5.3.2命题、定理、证明
人教版七年级数学下册 5-3-2 命题、定理、证明 教案
教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。
初中数学:5.3.2 命题、定理、证明(人教版七年级数学下册第五章相交线与平行线)
5.3平行线的性质5.3.2命题、定理、证明1.理解命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对命题举反例.(难点)一、情境导入2015年10月,屠呦呦因发现青蒿素治疗疟疾的新疗法获诺贝尔生理学或医学奖.屠呦呦是第一位获得诺贝尔科学奖项的中国本土科学家、第一位获得诺贝尔生理医学奖的华人科学家.青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物.其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体、内质网,此外对核内染色质也有一定的影响.青蒿素的作用方式主要是干扰表膜-线粒体的功能.可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡.要读懂这段报道,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:命题的定义与结构【类型一】命题的判断下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D.方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.【类型二】把命题写成“如果……那么……”的形式把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(2)如果两个角是相等的角,那么它们的余角相等.方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【类型三】命题的条件和结论写出命题“平行于同一条直线的两条直线平行”的条件和结论.解析:先把命题写成“如果……那么……”的形式,再确定条件和结论.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.方法总结:每一个命题都一定能用“如果……那么……”的形式来叙述.在“如果”后面的部分是“条件”,在“那么”后面的部分是“结论”.探究点二:真命题与假命题下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0解析:选项A中,a·b>0可得a、b同号,可能同为正,也可能同为负,是假命题;选项B中,a·b<0可得a、b异号,所以错误,是假命题;选项C中,a·b=0可得a、b 中必有一个字母的值为0,但不一定同时为零,是假命题;选项D中,若a·b=0,则a=0或b=0或二者同时为0,是真命题.故选D.方法总结:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.探究点三:证明与举反例 【类型一】 命题的证明求证:两条直线平行,一组内错角的平分线互相平行.解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.解:如图,已知AB ∥CD ,直线AB ,CD 被直线MN 所截,交点分别为P ,Q ,PG 平分∠BPQ ,QH 平分∠CQP ,求证:PG ∥HQ .证明:∵AB ∥CD (已知),∴∠BPQ =∠CQP (两直线平行,内错角相等).又∵PG 平分∠BPQ ,QH 平分∠CQP (已知),∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP (角平分线的定义), ∴∠GPQ =∠HQP (等量代换),∴PG ∥HQ (内错角相等,两直线平行).方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.【类型二】 举反例举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab =0,则a +b =0.解析:分清题目的条件和结论,所举的例子满足条件但不满足结论即可.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a =5,b =0时,ab =0,但a +b ≠0.方法总结:举反例时,所举的例子应当满足题目的条件,但不满足题目的结论.举反例时常见的几种错误:①所举例子满足题目的条件,也满足题目的结论;②所举例子不满足题目的条件,但满足题目的结论;③所举例子不满足题目的条件,也不满足题目的结论.三、板书设计命题⎩⎪⎨⎪⎧概念结构真、假命题证明与举反例本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力.。
5.3.2命题、定理、证明
2:判断下列命题的真假。真的用“√”, 假的用“× 表示。
1)互为邻补角的两个角的平分线互相垂直( √ ) 2)一个角的补角大于这个角( × ) 3)相等的两个角是对顶角( × ) 4)两点可以确定一条直线( √ ) 5)若A=B,则2A = 2B( √ ) 6)锐角和钝角互为补角( × ) 7)两点之间线段最短( √ ) 8)同角的余角相等(√ ) 9)同旁内角互补( × )
如命题:“如果一个数能被4整除,那么它也能被 2整除”就是一个正确的命题。 如命题:“如果两个角互补,那么它们是邻补角” 就是一个错误的命题。
4.正确的命题叫真命题,错误的命题 叫假命题。
确定一个命题真假的方法: 利用已有的知识,通
过观察、验证、推理、 举反例等方法。
例将下列的命题写成“如果…..,那么 .….. ”的形式,并判断它的真假。
5.3.2 命题、定理、证明
1.定义:判断一件事情的语句叫做命题。
注意: (1)、只要对一件事情作出了判断, 不管正确与否,都是命题。
如:相等的角是对顶角。 (2)、如果一个句子没有对某一件事 情作出任何判断,那么它就不是命 题。 如:画线段AB=CD。
例:判断下列五个语句中,哪个是 命题, 哪个不是命题?并说明理由:
如图,已知直线b∥c,a⊥b,求证a⊥c
证明:∵a⊥b(已知) b ∴∠1=90°(垂直的定义) 又∵ b∥c(已知) 1 ∴∠1=∠2(两直线平行, 同位角相等) ∴ ∠1=∠2=90°(等量代换) ∴a⊥c(垂直的定义)
c
2
a
证明中每一步推理都要有根据, 不能“想当然”。这些根据,可以是 已知条件,也可以是学过的定义、 基本事实、定理等。
课堂小结
5.3.2 命题、定理、证明
解:不是真命题,如下图中∠1=∠2, 但∠1与∠2不是对顶角.
知识拓展
命题的真假是以对事情所作出判断 的正确与否来划分的.
例:(教材例2)如图所示,已知直线 b∥c,a⊥b.求证a⊥c.
„解析‟要证明a⊥c,只需要 证明∠2为90°即可.如果能证 明∠1=∠2,问题即可解决.
证明:因为a⊥b(已知), 所以∠1=90°(垂直的定义). 又b∥c(已知), 所以∠2=∠1(两直线平行,同位角相等). 所以∠1=∠2=90°(等量代换), 所以a⊥c(垂直的定义).
3.证明中的每一步推理都要有根据,根据可以是已知条件,也可以是 学过的定义、基本事实、定理等.
检测反馈
1.下列语句中不是命题的是
A.锐角小于钝角 B.作角A的平分线
( B )
C.对顶角不相等 D.股票不是人民币
解析:根据命题的定义:对一件事情作出判断的语句叫做命 题进行解答.“锐角小于钝角,对顶角不相等,股票不是人 民币”都对一件事情作出了判断,而“作角A的平分线”描 述的是一种行为,没有作出判断,不是命题.故选B.
2.下列命题中,正确的是
( A )
A.对顶角相等 B.同位角相等
C.内错角相等 D.同旁内角互补
解析:对顶角相等,正确;在两平行线被第三条 直线所截的条件下,B,C,D才正确.故选A.
3.请给假命题“一个正数永远大于它的倒数” 举出一个反例:
1 2
.
解析:判断“一个正数永远大于它的倒数”什 么情况下不成立,即找出一个正数小于或等于 它的倒数即可.答案不唯一。
凡是命题都是正确或者是错误的吗?
