是( )A .1,2,3B .3,4,C .4,5,10D .6,9,2【解答】解:根据三角形的三边关系,得:A 、1+2=3,不能构成三角形,不符合题意;B 、3+4>5,能构成三角形,符合题意;C 、4+5<10,不能构成三角形,不符合题意;D 、2+6<9,不能构成三角形,不符合题意.故选:B .2.第33届夏季奥运会于2024年7月26日至8月11日在法国巴黎举行,中国取得金牌榜第一名的好成绩,如图所示巴黎奥运会项目图标中,是轴对称图形的是( )A .B.C.D.【解答】解:A.该图形不是轴对称图形,故此选项不合题意;B.该图形不是轴对称图形,故此选项不合题意;C.该图形是轴对称称图形,故此选项符合题意;D.该图形不是轴对称图形,故此选项不合题意.故选:C.3.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为( )A.6cm B.7cm C.4cm D.3cm【解答】解:∵△ACE≌△DBF,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB=(11﹣5)÷2=3(cm),故选:D.4.如图,将一副三角尺按图中所示位置摆放,点C在FD的延长线上,点C、F分别为直角顶点,且∠A=60°,∠E=45°,若AB∥CF,则∠CBD的度数是( )A.15°B.20°C.25°D.30°【解答】解:∵AB∥CF,∴∠BCD=∠ABC=30°.∵∠BDF是△BCD的外角,∴∠CBD=∠EDF﹣∠BCD=45°﹣30°=15°.故选:A.5.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,∠ACB=∠DFE,BF=EC,只添加一个条件,不能判定△ABC≌△DEF的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,A、由SAS判定△ABC≌△DEF,故A不符合题意;B、∠ACB和∠DFE分别是AB和DE的对角,不能判定△ABC≌△DEF,故B符合题意;C、由AAS判定△ABC≌△DEF,故C不符合题意;D、由ASA判定△ABC≌△DEF,故D不符合题意.故选:B.6.如图,由一个正六边形和正五边形组成的图形中,∠1的度数应是( )A.72°B.84°C.82°D.94°【解答】解:如图,由题意得:∠3=360°÷6=60°,∠4=360°÷5=72°,则∠2=180°﹣60°﹣72°=48°,所以∠1=360°﹣48°﹣120°﹣108°=84°.故选:B.7.下列对△ABC的判断,不正确的是( )A.若AB=AC,∠C=60°,则△ABC是等边三角形B.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形C.若∠A=50°,∠B=80°,则△ABC是等腰三角形D.若AB=BC,∠C=40°,则∠B=40°【解答】解:A、若AB=AC,∠C=60°,则△ABC是等边三角形,说法正确,不符合题意;B、若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,说法正确,不符合题意;C、若∠A=50°,∠B=80°,可得∠C=50°,则△ABC是等腰三角形,说法正确,不符合题意;D、若AB=BC,∠C=40°,则∠A=40°∠B= 100°,说法错误,符合题意;故选:D.8.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠BAC=110°,则∠PAQ的度数是( )A.40°B.50°C.60°D.70°【解答】解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵PM、QN分别是线段AB、AC的垂直平分线,∴AP=BP,CQ=AQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=∠B+∠C=70°,∵∠BAC=110°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=110°﹣70°=40°,故选:A.9.如图,在△ABC中,AB=21cm,AC=12cm,∠A=60°,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒,当△APQ 为直角三角形时,t 的值为( )A .2.5秒B .3秒C .3或214秒D .2.5或3秒【解答】解:根据题意得:AP =AB ﹣BP =21﹣3t ,AQ =2t ,∵△APQ 为直角三角形,∠A =60°,∴当∠AQP =90°,∠APQ =30°时,则AQ =12AP ,∴2t =12(21―3t),解得:t =3,当∠APQ =90°,∠AQP =30°时,则12AQ =AP ,∴12×2t =21―3t ,解得:t =214,综上,当t 的值为3秒或214秒时,△APQ 为直角三角形,故选:C .10.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②∠ABC +2∠APC =180°;③∠BAC =2∠BPC ;④S △PAC =S △MAP +S △NCP .其中正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PD ,∵PM ⊥BE ,PD ⊥AC ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △PAM 和Rt △PAD 中,PM =PD PA =PA ,∴Rt △PAM ≌Rt △PAD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵BP 平分∠ABC ,CP 平分∠FCA ,∴∠ACF =∠ABC +∠BAC =2∠PCF ,∠PCF =12∠ABC +∠BPC ,∴∠BAC =2∠BPC ,③正确;④由②可知Rt △PAM ≌Rt △PAD (HL ),Rt △PCD ≌Rt △PCN (HL ),∴S △APD =S △MAP ,S △CPD =S △NCP ,∴S △PAC =S △MAP +S △NCP ,故④正确,故选:D .第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.已知等腰三角形的周长为18,其中一边长为5,则该等腰三角形的底边长为 .【解答】解:当腰为5时,另一腰也为5,则底为18﹣2×5=8,∵5+5>8,符合题意,当底为5时,腰为(18﹣5)÷2=6.5,符合题意,∴该三角形的底边长为8或5.故答案为:8或5.12.如图,在△ABC中,AB=BE,AD=DE.若∠A=70°,∠C=50°,则∠EDC= °.【解答】解:在△ABD和△EBD中,AB=EB AD=DE BD=BD,∴△ABD≌△EBD(SSS)∴∠DEB=∠A=70°,∵∠C=50°,∠BED=∠C+∠EDC,∴∠EDC=70°﹣50°=20°故答案为:20°13.如图,BC、AE是锐角△ABF的高,相交于点D,若AD=BF,AF=7,CF=2,则BD的长为 .【解答】解:∵BC、AE是锐角△ABF的高,∴∠DCA=∠BCF=∠AEF=90°,∵∠DAC+∠ADC=90°,∠EAF+∠F=90°∴∠ADC=∠F,在△ADC和△BFC中,∠ACD=∠BCF ∠ADC=∠FAD=BF,∴△ADC≌△BFC(AAS),∴CD=CF=2,BC=AC=AF﹣CF=7﹣2=5∴BD=BC﹣CD=5﹣2=3,故答案为:3.14.将△ABC按如图所示翻折,DE为折痕,若∠A+∠B=130°,则∠1+∠2= °.【解答】解:在△ABC中,∠A+∠B+∠C=180°,在△CDE中,∠CDE+∠CED+∠C=180°,∴∠A+∠B=∠CDE+∠CED,∵∠A+∠B=130°,∴∠CDE+∠CED=130°,∴∠BED+∠ADE=360°﹣130°=230°,由折叠的性质得,∠BED=∠B'ED,∠ADE=∠A'DE,∴∠B'ED+∠A'DE=230°,即∠1+∠CDE+∠2+∠CED=230°,∴∠1+∠2=230°﹣130°=100°,故答案为:100.15.如图,等腰三角形ABC的面积为24,底边BC=6,腰AC的垂直平分线EF分别交边AC、AB于E、F 两点,点M为线段EF上一动点,点D为BC的中点,连接CM、DM.在点M的运动过程中,△CDM 的周长存在最小值为 .【解答】解:连接AD ,AM ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,CD =12BC =3,∴S △ABC =12BC ⋅AD =12×6AD =24,解得AD =8,∵EF 是线段AC 的垂直平分线,∴MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短为:CM +MD +CD =AD +CD =8+3=11,故答案为:11.三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(6分)如图,已知AE ∥CF ,AB =CD ,∠ADF =∠CBE .求证:△ABE ≌△CDA .【解答】证明:∵AE ∥CF ,∴∠BAE =∠C ,∵∠ADF =∠CBE ,∴180°﹣∠ADF =180°﹣∠CBE ,即∠ADC =∠EBA ,又∵AB =CD ,在△ABE 和△CDA 中,∠BAE =∠C AB =CD ∠ADC =∠EBA,∴△ABE ≌△CDA (ASA ).17.(7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠C =70°.(1)求∠AOB 的度数;(2)若∠ABC =50°,求∠DAE 的度数.【解答】解:(1)∵AE 、BF 是∠BAC 、∠ABC 的角平分线,∴∠OAB +∠OBA =12(∠BAC +∠ABC),在△ABC 中,∠C =70°,∴∠BAC +∠ABC =180°﹣∠C =110°,∴∠AOB =180°―∠OAB ―∠OBA =180°―12(∠BAC +∠ABC)=125°;(2)∵在△ABC 中,AD 是高,∠C =70°,∠ABC =50°,∴∠DAC =90°﹣∠C =90°﹣70°=20°,∠BAC =180°﹣∠ABC ﹣∠C =60°∵AE是∠BAC的角平分线,∴∠CAE=12∠CAB=30°,∴∠DAE=∠CAE﹣∠CAD=30°﹣20°=10°,∴∠DAE=10°.18.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C1;(2)写出点A、B、C关于x轴的对称点的坐标;(3)求出△ABC的面积.【解答】解:(1)如图所示,△A1B1C1即为所求.……………………2分(2)如图所示,A2(﹣2,﹣3),B2(﹣3,﹣2),C2(﹣1,﹣1);……………………5分(3)△ABC的面积为2×2―12×1×2―12×1×2―12×1×1=32.……………………8分19.(8分)如图,在四边形ABCD中,AD∥BC,∠A=90°,BE=AD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠EBC.∵CE⊥BD,∠A=90°,∴∠A=∠CEB,在△ABD和△ECB中,∠ADB=∠EBC BE=AD∠A=∠CEB∴△ABD≌△ECB(ASA);……………………4分(2)解:∵△ABD≌△ECB,∴BC=BD,∵∠DBC=50°,∴∠EDC=12(180°﹣50°)=65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.……………………8分20.(8分)如图,在△ABC中,AB=AC,点D为BC的中点,连接AD,AB的垂直平分线EF交AB于点E,交AD于点O,交AC于点F,连接OB,OC.(1)求证:△AOC为等腰三角形;(2)若∠BAD=20°,求∠COF的度数.【解答】(1)证明:∵EF是AB的中垂线,∴OA=OB,∵AB=AC,D为BC中点,∴AD⊥BC,∴AD是BC的中垂线,∴OB=OC,∴OA=OC,∴△OAC是等腰三角形.……………………4分(2)解:∵AB=AC,D为BC中点,∴∠DAC=∠BAD=20°,∴∠BAC=40°,∵EF是AB的中垂线,∴EF⊥AB,∴∠AFE=50°,∵OA=OC,∴∠OCA=∠OAC=20°,∵∠AFE=∠OCA+∠COF,∴50°=20°+∠COF,∴∠COF=30°.……………………8分21.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.【解答】(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,DC=DE DF=DB,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;……………………4分(2)解:AB=AF+2BE,……………………5分理由如下:在Rt△ACD和Rt△AED中,DC=DE AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.……………………8分22.(8分)在等边三角形ABC中,点E在AB边上,点D在CB的延长线上,且DE=EC.(1)如图1,当E为AB中点时,求证:CB=2BD;(2)如图2,若AB=12,AE=2,求CD的长.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠A=∠ACB=60°,∵EB=AE,∴CE⊥AB,CE是∠ACB的角平分线,∴∠BEC=90°,∠BCE=30°,∴2EB=BC,∵ED=EC,∴∠EDC=∠ECD=30°,∴∠DEB=60°﹣30°=30°,∴BD=BE,∴BC=2BD;……………………4分(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,∠EBD=∠EFC ∠EDB=∠FEC ED=EC,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,∴CD=BC+BD=12+2=14.……………………8分23.(10分)小明在学习过程中,对教材中的一个有趣问题做如图探究:(1)【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;(2)【变式思考】如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,若∠B=40°,求∠CEF和∠CFE的度数;(3)【探究延伸】如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD 于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,求∠CFE 的度数.【解答】(1)证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;……………………3分(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF为∠BAG的角平分线,∴∠GAF=∠DAF=12×130°=65°,∵CD为AB边上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,……………………5分又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;……………………7分(3)证明:∵C、A、G三点共线,AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF =∠CFE ,∴∠M +∠CFE =90°.∴∠CFE =90°﹣∠M =90°﹣35°=55°. ……………………10分24.(12分)如图,△ABC 是等腰直角三角形,AB =BC ,直角顶点B 在x 轴上,一锐角顶点C 在y 轴上.(1)如图1,若点B 的坐标是(﹣2,0),点A 的坐标是(3,2),求点C 的坐标.(2)如图2,若y 轴恰好平分∠ACB ,AB 与y 轴交于点D ,过点A 作AE ⊥y 轴于点E ,问CD 与AE 有怎样的数量关系?并说明理由.(3)如图3,直角边BC 的两个端点在两坐标轴上滑动,使点A 在第二象限内,过点A 作AF ⊥y 轴于点F ,在滑动的过程中,OB―AF OC为定值,求出这个定值.【解答】解:(1)如图1,过点A 作AN ⊥x 轴于点N ,则∠ANB =∠BOC =90°,∴∠ABN +∠BAN =90°,∵△ABC 是等腰直角三角形,AB =BC ,∴∠ABN +∠CBO =∠ABC =90°,∴∠BAN =∠CBO ,在△BAN 和△CBO 中,∠ANB =∠BOC ∠BAN =∠CBO AB =BC,∴△BAN ≌△CBO (AAS ),∴BN =CO ,∵点B 的坐标是(﹣2,0),点A 的坐标是(3,2),∴BN =2+3=5,∴CO =5,∴点C 的坐标为(0,﹣5),……………………4分(2)CD 与AE 的数量关系为:CD =2AE ,理由如下:……………………5分如图2,延长AE 交CB 的延长线于点G ,∵y 轴平分∠ACB ,AE ⊥y ,∴△ACG 是等腰三角形,∠AED =90°,∴AE =GE =12AG ,∠GAB +∠ADE =90°,∵△ABC 是等腰直角三角形,=BC ,∴∠CBD =∠ABG =90°,∴∠DCB +∠CDB =90°,∵∠ADE =∠CDB ,∴∠GAB =∠DCB ,在△GAB 和△DCB 中,∠ABG =∠CBD AB =BC ∠GAB =∠DCB,∴△GAB ≌△DCB (ASA ),∴AG =CD ,∴AE =12CD ,∴CD =2AE ; ……………………8分(3)如图3,过点A 作AH ⊥OB 于点H ,则∠AHB =∠AHO =90°,∵AF ⊥y 轴,∴四边形AHOF 是矩形,∴OH =AF ,∵∠ABH +∠CBO =90°,∠CBO +∠BCO =90°,∴∠ABH =∠BCO ,在△ABH 和△BCO 中,∠AHB =∠BOC =90°∠ABH =∠BCO AB =BC,∴△ABH ≌△BCO (AAS ),∴HB =OC ,∵HB =OB ﹣OH =OB ﹣AF ,∴OC =OB ﹣AF ,∴OB―AF OC =1. ……………………12分。
