二次函数单元测试1
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 若二次函数y=ax^2+bx+c的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A2. 二次函数y=-3x^2+6x-2的对称轴是()A. x = -1B. x = 1C. x = 2D. x = 0答案:B3. 二次函数y=x^2-4x+c的顶点坐标是()A. (2, c-4)B. (2, c+4)C. (-2, c-4)D. (-2, c+4)答案:A4. 若二次函数y=x^2-6x+c的图像与x轴有两个交点,则c的取值范围是()A. c > 9B. c < 9C. c = 9D. c ≠ 9答案:B5. 二次函数y=2x^2-4x+3的最小值是()A. 1B. 2C. 3D. 4答案:C6. 二次函数y=-2x^2+4x+1的图像与y轴的交点坐标是()A. (0, -1)B. (0, 1)C. (0, 3)D. (0, 5)答案:B7. 若二次函数y=ax^2+bx+c的图像与x轴没有交点,则a和b的取值关系是()A. a > 0, b^2 > 4acB. a < 0, b^2 > 4acC. a > 0, b^2 < 4acD. a < 0, b^2 < 4ac8. 二次函数y=x^2-2x+1的图像的顶点坐标是()A. (1, 0)B. (1, 1)C. (0, 1)D. (2, 1)答案:B9. 二次函数y=x^2-6x+5的图像开口方向是()A. 向上B. 向下C. 向左D. 向右答案:A10. 若二次函数y=2x^2-4x+1的图像与x轴有一个交点,则该交点的坐标是()A. (1, 0)B. (2, 0)C. (-1, 0)D. (0, 0)答案:A二、填空题(每题3分,共15分)1. 二次函数y=x^2-2x+1的对称轴方程是______。
第26章《二次函数》单元测试(1)
第26章《二次函数》单元测试一、选择题(每题3分,共30分)1.下列函数中属于二次函数的是( )(A )y =12x (B )y =x 2+1x+1 (C )y =2x 2-1 (D )y =x 2+3 2.下列抛物线中与y =-122+3x -5的形状、开口方向都相同,只有位置不同的是( ) (A )y =x 2+3x -5 (B )y =-12x 2+2x (C )y =12x 2+3x -5 (D )y =12x 2 3.抛物线y =(x -1)2+5的对称轴是( )(A )直线x =1 (B )直线x =5 (C )直线x =-1 (D )直线x =-54.抛物线y =2x 2向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )(A )y =2(x -1)2-2 (B )y =2(x +1)2-2 (C )y =2(x +1)2+2 (D )y =2(x -1)2+25.下列图象中,当ab >0时,函数y =ax 2与y =ax +b 的图象是( )6.抛物线y =-5x 2-4x +7与y 轴的交点坐标为( )(A )(7,0) (B )(-7,0) (C )(0,7) (D )(0,-7)7.如图,二次函数y =ax 2+bx +c 图象如图所示,则下列结论成立的是( )(A )a >0,b >0,c >0 (B )a <0,b <0,c >0(C )a >O ,b <O ,c <0 (D )a <0,b >0,c >08.二次函数y =2x 2+x -1的图象与x 轴的交点的个数是( )(A )0 (B )1 (C )2 (D )39.抛物线y =-2x 2-x +1的顶点在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限10.一台机器原价为60万元,如果每年的折旧率为x ,两年后这台机器的价位为y 万元,则y 与x 之间的函数表达式为( )(A )y =60(1-x )2 (B )y =60(1-x ) (C )y =60-x 2 (D )y =60(1+ x )2二、填空题(每题3分,共30分)1.若y =(a -1)231a x 是关于x 的二次函数,则a = .2.抛物线 y =-2(x +1)2+3的顶点坐标是 .3.对于函数y =x 2-3x ,当x =-1时,y = ; 当y =-2时,x = .4.如果一条抛物线的形状与y =-2x 2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是 .(第7题)5.将抛物线y=13x2先向左平移1个单位,再向上平移2个单位,得到y=.6.抛物线y=x2+2x+3与y轴的交点坐标为.7.抛物线y=(m-2)x2+2x+(m2-4) 的图象经过原点,则m=.8.函数y=3x2与直线y=kx+3的交点为(2,b),则k=______,b=______.9.直线y=2x+2与抛物线y=x2+3x的交点坐标为________.10.用配方法把y=-x2+4x+5化为y=a(x-h)2+k的形式为y=,其开口方向,对称轴为,顶点坐标为.三、解答题(共60分)1.已知抛物线经过点(0,-3),且顶点坐标为(1,-4),求抛物线的解析式.2.已知抛物线y=12x2+x-52(1)求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.3.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?4.如图,已知直线AB经过x轴上的点A(2,0),且与抛物线相交于B、C两点,已知B 点坐标为(1,1)。
二次函数单元测试卷含答案