1.判断下列命题是否正确. (1)如果两个数互为相反数,那么这两个数的商为-1; (2)如果两个角是邻补角,那么这两个角互补; (3)如果两个数互为相反数,那么这两个数的和为0; (4)如果两个数的商为-1,那么这两个数互为相反数; (5)如果两个数的和为0,那么这两个数互为相反数; (6)如果两个角互补,那么这两个角是邻补角.
2022至2023年年初中数学人教版初一下册 5.3.2命题、定理、证明
选择题下列句子中,属于命题的是()A. 直线AB和CD垂直吗B. 作线段AB的垂直平分线C. 同位角相等,两直线平行D. 画∠【答案】C【解析】分别根据命题的定义进行判断.A、直线AB和CD垂直吗?这是疑问句,不是命题,所以A选项错误;B、作线段AB的垂直平分线,这是描叙性语言,不是命题,所以B 选项错误;C. 同位角相等,两直线平行是命题,所以C选项正确;D、画∠,这是描叙性语言,不是命题,所以D选项错误.故选C选择题下列句子是命题的是( )A. 画∠AOB=45°B. 小于直角的角是锐角吗?C. 连结CDD. 三角形内角和等于180°【答案】D【解析】对于选项A、C,由于不能判断其正误,所以不是命题;对于选项B,由于不是陈述句,所以不是命题;对于选项D,根据命题的定义可得D中的句子是命题.故选D.选择题下列语句中,不是命题的是()A. 所有的平角都相等B. 锐角小于90°C. 两点确定一条直线D. 过一点作已知直线的平行线【答案】D【解析】根据命题的定义:判断一件事情的语句叫命题,进行选择.、平角都相等,判断一件事情,故是命题;、锐角小于,判断一件事情,故是命题;、两点确定一条直线,判断一件事情,故是命题;、没判断一件事情,只是叙述一件事情,故不是命题.故选:.选择题下列命题是真命题的是( )A. 同旁内角相等,两直线平行B. 若,则C. 如果,那么D. 平行于同一直线的两直线平行【答案】D【解析】分析: 分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.详解: A. ∠ 同旁内角互补,两直线平行,故是假命题;B. ∠若,则,故是假命题;C. ∠-1>-2满足,但,故是假命题;D. ∠平行于同一直线的两直线平行,故是真命题;故选D.选择题下列命题中,属于真命题的是()A. 互补的角是邻补角B. 在同一平面内,如果a∠b,b∠c,则a∠c。
人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案
-在实际问题中识别和应用所学的命题、定理和证明方法。
举例:针对命题真假判断的难点,设计一些具有迷惑性的命题,让学生分析讨论,如“如果一个角的补角是直角,那么这个角是锐角”这一命题的真假。对于证明方法,通过具体例题展示反证法的步骤,解释反设的意义,并指导学生如何寻找矛盾点。在应用难点方面,给出一些综合性的问题,如“证明一个四边形是平行四边形”,引导学生结合所学定理和证明方法,逐步解决问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的判断和定理的证明这两个重点。对于难点部分,如反证法,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过折叠纸片来验证平行线的性质。
此外,课堂上的实践活动和小组讨论环节,学生们表现得非常积极,这说明他们对于参与到课堂活动中有着很高的热情。但在这一过程中,我也注意到有些学生过于依赖同伴,自己思考得不够深入。因此,我需要在活动中更好地引导他们独立思考,培养他们自主解决问题的能力。
还有一个值得注意的问题是,在新课讲授过程中,我是否把重点和难点讲解得足够清晰。从学生的反馈来看,有些地方还需要我进一步讲解和强调。在今后的教学中,我会更加关注学生的接受程度,及时调整教学方法和节奏,确保他们能够更好地掌握核心知识。
3.成果分享:每个小组将选择一名代表来分享他都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了命题的基本概念、定理的重要性以及证明的方法。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
5.3.2命题、定理、证明
定理 真命题 命题
假命题
举出一个反__例__即可
概念 判断一件事情的语句
组成
_题__设___ _结__论___
如果 那么
1. 下列关于命题的描述中,正确的是 ( C )
A. 命题一定是正确的 B. 真命题一定是定理 C. 定理一定是真命题 D. 一个反例不足以说明一个命题为假命题
2. 命题“内错角相等”是真命题吗?若是,说出 理由,若不是,请举出反例. 答:不是真命题.必须是两直线平行,内错角相等.
(8)若 a<0,b>0,且 a b ,则a+b<0. √
2. 判断下列命题的真假.
(1) 同旁内角互补 (2) 一个角的补角大于这个角
(× ) (× )
(3) 相等的两个角是对顶角
(×)
(4) 两点可以确定一条直线
( √)
(5) 两点之间线段最短
(√)
(6) 同角的余角相等
( √)
(7) 互为邻补角的两个角的平分线互相垂直( √ )
命题 1:如果一个数能被 4 整除,那么它也能被 2 整除. 命题 2:如果两个角互补,那么它们是邻补角.
命题1 命题2
题设 成立 成立
结论 成立 不一定成立
总结 如果题设成立,那么结论一定成立,这样的
命题叫做真命题. 如果题设成立,不能保证结论一定成立,这
样的命题叫做假命题.
命题:相等的角是对顶角.
知识点3:定理与证明
公理 又称基本事实 真命题 线段公理:两点之间线段最短.
命题的分类
定理 经过推理证实 证明
补角的性质、余角的性质等.
假命题
一般举一个反例即可
b 例3 已知:b∥c,a⊥b.求证:a⊥c.