八年级(上)期中数学模拟试卷含答案
八年级(上)期中数学模拟试卷一、选择题(每题3分,共30分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣16.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角10.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°二、填空题(每题3分,共24分)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.18.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是.三、解答题(共46分)19.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.21.如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.22.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.参考答案与试题解析一、选择题(每题3分,共30分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【考点】多边形的对角线.【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣1【考点】坐标与图形变化-对称.【分析】观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.【解答】解:∵点A(﹣1,2)和点B(﹣1,6)对称,∴AB平行与y轴,所以对称轴是直线y=(6+2)=4.故选C.【点评】本题主要考查了坐标与图形变化﹣﹣对称特;解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标或利用对应点的坐标求得对称轴.6.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.10.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°【考点】三角形内角和定理.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠3、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选B.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.二、填空题(每题3分,共24分)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.【考点】三角形内角和定理;多边形内角与外角.【专题】应用题.【分析】根据三角形的内角和与平角定义可求解.【解答】解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.【点评】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是19cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.15.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是31.5.【考点】角平分线的性质.【分析】连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.【点评】此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=6.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a与b的值.【解答】解:∵点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),∴a=2,b=4,∴a+b=2+4=6,故答案为:6.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【考点】翻折变换(折叠问题).【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.18.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是20:51.【考点】镜面对称.【分析】注意镜面对称的特点,并结合实际求解.【解答】解:根据镜面对称的性质,因此12:05的真实图象应该是20:51.故答案为20:51.【点评】解决此类问题要注意所学知识与实际情况的结合.三、解答题(共46分)19.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【考点】作图—复杂作图.【分析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°﹣30°﹣130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°﹣90°=40°,∴∠BAD=20°+40°=60°.【点评】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.21.如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】证明题.【分析】先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD 的垂直平分线.【解答】证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴DE=CE,OE=OE,在Rt△ODE与Rt△OCE中,,∴Rt△ODE≌Rt△OCE(HL),∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.22.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据∠1=∠2求出∠EAC=∠DAB,根据ASA推出△EAC≌△DAB即可.【解答】证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(ASA),∴AE=AD.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】连接AD,易证△ACD≌△ABD,根据全等三角形对应角相等的性质可得∠EAD=∠FAD,再根据∠AED=∠AFD,AD=AD,即可证明△ADE≌△ADF,根据全等三角形对应边相等的性质可得DE=DF.【解答】证明:连接AD,在△ACD和△ABD中,,∴ACD≌△ABD(SSS),∵DE⊥AE,DF⊥AF,∴∠AED=∠AFD=90°,∴在△ADE和△ADF中,,∴△ADE≌△ADF,∴DE=DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.。
2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷+答案解析
2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷一、选择题:本题共7小题,每小题2分,共14分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列体育运动项目图标中,是轴对称图形的是()A. B. C. D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.如图,,,添加下列哪一个条件可以推证≌()A.B.C.D.4.一个等腰三角形的顶角等于,则这个等腰三角形的底角度数是()A. B. C. D.5.如图,,,则下列判断正确的是()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分6.如图,中,BF、CF分别平分和,过点F作交AB于点D,交AC于点E,那么下列结论:①;②为等腰三角形;③的周长等于的周长;④其中正确的是()A.①②B.①③C.①②④D.①②③④7.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连接BF,CE,下列说法:①和的面积相等;②;③;④其中,正确的说法有()A.1个B.2个C.3个D.4个二、填空题:本题共9小题,每小题2分,共18分。
8.如图,是的一个外角,若,,则______.9.已知≌,的周长为24cm,若,,______10.如图,,,请你添加一个条件______只填一个即可,使≌11.如图,在中,CD是斜边AB上的中线,若,则______.12.已知等腰三角形的一个外角是,则它的底角度数为______度.13.如图,在中,,线段AB的垂直平分线交AC于点N,的周长是12cm,则BC的长为______14.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M、N,再分别以M,N为圆心,大于长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积为______.15.已知如图等腰,,,于点D,点P是BA延长线上一点,点O是线段AD上一点,,下面的结论:①;②;③是等边三角形.其中正确的是______填序号16.如图,透明的圆柱形容器容器厚度忽略不计的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______三、解答题:本题共10小题,共68分。
浙江省宁波市2024-2025学年八年级上学期期中数学模拟试题(解析版)
2024-2025学年第一学期浙江省宁波市八年级数学期中模拟练习卷考试范围:八上第1-4章 考试时间:120分钟 试卷满分:120分一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1. 下列图形中对称轴条数最多的是( )A.B. C. D. 【答案】A【解析】【分析】此题主要考查如何确定轴对称图形的对称轴条数及位置,掌握轴对称图形的概念是本题的解题关键.根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此找出各个图形的对称轴条数,再比较即可解答.【详解】解:A 、有5条对称轴;B 、有3条对称轴;C 、有0条对称轴;D 、有4条对称轴.故对称轴最多的有5条.故选:A .2. 若a b < )A. 11a b +<+B. 22a b −<−C. 33a b <D. 4a <4b 【答案】B【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A .∵a b <,∴11a b +<+,故本选项不符合题意; B .∵a b <,∴a b −>−,∴22a b −>−,故本选项符合题意;C .∵a b <,∴33a b <,故本选项不符合题意;D .∵a b <,∴4a <4b ,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键,①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,②不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,③不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.3. 如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为( )A. 2mB. 3mC. 3.5mD. 4m【答案】D【解析】 【分析】本题考查勾股定理的应用,利用勾股定理求出AB 的长,再根据少走的路长为AC BC AB +−,计算即可.明确少走的路长为AC BC AB +−是解题的关键.【详解】解:如图,点C A 和点B 都在长方形的边上且6AC =,8BC =, ∴90C ∠=°,∴10AB ,∴他们少走的路长为:()68104m AC BC AB +−=+−=. 故选:D .4. 下列条件中,可以判定ABC 是等腰三角形的是( )A. 40B ∠=°,80C ∠=°B. 123A B C ∠∠∠=::::C. 2A B C ∠=∠+∠D. 三个角的度数之比是2:2:1【答案】D【解析】【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=°,80C ∠=°,∴18060AC B ∠=°−∠−∠=°, ∴ABC 不是等腰三角形,故选项A 错误;B .∵123A BC ∠∠∠=::::,180A B C ∠+∠+∠=°, ∴118030123A ∠=×°=°++,218060123B ∠=×°=°++,318090123C ∠=×°=°++, ∴ABC 不是等腰三角形,故选项B 错误;C .∵2A B C ∠=∠+∠,180A B C ∠+∠+∠=°,∴2180A A ∠+∠=°,∴60A ∠=°,而无法判断B ∠与C ∠的大小,∴ABC 不是等腰三角形,故选项C 错误;D .∵三个角的度数之比是2:2:1, ∴三个角的度数分别是218072221×°=°++,72°,218072221×°=°++, ∴ABC 是等腰三角形,故选项D 错误;故选:D .5. 某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打( )A. 六折B. 七折C. 八折D. 九折 【答案】B【解析】【分析】设最多可打x 折,根据题意,得110070070010%10x ×−≥×,求整数解即可. 本题考查了一元一次不等式的应用,打折问题,正确理解,列出不等式解答是关键.【详解】解:设最多可打x 折, 根据题意,得110070070010%10x ×−≥×, 解得7x ≥.故最多打7折,6. 如图,在ABC 中,AB AC =,120A ∠=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )A. 5B.C. 6D. 8【答案】B【解析】 【分析】连接AD ,如图,先根据等腰三角形的性质和三角形内角和定理计算出30B C ∠=∠=°,再由作法得DDDD 垂直平分AC ,所以3DA DC ==, 所以30DAC C ∠=∠=°, 从而得到90BAD ∠=°, 然后根据含30度角的直角三角形三边的关系求BD 的长,进而求出AB 的长.【详解】连接AD , 如图∵,120AB AC A =∠=°,∴30B C ∠=∠=°,由作法得DE 垂直平分AC ,∴3DADC ==, ∴30DAC C ∠=∠=°,∴1203090BAD ∠=°−°=°,在Rt ABD △中,30B ∠=°,∴26BD AD ==,AB ∴=【点睛】本题考查了作图−基本作图,勾股定理,线段垂直平分线的性质和等腰三角形的性质,含30°角直角三角形的性质,解题的关键是掌握以上知识点.7. 在Rt △ABC 中,∠C =90°,AB =15,AC =12,以A 为圆心,适当长为半径画弧,交AC ,AB 于D ,E 两点,再分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点F ,则线段BF 的长为()A. 5B. 4C. 3D. 2.8【答案】A【解析】 【分析】过点F 作FN ⊥AB 于N ,由作图可知,AM 是∠BAC 的平分线,由角增分线的性质可得FN =FC ,则可利用HL 定理证明Rt △ACF ≌Rt △ANF ,得出AN =AC =12,再在Rt △ACB 中,由勾股定理求出BC =9,设BF =x ,则FN =CF =BC -BF =9-x ,由勾股定理列方程求解即可.【详解】解:过点F 作FN ⊥AB 于N ,由作图可知:AM 平分∠BAC ,∵∠C =90°,∴FC ⊥AC ,∵FN ⊥AB ,∴FN =FC ,在Rt △ACF 和Rt △ANF 中,FC FN AF AF = =, ∴Rt △ACF ≌Rt △ANF (HL),∴AN =AC =12,∴BN =AB -AN =15-12=3,在Rt △ACB 中,由勾股定理,得BC ==9,设BF =x ,则FN =CF =BC -BF =9-x ,在Rt △BNF 中,由勾股定理,得x 2=32+(9-x )2,解得:x =5,故选:A .