二次函数单元测试卷一、选择题每小题3分,共30分1. 当-2≤ x ≦1,二次函数y=-x-m 2 + m 2 +1有最大值4,则实数m 值为47B. 3或-3 或-3 D. 2或3或-47 2. 函数22y mx x m =+-m 是常数的图像与x 轴的交点个数为A. 0个 B .1个 C .2个 D .1个或2个3. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是A. 1个 B .2个 C .3个 D .4个4. 关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是A .116m <-B .116m -≥且0m ≠C .116m =-D .116m >-且0m ≠5. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是A .2y x =B .24y x =+C .2325y x x =-+D .2351y x x =+-6. 若二次函数2y ax c =+,当x 取1x 、2x 12x x ≠时,函数值相等,则当x 取12x x +时,函数值为A .a c +B .a c -C .c -D .c7. 下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是A .1x y 2—=B .24y x =+C .1x 2x y 2+=—D .2351y x x =+-8. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是A .没有交点B .只有一个交点C .有且只有两个交点D .有且只有三个交点9. 函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根10..若把函数y=x 的图象用Ex,x 记,函数y=2x+1的图象用Ex,2x+1记,……则Ex,122+-x x 可以由Ex,2x 怎样平移得到A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位二、填空题每小题3分,共24分11. 抛物线2283y x x =--与x 轴有 个交点,因为其判别式24b ac -= 0,相应二次方程23280x x -+=的根的个数为. 12. 关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于 点,此时m = .13. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移 个单位.14. 如图所示,函数2(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x = .15. 已知二次函数212y x bx c =-++,关于x 的一元二次方程212x -根是1-和5-,则这个二次函数的解析式为16. 若函数y=m ﹣1x 2﹣4x+2m 的图象与x 轴有且只有一个交点,则m 的值为17. 若根式有意义,则双曲线y =x2-k 2与抛物线y =x 2+2x +2-2k 的交点在第 象限. 18. 将二次三项式x 2+16x+100化成x+p 2+q 的形式应为 三、解答题本大题共7小题,共66分19..7分已知一个二次函数的图象经过点0,0,1,﹣3,2,﹣8,求函数解析式;20. 8分已知抛物线21()3y x h k =--+的顶点在抛物线2y x =上,且抛物线在x 轴上截得的线段长是求h 和k 的值.21. 8分已知函数22y x mx m =-+-.1求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点;2若函数y 有最小值54-,求函数表达式. 22.9分 已知二次函数2224y x mx m =-+.1求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;2若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC 的面积为求此二次函数的函数表达式23. 10分下图是二次函数2y ax bx c =++的图像,与x 轴交于B ,C 两点,与y 轴交于A 点. 1根据图像确定a ,b ,c 的符号,并说明理由;2如果A 点的坐标为(03)-,,45ABC ∠=,60ACB ∠=,求这个二次函数的函数表达式.24.12分 已知抛物线222m y x mx =-+与抛物线2234m y x mx =+-图所示,其中一条与x 轴交于A ,B 两点.1试判断哪条抛物线经过A ,B 两点,并说明理由;2若A ,B 两点到原点的距离AO ,OB 满足条件1123OB OA -=,求经过A ,B 两点的这条抛物线的函数式.25. 12分已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=的两根,且221210x x +=. 1求A ,B 两点坐标;2求抛物线表达式及点C 坐标;3在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.参考答案一、选择题每选对一题得3分,共30分1.C 2.C 3.D 4.B 5.D 6.D 7.B 8.B 9.C 10.D二、填空题每填对一题得3分,共24分11.0 < 0 12.一625 或9 7 15.25-x 3-x 21-y 2= 16.-1或1或2 17.2 18.()368x 2++ 三、解答题 7小题,共66分19.7分解:x 2--x y 2=20.1略 213x -x y 1-x -x y 22+==或21.1略 248x x 2y 48x -x 2y 22++=+=或 22.1a>0,b>0,c<0(2)A0,-3, B-3, 0 C0 , -323.14m 3-mx x y 22+= (2)设Ax 1 ,0,Bx 2 ,0, 则有32x 1x 121=+ 解得3-x 2x y 2+=25. 1A-1,0, B3, 0(2)3-x 2-x y 2=,C0,-3(3)存在;P1()()9,131P29,131-+,.。