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4
人教版数学七年级下册5.3.2《命题、定理、证明》教学设计4一. 教材分析《人教版数学七年级下册5.3.2命题、定理、证明》这一节主要介绍命题、定理和证明的概念。
通过本节课的学习,学生能够理解命题、定理和证明的定义,掌握判断命题真假的方法,了解证明的两种方法——演绎法和归纳法,并能够运用这些知识解决实际问题。
二. 学情分析七年级的学生已经掌握了基本的数学运算能力和逻辑思维能力,但对命题、定理和证明的概念接触较少。
因此,在教学过程中,需要引导学生从实际问题中抽象出命题、定理和证明的概念,并通过实例让学生理解和掌握这些概念。
三. 教学目标1.了解命题、定理和证明的概念。
2.掌握判断命题真假的方法。
3.掌握证明的两种方法——演绎法和归纳法。
4.能够运用命题、定理和证明的知识解决实际问题。
四. 教学重难点1.重点:命题、定理和证明的概念,判断命题真假的方法,证明的两种方法。
2.难点:证明的两种方法——演绎法和归纳法的理解和运用。
五. 教学方法1.情境教学法:通过实际问题引入命题、定理和证明的概念。
2.实例教学法:通过具体的实例让学生理解和掌握命题、定理和证明的概念。
3.小组讨论法:引导学生分组讨论,培养学生的合作能力和解决问题的能力。
4.教学反馈法:通过提问、练习等方式及时了解学生的学习情况,调整教学进度和方法。
六. 教学准备1.教学PPT:制作含有命题、定理和证明的实例的PPT。
2.练习题:准备一些判断命题真假和运用证明方法的练习题。
3.教学素材:准备一些实际问题作为教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入命题、定理和证明的概念。
例如:在三角形中,如果一个角是直角,那么它的两条边分别是斜边。
这个命题是如何判断真假的?如何用数学语言来表达这个命题?2.呈现(10分钟)介绍命题、定理和证明的定义。
命题是判断某个陈述真假的语句,定理是被证明为真的命题,证明是用逻辑推理的方法来证明定理的过程。
命题、定理、证明
5.3.2(1)命题、定理、证明一.【知识要点】1.判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。
命题的分类(按正确、错误与否分)真命题(正确的命题)假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
定理用推理的方法判断为正确的命题叫做定理。
证明判断一个命题的正确性的推理过程叫做证明。
二.【经典例题】1.把命题“对顶角相等”写成“如果……,那么……”的形式为 .2.在下列命题中:①两条直线相交所成的角是对顶角;①有公共顶点的角是对顶角;①一个角的两个邻补角是对顶角;①有一边互为反向延长线,且相等的两个角是对顶角,其中正确的是.3.已知a、b.、c是同一平面内的3条直线,给出下面6个命题:a∥b, b∥c,a∥c ,a ⊥b,b⊥c,a⊥c,请从中选取3个命题(其中2个作为题设,1个作为结论)尽可能多地去组成一个真命题,并说出是运用了数学中的哪个道理。
举例如下:∵a∥b, b∥c,∴a∥c(平行于同一条直线的两条直线平行)三.【题库】【A】1.把下列命题写成“如果…那么…”的形式:不能被2整除的数是奇数:2.把命题“零没有倒数”改写成“如果……那么……”的形式:如果,那么。
【B】1.把命题“等角的余角相等”改写成“如果…,那么…”的形式是_______________________________. .【C】1.下列说法正确的是()A.延长射线OA到BB.经过两点M/N的直线有且仅有两条C.凡是大于900 的角都是钝角D.直线a经过点M,即是点M在直线a上。
【D】1.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③垂直于同一条直线的两条直线互相垂直。
5.3.2 命题、定理、证明 人教版七年级数学下册重难点专项练习(含答案)
5.3.2《命题、定理、证明》重难点题型专项练习考查题型一命题的判断典例1.(2022春·湖南永州·七年级校考期中)下列语句中,属于命题的是().A.直线和垂直吗?B.过线段的中点画的垂线C.同旁内角互补,两直线平行D.连接,两点【答案】C【分析】分别根据命题的定义进行判断.【详解】解:A、直线和垂直吗?这是疑问句,不是命题,所以A选项错误;B、过线段的中点C画的垂线,这是描叙性语言,不是命题,所以B选项错误;C、同旁内角互补,两直线平行是命题,所以C选项正确;D、连接A、B两点,这是描叙性语言,不是命题,所以D选项错误.故选:C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.变式1-1.下列语句属于命题的是()A.你今天打卡了吗?B.请戴好口罩!C.画出两条相等的线段D.同位角相等【答案】D【分析】根据命题的定义(判断一件事情的语句,叫做命题),逐项判断即可求解.【详解】解:A.你今天打卡了吗?没有作出判断,故该选项不是命题,不符合题意;B.请戴好口罩!没有作出判断,故该选项不是命题,不符合题意;C.画出两条相等的线段,没有作出判断,故该选项不是命题,不符合题意;D.同位角相等,作出判断,故该选项是命题,符合题意.故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.变式1-2.(2022秋·重庆璧山·七年级校联考期中)下列语句中.不是命题的是()A.内错角相等,两直线平行B.对顶角相等C.如果一个数能被2整除.那么它也能被4整除D.画一条线段【答案】D【分析】根据命题的定义,句子可以改写成“如果……那么……”形式,则为命题,如果不能就不是.【详解】解:A.内错角相等,两直线平行,改写成:如果两条直线被第三条直线所截所成的角中,内错角相等,那么这两条直线平行,是命题,故此选项不符合题意;B.对顶角相等,改写成:如果两个角是对顶角,那么这两角相等,是命题,故此选项不符合题意;C.如果一个数能被2整除,那么它也能被4整除,是命题,故此选项不符合题意;D.画—条线段,无法改写,不是命题,故此选项符合题意.故选:D.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果……那么……”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.正确理解命题的定义是解题的关键.变式1-3.(2022秋·安徽宣城·七年级校考期中)下列语句属于命题的个数是()①宣城市奋飞学校是市文明单位②直角等于③对顶角相等④奇数一定是质数吗?A.1B.2C.3D.4【答案】C【分析】根据命题的概念注意判断即可.【详解】解:由命题的概念可知,④不是命题,而①②③均是命题,故选C.【点睛】本题考查了命题的概念,解决本题的关键是掌握命题时表示判断的语句.考查题型二真假命题的判断典例2.(2021春·黑龙江哈尔滨·七年级哈尔滨市虹桥初级中学校校考期中)有下列命题是真命题的是( )A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.有一边互为反向延长线,且和为180°的两个角是邻补角D.