【点睛】本题考查勾股定理,全等三角形的判定与性质,用尺规作角的平分线,角平分线的性质,由作图得出,AM 是∠BAC 的平分线是解题的关键.8. 如图,ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( ).A. 30°B. 45°C. 60°D. 90°【答案】C【解析】 【分析】本题主要考查了等边三角形的性质,垂直平分线的性质,最短路径问题,掌握等边三角形三线合一的性质是解题关键.连接BP ,由等边三角形的性质,得出PB PC =,进而得到PC PE PB PE BE +=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,再利用三线合一性质,得到BE AC ⊥,即可得到CPE ∠的度数.【详解】解:如图,连接BP ,ABC 是等边三角形,AD 是BC 边上的高,D ∴是BC 中点,即AD 垂直平分BC ,PB PC ∴=,PC PE PB PE BE ∴+=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,点E 是AC 边的中点,BE AC ∴⊥,90CEP CEB ∴∠=∠=°,∵等边ABC 中60ABC ACB ∠=∠=°,BE AC ⊥, ∴1302CBE ABC ∠=∠=°, ∵PB PC =,∴此时30PCB PBC ∠=∠=°,∴60CPE PBC PCB ∠=∠+∠=°.故选:C .9. 如图,在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.点P 从点A 出发,沿长方形的边顺时针运动,速度为每秒2个单位长度;点Q 从点A 出发,沿长方形的边逆时针运动,速度为每秒3个单位长度.记P Q ,在长方形边上第一次相遇时的点为1M ,第二次相遇时的点为2M ,……,则2024M 的坐标为是( )A. (1,0)B. ()0,1−C. ()1,0−D. ()1,2−【答案】B【解析】 【分析】本题考查了平面直角坐标系上点的坐标规律,求出长方形ABCD 的周长为()23210+×=,设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,根据题意列出方程,求出相遇各点坐标,得出规律,即可得出答案.【详解】解:∵在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.∴()1,1B −−,()1,2D ,∴2AD BC ==,3AB CD ==,∴长方形ABCD 的周长为:()23210+×=, 设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,由题意得:2310t t +=,解得:2t =,∴当2t =时,P Q ,第一次相遇,此时相遇点1M 的坐标为()1,0,当4t =时,P Q ,第二次相遇,此时相遇点2M 的坐标为()1,0−,当6t =时,P Q ,第三次相遇,此时相遇点3M 的坐标为()1,2,当8t =时,P Q ,第四次相遇,此时相遇点4M 的坐标为()0,1−,当10t =时,P Q ,第五次相遇,此时相遇点5M 的坐标为()1,2−,当12t =时,P Q ,第六次相遇,此时相遇点6M 的坐标为()1,0,…,∴五次相遇为一循环,∵202454044÷=…,∴2024M 的坐标为是()0,1−,故选:B .10. 如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边ABC 和等边ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论:①AD BE =;②PQ AE ∥;③AP BQ =;④DE DP =;⑤60AOB ∠=°.其中正确的有( )A. ①③⑤B. ①③④⑤C. ①②③⑤D. ①②③④⑤【答案】C【解析】 【分析】此题主要考查了全等三角形的判定和性质的应用,等边三角形的判定和性质.①根据全等三角形的判定方法,判断出ACD BCE △△≌,即可判断出AD BE =.②首先根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出CP CQ =;然后根据60PCQ ∠=°,可得PCQ △为等边三角形,所以60PQC DCE ∠=∠=°,据此判断出PQ AE ∥即可.③根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出AP BQ =.④首先根据,60DC DE PCQ CPQ =∠=∠=°,可得60DPC ∠>°,然后判断出DP DC ≠,再根据DC DE =,即可判断出DP DE ≠.⑤60AOB DAE AEO DAE ADC DCE ∠=∠+∠=∠+∠=∠=°,据此判断即可.【详解】解:∵ABC 和ECD 都是等边三角形,∴,,60ACBC CD CE ACB DCE ====°∠∠, ∴ACB BCD DCE BCD ∠+∠=∠+∠,∴ACD BCE ∠=∠,在ACD 和BCE 中,∵,,AC BCACD BCE CD CE ∠∠===, ∴ACD BCE △△≌,∴AD BE =,结论①正确.∵ACD BCE △△≌,∴CAD CBE ∠=∠,又∵60ACB DCE °∠=∠=,∴180606060BCD ∠=°−°−°=°,∴60ACP BCQ ∠=∠=°, 在ACP △和BCQ △中,,,ACP BCQ CAP CBQ AC BC ∠=∠∠=∠,∴ACP BCQ ≌△△,∴CP CQ =,又∵60PCQ ∠=°, ∴PCQ △为等边三角形,∴60PQC DCE ∠=∠=°, ∴PQ AE ∥,结论②正确.∵ACP BCQ ≌△△,∴AP BQ =,结论③正确.∵,60DC DE PCQ CPQ =∠=∠=°, ∴60DPC ∠>°,∴DP DC ≠,又∵DC DE =,∴DP DE ≠,结论④不正确.∵60AOB DAE AEO ADC DCE ∠=∠+∠=∠+∠=∠=°,结论⑤正确.综上,可得正确的结论有4个:①②③⑤.故选:C .二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11. 若不等式()11m x m −+<的解是1x >,则m 的取值范围是______.【答案】1m <【解析】【分析】先移项得(1)1m x m −<−,结合不等式的解集为1x >,可知10m −<,解之即可.【详解】解:∵()11m x m −+<,∴(1)1m x m −<−,∵不等式的解集为1x >,∴10m −<,则1m <,m<.故答案为:1【点睛】本题考查解一元一次不等式,掌握解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12. 若等腰三角形的两边长分别为4和6,则其周长是____________.【答案】14或16【解析】【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【详解】解:根据题意,①当腰长为6时,三边为6,6,4,=++=;符合三角形三边关系,周长66416②当腰长为4时,三边为4,4,6,=++=.符合三角形三边关系,周长44614故答案为:14或16.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.13. 如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.【答案】26【解析】【详解】过点B作EF⊥l2,交l1于E,交l3于F,如图,∵EF⊥l2,l1∥l2∥l3,∴EF⊥l1⊥l3,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=4,AE=BF=6,在Rt△ABE中,AB2=BE2+AE2,∴AB2=52,∴S△ABC=12AB⋅BC=12AB2=26.故答案是26.14. 在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.【答案】9【解析】【详解】∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故答案为9.15. 如图,在△ABC中,∠ACB=90°,边BC的垂直平分线EF交AB于点D,连接CD,如果CD=6,那么AB的长为_____.【答案】12【解析】【分析】根据线段的垂直平分线的性质得到DC =DB =6,则∠DCB =∠B ,由∠ACB =∠ACD +∠DCB =90°,得∠A +∠B =90°,从而∠A =∠ACD ,DA =DC =6,则AB =AD +DB 便可求出.【详解】解:∵EF 是线段BC 的垂直平分线,DC =6,∴DC =DB =6,∴∠DCB =∠B ,又∵∠ACB =∠ACD +∠DCB =90°,∴∠A +∠B =90°,∴∠A =∠ACD ,∴DA =DC =6,∴AB =AD +DB =6+6=12,故答案为:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.16. 如图,Rt BDE △中,90BDE ∠=°,2DB DE ==,A 是DE 的中点,连结AB ,以AB 为直角边作等腰Rt ABC △,其中90ABC ∠=°.①AC 的长为 ______;②连结CE ,则CE 的长为 _____.【答案】 ①. ②.【解析】【分析】①根据勾股定理先计算A BAC ,解答即可;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,根据等面积法可以求得EG FB =的长,再根据勾股定理求得EF 的长,最后计算出CE 的长即可.本题考查勾股定理、等腰直角三角形性质,解答本题的关键是明确题意,求出和的长.【详解】解:①∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===根据勾股定理,得A BAC ,;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===, 四边形EGBF 是矩形,∴EG BF =,根据勾股定理,得A BBE ∴111221222ABE DBE S S ==×××= ,∴112EG =,∴EG =∴BF =,∴EF∴CE的.三、解答题:本大题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤 17. 解一元一次不等式组,并把解集表示在数轴上.(1)()2112x x −−−<; (2)4261139x x x x >− −+ ≤ 【答案】(1)2x >−,数轴见解析(2)32x −<≤,数轴见解析【解析】分析】(1)先去分母,再去括号,移项,然后合并同类项,并画出数轴,即可作答;(2)由①易得,3x >−,由②去分母,得331x x −≤+,故不等式组得解集为:32x −<≤,并画出数轴,即可作答.【小问1详解】解:去分母得,()()2212x x −−−<,去括号得,2222x x −−+<,移项得,2222x x −<+−,合并同类项得,2x −<,系数化为1得,2x >−,在数轴上表示为:;【小问2详解】 解:4261139x x x x >− −+≤①②,由①得,3x >−,【由②去分母,得331x x −≤+解得,2x ≤.故不等式组得解集为:32x −<≤.在数轴上表示:【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,难度较小,正确掌握相关性质内容是解题的关键.18. 如图,在ABC 中,点D 在BC 上,点E 在AD 上,已知ABE ACE =∠∠,BED CED ∠=∠.试说明BE CE =的理由.【答案】见解析【解析】【分析】因为BED CED ∠=∠,所以AEB AEC ∠=∠,因为ABE ACE =∠∠,得证()AAS AEB AEC ≌,即可作答.【详解】证明:∵180AEB BED ∠=°−∠,180AECCED ∠=°−∠,BED CED ∠=∠ ∴AEB AEC ∠=∠,在AEB 和AEC △中,ABE ACE AEB AEC AE AE ∠=∠ ∠=∠ =, ∴()AAS AEB AEC ≌,∴BE CE =.【点睛】本题考查了全等三角形的判定与性质,难度较小,熟记全等三角形的判定与性质是解题的关键. 19. 如图,有一块凹四边形的绿地ABCD ,4m AD =,3m CD =,90ADC ∠=°,13m AB =,12m BC =,求这块绿地ABCD 的面积.为【答案】这块空地的面积是224m【解析】【分析】本题主要考查了勾股定理及其逆定理的应用,连接AC ,根据勾股定理求出AC ,再根据勾股定理的逆定理说明90ACB ∠=°,最后根据1122ABC ACD S S BC AC DC AD −=⋅−⋅ 得出答案. 【详解】解:连接AC ,∵90ADC ∠=°,4m AD =,3m CD =,∴()5m AC ,∵13m AB =,12m BC =,∴22222251213CB AC AB +=+==,∴90ACB ∠=°,∴四边形ABCD 面积为:1122ABC ACD S S BC AC DC AD −=⋅−⋅ ()2115123424m 22=××−××=. 答:这块空地面积是224m .20. 如图,网格中每个小正方格的边长都为1,点A 、B 、C 在小正方形的格点上.(1)画出与ABC 关于直线l 成轴对称的A B C ′′△;(2)求ABC 的面积;的(3)求BC 边上的高.【答案】(1)见解析 (2)4.5(3)BC 【解析】【分析】(1)利用网格特点和轴对称的性质画出点A 、B 关于直线l 的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC 的面积;(3)先计算出BC 的长,然后利用面积法求BC 边上的高.【小问1详解】解:如图,A B C ′′△为所作; 【小问2详解】解:ABC 的面积11134121433 4.5222=×−××−××−××=; 【小问3详解】解:设BC 边上的高为h ,∵BC,∴1 4.52h ×=,解得h =即BC 【点睛】本题考查了作图-轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).也考查了勾股定理.21. 如图,在四边形ABED 中,90B E ∠=∠=°,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.【答案】(1)见解析;(2【解析】【分析】(1)根据“∠B=90°,AC ⊥CD”得出∠2=∠BAC ,即可得出答案;(2)由(1)可得AC=CD ,并根据勾股定理求出AC 的值,再次利用勾股定理求出AD 的值,即可得出答案.【详解】(1)证明:∵90B E ∠=∠=°,∴190BAC ∠+∠=°.∵AC CD ⊥,∴1290∠+∠=°, ∴2BAC ∠=∠.在ABC 和CED △中,2,,,BAC B E CB DE ∠=∠ ∠=∠ =()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5AB CE ==,AC CD =.∵2BC =,∴在Rt ABC △中,AC∵CD =∴在Rt ACD △中,AD ==【点睛】本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出2BAC ∠=∠.22. 根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2 如图2,小丽从秋千的起始位置A 处,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m和1.8m ,90BOC ∠=°.问题解决任务1OBD 与COE 全等吗?请说明理由;任务2当爸爸在C 处接住小丽时,小丽距离地面有多高?【答案】任务1:OBD 与COE 全等,理由见解析;任务2:1.4m【解析】【分析】本题考查了利用三角形全等测距离的问题,理解题意及熟知全等三角形的性质与判定是解题关键. 任务1:利用AAS ,证得OBD 与COE 全等;任务2:根据全等三角形性质可求出OE 和OD 的值,进而求出OA 的值,最后根据OA OE AE −=,即可求出问题答案.【详解】解:任务1:由题意,得OB OA OC ,1m AD =, 1.4m BD =, 1.8m CE =,90BDO CEO ∠=∠=°,∴90EOC OCE ∠+∠=°,又90BOC BOD COE ∠=∠+∠=°, ∴BOD OCE ∠=∠,在OBD 与COE 中BOD OCE BDO CEO OB OC ∠=∠ ∠=∠ =, ∴()AAS OBD COE ≌ ;任务2:∵OBD COE ≌ ,∴ 1.4m BD OE ==, 1.8m OD CE ==∴1 1.8 1.4 1.4m AE AO OE AD OD OE =−=+−=+−=,即小丽距离地面有1.4m 高.23. 