二次函数单元测试题及答案
二次函数单元测试题及答案1. 选择题(每题2分)1. 下列函数中,属于二次函数的是:A. y = 3x + 2B. y = x^2 + 3x - 2C. y = √xD. y = |x|答案:B2. 二次函数y = 2x^2 + 3x - 4的图像开口方向是:A. 向上开口B. 向下开口答案:A3. 函数y = -x^2 + 5x + 3的顶点坐标是:A. (3, 8)B. (-3, 2)C. (5, 8)D. (-5, 3)答案:A4. 函数y = x^2 - 4x + 4的轴对称线方程为:A. x = 2B. x = 4C. x = -2D. x = -4答案:A5. 函数y = x^2 + 6x + 9的值域是:A. (-∞, 9)B. [9, +∞)C. (-∞, 0)D. [0, +∞)答案:B2. 填空题(每题3分)1. 二次函数y = -2x^2 + 4x - 1的判别式为_______。
答案:402. 函数y = x^2 + bx + c的顶点坐标是(-2, 1),则b和c的值分别为_______。
答案:b = 4,c = -33. 函数y = 3x^2 - 6x + k的图像与x轴有两个交点,则k的值为_______。
答案:k > 04. 函数y = -x^2 - 4x + m的轴对称线方程为x = 2,则m的值为_______。
答案:m = 35. 函数y = ax^2 + bx + 2的值域是(-∞, 1],则a和b的关系是_______。
答案:a < 0,b > 03. 计算题(每题5分)1. 求二次函数y = -3x^2 + 6x + 9的顶点坐标和对称轴方程。
解答:首先,二次函数的顶点坐标可以通过公式 h = -b/2a 和 k = f(h) 来求得。
其中,h 表示对称轴的横坐标,k 表示顶点的纵坐标。
对于给定的函数 y = -3x^2 + 6x + 9,我们可以得到 a = -3,b = 6,c = 9。
初三数学 二次函数单元测试题及答案
初三数学二次函数单元测试题及答案二次函数单元测评一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)() A。
y=x+2B。
y=2x+1C。
y=3xD。
y=x^2+2x-32.函数y=x-2x+3的图象的顶点坐标是()A。
(1,-4)B。
(-1,2)C。
(1,2)D。
(0,3)3.抛物线y=2(x-3)^2的顶点在()A。
第一象限B。
第二象限C。
x轴上D。
y轴上4.抛物线的对称轴是()A。
x=-2B。
x=2C。
x=-4D。
x=45.已知二次函数y=ax^2+bx+c的图象如图所示,则下列结论中,准确的是()A。
ab>0,c>0B。
ab>0,c<0C。
ab0D。
ab<0,c<06.二次函数y=ax^2+bx+c的图象如图所示,则点在第___象限()A。
一B。
二C。
三D。
四7.如图所示,已知二次函数y=ax^2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A。
4+mB。
mC。
2m-8D。
8-2m8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax^2+bx的图象只可能是()A。
开口向下的抛物线B。
开口向上的抛物线C。
直线D。
圆9.已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是()A。
y1<y2<y3B。
y2<y3<y1XXX<y1<y2D。
y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A。
y=x^2-4x+7B。
y=(x+2)^2+3C。
y=x^2+2x+3D。
第六章二次函数单元测试试题(1)
二次函数单元测试试题01一、选择题:(每小题3分,共30分)1.下列各式中,y 是x 的二次函数的是 ( )A .2y ax bx c =++B . 220x y +-=C . 22y ax -=-D .2210x y -+= 2.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 c .都是关于y 轴对称,抛物线开口向下B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点3.抛物线122+--=m mx x y 的图象过原点,则m 为 ( )A .0B .1C .-1D .±14.把二次函数122--=x x y 配方成顶点式为 ( )A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y5.已知原点是抛物线y=(m-1)x 2的最高点,则m 的范围是 ( )A . 1-<mB . 1<mC . m ﹥1D . 2->m6、函数y= x 2-2x+2的图象顶点坐标是 ( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )7、抛物线23y x =向左平移1个单位,再向下平移2个单位,所得到的抛物线是 ( ) A 、23(1)2y x =-- B 、23(1)2y x =+- C 、23(1)2y x =++ D 、23(1)2y x =-+ 8、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图 象为 ( )9、下列四个函数中, 图象的顶点在x 轴上的函数是 ( )A 、232y x x =-+B 、25y x =-C 、22y x x =-+ D 、244y x x =-+10、已知二次函数20,c ﹤0,那么它的图象大致是 ( )二、填空题:(每小题3分,共30分)11、函数21(1)21m y m xmx +=--+是抛物线,则m = . 