过直线外一点有且只有一条直线与这条直线平行【答案】D【分析】根据对顶角的性质和定义,邻补角的定义,平行线的性质,平行线公理逐一判断即可.【详解】A、共顶点,且一个角的两边是另一个角的两边的反向延长线,这样的两个角是对顶角,但是,相等的两个角,若不满足对顶角的定义,也不是对顶角,故此命题是假命题;B、两条平行线被第三条直线所截,同位角相等,故此命题是假命题;C、有一边互为反向延长线,且共顶点与共一条边的两个角是邻补角,故此命题是假命题;D、过直线外一点有且只有一条直线与这条直线平行,是真命题;故选:D.【点睛】本题考查了命题真假的判断,掌握命题所涉的相关知识是关键.变式2-1.(2022春·湖南永州·七年级校考期中)下列不是真命题的是()A.三角形内角和为B.两条直线不相交,就是平行C.任意的等腰三角形都存在着“三线合一”的现象D.三角形至多有一个钝角【答案】B【分析】利用三角形的内角和,等腰三角形的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A.三角形内角和为,正确,是真命题;B.同一平面内,两条直线不相交,就是平行,故原命题错误,是假命题;C.任意的等腰三角形都存在着“三线合一”的现象正确,是真命题;D.三角形至多有一个钝角,正确,是真命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解三角形的内角和,等腰三角形的性质、平行线的性质,难度不大.变式2-2.(2022秋·福建福州·七年级校考期中)下列命题是真命题的是()A.同位角相等B.两个锐角的和是锐角C.若两个角的和为,则这两个角互补D.相等的角是对顶角【答案】C【分析】根据平行线的性质,补角的定义,锐角的定义,对顶角的定义逐项进行判断即可.【详解】解:、两直线平行,同位角相等,故原命题错误,是假命题,不符合题意;B、两个锐角的和可能是锐角、钝角,也可能是直角,故原命题错误,是假命题,不符合题意;C、若两个角的和为,则这两个角互补,正确,是真命题,符合题意;D、相等的角不一定是对顶角,故原命题错误,是假命题,不符合题意.故选:C.【点睛】本题主要考查了命题真假的判定,解题的关键是熟练掌握平行线的性质,补角的定义,锐角的定义,对顶角的定义.变式2-3.(2022秋·北京海淀·七年级校考期中)下列命题中,真命题的个数是( )①相等的角是对顶角;②同位角相等;③等角的余角相等;④如果,那么.A.1B.2C.3D.4【答案】A【分析】根据对顶角、平行线的性质、余角的概念、平方根的概念逐一判断,即可得到答案.【详解】解:①相等的角不一定是对顶角,原说法错误,是假命题;②两直线平行,同位角相等,原说法错误,是假命题;③等角的余角相等,原说法正确,是真命题;④如果,那么,原说法错误,是假命题,即真命题的个数为1,故选:A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.考查题型三命题的题设与结论典例3.(2022秋·福建福州·七年级福建省福州外国语学校校考阶段练习)命题“在同一平面内,垂直于同一条直线的两条直线相互平行”的题设是____________,结论是_____________.该命题是__________命题(填“真”或“假”).【答案】如果在同一平面内,两条直线垂直于同一条直线这两条直线相互平行真【分析】将命题转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”即可找出题设和结论,根据平行线的判定方法判断该命题的真假.【详解】解:原命题可以转化为“如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线相互平行”,故题设是“如果在同一平面内,两条直线垂直于同一条直线”,结论是“这两条直线相互平行”,根据平行线的判定定理,可知该命题是真命题.故答案为:如果在同一平面内,两条直线垂直于同一条直线;这两条直线相互平行;真.【点睛】本题考查命题的概念和平行线的判定,当命题的题设和结论不明显时,可以将命题转化为“如果……,那么……”的形式,“如果”后面是题设,“那么”后面是结论.变式3-1.(2022秋·湖北宜昌·七年级校考期中)命题“内错角相等”的题设是_____,结论是____,它是________(“真”或“假”)命题.【答案】两个角是内错角这两个角相等假【分析】将这个命题改写成“如果,那么”的形式,由此即可得出它的题设和结论,再根据同位角的定义即可判断真假.【详解】解:命题“内错角相等”可改写为“如果两个角是内错角,那么这两个角相等”,则命题“内错角相等”的题设是两个角是内错角,结论是这两个角相等,因为两个内错角不一定相等,所以它是假命题,故答案为:两个角是内错角;这两个角相等;假.【点睛】本题考查了命题的题设与结论、判断命题的真假,熟练掌握将命题改写成“如果,那么”的形式是解题关键.变式3-2.命题“等边对等角”的题设是______结论是______【答案】同一个三角形中的两条边相等;这两条边所对的两个角也相等【分析】判断一件事情的语句叫做命题.任何一个命题都有题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.命题都可以写成“如果…,那么…”的形式,“如果”后接题设部分,“那么”后接结论部分.【详解】解:由于命题“在同一个三角形中,等边对等角”可改写成:在同一个三角形中,如果有两条边相等,那么这两条边所对的两个角相等.所以题设是同一个三角形中的两条边相等,结论是这两条边所对的两个角相等.故答案为:同一个三角形中的两条边相等;这两条边所对的两个角相等.【点睛】对于像本题这样简写的命题,题设和结论不明显,要经过分析,找出命题中的已知事项和由已知事项推出的事项,将命题改写成“如果…,那么…”的形式,从而区分命题的题设和结论.变式3-3.命题“两点之间线段最短"的题设是______________,结论是______________.【答案】连接两点,得到线段;线段最短【分析】命题常常可以写为“如果……那么……”的形式,如果后面接题设,而那么后面接结论;根据上步的知识,从命题的定义出发,寻找题设和结论就可以了.【详解】命题“两点之间线段最短"的题设是:连接两点,得到线段,结论是:线段最短,故答案为:连接两点;线段最短【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.考查题型四写出命题的逆命题典例4.写出命题“两个全等三角形的面积相等”的逆命题______.【答案】若两个三角形面积相等,则这两个三角形全等【分析】根据逆命题的定义,若两个三角形面积相等,则这两个三角形全等即可.【详解】解:命题“两个全等三角形的面积相等”的逆命题是:若两个三角形面积相等,则这两个三角形全等,故答案为:若两个三角形面积相等,则这两个三角形全等.【点睛】本题考查命题概念,弄清楚命题的条件和结论是写出逆命题的关键.变式4-1.“如果,那么”的逆命题为_____.【答案】如果,那么【分析】根据互逆命题的定义,把原命题的题设和结论交换即可.【详解】解:“如果,那么”的逆命题为“如果,那么”.故答案为:如果,那么.【点睛】本题考查了互逆命题的知识,解决本题的关键是掌握两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.变式4-2.写出命题“如果,那么或.”的逆命题:______.