某电器超市销售A B 两种型号的电风扇,A 型号每台进价为200元,B 型号每台进价分别为150元,下表是近两天的销售情况: 销售时段销售数量销售收入A 种型号B 种型号 第一天3台 5台 1620元 第二天 4台 10台 2760元 (进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B ;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号的电风扇销售单价分别为240元、180元;(2)18;(3)能,方案为A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1620元,4台A 型号10台B 型号的电扇收入2760元,列方程组求解即可;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解即可得出答案;(3)根据利润大于等于1060元,列不等式求出a 的取值范围,结合(2)中a 的取值范围,即可确定方案.【详解】(1)设A. B 两种型号的电风扇的销售价分别为x 、y 元,由题意得3516204102760x y x y += +=解得:240180x y = =答:A 型号电风扇的销售单价为240元,B 型号电风扇的销售单价为180元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30−a)台则200a+150(30−a)≤5400,解得:a ≤18,答:最多采购A 种型号的电风扇18台.(3)根据题意得:(240−200)a+(180−150)(30−a)≥1060,解得a ≥16,∵在(2)的条件下a ≤18,∴16≤a ≤18∵a 为正整数,∴a 可取16,17,18,∴符合题意的方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台;答:在(2)条件下超市销售完这30台电风扇能实现利润不少于1060元的目标,方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,根据售价乘以销量等于销售收入列方程组是解题的关键.24. 等腰Rt ABC △中,=AB AC ,=90BAC °∠.的(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且=45DAE ∠°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF .①求证:AED AFD ≌ .②当3BE =,7CE =时,求DE 的长;(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE ,当=3BD ,=9BC 时,则DE 的长 __________.(直接给出答案). 【答案】(1)①证明见解析;②297(2)或【解析】【分析】(1)①利用全等三角形的判定定理即可求证;②证=90DCF ∠°,进而在Rt DCF 中利用勾股定理即可求解;(2)分情况讨论点E 在线段BC ,点D 在线段CB 的延长线上,即可求解.【小问1详解】 ①证明:如图1中,BAE CAF ≅ ,AE AF ∴=,BAE CAF ∠=∠, =90BAC ∠° ,=45EAD ∠°,+=+=45CAD BAE CAD CAF ∴∠∠∠∠°,DAE DAF ∴∠=∠,在AED △和AFD △中,===AE AF EAD FAD AD AD ∠∠,(SAS)AED AFD ∴≅ .②解:如图1中,设DE x =,则7CD x =−.AB AC = ,=90BAC °∠,==45B ACB ∴∠∠°,==45ABE ACF ∠∠° ,=90DCF ∴∠°,(SAS)AED AFD ≅ ,DE DF x ∴==,在Rt DCF △中,∵222DF CD CF =+,3CFBE ==, ∴()22273x x =−+,解得297x, ∴297DE =. 【小问2详解】解:①当点E 在线段BC 上时,如图2中所示,连接BE :90BAC EAD ∠=∠=°EAB DAC ∴∠=∠,AE AD AB AC ==()EAB ADC SAS ∴ ≌45,6ABE C ABC EB CD ∴∠=∠=∠=°==90EBD ∴∠°=222226345DE BE BD ∴=+=+=DE ∴②当点D 在线段CB 的延长线上,如图3中所示,连接BE :同法可证DBE 是直角三角形12,3EB CD DB ===222222123153DE BE BD ∴=+=+=DE ∴ 【点睛】本题考查了全等三角形的判定与性质、用勾股定理解三角形等知识点.分类讨论的数学思想是解决本题的重要思路.。
24-25学年八年级数学期中模拟卷01(全解全析)【测试范围:八年级上册第11章~第13章】(人教版
2024-2025学年八年级数学上学期期中模拟卷01(人教版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八年级上册第十一章~第十三章。
5.难度系数:0.75。
一、选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.未来计算机发展方向是让计算机能看、能听、能说、会思考!下列表示计算机视觉交互应用的图标中,文字上方的图案是轴对称图形的是()A.B.C.D.【答案】A【详解】A. 沿此直线对折,两边能完全重合,是轴对称图形,故此项正确;选项B、C、D均找不到一条直线对折,使得直线两边的图形能完全重合,所以都不是轴对称图形,故此三项均错误;故选:A.2.下列长度的三条线段能组成三角形的是()A.3cm,4cm,5cmB.2cm,2cm,4cm C.1cm,6cm,7cm D.2cm,6cm,9cm【答案】A【详解】解:A 、3+4>5,能组成三角形,符合题意;B 、2+2=4,不能组成三角形,不符合题意;C 、1+6=7,不能组成三角形,不符合题意;D 、2+6<9,不能组成三角形,不符合题意.故选:A .3.下面作三角形最长边上的高正确的是( )A .B .C .D .【答案】C【详解】解:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选C.4.已知一个多边形的内角和是720°,则该多边形的边数为( )A .4B .6C .8D .105.如图,已知ABC DEF ≌△△,且60,40A B Ð=°Ð=°,则F Ð的度数是( )A .80°B .70°C .60°D .50°【答案】A【详解】解:∵60,40A B Ð=°Ð=°,∴180604080ACB Ð=°-°-°=°,∵ABC DEF ≌△△,∴80A B F C Ð=°Ð=;故选A .6.等腰三角形一腰上的高与另一腰的夹角为54°,则该等腰三角形底角的度数为( )A .72°B .72°或36°C .36°D .72°或18°7.如图,在ABC V 中,DE 是AC 的垂直平分线,3cm AE =,ABD V 的周长为12cm ,则ABC V 的周长为( )A .15cmB .16cmC .17cmD .18cm8.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C 【详解】解:AD Q 是BAC Ð的平分线,且,,4DE AB DF AC DE ^^=,4DF DE \==,9.如图,△ABC 的面积为10cm 2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .3cm 2B .5cm 2C .6cm 2D .8cm 2,ABP EBP Ð=Ð,90°,10.如图,已知,AB AC AE AF ==,则ABE ACF V V ≌的根据是( )A .ASAB . AASC .SSSD .SAS 【答案】D 【详解】解:在ABE V 与ACF △中,AB AB A A AE AF =ìïÐ=Ðíï=î,∴()SAS ABE ACF ≌△△,故选:D .11.如图,Rt △ABC 中,ÐACB =90°,AC =6,BC =8,AB =10,BD 平分ÐABC ,如果点M ,N 分别为BD ,BC 上的动点,那么CM +MN 的最小值是( )A .4B .4.8C .5D .6【答案】B 【详解】解:如图所示:过点C 作CE ⊥AB 于点E ,交BD 于点M ,过点M 作MN ⊥BC于点N,∵BD 平分∠ABC ,∴ME =MN ,∴CM +MN =CM +ME =CE .∵Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,CE ⊥AB ,12.如图,已知ABC V 和ADE V 都是等腰三角形,90BAC DAE Ð=Ð=°,BD ,CE 交于点F ,连接AF ,下列结论:①BD CE =;②BF CF ^;③AF 平分CAD Ð;④45AFE Ð=°.其中正确结论的个数有( )A .①②③B .①②④C .②④③D .①③④二、填空题(本题共6小题,每小题2分,共12分.)13.如图,9060ABC ABD D CAD Ð=°Ð=°V V ≌,,,则ABD Ð的度数为 .【答案】60°/60度【详解】∵60ABC ABD CAD Ð=°V V ≌,,∴18060ABD D DAB Ð=°-Ð-Ð=°,故答案为:60°.14.若点()12A a -,与点()21B b -,关于x 轴对称,则a b += .【答案】2【详解】解:∵点()12A a -,与点()21B b -,关于x 轴对称,∴1212a b -=-=-,,解得31,==-a b ,∴312a b +=-=.故答案为:2.15.如图,在Rt △ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,DE ⊥AB 于E ,若DE =2cm ,则BC = cm .16.如图,△ABC ≌△ADE ,若∠B =70°,∠C =30°,∠DAC =25°,则∠EAC 的度数为 .【答案】55°/55度【详解】解:∵∠B =70°,∠C =30°,∴∠BAC =180°﹣70°﹣30°=80°,∵△ABC ≌△ADE ,∴∠DAE =∠BAC =80°,又∠DAC =25°,∴∠EAC =∠DAE ﹣∠DAC =80°﹣25°=55°.故答案为:55°.17.如图,在四边形ABCD 中,60D Ð=°,若沿图中虚线剪去D Ð,则12Ð+Ð= .18.如图,等边ABC V 的边长为12cm ,M ,N 两点分别从点AB 同时出发,沿ABC V 的边顺时针运动,点M的速度为1cm/s ,点N 的速度为2cm/s ,当点N 第一次到达B 点时,M ,N 两点同时停止运动,则当M ,N 运动时间t = s 时,AMN V 为等腰三角形.【答案】4或16【详解】如图1所示,设点M 、N 运动x 秒后,AN =AM ,由题意可知,AN =12-2x ,AM =x ,∴12-2x =x ,解得x =4,∴点M 、N 运动4秒后,AMN V 是等腰三角形;如图2所示,假设AMN V 是等腰三角形,∴AN =AM ,ÐAMN =ÐANM ∴ÐAMC =ÐANB④ÐC =ÐB =60° ,AC =AB ∴ACM △≌ABN V (AAS ),∴CM =BN设点M 、N 运动y 秒后,AN =AM ,由题意可知,∴CM =y -12,NB =36-2y ,∵CM =BN ,∴y -12=36-2y ,解得y =16,故假设成立,∴当点M 、N 运动4秒或16秒时,AMN V 为等腰三角形.故答案为:4或16.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)已知三角形的三边长分别为a―2,a―1和a+1,求a的取值范围.【详解】解:∵―2<―1<1,(1分)∴a―2<a―1<a+1,(2分)∵三角形的三边长分别为a―2,a―1和a+1,∴a―2+a―1>a+1a―2>0,(4分)∴a>4.(6分)20.(6分)如图,(1)求作一点P,使P至M,N的距离相等,且到AB,BC的距离相等;(2)在BC上求一点Q,使QM+QN最小.(2)解:如图,点Q即为所求.(6分)21.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC V 的顶点均在格点上,点A 的坐标为(6,4)-.(1)作111A B C △,使其与ABC V 关于x 轴对称.(2)在y 轴上画出点P ,使PA PC +的值最小.A 关于y 轴的对称点A ¢,(4分)A C³¢三点共线时,PA PC +有最小值,(6分)如图所示,点P即为所求.22.(10分)如图,在△ABC中,点D在边BC上.(1)若∠1=∠2=35°,∠3=∠4,求∠DAC的度数;(2)若AD为△ABC的中线,△ABD的周长比△ACD的周长大3,AB=9,求AC的长.【详解】(1)解:∵∠1=∠2=35°,∴∠3=∠1+∠2=70°,(2分)∵∠3=∠4,∴∠3=∠4=70°,(4分)∴∠DAC=180°―∠3―∠4=40°;(5分)(2)解:∵AD为△ABC的中线,∴BD=CD,(6分)∵△ABD的周长比△ACD的周长大3,∴AB+AD+BD―(AC+AD+CD)=3,(7分)∴AB+AD+BD―AC―AD―CD=3,(8分)∴AB ―AC =3,∵AB =9,∴AC =6.(10分)23.(10分)如图,点B ,F ,C ,E 在直线l 上,点A ,D 在l 的两侧,,,∥Ð=Ð=AB DE A D AB DE .(1)求证:ABC DEF ≌△△;(2)若10,3BE BF ==,求FC 的长.24.(10分)如图所示,在ABC V 中,DE 是边AB 的垂直平分线,交AB 于E ,交AC 于D ,连接BD .(1)若ABC C Ð=Ð,50A Ð=°,求DBC Ð的度数.(2)若AB AC =,且BCD △的周长为18cm ,ABC V 的周长为30cm ,求BE 的长.25.(12分)【教材呈现】以下是人教版八年级上册数学教材第53页的部分内容.如图1,四边形ABCD 中,AD CD =,AB CB =.我们把这种两组邻边分别相等的四边形叫做“筝形”.【性质探究】(1)如图1,连接筝形ABCD 的对角线AC 、BD 交于点O ,试探究筝形ABCD 的性质,并填空:对角线AC 、BD 的关系是: ;图中ADB Ð、CDB Ð的大小关系是:.【概念理解】(2)如图2,在ABC V 中,AD BC ^,垂足为D ,EAB V 与DAB V 关于AB 所在的直线对称,FAC V 与DAC △关于AC 所在的直线对称,延长EB ,FC 相交于点G .请写出图中所有的“筝形”,并选择其中一个进行证明;【应用拓展】(3)如图3,在(2)的条件下,连接EF ,分别交AB 、AC 于点M 、H .求证:B A C FE G Ð=Ð.【详解】解:(1)∵DA DC =,BA BC =,∴BD 垂直平分AC ,∵AC BD ^,AD CD =,∴ADB CDB Ð=Ð;(2分)(2)图中的“筝形”有:四边形AEBD 、四边形ADCF 、四边形AEGF ;(3分)证明四边形AEBD 是筝形:由轴对称的性质可知AE AD =,BE BD =;\四边形AEBD 是筝形.同理:AF AD =,CD CF =;\四边形ADCF 是筝形.连接EF ,∵AE AD =,AF AD =,∴AE AF =,∴AEF AFE Ð=Ð,∵AD BC ^,∴90AEG AFG ADB ADC Ð=Ð=Ð=Ð=°,∴GEF GFE Ð=Ð,∴EG FG =,∴四边形AEGF 是筝形;(8分)(3)证明:如图3中,由轴对称的性质可知:CAD CAF Ð=Ð,BAD BAE Ð=Ð,90ADB AEB Ð=Ð=°,AD AF AE ==,∴()22EAF EAD DAF BAD DAC BAC Ð=Ð+Ð=Ð+Ð=Ð,AEF AFE Ð=Ð,2180EAF AEF ÐÐ\+=°,22180BAC AEF ÐÐ\+=°,90BAC AEF ÐÐ\+=°,90FEG AEF Ðа+=Q , BAC FEG \Ð=Ð.(12分)26.(12分)等腰Rt ABC △,90ACB Ð=°,AC BC =,点A 、C 分别在x 轴、y 轴的正半轴上.(1)如图1,求证:BCO CAO Ð=Ð;(2)如图2,若5OA =,2OC =,求B 点的坐标;(3)如图3,点(0,3)C ,Q 、A 两点均在x 轴上,且12AQ =.分别以AC 、CQ 为腰,第一、第二象限作等腰Rt CAN V 、等腰Rt QCM V ,连接MN 交y 轴于P 点,OP 的长度是否发生改变?若不变,求出OP 的值;若变化,求OP 的取值范围.【详解】(1)解:如图1,90ACB Ð=°Q ,=90AOC а,90BCO ACO CAO ACO \Ð+Ð=°=Ð+Ð,D ,则90CDB AOC Ð=Ð=°Q 等腰Rt CAN V 、等腰Rt QCM V ,180MCQ ACN \Ð+Ð=°,360180180ACQ MCN \Ð+Ð=°-°=°,CNH ACQ \Ð=Ð,又90HCN ACO QAC ACO Ð+Ð=°=Ð+ÐQ ,HCN QAC \Ð=Ð,在HCN V 和QAC △中,CNH ACQ CN AC HCN QAC Ð=Ðìï=íïÐ=Ðî,(ASA)HCN QAC \△≌△,CH AQ \=,HN QC =,QC MC =Q ,HN CM \=,Q 12AQ =,12CH \=,NH CM ∥Q ,PNH PMC \Ð=Ð,\在PNH △和PMC △中,HPN CPM PNH PMC HN CM Ð=ÐìïÐ=Ðíï=î,。
八年级上册数学期中测试题及答案
八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)
2024-2025学年八年级数学上学期期中模拟试卷(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:华东师大版第11章数的开方~第13章全等三角形。