12、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 .13、二次函数2y ax =-2的图象过点(1,-2),则它的解析式是 ,当x 时,y 随x 的增大而减小.14.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.15.抛物线342++=x x y 的对称轴是直线 在x 轴上截得的线段长度是 .16.已知抛物线y=x 2-x-1与x 轴的一个交点为(m, 0),则代数式m 2-m+2014的值为 .17.抛物线m x x y +-=2,若其顶点在x 轴上,则=m .18. 如果抛物线c bx ax y ++=2 的对称轴是x =-3,且开口方向与形状与抛物线y= -2 x 2相同,又过原点,那么a = ,b = ,c = .19、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值y ﹥0时,对应x 的取值范围是 .20、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,6)和B (8,3),如上右图所示,则能使1y ﹤y 2成立的x 的取值范围 .三、解答题:(共90分)21(本题12分,每小题4分)、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5)(2)、抛物线的顶点坐标为(2,-3)且过(3,-4)(3),抛物线与x 轴交点坐标为(-1,0)(3,0)且过(1,-2)22(本题10分).已知二次函数c bx x y ++=2的图像经过A (0,2),B (1,-3)两点.(1)求b 和c 的值; (2)试判断点P (-1,3)是否在此函数图像上?23.(本题8分)、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1) 求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2) 请你设计一个方案,使获得的设计费最多,并求出这个费用.24.(本题10分)、如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.(3)将抛物线n x x y ++-=52经过怎样的一次平移使它经过原点25.(18分)已知42)2(-++=k k x k y +2x+3是二次函数,且函数图象有最高点。
《二次函数》单元检测
《二次函数》单元检测一.选择题(共8小题)1.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系内的图象大致为()A.B.C.D.2.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大3.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个4.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y35.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣52)2﹣114B.y=﹣(x+52)2﹣114C.y=﹣(x﹣52)2﹣14D.y=﹣(x+52)2+146.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或37.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4 8.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1二.填空题(共8小题)9.写出一个y关于x的二次函数的解析式,且它的图象的顶点在y轴上:.10.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.11.将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为.12.已知抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是.13.抛物线的图象如图,则它的函数表达式是.当x时,y>0.14.如图,二次函数y1=ax2+bx+c与一次函数y2=kx的图象交于点A和原点O,点A的横坐标为﹣4,点A和点B关于抛物线的对称轴对称,点B的横坐标为1,则满足0<y1<y2的x的取值范围是.15.把抛物线y=ax2+bx+c的图象先向右平移4个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c的值为.16.顺达旅行社为吸引游客到黄山景区旅游,推出如下收费标准:若某公司准备组织x(x>25)名员工去黄山景区旅游,则公司需支付给顺达旅行社旅游费用y(元)与公司参与本次旅游的员工人数x(人)之间的函数表达式是.三.解答题(共4小题)17.已知二次函数y=x2﹣4x+3.(1)把这个二次函数化成y=a(x﹣h)2+k的形式;(2)写出二次函数的对称轴和顶点坐标;(3)求二次函数与x轴的交点坐标;(4)画出这个二次函数的图象;(5)观察图象并写出y随x增大而减小时自变量x的取值范围.(6)观察图象并写出当x为何值时,y>0.18.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围;=10,求出此时点P的坐标.(3)点P为抛物线上一点,若S△PAB19.九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x ≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件)198 140 80 20 (1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.20.