【答案】如果或,那么【分析】根据逆命题的写法,把原命题的条件作为结论,结论作为条件即可.【详解】解:命题“如果,那么或.”的逆命题是:如果或,那么,故答案为:如果或,那么.【点睛】题目主要考查命题与逆命题的写法,熟练掌握命题与逆命题的关系是解题关键变式4-3.命题“等腰三角形两底角的平分线相等”的逆命题是________________.【答案】有两条角平分线相等的三角形是等腰三角形【分析】根据逆命题的定义写出即可.【详解】解:命题“等腰三角形两底角的平分线相等”的逆命题是“有两条角平分线相等的三角形是等腰三角形”.故答案是:有两条角平分线相等的三角形是等腰三角形.【点睛】本题考查了互逆命题的知识,掌握逆命题的定义是解题的关键.两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.考查题型五 互逆定理的判断典例5.下列说法正确的是( )A .真命题的逆命题是真命题B .原命题是假命题,则它的逆命题也是假命题C .命题一定有逆命题D .定理一定有逆命题【答案】C【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A .真命题的逆命题不一定是真命题,故本选项错误,不符合题意;B .原命题是假命题,则它的逆命题不一定是假命题,故本选项错误,不符合题意;C .命题一定有逆命题,故本选项正确,符合题意;D .定理不一定有逆命题,故本选项错误,不符合题意;故选:C .【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,也考查了逆命题,逆定理.变式5-1.下列说法错误的是( )A .任何命题都有逆命题B .真命题的逆命题不一定是正确的C .任何定理都有逆定理D .一个定理若存在逆定理,则这个逆定理一定是正确的【答案】C【分析】根据命题,定理的定义对各选项分析判断后利用排除法求解即可.【详解】A.任何命题都有逆命题,故A正确,不符合题意;B.真命题的逆命题不一定为真,故B正确,不符合题意;C.任何定理不一定都有逆定理,故C错误,符合题意;D.定理一定是正确的,一个定理若存在逆定理,则这个逆定理一定是正确的,故D正确,不符合题意.故选:C.【点睛】本题考查了命题,定理的定义.如果一个命题的条件与结论分别是另一个命题的结论与条件,那么这两个命题称为互逆命题.定理是指用逻辑的方法判断为正确并作为推理的根据的真命题.一个命题是真命题,它的逆命题却不一定是真命题,如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理.变式5-2.下列说法正确的是()A.真命题的逆命题也是真命题B.每个命题都有逆命题C.每个定理都有逆定理D.假命题没有逆命题【答案】B【分析】根据命题、逆命题,真假命题的关系对各选项分析判断后利用排除法求解.【详解】解:A、真命题的逆命题可能是真命题,也可能是假命题,故本选项错误;B、一个命题一定有逆命题,正确,故本选项正确;C、一个定理不一定有逆定理,故本选项错误;D、假命题一定有逆命题,错误,故本选项错误.故选B.【点睛】本题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.变式5-3.下列说法中,正确的是()A.真命题的逆命题一定是真命题B.假命题的逆命题一定是假命题C.所有的定理都有逆定理D.所有的命题都有逆命题【答案】D【分析】根据互逆命题的定义对A进行判断;根据命题与逆命题的真假没有联系可对B、C、D进行判断.【详解】解:A、真命题的逆命题不一定是真命题,所以A选项错误;B、假命题的逆命题不一定是假命题,所以B选项错误.C、每个定理不一定有逆定理,所以C选项错误;D、每个命题都有逆命题,所以D选项正确;故选:D.【点睛】本题考查了命题与定理:断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.。
5.3.2命题、定理、证明
五、课堂检测
完成课本第21页练习1,第22页练习1,2
ቤተ መጻሕፍቲ ባይዱ式作业
练习册练习九第7,8
家庭作业
练习册练习九.
一、创设情境
思考下面两句话有何区别?
⑴“你吃饭了吗?” ⑵“今天天气不好”
二、呈现目标
1.了解命题的概念; 2.会判断语句是不是命题; 3.会判断命题的真假; 4.学会区别命题的题设与结论; 5.会将命题写成“如果…那么…”的形式.
三、自主学习
认真阅读课本第20-22页的内容,思考并 完成下列问题,试着把它写在书的相应位置. 1.命题的概念是什么?谈谈你的理解. 2.命题由哪两部分构成?并举例说明. 3.命题分为哪两类?试举例说明. 4.什么是定理?试举例说明. 5.结合第21页例2说明什么是证明? 6.如何判断一个命题是假命题?试举例说明.
人教版七年级数学下册5.3.2《命题、定理、证明》说课稿
人教版七年级数学下册5.3.2《命题、定理、证明》说课稿一. 教材分析《人教版七年级数学下册5.3.2<命题、定理、证明>》这一节主要让学生了解命题、定理和证明的概念。
通过学习,学生能理解命题的含义,区分定理和证明,并学会运用证明的方法来解决数学问题。
教材通过丰富的实例和具有启发性的问题,引导学生主动探索、发现和证明数学结论,培养学生的逻辑思维能力和数学素养。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,例如了解四则运算、几何图形的性质等。
但部分学生可能对抽象的逻辑推理和证明过程感到困难,对定理和证明的概念理解不深。
因此,在教学过程中,要关注学生的个体差异,引导他们通过观察、思考、讨论和动手操作等方式,逐步理解和掌握知识。
三. 说教学目标1.知识与技能:使学生了解命题、定理和证明的概念,学会运用证明的方法来解决数学问题。
2.过程与方法:通过观察、思考、讨论和动手操作等方式,培养学生的逻辑思维能力和数学素养。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、坚持真理的精神。
四. 说教学重难点1.重点:命题、定理和证明的概念,证明的方法。
2.难点:对命题、定理和证明的理解,证明方法的运用。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探索、发现和证明数学结论。
2.运用多媒体课件、实物模型等教学手段,辅助学生直观地理解概念和证明过程。
3.小组讨论,让学生在合作交流中提高逻辑思维能力。
4.注重实践操作,让学生动手动脑,增强对知识的理解和运用能力。
六. 说教学过程1.导入:通过一个有趣的数学故事,引发学生对命题、定理和证明的好奇心,激发他们的学习兴趣。
2.新课导入:介绍命题、定理和证明的概念,引导学生理解它们之间的关系。
3.实例讲解:分析具体的数学问题,讲解证明的方法,让学生学会如何运用证明来解决实际问题。
4.小组讨论:学生进行小组讨论,让他们分享自己的理解和方法,互相学习和借鉴。
人教七年级数学下册-命题、定理、证明(附习题)
4. 如图,a∥b,c,d 是截线,∠1 = 80°, ∠5 = 70°.∠2,∠3,∠4 各是多少度?为什么?
解:∵a∥b, ∴∠2 =∠1 = 80°, ∠3 = 180°-∠5 = 180°70°=110°. 又∠4 与∠5 互为邻补角, ∴∠4 = 180°-∠5 = 180°- 70°= 110°.