5.难度系数:0.68。
第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1)2.下列运算正确的是()A.a3+a2=a5B.C.a2_a3=a5D.(a2)4=a6【答案】C【解析】A.a3和a2不是同类项,不能合并,故选项错误,不符合题意;B.,故选项错误,不符合题意;C.a2_a3=a5,故选项正确,符合题意;D.(a2)4=a8,故选项错误,不符合题意;故选C.3.如图AB=DE,∠B=∠E,添加下列条件仍不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.D.AC=DF【答案】D【解析】A.AB=DE,∠B=∠E,∠A=∠D,可利用ASA证明△ABC≌△DEF,故该选项不符合题意;B.AB=DE,∠B=∠E,∠ACB=∠DFE,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;C.由可得出∠ACF=∠DFE,再结合AB=DE,∠B=∠E,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;D.用AB=DE,∠B=∠E,AC=DF,SSA无法证明△ABC≌△DEF.故该选项符合题意;故选D.4.设a=a在两个相邻整数之间,则这两个整数是()A.2和3B.3和4C.4和5D.5和65.下列因式分解正确的是()A.2a2―4a=2(a2+a)B.―a2+4=(a+2)(a―2)C.a2―10a+25=a(a―10)+25D.a2―2a+1=(―a+1)2【答案】D【解析】A、2a2―4a=2a(a―2),该选项分解错误,不合题意;B、―a2+4=―(a2―4)=―(a+2)(a―2),该选项分解错误,不合题意;C、a2―10a+25=(a―5)2,该选项分解错误,不合题意;D、a2―2a+1=(1―a)2=(―a+1)2,该选项分解正确,符合题意;故选D.6.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC 【答案】B 【解析】令AB 、CD 交于点O ,则∵∠1=∠2,∠AOD =∠BOC,∴∠B =∠D ,∵∠2=∠3,,即∠ACB =∠ECD ,在和中,B =?D ACB =?ECD :cAC =EC,,∴AB =ED .故选B .7.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .4m 2+12m +9B .3m +6C .3m 2+6mD .2m 2+6m +9【解析】根据题意,得:(2m+3)2―(m+3)2=[(2m+3)+(m+3)][(2m+3)―(m+3)]=(3m+6)m=3m2+6m故选C.8.观察下列各式:,…,根据你发现的规律,若式子=a、b为正整数)符合以上规律,则a+b的平方根是().A.B.4C.―4D.∵,的平方根是;9.设a=x―2022,b=x―2024,c=x―2023.若a2+b2=16,则c2的值是( ) A.5B.6C.7D.8【答案】C【解析】,b=x―2024,c=x―2023,,a―b=2,∵a2+b2=16,∴(a―b)2+2ab=16,∴ c 2=(a ―1)(b +1)=ab +a ―b ―1=6+2―1=7,故选C .10.如图,在中,AB =AC ,点D 、F 是射线BC 上两点,且,若AE =AD ,∠BAD =∠CAF =15°,则下列结论中①是等腰直角三角形;②;③;④BC ―12EF =2AD ―CF .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵,∴,∵∠BAD =∠CAF ,∴,又∵AB =AC ,∴是等腰直角三角形,故结论①正确;∵AB =AC ,,∴∠B =∠ACB =45°,在和中,AB =AC BAD =?CAE ADa =AE,∴,∴,∴,即,故结论②正确;∵,∴,∴,故结论,,∴,∴,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。
专题 期中模拟测试卷(压轴题综合测试卷)(人教版)(原卷版)-2024-2025学年八年级数学上册
专题期中模拟测试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(24-25八年级上·河北廊坊·阶段练习)在下列条件:①∠AA+∠BB=∠CC,②∠AA:∠BB:∠CC=5:3:2,③∠AA= 90°−∠BB,④∠AA=2∠BB=3∠CC,⑤一个外角等于与它相邻的内角.中,能确定△AABBCC是直角三角形的条件有()A.2个B.3个C.4个D.5个2.(24-25八年级上·全国·单元测试)已知数轴上点A,B,C,D对应的数字分别为−1,1,x,7,点C在线段BBBB上且不与端点重合,若线段AABB,BBCC,CCBB能围成三角形,则x可能是()A.2 B.3 C.4 D.53.(23-24八年级上·内蒙古呼伦贝尔·期中)如图,EEBB交AACC于点MM,交FFCC于点BB,∠EE=∠FF=90°,∠BB=∠CC,AAEE=AAFF,给出下列结论:①∠1=∠2;②BBEE=CCFF;③△AACCAA≌△AABBMM;④CCBB=BBAA,其中正确的有()A.①②③B.①②④C.①③④D.②③④4.(24-25八年级上·江苏无锡·阶段练习)如图,∠AA=∠BB=90°,AABB=60,EE、FF分别为线段AABB和射线BBBB上的一点,若点EE从点BB出发向点AA运动,同时点FF从点BB出发向点BB运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AACC上取一点GG,使△AAEEGG与△BBEEFF全等,则AAGG的长为()A.18 B.88 C.88或62 D.18或705.(24-25八年级上·湖北荆州·阶段练习)如图,在△AABBCC中,∠AACCBB=90°,AACC=BBCC,点C的坐标为(−2,0),点B的坐标为(1,6),则A点的坐标为()A.(8,−2)B.(−8,3)C.(−6,2)D.(−6,3)6.(23-24八年级上·福建莆田·期中)如图,在五边形AABBCCBBEE中,∠BBAAEE=142°,∠BB=∠EE=90°,AABB=BBCC,AAEE=BBEE.在BBCC,BBEE上分别找一点MM,AA,使得△AAMMAA的周长最小时,则∠AAMMAA+∠AAAAMM的度数为()A.76° B.84° C.96° D.109°7.(24-25八年级上·重庆江北·开学考试)如图,点D是△AABBCC边BBCC上的中点,点E是AABB上一点且BBEE=3AAEE,F、G是边AABB上的三等分点,若四边形FFGGBBEE的面积为14,则△AABBCC的面积是()A.24 B.42 C.48 D.56 8.(2024·江苏·模拟预测)如图,将四边形纸片AABBCCBB沿MMAA折叠,使点AA落在四边形CCBBMMAA外点AA′的位置,点BB落在四边形CCBBMMAA内点BB′的位置,若∠BB=90°,∠2−∠1=36°,则∠CC等于()A.36°B.54°C.60°D.72°9.(23-24八年级上·江苏南通·期中)如图,在△AABBCC中,∠BBAACC和∠AABBCC的平分线AAEE,BBFF相交于点OO,AAEE交BBCC 于EE,BBFF交AACC于FF,过点OO作OOBB⊥BBCC于BB,下列四个结论:①∠AAOOBB=90°+12∠CC;②当∠CC=60°时,AAFF+ BBEE=AABB;③OOEE=OOFF;④若OOBB=aa,AABB+BBCC+CCAA=2bb,则SS△AAAAAA=aabb.其中正确的结论是()A.①②③B.②③④C.①③④D.①②④10.(23-24八年级上·湖北荆门·期末)如图,C为线段AAEE上一动点(不与点A,点E重合),在AAEE同侧分别作等边△AABBCC和等边△CCBBEE,AABB交于点O,AABB与BBCC交于点P,BBEE与CCBB交于点Q,连接PPPP,OOCC.以下六个结论:①AABB=BBEE;②PPPP∥AAEE;③AAPP=BBPP;④BBEE=BBPP;⑤∠AAOOBB=60°;⑥OOCC平分∠AAOOEE,其中正确的结论的个数是()A.3个B.4个C.5个D.6个评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(24-25八年级上·江苏宿迁·阶段练习)在的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△AABBCC关于某条直线对称的格点三角形,最多能画个个.12.(24-25八年级上·黑龙江哈尔滨·阶段练习)风筝又称“纸鸢”、“风鸢”、“纸鹞”等,起源于中国东周春秋时期,距今已有2000多年的历史,如图是一款风筝骨架的简化图,已知AABB=AABB,BBCC=CCBB,AACC=90cm,BBBB=60cm,制作这个风筝需要的布料至少为cm2.13.(24-25八年级上·四川德阳·阶段练习)如图所示,由五个点组成的图形,则∠AA+∠BB+∠CC+∠BB+∠EE=度.14.(24-25八年级上·内蒙古呼和浩特·阶段练习)如图,在Rt△AABBCC中,∠AACCBB=90°,AACC=6,BBCC=8,AABB=10,AABB是∠BBAACC的平分线,若PP,PP分别是AABB和AACC上的动点,则PPCC+PPPP的最小值是.15.(24-25八年级上·福建福州·阶段练习)如图,在△AABBCC中,AABB=AACC,∠BBAACC=120°,AABB⊥BBCC于点D,点P是CCAA延长线上一点,点O在AABB延长线上,OOPP=OOBB,下面的结论:①∠AAPPOO−∠OOBBBB=30°;②△BBPPOO是等边三角形;③AABB−AAPP=AAOO;④SS四边形AAAAAAAA=2SS△AAAAAA,其中正确的结论是.评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(23-24八年级上·山东菏泽·期末)如图,在平面直角坐标系中,AA(−1,4),BB(−3,3),CC(−2,1).(1)画出△AABBCC关于xx轴的对称图形△AA1BB1CC1;(2)求△AABBCC的面积;(3)在yy轴上找一点PP,使得△PPBBCC的周长最小.17.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在四边形AABBCCBB中,AACC平分∠BBAABB,过CC作CCEE⊥AABB 于EE,并且∠AABBCC+∠AABBCC=180°.(1)求证:BBCC=BBCC.(2)求证:AAEE=12(AABB+AABB).18.(6分)(24-25八年级上·湖北孝感·阶段练习)如图,△AABBBB和△CCAAEE是等腰直角三角形,其中∠BBAABB=∠CCAAEE=90°,AABB=AABB,AAEE=AACC,过A点作AAFF⊥CCBB,垂足为点F.(1)求证:△AABBCC≌△AABBEE;(2)若CCAA平分∠BBCCEE,求证:CCBB=2BBFF+BBEE.19.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在△AAOOBB和△CCOOBB中,OOAA=OOBB,OOCC=OOBB,若∠AAOOBB=∠CCOOBB=60°,连接AACC、BBBB交于点P;(1)求证∶△AAOOCC≌△BBOOBB.(2)求∠AAPPBB的度数.(3)如图(2),△AABBCC是等腰直角三角形,∠AACCBB=90°,AACC=BBCC,AABB=14cm,点D是射线AABB上的一点,连接CCBB,在直线AABB上方作以点C为直角顶点的等腰直角△CCBBEE,连接BBEE,若BBBB=4cm,求BBEE的值.20.(6分)(23-24八年级上·江苏南通·阶段练习)如图:△AABBCC是边长为6的等边三角形,P是AACC边上一动点.由点A向点C运动(P与点AA、CC不重合),点Q同时以点P相同的速度,由点B向CCBB延长线方向运动(点Q不与点B重合),过点P作PPEE⊥AABB于点E,连接PPPP交AABB于点D.(1)若设AAPP的长为x,则PPCC=_________,PPCC=____________.(2)当∠BBPPBB=30°时,求AAPP的长;(3)点PP,PP在运动过程中,线段EEBB的长是否发生变化?如果不变,直接写出线段EEBB的长;如果变化,请说明理由.21.(8分)(24-25八年级上·湖北省直辖县级单位·阶段练习)如图①,在△AABBCC中,∠AABBCC与∠AACCBB的平分线相交于点P.(1)若∠AA=60°,则∠BBPPCC的度数是;(2)如图②,作△AABBCC外角∠MMBBCC,∠AACCBB的角平分线交于点Q,试探索∠PP,∠AA之间的数量关系;(3)如图③,延长线段BBPP,PPCC交于点E,在△BBPPEE中,存在一个内角等于另一个内角的3倍,请直接写出∠AA的度数是.22.(8分)(23-24八年级上·湖北黄石·期末)在平面直角坐标系中,AA(−5,0),BB(0,5),点C为x轴正半轴上一动点,过点A作AABB⊥BBCC交y轴于点E.(1)如图①,若CC(3,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OOCC<5,其它条件不变,连接BBOO,求证:BBOO平分∠AABBCC;(3)若点C在x轴正半轴上运动,当OOCC+CCBB=AABB时,求∠OOBBCC的度数.23.(9分)(24-25八年级上·山东济宁·阶段练习)(1)问题背景:如图1,在四边形AABBCCBB中,AABB=AABB,∠BBAABB= 120°,∠BB=∠AABBCC=90°,E、F分别是BBCC,CCBB上的点,且∠EEAAFF=60°,探究图中线段BBEE、EEFF、FFBB之间的数量关系.小李同学探究此问题的方法是:延长FFBB到点G,使BBGG=BBEE.连接AAGG,先证明△AABBEE≌△AABBGG,再证明△AAEEFF≌△AAGGFF,可得出结论.他的结论应是______________________.(2)如图2,在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,EE,FF分别是边BBCC,CCBB上的点,且∠EEAAFF= 12∠BBAABB.(1)中的结论是否仍然成立?请写出证明过程.(3)在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,E,F分别是边BBCC,CCBB所在直线上的点,且∠EEAAFF= 12∠BBAABB.请直接写出线段EEFF,BBEE,FFBB之间的数量关系.。
2024年八年级上册数学期中考试模拟试卷 人教版