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C (0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.单元检测解析一.选择题(共8小题)1.(2016•贺州)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.【解答】解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=cx的图象在第二、四象限,故选:B.【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键.2.(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣-22aa=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣-22aa=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣-22aa=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.3.(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A .4个B .3个C .2个D .1个【分析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a ,然后根据x=﹣1时函数值为0可得到3a +c=0,则可对③进行判断;根据抛物线在x 轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx +c=0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x=﹣2b a=1,即b=﹣2a , 而x=﹣1时,y=0,即a ﹣b +c=0,∴a +2a +c=0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选B .【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.4.(2016•兰州)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【分析】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,可判断y1=y2>y3.【解答】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选D.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.5.(2016•滨州)在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A.y=﹣(x﹣52)2﹣114B.y=﹣(x+52)2﹣114C.y=﹣(x﹣52)2﹣14D.y=﹣(x+52)2+14【分析】先求出绕原点旋转180°的抛物线解析式,求出向下平移3个单位长度的解析式即可.【解答】解:∵抛物线的解析式为:y=x2+5x+6,设原抛物线上有点(x,y),绕原点旋转180°后,变为(﹣x,﹣y),点(﹣x,﹣y)在抛物线y=x2+5x+6上,将(﹣x,﹣y)代入y=x2+5x+6得﹣y=x2﹣5x+6,所以原抛物线的方程为y=﹣x2+5x﹣6=﹣(x﹣52)2+14,∴向下平移3个单位长度的解析式为y=﹣(x﹣52)2+14﹣3=﹣(x﹣52)2﹣114.故选A.【点评】本题考查的是二次函数的图象与几何变换,熟知二次函数的图象旋转及平移的法则是解答此题的关键.6.(2016•天津)已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3【分析】由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.7.(2016•兰州)二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4 【分析】根据配方法,可得顶点式函数解析式.【解答】解:y=x2﹣2x+4配方,得y=(x﹣1)2+3,故选:B.【点评】本题考查了二次函数的不同表达形式,配方法是解此题关键.8.(2016•宿迁)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1【分析】直接利用抛物线与x轴交点求法以及结合二次函数对称性得出答案.【解答】解:∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),∴方程ax2﹣2ax+c=0一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为:(3,0),∴方程ax2﹣2ax+c=0的解为:x1=﹣1,x2=3.故选:C.【点评】此题主要考查了抛物线与x轴的交点,正确应用二次函数对称性是解题关键.二.填空题(共8小题)9.(2016•南平)写出一个y关于x的二次函数的解析式,且它的图象的顶点在y轴上:y=x2(答案不唯一).【分析】根据二次函数的图象的顶点在y轴上,则b=0,进而得出答案.【解答】解:由题意可得:y=x2(答案不唯一).故答案为:y=x2(答案不唯一).【点评】此题主要考查了二次函数的性质,正确得出b的值是解题关键.10.(2016•梅州)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为(1+2,2)或(1﹣2,2).