课堂小结
定义 :判断一件事情的语句叫做命题
题设:已知事项 命题、定理、 结构 结论:由已知事项推出的事项
证明
形式 :如果……那么……
分类 真命题 证明 定理 假命题举反例
拓展延伸
如图,给出下列论断:(1)AB∥DC,(2) AD∥BC,(3)∠A+∠B = 180°,(4)∠B + ∠C = 180°,以其中一个作为题设,另一个作为 结论,写出一个真命题. 想一想,若连接 BD,你 能试着写出一个真命题并写出其推理过程吗?
5. 如图,一条公路的两侧铺设了两条平行管 道,如果公路一侧铺设的管道与纵向连通管道的 角度为 120°,那么,为了使管道对接,另一侧 应以什么角度铺设纵向连通管道?为什么?
120° ?
解:另一侧应以 60°的角度铺设. 因为 两直线平行,同旁内角互补.
6.在下面的括号内,填上推理的根据. 如图,AB 和 CD 相交于点 O, ∠A = ∠B,求证:∠C =∠D.
已知事项
许多数学命题常可以写成“如果……,那 么……”的形式.“如果”后面连接的部分是 题设,“那么”后面连接的部分是结论.
练习
下列语句是命题吗?如果是,请将它们改写 成“如果……,那么……”的形式.
(1)两条直线被第三条直线所截,同旁内角 互补;
如果两条直线被第三条直线所截,那么同旁 内角互补.
【人教版数学七年级下册】《5.3.2 命题、定理、证明》教学设计教学反思
5.3.2 命题、定理、证明一、教学目标【知识与技能】1.理解命题,定理及证明的概念,会区分命题的题设和结论.2.会判断真假命题,知道证明的意义及必要性,了解反例的作用.3.理解证明要步步有据,培养学生养成科学严谨的学习态度. 【过程与方法】经历判断命题真假的过程,对命题的真假有一个初步的了解. 【情感态度与价值观】初步培养学生不同几何语言相互转化的能力.二、课型新授课三、课时1课时四、教学重难点【教学重点】命题的概念和区分命题的题设与结论.【教学难点】区分命题的题设和结论.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)让学生阅读课件中的两个例子,讨论句子含义。
(二)探索新知1.出示课件4-5,探究命题的概念教师出示问题:完成下列问题:请同学读出下列语句:(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2)两条平行线被第三条直线所截,同旁内角互补;(3)对顶角相等;(4)等式两边都加同一个数,结果仍是等式.这些句子有何特点?学生答:都对事情做出了判定.教师问:这样的句子叫做命题.什么叫做命题?学生答:像这样判断一件事情的语句,叫做命题.总结点拨:(出示课件5)教师强调:1.只要对一件事情作出了判断,不管正确与否,都是命题.如:相等的角是对顶角.2.如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.如:画线段AB=CD.考点1:命题的识别判断下列四个语句中,哪个是命题,哪个不是命题?并说明理由:(1)对顶角相等吗?(2)画一条线段AB=2cm;(3)两条直线平行,同位角相等;(4)相等的两个角,一定是对顶角.(出示课件6)师生共同讨论解答如下:解:(3)(4)是命题,(1)(2)不是命题.理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.总结点拨:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-10,命题的构成教师问:观察下列命题,你能发现这些命题有什么共同的结构特征?与同伴交流.(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;(2)如果两个数的绝对值相等,那么这两个数也相等;(3)如果一个数的平方等于9,那么这个数是3.学生答:都是“如果……那么……”的形式.教师问:命题一般都可以写成“如果……那么……”的形式.1.“如果”后接的部分是题设,2.“那么”后接的部分是结论.如命题:熊猫没有翅膀.改写为:“如果……那么……”的形式.学生答:如果这个动物是熊猫,那么它就没有翅膀.师生一起总结:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.总结点拨:(出示课件10)命题的组成:题设——已知事项命题结论——由已知事项推出的事项两直线平行,同位角相等考点2:命题表述形式的变换分别把下列命题写成“如果……那么……”的形式.(1)两点确定一条直线;(2)等角的补角相等;(3)内错角相等. (出示课件11)学生独立思考后,师生共同分析解答.教师依次展示学生解答过程:学生1解:(1)如果有两个定点,那么过这两点有且只有一条直线;学生2解:(2)如果两个角分别是两个等角的补角,那么这两个角相等;学生3解:(3)如果两个角是内错角,那么这两个角相等.总结点拨:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.出示课件12,学生自主练习后口答,教师订正.3.出示课件13,探究真假命题的概念.教师问:有些命题如果题设成立,那么结论一定成立;而有些命题题设成立时,结论不一定成立. 如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立吗?学生答:如命题:“如果一个数能被4整除,那么它也能被2整除”是条件也成立,结论也成立.教师问:上面的命题:条件也成立,结论也成立.这样的命题是正确命题. 如命题:“如果一个数能被4整除,那么它也能被2整除”是一个正确的命题吗?学生答:是一个正确的命题.教师问:有些命题题设成立时,结论不一定成立.这样的命题是错误的命题.如命题:“如果两个角互补,那么它们是邻补角”就是一个怎样的命题呢?学生答:“如果两个角互补,那么它们是邻补角”就是一个错误的命题.教师问:正确的命题叫真命题,错误的命题叫假命题.则命题“内错角相等,两直线平行”是真命题还是假命题?学生答:是真命题.教师问:怎样确定定一个命题真假呢?师生一起解答:确定一个命题真假的方法:利用已有的知识,通过观察、验证、推理、举反例等方法.考点3:真假命题的识别下列命题哪些命题是正确的,哪些命题是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.学生独立思考后,师生共同解答.解:真命题有(2)、(3)、(5);假命题有(1)、(4).总结点拨:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.出示课件15,学生自主练习后口答,教师订正.4.出示课件16-19,探究证明和反证法(举反例)教师出示问题:一天早上,张老汉来到公安局里告状说:王五刚刚在他地里偷了一袋子苹果.公安局长立即派干警将王五传唤到公安局审讯:公安局长问张老汉:“你怎知是王五偷了你的苹果?”“因为早上我发现王五从苹果园那边过来,把一袋东西背回家,还发现我果园的苹果被人偷了,我知道王五家没有苹果树.所以我家苹果肯定是王五偷的.”张老汉想证明什么?他是怎么证明的?学生答:张老汉想证明偷了他的苹果,王五从他家的苹果园那边经过,把一袋东西背回家.教师问:根据张老汉的证明,你能断定苹果是王五偷的吗?你觉得有疑点吗?学生答:根据张老汉的证明,不能断定苹果是王五偷的,有疑点:因为只是经过,张老汉的推断太牵强.总结点拨:(出示课件16)这种从已知条件出发(列出理由),推断出结论的证明方法,叫综合法.综合法是最常用的证明方法.