人教版2024—2025学年八年级上学期数学期中考试模拟试卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图案不是轴对称图形的是( )A .B .C .D .2、下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm3、如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条让其固定,其所运用的几何原理是( )A .三角形的稳定性B .垂线段最短C .两点确定一条直线D .两点之间,线段最短4、下列说法中,表示三角形的重心的是( )A .三角形三条中线的交点B .三角形三条高所在的直线的交点C .三角形三条角平分线的交点D .三角形三条边的垂直平分线的交点5、等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A .55°,55°B .70°,40°或70°,55°C .70°,40°D .55°,55°或70°,40°6、如图,在Rt △ABC 中,∠ABC =90°,DE 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,∠BAE =20°,则∠C 的度数是( )A .30°B .35°C .40°D .50°7、使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .两条边对应相等8、如图,点D 、E 分别在AC 、AB 上,已知AB =AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( )A .∠B =∠C B .AD =AE C .∠BDC =∠CEB D .BD =CE9、若P =(x ﹣3)(x ﹣4),Q =(x ﹣2)(x ﹣5),则P 与Q 的大小关系是( )A .P >QB .P <QC .P =QD .由x 的取值而定10、如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补,若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立;(2)OM +ON 的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1二、填空题(每小题3分,满分18分)11、已知点A (a ﹣1,﹣2)与点B (﹣5,b +5)关于x 轴对称,则a +b = .12、等腰三角形的周长为11cm ,其中一边长为2cm ,则该等腰三角形的腰长为 .13、一个多边形的每一个外角都等于60°,则这个多边形的内角和为 度.14、如图,AD 平分∠CAB ,若S △ACD :S △ABD =4:5,则AB :AC = .15、如图,△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的角平分线,若∠EAD =10°,∠C =70°,则∠B 的度数为 .16、如图,在等腰△ABC 中,AB =AC =8,∠ACB =75°,AD ⊥BC 于D ,点M 、N 分别是线段AB 、AD 上的动点,则MN +BN 的最小值是 .三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,在△ABC 中,点D 为∠ABC 的平分线BD 上的一点,过点D 作EF ∥BC 交AB 于点E ,交AC 于点F ,连接CD ,若BE +CF =EF .求证:△CFD 是等腰三角形.19、如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 的对称的△A 1B 1C 1;(2)在DE 上画出点P ,使P A +PC 最小;(3)在DE 上画出点Q ,使QA ﹣QB 最大.20、如图,在△ABC 中,AB =AC ,D 是BC 上任意一点,过点D 分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.21、已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)求AD的长.22、某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A,B两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明哪种方案成本最低,最低成本是多少元?23、如图,直线MN一侧有一等腰Rt△ABC,其中∠ACB=90°,CA=CB,直线MN过顶点C,分别过点A,B作AE⊥MN,BF⊥MN,垂直分别为点EF,∠CAB的角平分AG交BC于点O,交MN于点G,连接BG,满足AG⊥BG,延长AC,BG交于点D.(1)证明:CE=BF;(2)求证:AC+CO=AB;(3)若BG=2,求线段AO的长度.24、定义:有一组对角互补的四边形叫做互补四边形.(1)互补四边形ABCD中,若∠B:∠C:∠D=2:3:4,则∠A=°;(2)已知:如图1,在四边形ABCD中BD平分∠ABC,AD=CD,BC>BA.求证:四边形ABCD是互补四边形;(3)如图2,互补四边形ABCD中,∠B=∠D=90°,AB=AD,CD=3,点E,F分别是边BC,CD 的动点,且∠EAF=∠BAD,△CEF周长是否变化?若不变,请求出不变的值;若有变化,说明理由.25、在平面直角坐标系中,点A的坐标为(0,a),点B的坐标为(b,0),且a、b满足a2﹣12a+36+|a﹣b|=0.点C为x轴负半轴上一个动点,OC<OB,BD⊥AC于点D,交y轴于点E.(1)求点A、点B的坐标;(2)求证:OD平分∠CDB.(3)延长BD到点F,使得BF=AB,连接CF若此时∠ACF=∠ABF,2∠DAO=∠ABD,画出图形并证明:CD+CF=AD.。
2024—2025学年人教版八年级上册数学期中考试模拟试卷
2024—2025学年人教版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、运动会中有各种比赛项目,如图可以看作是轴对称图形的是()A.B.C.D.2、若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.83、下列条件中,不能得到等边三角形的是()A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形4、下列命题中,不正确的是()A.关于直线对称的两个三角形一定全等B.角是轴对称图形C.等边三角形有3条对称轴D.等腰三角形一边上的高、中线及这边所对角的角平分线重合5、等腰三角形的两边分别为3cm,4cm,则它的周长是()A.10cm B.11cmC.16cm或9cm D.10cm或11cm6、如图,已知∠A=60°,则∠D+∠E+∠F+∠G的度数为()A.180°B.240°C.300°D.360°7、在△ABC和△DEF中,已知∠A=∠D,AB=DE,下列添加的条件中,不能判定△ABC≌△DEF的是()A.BC=EF B.∠C=∠F C.AC=DF D.∠B=∠E8、如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A=()A.40°B.60°C.80°D.120°9、如图,∠AOB=30°,P是∠AOB的角平分线上的一点,PM⊥OB于点M,PN∥OB交OA于点N,若PM=1,则PN的长为()A.1B.1.5C.3D.210、如图,△ABC的面积为6cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.2cm2B.2.5cm2C.3cm2D.3.5cm2第8题第9题第10题二、填空题(每小题3分,满分18分)11、点P(2,3)关于x轴的对称点的坐标为.12、为了使矩形相框不变形,通常可以在相框背后加根木条固定.这种做法体现的数学原理是.13、将一副三角尺按如图所示的方式叠放在一起,则图中∠α的度数是.14、等腰三角形的一个角是70°,则它的底角是.15、如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=7,DE=3,则BC=.16、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.2024—2025学年人教版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.18、如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.19、如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.20、如图,P为∠MON平分线上一点,P A⊥OM于A,PB⊥ON于B.(1)求证:OA=OB;(2)求证:OP垂直平分AB.21、如图,已知AC平分∠BAD,CE⊥AB于E点,∠ADC+∠B=180°.(1)求证:BC=CD;(2)2AE=AB+AD.22、如图,点E在△ABC外部,点D在边BC上,DE交AC于点F,若∠1=∠2=∠3,AB=AD,(1)求证:△ABC≌△ADE.(2)若AF=FC,EF=3DF,且S=1,则△ABC的面积是多少?△DFC23、如图,在8×8的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)若x轴有一点P使得△P AC为等腰三角形,则x轴上满足条件的点P共有个;(3)在y轴上找一点Q,使QB+QC的值最小,请在图中标出点Q;(4)求△ABC的面积.24、如图1,在平面直角坐标系中,点A、点M在y轴的正半轴上(点M在点A的上方),点B在x轴的正半轴上,AC平分∠MAB,AC的反向延长线交∠ABO 的平分线于点D,BD交y轴于点E.(1)∠ABO=52°时,求∠ABD和∠D的度数;(2)如图2,当点A、点B分别在y轴、x轴的正半轴上任意运动时,∠D的大小是否变化?若不变化,请求出∠D的度数,若变化,请说明理由;(3)当∠ABO等于多少度时,∠DAE=∠DEA.25、如图,在平面直角坐标系中,已知A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足(a﹣b)2+|b+8|=0,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD.(1)A点的坐标为,∠OAB的度数为;(2)如图1,若点C在第一象限,试判断OC与OD的数量关系与位置关系,并说明理由;(3)如图2,若点C的坐标为(3,﹣2),连接CD,DE平分∠ODC,BD与OC交于点F.①求D点的坐标;②试判断DF与CE的数量关系,并说明理由.。
24-25八年级数学期中模拟卷(全解全析)【测试范围:八年级上册第1章-第3章】(青岛版)
2024-2025学年八年级数学上学期期中模拟卷(青岛版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:青岛版八年级上册第1章~第3章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【详解】A.是轴对称图形,符合题意;B.不是轴对称图形,不符合题意;C. 不是轴对称图形,不符合题意;D. 不是轴对称图形,不符合题意;故选:A.2.已知等腰三角形的一个内角等于110°,则它的两个底角是()A.55°,55°B.35°,35°C.55°,35°D.30°,50°【答案】B【详解】解:∵等腰三角形的一个内角等于110°,且三角形内角和为180°,∴这个等腰三角形的顶角为110°,3.如图,已知AE=CF,AD∥BC,添加一个条件后,仍无法判定△ADF≌△CBE的是()A.DF=BE B.AD=CB C.∠B=∠D D.BE∥DF【答案】A【详解】解:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.∵AD∥BC,∴∠A=∠C,根据∠A=∠C,DF=BE,AF=CE不能推出△ADF≌△CBE,故本选项符合题意;B.∵AD=CB,∠A=∠C,AF=CE,∴△ADF≌△CBE(SAS),故本选项不符合题意;C.∵∠D=∠B,∠A=∠C,AF=CE,∴△ADF≌△CBE(AAS),故本选项不符合题意;D.∵BE∥DF,∴∠BEC=∠DFA,又∵AF=CE,∠A=∠C,∴△ADF≌△CBE(ASA),故本选项不符合题意;故选:A.4.化简x―2x÷x)A.x+2x B.x―2xC.1x―2D.1x+25.如图,在△ABC 中,AC =5,AB =7,AD 平分∠BAC ,DE ⊥AC ,DE =2,则△ABD 的面积为( )A .14B .12C .10D .7∵AD 平分∠BAC ,DE ⊥AC ,∴DF =DE =2,∴S △ABD =12AB·DF =12×7×6.如图,把长方形纸片ABCD 沿EF 对折,若∠1=52°,则∠AEF 的度数为( )A .114°B .115°C .116°D .117°∴∠AEF=180°―∠BFE=116°,故选:C.7.光明家具厂生产一批学生课椅,计划在30天内完成并交付使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为()A.30x+200x+100=23B.30x―200x+100=23C.30x+200x―100=23D.30x―200x―100=238.已知关于x的方程2x+mx―2=3的解是正数,则m的取值范围为()A.m<-6B.m>-6C.m>-6且m≠-4D.m≠-49.如图1,四边形ABCD是长方形纸带,其中AD∥BC,∠DEF=20°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE的度数是()图1图2图3A.110°B.120°C.140°D.150°【答案】B【详解】解:在图(1)中,∵AD∥BC,∴∠DEF=∠EFB=20°,在图(2)中∠GFC=180°―2∠EFG=140°,在图(3)中∠CFE=∠GFC―∠EFG=120°,故选:B.10.如图,在ΔABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG.连接FG,交DA的延长线于点E,连接BG,CF.则下列结论:①BG=CF;②BG⊥CF;③EF=EG;④BC=2AE;⑤SΔABC=SΔFAG,其中正确的有( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤【答案】D【详解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF,AC=AG,∴ΔCAF≌ΔGAB(SAS),∴BG=CF,故①正确;∵ΔCAF≌ΔGAB,∴∠FCA=∠BGA,又∵BG与AC所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴ΔAFM≌ΔBAD(AAS),∴AM=BD,同理ΔANG≌ΔCDA,∴NG=AD,AN=CD,∴FM=NG,∵FM⊥AE,GN⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴ΔFME≌ΔGNE(AAS),∴EM=EN,∴BC=CD+BD=AN+AM=AE+EN+AE―EM=2AE.故④正确,∵ΔFME≌ΔGNE,∴EF=EG.故③正确.∵ΔAFM≌ΔBAD,ΔANG≌ΔCDA,ΔFME≌ΔGNE,∴SΔABC=SΔFAG,故⑤正确.故选:D.二、填空题(本题共6小题,每小题3分,共18分.)11.若分式4x―2有意义,则x的取值范围是.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.【答案】58°/58度【详解】∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,AB=AC∠BAD=∠EACAD=AE,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.13.在平面直角坐标系中,已知点M (m ―1,2m +4)在x 轴上,则点M 的坐标为 .【答案】(―3,0)【详解】解:由题意得,2m +4=0,解得m =―2,∴m ―1=―3,∴M (―3,0),故答案为:(―3,0).14.如图,平面上有△ACD 与△BCE ,其中AD 与BE 相交于点P ,若AC =BC ,AD =BE ,CD =CE ,∠ACE =55°,∠BCD =155°,则∠ACB 的度数为 .15.如图,已知等边三角形ABC 的边长为3,过AB 边上一点P 作PE ⊥AC 于点E ,Q 为BC 延长线上一点,取PA =CQ ,连接PQ ,交AC 于点M ,则ME 的长为 .60°,∠AFP=∠ACB=60°.16.如图所示,在四边形ABCD中,AD=2,∠A=∠D=90°,∠B=60°,BC=2DC,在AD上找一点P,使PC+PB 的值最小,则PC+PB的最小值为.【答案】4【详解】解:作C关于AD的对称点C1,连接C1D、PC1、BC1,∴CD=C1D,∵∠ADC=90°,∴PC=PC1,∴PB+PC=PB+PC1,如图,∵PB+PC1≥BC1,∴当C1、P、B三点共线时,PB+PC1最小,即PB+PC最小,此时PB+PC=BC1过C1作C1E⊥AB交BA的延长线于E,过C作CF⊥AB交AB于F,∴∠E=∠AFC=∠BFC=90°,∴CC1=2CD,∵BC=2DC,∴CC1=BC,∴∠ADC=∠DAF=90°,三.解答题(本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)解方程:(1)1x =2x+1;(2)x -2x+2-16x 2-4=1.∴x=―2是原方程的增根,∴原方程无解.(10分)18.(8÷x,再从―3<x<2的范围内选取一个合适的整数代入求值.x―119.(10分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)(2)如图,△A ′B ′C ′即为所求;(7分)(3)如图,点P 即为所求.(10分)20.(10分)如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在AB,BC,AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)求证:∠B =∠DEF ;21.(10分)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校120千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.22.(12分)阅读材料,并解决问题:我们知道,分子比分母小的分数叫做“真分数”,分子大于或等于分母的分数,叫做“假分数”.类似的,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于字母的次数时,我们称之为“真分式”.如x―1x+1,x 2x+1这样的分式就是假分式;再如3x+1,2x x 2+1这样的分式就是真分式,假分数74可以化成1+34(即134)带分数的形式,类似的,假分式也可以化为带分式(整式与真分式的和或差)的形式,如:x+1x―1=x―1+2x―1=x―1x―1+2x―1=1+2x―1,再如:3x 2+4x―1x+1=3x (x+1)+x―1x+1=3x (x+1)+x+1―2x+1=3x (x+1)x+1+x+1x+1―2x+1=3x +1―2x+1,这样,分式就被拆分成了带分式(即一个整式3x +1与一个分式2x+1的差)的形式.解决问题:(1)判断:x+2x+1是真分式还是假分式: (填“真分式”或“假分式”);如果是,化成带分式的形式: ;(2)思考:当x 取什么整数时,分式5x 4+9x 2+6x 2+2的值为整数?(3)探索:当a 为何值时,分式3a 2―12a+17a 2―4a+5有最大值?最大值是多少?23.(12分)(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上∠BAD,上述结论是否仍然成立?说明理由;的点,且∠EAF=12(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以80海里/小时的速度前进,舰艇乙沿北偏东50°的方向以100海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°(即:∠EOF=70°),试直接写出此时两舰艇之间的距离.相交于点C,。