【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P点坐标.【解答】解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=﹣x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±2,∴P点坐标为(1+2,2)或(1﹣2,2),故答案为:(1+2,2)或(1﹣2,2).【点评】本题主要考查等腰三角形的性质,利用等腰三角形的性质求得P点纵坐标是解题的关键.11.(2016•泰安)将抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位,那么得到的抛物线的表达式为y=2(x+2)2﹣2.【分析】按照“左加右减,上加下减”的规律求得即可.【解答】解:抛物线y=2(x﹣1)2+2向左平移3个单位,再向下平移4个单位得到y=2(x﹣1+3)2+2﹣4=2(x+2)2﹣2.故得到抛物线的解析式为y=2(x+2)2﹣2.故答案为:y=2(x+2)2﹣2.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.12.已知抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,那么m的取值范围是m<1.【分析】根据二次函数y=(m+1)x2+2的顶点是此抛物线的最高点,得出抛物线开口向下,即m+1<0,即可得出答案.【解答】解:∵抛物线y=(m﹣1)x2+4的顶点是此抛物线的最高点,∴抛物线开口向下,∴m﹣1<0,∴m<1,故答案为m<1.【点评】此题主要考查了利用二次函数顶点坐标位置确定图象开口方向,此题型是中考中考查重点,同学们应熟练掌握.13.抛物线的图象如图,则它的函数表达式是y=x2﹣4x+3.当x<1,或x >3时,y>0.【分析】观察可知抛物线的图象经过(1,0),(3,0),(0,3),可设交点式用待定系数法得到二次函数的解析式.y>0时,求x的取值范围,即求抛物线落在x轴上方时所对应的x的值.【解答】解:观察可知抛物线的图象经过(1,0),(3,0),(0,3),由“交点式”,得抛物线解析式为y=a(x﹣1)(x﹣3),将(0,3)代入,3=a(0﹣1)(0﹣3),解得a=1.故函数表达式为y=x2﹣4x+3.由图可知当x<1,或x>3时,y>0.【点评】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.14.如图,二次函数y1=ax2+bx+c与一次函数y2=kx的图象交于点A和原点O,点A的横坐标为﹣4,点A和点B关于抛物线的对称轴对称,点B的横坐标为1,则满足0<y1<y2的x的取值范围是﹣4<x<﹣3.【分析】根据题意得出抛物线的对称轴,进而得出二次函数与x轴的交点坐标,再利用函数图象得出满足0<y1<y2的x的取值范围.【解答】解:如图所示:∵点A的横坐标为﹣4,点A和点B关于抛物线的对称轴对称,点B的横坐标为1,∴抛物线的对称轴为:x=﹣32,∵二次函数y1=ax2+bx+c与一次函数y2=kx的图象交于点A和原点O,∴C点坐标为:(﹣3,0),则满足0<y1<y2的x的取值范围是:﹣4<x<﹣3.故答案为:﹣4<x<﹣3.【点评】此题主要考查了二次函数与不等式(组),正确利用函数图象得出抛物线与x轴的交点是解题关键.15.把抛物线y=ax2+bx+c的图象先向右平移4个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c的值为17.【分析】因为抛物线y=ax2+bx+c的图象先向右平移4个单位,再向下平移2个单位,得到图象的解析式是y=x2﹣3x+5,所以y=x2﹣3x+5向左平移4个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,先由y=x2﹣3x+5的平移求出y=ax2+bx+c的解析式,再求a+b+c=17.【解答】解:∵y=x2﹣3x+5=(x﹣32)2+114,当y=x2﹣3x+5向左平移4个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,∴y=(x﹣32+4)2+114+2=x2+5x+11;∴a+b+c=17.故答案是:17.【点评】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16.顺达旅行社为吸引游客到黄山景区旅游,推出如下收费标准:若某公司准备组织x(x>25)名员工去黄山景区旅游,则公司需支付给顺达旅行社旅游费用y(元)与公司参与本次旅游的员工人数x(人)之间的函数表达式是y=﹣20x2+1500x.【分析】根据题意表示出实际旅游费用×x=总旅游费用,进而得出答案.【解答】解:由题意可得:y=[1000﹣20(x﹣25)]x=﹣20x2+1500x.故答案为:y=﹣20x2+1500x.【点评】此题主要考查了根据实际问题列二次函数解析式,正确表示出实际人均旅游费用是解题关键.三.解答题(共4小题)17.已知二次函数y=x2﹣4x+3.(1)把这个二次函数化成y=a(x﹣h)2+k的形式;(2)写出二次函数的对称轴和顶点坐标;(3)求二次函数与x轴的交点坐标;(4)画出这个二次函数的图象;(5)观察图象并写出y随x增大而减小时自变量x的取值范围.(6)观察图象并写出当x为何值时,y>0.【分析】(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.(2)根据(1)中的二次函数解析式直接写出答案;(3)将已知函数解析式转化为两点式方程即可得到答案;(4)根据顶点坐标,抛物线与y轴的交点坐标以及抛物线与x轴的交点坐标画出图象;(5)(6)根据图象写出x的取值范围.