教师出示问题:公安局长一时拿不定主意,就问旁边的梁副局长:“梁局长,你怎么看?”梁局长会如何回答呢?学生答:梁局长说“这事要证明是王五干的,还得弄清那袋子里装的是不是刚摘的苹果,还要看看地里的脚印是不是王五的才行.如果袋子里装的是刚摘的苹果,且地里的脚印是王五的,那就一定是他偷的.”总结点拨:(出示课件17)从结论出发,逆着寻找所需要的条件的思考过程,叫分析.在分析的过程中,如果发现所需要的条件,都已具备或可从已知条件中推得.那么证明就很容易了.总结点拨:(出示课件18)证明的概念在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.教师强调:证明的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.教师问:如何判定一个命题是假命题呢?学生答:举一个反例即可.教师问:例如,要判定命题“相等的角是对顶角”是假命题如何证明?师生一起解答:可以举出如下反例:如图,OC是∠AOB的平分线,∠1=∠2,但它们不是对顶角.总结点拨:(出示课件19)确定一个命题是假命题的方法:只要举出一个例子(反例):它符合命题的题设,但不满足结论即可.考点4:利用证明推理解决问题如图,∠1=∠2,试说明直线AB,CD平行.(出示课件20)师生共同分析:要证明AB,CD平行,就需要同位角相等的条件,图中∠1与∠3就是同位角.我们只要找到:能说明它们相等的条件就行了.从图中,我们可以发现:∠2与∠3是对顶角,所以∠3=∠2.这样我们就找到了∠1与∠3相等的确切条件了.学生独立思考后,师生共同解答.证明:∵∠2与∠3是对顶角,∴∠3=∠2.又∵∠1=∠2,∴∠1=∠3.∴AB∥CD.出示课件21,学生自主练习,教师给出答案。
最新人教版七年级下册数学第五章相交线与平行线第3节第2课时命题、定理、证明
5.3.2命题、定理、证明1.命题(1)定义:__判断__一件事情的语句.(2)构成:命题由__题设__和__结论__两部分组成.__题设__是已知事项,__结论__是由已知事项推出的事项.(3)形式:命题常写成“如果……那么……”的形式,“如果”后接的部分是__题设__,“那么”后接的部分是__结论__.(4)类型:①真命题:题设成立,结论__一定成立__的命题;②假命题:题设成立时,不能保证__结论一定成立__的命题.2.定理、证明(1)定理的定义:命题的正确性是通过推理证实的,这样得到的__真命题__叫做定理.定理可以作为继续推理的依据.(2)证明的定义:在很多情况下,一个命题的正确性需要经过__推理__,才能作出判断,这个推理过程叫做证明.1.掌握命题的概念要注意两点:(1)命题不一定是正确的;(2)疑问句、祈使句都不是命题.2.假命题也是命题.3.改写命题时,切忌改变命题的本意.1.(新疆伊犁模拟)下列句子中,属于命题的是(C)A.直线AB和CD垂直吗B.作线段AB的垂直平分线C.同位角相等,两直线平行 D.画∠AOB=45°2.(甘肃武威月考)下列说法正确的有(C)(1)命题不一定是定理,定理一定是命题;(2)定理不可能是假命题;(3)两点确定一条直线;(4)同一平面内,两条直线的位置关系只有相交和平行两种;(5)相等的角是对顶角;(6)垂线段最短.A.3个B.4个C.5个D.6个3.对于命题“若a>b,则a2>b2”,能说明它是假命题的反例为(A)A.a=0,b=-1 B.a=2,b=-1 C.a=2,b=1 D.a=1,b=2 4.(青海玉树模拟)判断命题“如果n<1,那么n2-1<0”是假命题,只需举出一个反例.反例中的n可以为(A)A.-2B.-12C.0 D.125.“如果∠α和∠β的两边分别平行,那么∠α和∠β相等”是(B)A.真命题B.假命题C.定理D.以上说法都不正确6.(甘肃天水月考)下列命题:①两条直线相交,一角的两邻补角相等,则这两条直线垂直;②两条直线相交,一角与其邻补角相等,则这两条直线垂直;③内错角相等,则它们的角平分线互相垂直;④同旁内角互补,则它们的角平分线互相垂直,其中真命题的个数为(C)A.4 B.3 C.2 D.17.(新疆和田模拟)命题“在同一平面内垂直于同一条直线的两条直线平行”的题设是__在同一平面内,两条直线垂直于同一条直线__,结论是__这两条直线互相平行__.8.(甘肃定西月考)对于同一平面内的三条直线a,b,c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论,组成一个真命题:如果__①②__,那么__④(答案不唯一)__(答案不唯一). 9.(内蒙古乌海模拟)下列各语句中,哪些是命题?是命题的,请你先将它改写为:“如果……那么……”的形式,再找出命题的题设和结论.(1)画一个角等于已知角;(2)互为相反数的两个数的和为0;(3)当a=b时,有a2=b2;(4)当a2=b2时,有a=b.【解析】(1)画一个角等于已知角,不是命题;(2)互为相反数的两个数的和为0,是命题,改写为:如果两个数互为相反数,那么这两个数的和为0,命题的题设是两个数互为相反数,结论是这两个数的和为0;(3)当a=b时,有a2=b2,是命题,改写为:如果a=b,那么a2=b2,命题的题设是a=b,结论是a2=b2;(4)当a2=b2时,有a=b,是命题,改写为:如果a2=b2,那么a=b,命题的题设是a2=b2,结论是a=b.10.(新疆克拉玛依模拟)(1)如图,请在直线AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为题设,一个作为结论,写一个真命题:如果__________且____________,那么__________;(2)请说明你写的命题是真命题的理由.【解析】(答案不唯一)(1)如果AB∥CD且∠A=30°,那么∠CDA=30°.答案:AB∥CD∠A=30°∠CDA=30°(2)∵AB∥CD,∴∠CDA=∠A=30°(两直线平行,内错角相等).1.阅读材料:“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题,则命题“角平分线上的点到角两边的距离相等”的逆命题是__在角的内部到角两边距离相等的点在这个角的平分线上__,该命题的题设是__在角的内部到角两边距离相等的点__,结论是__在这个角的平分线上__.2.(兰州模拟)请指出下列命题的题设和结论,并判断它们的真假,若是假命题,请举出一个反例.(1)等角的补角相等;(2)绝对值相等的两个数相等.【解析】(1)题设:有两个角相等;结论:这两个角的补角相等;是真命题;(2)题设:有两个数的绝对值相等;结论:这两个数相等;是假命题;反例:|2|=|-2|,2≠-2.3.(内蒙古乌兰察布模拟)探究问题:已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.∠ABC与∠DEF有怎样的数量关系?(1)我们发现∠ABC与∠DEF有两种位置关系:如图1与图2所示.①图1中∠ABC与∠DEF数量关系为________;图2中∠ABC与∠DEF数量关系为________;请选择其中一种情况说明理由.②由①得出一个真命题(用文字叙述):________.(2)应用②中的真命题,解决以下问题:若两个角的两边分别平行,且一个角比另一个角的2倍少30°,请直接写出这两个角的度数.【解析】(1)①如题图1中,∠ABC+∠DEF=180°.如题图2中,∠ABC=∠DEF.理由:如题图1中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.如题图2中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠ABC=∠DEF.答案:∠ABC+∠DEF=180°∠ABC=∠DEF②如果两个角的两边分别平行,那么这两个角相等或互补.(2)设两个角度数分别为x和2x-30°,由题意x=2x-30°或x+2x-30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°和30°或70°和110°.。