北师版八年级数学上册 期中模拟考试卷02
2024-2025学年八年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版八上册第一至四章(勾股定理+实数+位置与坐标+一次函数)。
5.难度系数:0.65第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.(2024·云南昆明·三模)在函数y =中,自变量x 的取值范围是()A .2024x ≥B .2024x ≥-C .2024x >D .2024x >-2.下列计算正确的是()A=B =6´C =D 4=3.(23-24八年级上·江苏无锡·期中)在22703π,中,无理数有()A .0个B .1个C .2个D .3个4.(22-23八年级上·山东青岛·期中)若点A 的坐标(),x y 满足条件()2320x y -++=,则点A 在()A .第一象限B .第二象限C .第三象限D .第四象限5.(22-23八年级·宁夏石嘴山·期中)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A .1B C .6,7,8D .2,3,46.(23-24八年级上·四川成都·期中)已知一次函数24y x =-+,那么下列结论正确的是()A .y 的值随x 的值增大而增大B .图象经过第一、二、三象限C .图象必经过点(1,2)D .与y 轴交于(0,4)-7.(23-24八年级上·陕西宝鸡·期中)已知在平面直角坐标系中,点()3,5A a --与点()1,7B b +关于x 轴对的值为(精确到0.1)()A .3.4B .3.5C .3.6D .3.78.(23-24八年级上·重庆·期中)已知点(),P k b -在第二象限,则直线y kx b =+的图象大致是()A .B .C .D .9.(22-23八年级上·江苏连云港·期中)有一个边长为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2022次后形成的图形中所有的正方形的面积和是()A .2023B .2022C .2021D .110.(22-23八年级·重庆璧山·期中)甲,乙两车从A 地开往B 地,并以各自的速度匀速行驶,甲车比乙车早出发2h ,并且甲车途中休息了0.5h ,甲、乙两车行驶的路程(km)y 与甲车的行驶时间(h)x 的函数关系如图所示.当甲、乙两车相距50km 时,乙车的行驶时间为()A .9h 4或19h 4B .1h 4或11h 4C .1h4D .19h 4第二部分(非选择题共90分)二、填空题(本大题共3小题,每小题3分,满分18分)11.(23-24八年级上·甘肃酒泉·期中)已知x 的平方根是8±,则x 的立方根是.12.(22-23八年级上·浙江金华·期中)已知()()()1231,,1.8,,2,y y y -是直线3y x m =-+(m 为常数)上的三个点,则123,,y y y 的大小关系.13.(22-23八年级上·江苏泰州·期中)点P 到x 轴的距离为3,到y 轴的距离为2,则第二象限内的点P 的坐标为.14.(22-23七年级上·黑龙江绥化·a ,b ,则a b +=.15.(23-24八年级上·重庆·期中)一个圆柱底面周长为16cm ,高为6cm ,则蚂蚁从A 点爬到B 点的最短距离为cm .16.(22-23八年级上·辽宁阜新·期中)如图,在平面直角坐标系中,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点.点C 在第二象限.若C 点坐标(),1.2m 则四边形OABC 的面积(用含m 的代数式表示).三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(8分)(22-23八年级·河南漯河·期中)计算:⎛⎫ ⎪ ⎪⎝⎭;(2)22)+-.18.(8分)(23-24八年级·江苏南通·期中)已知3y -与42x -成正比例,且当1x =时,5y =.(1)求y 与x 的函数关系式;(2)设点(),2a -在(1)中函数的图象上,求a 的值.19.(8分)(23-24八年级上·河南商丘·期末)如图,在直角坐标系中,()()()153043A B C ---,,,,,.(1)在图中作出ABC V 关于y 轴对称的图形111A B C △;(2)写出点1C 的坐标;(3)求ABC V 的面积.20.(8分)(23-24八年级下·山东济南·期末)小明和小亮学习了“勾股定理”之后,为了测量风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为15米;②根据手中剩余线的长度计算出风筝线BC 的长为25米;③牵线放风筝的小明的身高为1.6米.(1)求风筝的垂直高度CE ;(2)如果小明想风筝沿CD 方向下降12米,则他应该往回收线多少米?21.(8分)(23-24八年级上·全国·课后作业)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.22.(8分)(23-24八年级上·陕西西安·期中)观察下列各式,并解答下列问题:第122112=+第2233223=+.第3344334=+.……(1)写出第4个等式:______.(2)猜想第n 个等式:______.(3)22123329910010099++++ 23.(10分)(23-24八年级上·陕西西安·期中)联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种,设A 套餐每月话费为1y (元),B 套餐每月话费为2y (元),月通话时间为x 分钟.(1)分别表示出1y 与x ,2y 与x 的函数关系式;(2)如果该手机用户使用A 套餐且本月缴费50元,求他本月的通话时间?(3)若该用户这个月的通话时间为160分钟,请分别计算使用套餐A 和套餐B 应缴费多少元?24.(14分)(23-24八年级·海南·期中)如图①,在长方形ABCD 中,10cm AB =,8cm BC =、点P 从A出发,沿A B C D →→→路线运动,到D 停止;点P 的速度为每秒1cm ,a 秒时点P 改变速度,变为每秒cm b ,图②是点P 出发x 秒后,APD △的面积()2cm S 与(x 秒)的关系图象;(1)当点P 在AB 上运动时,APD △的面积会_______,点P 在BC 上运动时,APD △的面积会______,点P 在CD 上运动时,APD △的面积会________;(填“增大”或“减小”或“不变”)(2)根据图②提供的信息,求出a 、b 及图②中c 的值;(3)设点P 离开点A 的路程为()cm y ,请写出动点P 改变速度后y 与出发后的运动时间(x 秒)的关系式.(4)当点P 出发后几秒时,APD △的面积S 是长方形ABCD 面积的142024-2025学年八年级数学上学期期中模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季
八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列图形中是轴对称图形的是()A.B.C.D.2.已知三角形的三边长分别为3,x,7,则x的值可能是()A.3B.5C.10D.113.下列判断错误的是()A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合4.下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.5.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点确定一点直线B.两点之间线段最短C.同角的余角相等D.三角形具有稳定性6.如图,已知∠C=∠C1=90°,能直接用“HL”判定Rt△ABC≌Rt△A1B1C1的条件是()A.∠C=∠C1,AB=A1B1 B.AB=A1B1,AC=A1C1C.AC=A1C1,BC=B1C1 D.∠B=∠B1,BC=B1C17.如图,△ABC≌△DCB,∠DBC=40°,则∠BOC的度数为()A.100°B.80°C.40°D.140°8.A、B、C为三个小区,A、B、C三个小区的学生人数比为3:7:4,现在要在△ABC所在的平面上建造一个学校P,使得所有学生走的路程和最短,则学校P应该选在()A.点C处B.△ABC三条中线的交点处C.点B处D.∠A和∠B的角平分线的交点处9.如图,△ABC的外角∠DAC和∠FCA的平分线交于点E,∠EAC和∠ECA 的平分线交于点M,若∠B=48°,则∠M的度数为()A.114°B.122°C.123°D.124°10.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.8二、填空题(每小题3分,满分18分)11.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于.12.点A(a,b)与点B(3,﹣4)关于y轴对称,则a+b的值为.13.某多边形的内角和与外角和相等,这个多边形的边数是.14.等腰三角形的一个角是70°,则等腰三角形的顶角的度数是.15.已知a,b,c为△ABC的三边,化简:3|a+b﹣c|+2|a﹣b﹣c|=.16.如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若∠1+∠2+∠3=96°,则∠3的度数为.第II卷八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?18.如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,则∠NMA的度数是;(2)连接MB,若BC=6,△MBC的周长是14.①求△ABC的周长;②若P是直线MN上一个动点,则PB+PC的最小值是.20.已知点C在线段BE上,且△ABC和△DCE都是等边三角形,连接BD,AE,分别交AC,DC于点M,N.(1)求证:△AEC≌△BDC;(2)求证:CM=CN.21.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.22.如图1,在四边形ABCD中,∠A=∠C=90°,AB=CD,将四边形ABCD沿对角线BD翻折,点C落到点F处,BF交AD于点E.(1)求证:EB=ED;(2)如图2,延长BA,DF交于点G,连接GE并延长交BD于点H.求证:∠ADB=∠BGH.23.如图,在△ABC中,AB=AC=3,∠B=50°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=105°时,∠BAD=°,∠DEC=°;(2)若DC=AB,求证:△ABD≌△DCE;(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知三点A(0,a)(a>0),B(0,b)(b≤0),C(c,0)(c<0),且(a﹣b)2=c2.(1)试判断线段AB与OC的数量关系,并证明;(2)如图1,当b=0时,连接AC,点P是线段AC上一点,CQ⊥OP于Q,连接AQ.若∠AQP=45°,试探究CQ和OQ之间数量关系;(3)如图2,当b<0时,点D在x轴负半轴上,位于点C的左侧,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠CED的度数是否为定值?如果是,请求出∠CED的度数;如果不是,请说明理由.25.如图,平面直角坐标系中,A(0,a),B(b,0)且a、b满足|a+2b﹣6|+|a﹣2b+2|=0.E为线段上一动点,∠BED=∠OAB,BD⊥EC,垂足在EC的延长线上,试求:(1)判断△OAB的形状,并说明理由;(2)如图1,当点E与点A重合时,探究线段AC与BD的数量关系,并证明你的结论;(3)如图2,当点E在线段AB(不与A、B重合)上运动时,试探究线段EC与BD的数量关系,证明你的结论.。
北京师范大学附属实验中学2024—-2025学年八年级上学期期中考试模拟数学试卷 (无答案)
北师大附属实验中学2024—2025学年度第一学期期中模拟初二年级数学班级:姓名: 学号: 考生须知1.本试卷8页;共四道大题,28道小题;满分为110分;考试时间为100分钟.2.在两张试卷和一张答题卡上准确填写班级、姓名、学号.3.试卷答案、作图一律填写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题须用2B 铅笔将选中项涂黑涂满,用铅笔作图,其他试题用黑色字迹签字笔作答.命题人:韩璐 刘中国审题人:胡波平一、选择题(本题共10小题,每小题2分,共20分)1.下列图案是从4个班的班徽中截取出来的,其中属于轴对称图形的是( )A. B. C. D.2.下列运算正确的是( )A. B. C. D.3.如图,对正方形进行分割,利用面积恒等能验证的等式是( )A. B.C. D.4.如图,已知∠1=∠2,则不能判定的条件是( )233m m m =+623623m m m =⋅()2293m m =mm m =÷66()44222+-=-x x x ()44222++=+x x x ()()4222-=-+x x x ()x x x x 222-=-ACD ABD ≌△△A. B. C. D.AD 平分∠BDC5.如图,图中两个三角形全等,则∠1的度数为( )A.45°B.62°C.73°D.135°6.如图,∠AOB 是一个任意角,在边OA 、OB 上分别取,移动角尺,使角尺两边相同的刻度分别与点M 、N 重合,则过角尺顶点C 的射线OC 就是∠AOB 的平分线,其依据是( )A.角平分线上的点到角两边距离相等B.角的内部到角两边距离相等的点在这个角的平分线上C.三边分别相等的两个三角形全等,全等三角形的对应角相等D.两边及其夹角分别相等的两个三角形全等,全等三角形的对应角相等7.平面内,下列关于轴对称的说法中,正确的是( )A.两个全等三角形一定关于某条直线成轴对称B.对称点连线是对称轴的垂直平分线C.等腰三角形的对称轴是它底边上的中线D.成轴对称的两个图形一定全等8.如图,先将正方形ABCD 沿MN 对折,再把点B 折叠到MN 上,折痕为AE ,点B 在MN 上的对称点为H ,沿AH 和DH 剪下△ADH ,则下列选项正确的是()AC AB =CD BD =C B ∠=∠ON OM =A. B.C. D.9.如图,在△ABC 中,,,点D 是BC 的中点,连接AD ,那么线段AD 的长度有可能是( )A.1B.2C.3D.410.若a 、b 、c 是△ABC 的三条边,且,则△ABC 一定是( )A.直角三角形B.三条边都不相等的三角形C.等腰三角形D.等边三角形二、填空题(本大题共8道小题,每小题2分,共16分)11.平面直角坐标系中,点A 的坐标是,则点A 关于x 轴对称得到的点的坐标是,点A 关于y 轴对称得到的点的坐标是 .12.若是完全平方式,则常数k 的值为 .13.如图,在△ADB 和△CBD 中,,,那么由所给条件判定△ADB 和△CBD 全等的依据可以简写为 .14.如图,在△ABC 中,,点D 在边AC 上且满足,若∠A =40°,则∠ABD = °.15.分式有意义,则x 需要满足的条件是 .ADDH AH ==AD DH AH ≠=DH AD AH ≠=AHAD DH ≠=1=AB 6=AC ()b a c b a -=-22()3,2-k x x +-62DBC ADB ∠=∠BC AD =AC AB =BC BD =22+-x x16.如图,点C 和点F 在线段AD 上,,,,若,则 .17.已知:,,则 .18.在平面直角坐标系xOy 中,横、纵坐标都是整数的点为整点. 若坐标系内两个整点和能使关于x 的等式恒成立,则称点B 是点A 的分解点.例如:、满足且,所以点B 是点A 的分解点.(1)点(3,2)的分解点的坐标是 ;(2)在点、、中,不存在分解点的点是 .三、解答题(本大题共64分)19.(8分)计算:(1);(2).20.(8分)因式分解:(1);(2).21.(5分)先化简,再求值:,其中,.22.(8分)下面是小明设计的“作三角形一边上的高”的尺规作图过程.已知:如图,△ABC .(∠B 为锐角且)求作:△ABC 的边BC 上的高AD .作法:①以点A 为圆心,AB 长为半径画弧,交BC 于点M;CD AF =︒=∠=∠90D A ︒=∠=∠60E B 3=AB =EF 5=-b a 1522=+b a =ab ()q p A ,()()n m n m B ≤,()()n x m x q px x ++=++2()3,4A ()3,1B ()()31342++=++x x x x 31≤()0,3C ()3,0-D ()4,0-E ()()23222632y x xyy x -÷-⋅()()()2113--+-x x x 2244y xy x +-23123xy x -()()()b a b a b a a -+--22242-=a 1=b AB AC >②分别以点B ,M为圆心,以大于的长为半径画弧,两弧相交于点N ;③作直线AN 交BC 于点D ,则线段AD 即为所求△ABC 的边BC 上的高.