人教版数学七年级下册5.3.2《命题、定理、证明》 课件(共23张PPT)
归纳总结
判断某一种事情的句子叫做命题,理清命题的 定义必须搞清楚两点: (1)命题必须是一个“完整的句子”; (2)命题必须作出判断,如“两条直线相交交 点唯一吗?”没有对事情作出判断,故不是命题。 定理和公理都是真命题,都可以作为证明其他 命题的依据,不同的是:公理是人们从长期实践 中总结出来的真命题,不用证明也不能证明;定 理是用推理证实为正确的命题。
命题1 在同一平面内,如果一条直线垂直 于两条平行线中的一条,那么它也垂直于 另一条. 已知:如图,b∥c,a⊥b . 求证:a⊥c. 证明:∵ a⊥b(已知) ∴∠1=90º (垂直的定义) 又∵ b∥c(已知) ∴∠1=∠2(两直线平行,同位角相等) ∴∠2=∠1=90º(等量代换) ∴ a⊥c(垂直的定义)
题设是: a=b,b=c
结论是: a=c
③ 同位角相等.
如果两个角是同位角,那么这两个角相等.
条件是:两个角是同位角
结论是:这两个角相等 ④ 同角的补角相等. 如果两个角是同一个角的补角,那么这两个角相 等. 条件是:两个角是同一个角的补角 结论是:这两个角相等
讨论与归纳 思考:请问如何判断①是假命题?如何判断②是
真命题?
① 如果两个角相等,那么它们是对顶角. ② 如果两条平行线被第三条直线所截,那么同旁 内角互补. 注意:要判断一个命题是真命题要经过严格
的推理;是假命题只要举一个反例。
1.下列句子哪些是命题?是命题的,指出是真 命题还是假命题? 是 真命题 (1)兔子有四条腿; 是 假命题 (2)内错角相等; 否 (3)画一条直线; 是 假命题 (4)四边形是正方形; 否 (5)你的作业做完了吗? 是 真命题 (6)同位角相等,两直线平行; 是 真命题 (7)对顶角相等; 是 假命题 (8)垂直于同一直线的两直线平行; 否 (9)过点P画线段MN的垂线;
人教版数学七年级下册教案5.3.2《 命题、定理、证明》
人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。
通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。
本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。
但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。
三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。
2.学会用逻辑推理的方法证明几何命题。
3.培养学生的空间想象能力和思维能力。
四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。
2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。
六. 教学准备1.教学PPT课件。
2.相关例题及练习题。
3.几何画图工具。
七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。
通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。
2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。
让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。
3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。
教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。
4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。
教师及时批改、讲解,巩固学生所学知识。
5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.2 命题、定理、证明
1.下列语句中,是命题的是( )
①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.
A.①④⑤
B.①②④
C.①②⑤
D.②③④⑤
2.命题的题设是__________事项,结论是由__________事项推出的事项.
3.下列命题中,是真命题的是( )
A.若|x|=2,则x=2
B.平行于同一条直线的两条直线平行
C.一个锐角与一个钝角的和等于一个平角
D.任何一个角都比它的补角小
4.下列命题中,是假命题的是( )
A.相等的角是对顶角
B.垂线段最短
C.同一平面内,两条直线的位置关系只有相交和平行两种
D.两点确定一条直线
5.下列说法正确的是( )
A.“作线段CD=AB”是一个命题
B.过一点作已知直线的平行线有一条且只有一条
C.命题“若x=1,则x2=1”是真命题
D.“具有相同字母的项称为同类项”是“同类项”的定义
6.下列三个命题:①同位角相等,两直线平行;②两直线和第三条直线相交,同位角相等;
③过两点有且只有一条直线.其中真命题有( )
A.0个
B.1个
C.2个
D.3个
7.对于下列假命题,各举一个反例写在横线上.
(1)“如果ac=bc,那么a=b”是一个假命题.反例:______________________________;
(2)“如果a2=b2,则a=b”是一个假命题. 反例:______________________________. 8.把下列命题写成“如果……那么……”的形式,并判断其真假.
(1)等角的补角相等;
(2)不相等的角不是对顶角;
(3)相等的角是内错角.
9.(1)如图,请在AB∥CD,∠A=30°,∠CDA=30°三项中选择两个作为条件,一个作为结论,写一个命题:如果__________且__________,那么__________.
(2)请说明你写的命题是真命题.
10.阅读下列问题后做出相应的解答.
“同位角相等,两直线平行”和“两直线平行,同位角相等”这两个命题的题设和结论在命题中的位置恰好对调,我们把其中一个命题叫做另一个命题的逆命题.
请你写出命题“角平分线上的点到角两边的距离相等”的逆命题,并指出逆命题的题设和结论.
参考答案
1.A
2.已知已知
3.B
4.A
5.C
6.C
7.(1)3×0=(-2)×0
(2)32=(-3)2
8.(1)如果两个角是两个相等的角的补角,那么这两个角相等.是真命题.
(2)如果两个角不相等,那么这两个角不是对顶角.是真命题.
(3)如果两个角相等,那么这两个角是内错角.是假命题.
9.(1)AB∥CD ∠A=30°∠CDA=30°
(2)∵AB∥CD,∠A=30°,
∴∠CDA=∠A=30°.
10.逆命题:在角的内部到角两边距离相等的点在这个角的平分线上.
题设:在角的内部到角两边距离相等的点;
结论:在这个角的平分线上.。