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)直线AN 是线段BM 的 .点N 在这条直线上的依据是.23.(9分)如图,,,AC 和BD 相交于点E ,∠BEC 的平分线交BC 于点F . 求证:.24.(9分)如图,在平面直角坐标系xOy 中,点A 坐标为,点B 坐标为,直线l 经过点(1,0)且与x 轴垂直,连接AB.(1)请在图中画出线段AB 关于直线l 对称后的图形——线段,点A 的对称点的坐标为 ,点B 的对称点的坐标为 ;(2)直线l 上有一动点P ,当取最小值时,请在图中画出点P ;(3)在坐标轴上取点Q ,使△ABQ 为等腰三角形,这样的点Q 有个.25.(8分)利用垂直平分线将三角形分割出等腰三角形:BM 21︒=∠=∠90D A DB AC =BC EF ⊥()3,1-()0,2-''B A 'A 'B BP AP +图1图2 图3(1)如图1所示,△ABC 中,,AC 的垂直平分线交BC 于点D ,连接AD ,那么图中出现的等腰三角形是 ;(2)如图2所示,△ABC 中,,AC 的垂直平分线交BC 于点D ,连接AD ,那么图中出现的等腰三角形是 ;(3)请利用上述方法,将图3中的直角三角形分割成三个等腰三角形.26.(9分)如图,在△ABC 中,,,点D 是边BC 上的动点,连接AD ,点C 关于直线AD 的对称点为点E ,射线BE 与射线AD 交于点F .图1 备用图(1)依题意在图1中补全图形;(2)记,求∠ABF (用含的式子表示);(3)若△ACE 是等边三角形,写出EF 和BC 的数量关系: ,并证明.四、附加题(共10分,第1题4分,第2题6分)1.观察下列各式,回答问题:①;②;③;……(1);BC AB <︒=∠90BAC AC AB =︒=∠90BAC ()︒<=∠45ααDAC α()()1112-=+-x x x ()()11132-=++-x x x x ()()111423-=+++-x x x x x ()()=+++++-112910x x x x x(2)按此规律,第n 个等式是: ;(3)的值的末位数字是 .2.在平面直角坐标系xOy 中,直线l 为一、三象限角平分线. 点P 关于y 轴的对称点称为点P 的一次反射点,记作P 1;P 1关于直线l 的对称点称为点P 的二次反射点,记作P 2. 例如:如图1所示,点的一次反射点P 1为(2,5),二次反射点P 2为(5,2). 根据定义,回答下列问题:图1图2(1)如果点A 在第一象限,那么点A 的二次反射点A 2在第 象限;(2)若点B 在第二象限,点B 1、B 2分别是点B 的一次、二次反射点,当为等边三角形时,射线OB 与y 轴正半轴的夹角大小为 ;(3)点C 的坐标为(a ,2),点D 的坐标为,正方形EFGH 的四个顶点坐标分别为、、、,若在线段CD 上的所有点中,恰有一个点的二次反射点落在正方形EFGH 的边上,直接写出a 的取值范围.2024202332222221++++++ ()5,2-P 21B OB △()2,2+a a ()3,1-E ()3,4-F ()6,4-G ()6,1-H。
2024-2025学年八年级数学上学期期中模拟卷(重庆专用,人教版八上第11~13章)(全解全析)
2024-2025学年八年级数学上学期期中模拟卷(重庆专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版八上第11~13章(三角形、全等三角形、轴对称)含七年级部分内容。
5.难度系数:0.69。
第一部分(选择题共40分)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.学校为庆祝国庆,在校内张贴了“爱我中华”四字标语,这些汉字中是轴对称图形的是()A.B.C.D.【答案】C【解析】A、“爱”不是轴对称图形,故该选项不符合题意;B、“我”不是轴对称图形,故该选项不符合题意;C、“中”是轴对称图形,故该选项符合题意;D、“华”不是轴对称图形,故该选项不符合题意.故选C.V的高的图形是()2.下面四个图形中,线段BD是ABCA.B.C.D.【答案】D【解析】A.线段BD是BDA△的高,选项不符合题意;B.线段BD是BDA△的高,选项不符合题意;C.线段BD是BDA△的高,选项不符合题意;V的高,选项符合题意.D.线段BD是ABC故选D.3.下列长度的各组线段可以组成三角形的是()A.2,3,5B.5,7,4C.4,4,8D.2,4,64.已知多边形的内角和是1080°,则这个多边形是几边形?()A.六边形B.七边形C.八边形D.十边形【答案】C【解析】设这个多边形是n边形,则(n-2)•180°=1080°,解得:n=8,即这个多边形为八边形.故选C.5.下列说法,正确的是()A.等腰三角形的高、中线、角平分线互相重合B.到三角形二个顶点距离相等的点是三边垂直平分线的交点C.三角形一边上的中线将三角形分成周长相等的两个三角形D .两边分别相等的两个直角三角形全等【答案】B【解析】A 、等腰三角形底边上的高、中线、顶角的角平分线互相重合,错误;B 、到三角形二个顶点距离相等的点是三边垂直平分线的交点,正确;C 、三角形一边上的中线将三角形分成面积相等的两个三角形,错误;D 、若一个直角三角形的斜边和直角边与另一个直角三角形的两个直角边相等则这两个直角三角形不全等,错误;故选B .6.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是( )A .39B .44C .49D .547.如图,若31A Ð=°,那么A B C D E Ð+Ð+Ð+Ð+Ð=( )A .90°B .180°C .211°D .242°【答案】D【解析】根据题意,180AFG AGF A Ð+Ð=°-ÐQ ,180CFG AFG Ð+Ð=°,180EGF AGF Ð+Ð=°()()360360180180CFG EGF AFG AGF A A\Ð+Ð=°-Ð+Ð=°-°-Ð=°+Ð又CFG B C Ð=Ð+ÐQ ,EGF D E Ð=Ð+Ð,A B C D E\Ð+Ð+Ð+Ð+ÐA CFG EGF=Ð+Ð+Ð1802A =°+Ð180231=°+´°=242°故选D .8.如图,在ΔABC 中,AB AC =,6BC =,且ΔABC 面积是24,AC 的垂直平分线EF 分别交,AC AB 边于点,E F ,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM D 周长的最小值为( )A .9B .10C .11D .12BC 边的中点,9.如图,已知CAE BAD Ð=Ð,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D Ð=Ð;④B E Ð=Ð.其中能使ABC AED ≌△△的条件有( )A .1个B .2个C .3个D .4个10.如图,在等腰直角ACB △中,90ACB Ð=°,点D 是ACB △内部一点,连接DC 并延长至点E ,连接AE 、,BE AD BE ^,垂足为点,G AG 交BC 于点Q ,延长AC 交BE 于点F ,连接DF ,EAC DAC Ð=Ð.给出以下结论:①CF CQ =;②DE 平分AEB Ð;③若点G 为BF 的中点,连接GC 并延长交AE 于点H ,则AH CH DG =+:④2ACE ADFE S S =四边形△.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D 【解析】∵90ACB Ð=°,AD BE ^,∴90FCB ACB AGB Ð=°=Ð=Ð,∵AQB ACQ CAQ AGB CBF Ð=Ð+Ð=Ð+Ð,∴CAQ CBF Ð=Ð,∵AC BC =,∴ACQ BCF V V ≌,∴CF CQ =,故①正确;∵CAQ CBF Ð=Ð,EAC DAC Ð=Ð,∴EAC EBC Ð=Ð,∵AC BC =,90ACB Ð=°,∴45CAB CBA Ð=Ð=°,∴EAC CAB EBC CBA Ð+а=Ð+Ð,∴EAB EBA Ð=Ð,∴AE EB =,又∵AC BC =,EC EC =,∴EAC EBC V V ≌,∴AEC BEC Ð=Ð,∴DE 平分AEB Ð;故②正确;∵点G 为BF 的中点,AG BF ⊥,∵AE BE =,EN 平分Ð∴EN AB ^,∵AC BC =,CN AB ^∴CN 平分ACB Ð,∴45ACN BCN Ð=Ð=°∵90,FCQ CF CQ Ð=°=,∴45FQC DCQ Ð=°=Ð,∴FQ ED ∥,∴CDF CDQ S S =V V ,∵CFM CDF CDM S S S =-V V V ,DMQ CDQ CDM S S S =-V V V ,∴CFM DMQ S S =V V ,∵ACQ BCF V V ≌,∴ACQ BCF S S =V V ,∵ACQ CMF DMQ ADF S S S S +-=V V V V ,∴ADF ACQ BCF S S S ==V V V ,∴ADF ECF BCF ECF BCE S S S S S +=+=V V V V V ,∵EAC EBC V V ≌,∴EAC EBC S S =V V ,∴2ACE ADF CEF ACE CEB ACE ADFE S S S S S S S =++=+=四边形△△△△△△;故④正确;综上:正确的有4个;故选D .第二部分(非选择题 共110分)二、填空题:本题共8小题,每小题4分,共32分。
陕西省咸阳市秦都中学2024—2025学年八年级上学期11月期中数学试题(含答案)
2024~2025学年度第一学期期中调研试题(卷)八年级数学注意事项:1.本试卷共6页,满分120分,时间120分钟,学生直接在试题上答卷;2.答卷前将装订线内的项目填写清楚.一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列四个实数中,是无理数的为()A.0B.C.D.2.下列各组数据,是勾股数的是()A.B.C.D.3.化简正确的是()A.5B.C.D.4.将直线向上平移2个单位长度,则平移后的直线为()A.B.C.D.5.下列说法正确的是()A.-27的立方根是3B.C.4的算术平方根是2D.1的平方根是16.已知,则直线的图象是下列选项中的()A.B.C.D.7.如图,分别以的三边为斜边向外作,,,且,这三个直角三角形的面积分别为,且,则()A.25B.C.30D.358.在物理实验探究课上,小明利用滑轮组及相关器材进行实验,不计绳重和摩擦,他把得到的拉力和所悬挂重物的重力的几组数据用电脑绘制成如图所示的图象,请你根据图象判断以下结论错误的是()A.当拉力时,物体的重力B.拉力随着重物重力的增加而增大C.拉力与重力成正比例函数关系D.当滑轮组不挂重物时,所用拉力为0.5N二、填空题(共5小题,每小题3分,计15分)9.若,写出一个满足条件的的值为_________.(写出一个即可)10.在中,,若,则的长为_________.11.若一次函数的图象经过点和点,则的大小关系为(填“”“”或“”).12.在平面直角坐标系中,已知点和点关于轴对称,则的值是_________.13.如图,圆柱形杯子(无盖)的高为18cm,底面周长为24cm,已知蚂蚁在外壁处(距杯子上沿2cm )发现一滴蜂蜜在杯子内壁处(距杯子下沿4cm),则蚂蚁从处爬到处的最短距离(杯子厚度忽略不计)为_________cm.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)计算:.15.(5分)在平面直角坐标系中,已知点的坐标为,则点到坐标原点的距离是多少? 16.(5分)已知与成正比例,当时,.(1)求与之间的函数表达式;(2)请判断点是否在这个函数的图象上,并说明理由.17.(5分)在平面直角坐标系中,已知点,根据条件解决下列问题:(1)若点在轴上,求点的坐标;(2)若点在过点且与轴平行的直线上,求点的坐标.18.(5分)已知实数的平方根为,求实数的算术平方根和立方根.19.(5分)如图,在平面直角坐标系中,的三个顶点的坐标分别为,.(1)作出关于轴对称的,点的对应点分别为点;(2)在(1)的条件下,写出点的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级第一学期数学期中模拟试卷
班级 姓名 得分
一、选择题(每题3分,共计27分)
1.下列各组数中不能作为直角三角形的三边长的是 ( ) (A )1.5, 2, 3 (B )7, 24, 25 (C )6, 8, 10 (D )9, 12, 15 2.如图,下列图案是我国几家银行的标志,其中不是..轴对称图形的有 ( )
(A )1个 (B )2个 (C )3个 (D )4个
3.下列说法正确的有 ( ) ① 无限小数是无理数; ② 正方形的对角线的长度都是无理数; ③ 带根号的数都是无理数; ④ 有限小数是有理数; (A )1个 (B )2个 (C )3个
(D )4个
4.在实数
1
2
, -3,-3.14,0,π 中,无理数有 ( ) (A )1个 (B )2个 (C )3个
(D )4个
5.2004年某市完成国内生产总值(GDP )达3466.53亿元,用四舍五入法取近似值,保留3个有
效数字并用科学记数法表示为 ( ) (A )3.47×103
亿元 (B )3.47×104
亿元 (C )3.467×103
亿元 (D )3.467×104
亿元 6.下列扑克牌..的牌面,不是..中心对称图形的是 ( ) (A ) (B ) (C ) (D )
7.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是( ) (A )︒90 (B )︒60 (C )︒45 (D )︒30
第7题 第8题 第10题
8.如图,小方格的面积是1,则图中以格点为端点且长度为5的线段有 ( ) (A )2条 (B )3条 (C )4条 (D )5条
9.下列条件不能证明平行四边形的是 ( ) (A )一组对边相等,一组对边平行 (B )一组对边平行,一组对角相等
D
C
B
A
(C )一组对边平行且相等 (D )对角线互相平分
二、填空题(每题2分,共18分)
10.如图以数轴的单位长度为边作正方形,以数轴上的原点O 为圆心,正方形的对角线的长为半
径作弧与数轴交于一点A ,则点A 表示的数为 . 11.
±
= ;2)5(-= .
12.49的平方根是 ;=-|32|
_______.
13.比较大小:
;3.14 π.
14.若正数m 是小于2+3的整数,则m 的值是 .
15.两个不相等的无理数,它们的乘积为有理数,这两个数可以是 . 16.平行四边形的周长是40cm ,两邻边的比是3:2,则较长边长为 cm . 17.一个直角三角形的两条直角边长是5,24则该直角三角形斜边上的中线为 . 18.如图,已知在四边形ABCD 中,已知AB=CD ,请你再添一个条件 ,
使图中的四边形ABCD 为平行四边形。
三、化简与求解(共12分) 19.(1).求下列各式中的x
①2
250x -= ②3
64(1)27x +=
(2)
.计算:10
2-+
四、画图(本题共10分)
20.如图⑴:P 是∠AOB 平分线上一点,试过点P 画一条直线交OA 、OB 于C 、D ,使△COD 是等腰
三角形,且CD 是底边;
如图⑵:P 不是∠AOB 平分线上一点,如何过点P 画一条直线与角两边的交点组成等腰三角形?你能画出几个满足条件的等腰三角形?请你把它们画出来。
A B
O
.P
A B
O
P .
图⑴ 图⑵
五、解答题(每题8分,共16分)
21.已知:如图,在平行四边形ABCD 中,E 、F 分别在AB 、CD 上,且BE=DF .
问:AF ∥EC 吗?试说明理由.
22、梯形ABCD中,∠B=90°,AB=14cm ,AD=18cm ,BC=21cm ,点P从点A开始沿AD边向点D以1cm/s 的速度移动,点Q从点C开始沿CB边向点B以2cm/s 的速度移动,如果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?
F
E D C
B
A
_ Q
_ P
_ A
_ D
_ C
_ B
要根据自己的情况量力而行喔!
六、生活与数学(下列三个题只需选一个解,多解了以分值最高的题计分,本题满分10分) 23.(A 类6分)如图,厂房屋顶的人字架是等腰三角形,若跨度BC=16m ,上弦长AB=10m ,求
中柱AD 的长.(图中AD ⊥BC )
(B 类8分)如图,一架长为10m 的梯子AB 斜靠在墙上,梯子的顶端距地面的垂直距离是8m .如果梯子的顶端下滑2m ,那么它的底端是否也滑动2m ?请你通过计算来说明.
(C 类10分)为了美化校园,学校准备在三边长分别是7m 、8m 、9m 的三角形空地上种植花草,你能计算出这块空地的面积吗?如果能请写出你的计算过程.(精确到1m 2
)
(A 类) (B 类) (C 类)
你选择的是 类,解答过程如下:
七、探究应用(本题满分7分)
24.如图是2002年国际数学家大会的会标,如果大正方形的面积是34,小正方形的边长是2, 四个直角三角形较长直角边为a ,较短直角边为b ,你能求出2
()a b 的值吗?试试看 信你一定行!
C B
A
98
7
C
B
A 中柱跨度
上弦D
C
B
A。