【解答】解:(1)y=x2﹣4x+3=(x﹣2)2﹣1,则该抛物线解析式是y=(x﹣2)2﹣1;(2)由(1)知,该抛物线解析式为:y=(x﹣2)2﹣1,所以对称轴是直线x=2,顶点坐标为(2,﹣1);(3)∵二次函数y=x2﹣4x+3=(x﹣1)(x﹣3),∴二次函数与x轴的交点坐标分别是:(1,0)(3,0);(4)其图象如图所示:(5)由图象知,当y随x增大而减小时x≤2;(6)由图象知,当x<1或x>3时,y>0.【点评】本题考查了将二次函数的一般式化成顶点式的方法.属于基础题型,比较简单.二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).18.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围;(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式,再利用配方法即可求出抛物线顶点坐标;(2)结合函数图象以及A、B点的坐标即可得出结论;(3)设P(x,y),根据三角形的面积公式以及S△PAB=10,即可算出y的值,代入抛物线解析式即可得出点P的坐标.【解答】解:(1)把A(﹣1,0)、B(3,0)分别代入y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣2x﹣3.∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4).(2)由图可得当0<x<3时,﹣4≤y<0.(3)∵A(﹣1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB =12AB•|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2﹣2x﹣3=5,解得:x1=﹣2,x2=4,此时P点坐标为(﹣2,5)或(4,5);②当y=﹣5时,x2﹣2x﹣3=﹣5,方程无解;综上所述,P点坐标为(﹣2,5)或(4,5).【点评】本题考查了待定系数法求函数解析式、三角形的面积公式以及二次函数图象上点的坐标特征,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据函数图象解不等式;(3)找出关于y的方程.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.19.(2016•随州)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件)198 140 80 20 (1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.【分析】(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.【解答】解:(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b (k、b为常数且k≠0),∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=40(150)90(5090)x xx+≤≤⎧⎨<≤⎩.由数据可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴608030140m nm n+=⎧⎨+=⎩,解得:2200mn=-⎧⎨=⎩,∴p=﹣2x+200(0≤x≤90,且x为整数),当1≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.(2)当1≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且1≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(3)当1≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21(天);当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤5313,∵x为整数,∴50<x≤53,53﹣50=3(天).综上可知:21+3=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于5600元.【点评】本题考查了二次函数的应用、一元一次不等式的应用、一元二次不等式的应用以及利用待定系数法求函数解析式,解题的关键:(1)根据点的坐标利用待定系数法求出函数关系式;(2)利用二次函数与一次函数的性质解决最值问题;(3)得出关于x的一元一次和一元二次不等式.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据给定数量关系,找出函数关系式是关键.20.(2016•漳州)如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m 的取值范围,利用二次函数的性质即可解决最值问题;(3)假设存在,设出点P的坐标为(2,n),结合(2)的结论可求出点N的坐标,结合点N、B的坐标利用两点间的距离公式求出线段PN、PB、BN的长度,根据等腰三角形的性质分类讨论即可求出n值,从而得出点P的坐标.【解答】解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+94,∴当m=32时,线段MN 取最大值,最大值为94. (3)假设存在.设点P 的坐标为(2,n ).当m=32时,点N 的坐标为(32,32), ∴PB==,PN=22332-+)22n -()(,BN=22332-+)22-()(0=322. △PBN 为等腰三角形分三种情况:①当PB=PN 时,即=22332-+)22n -()(, 解得:n=12, 此时点P 的坐标为(2,12); ②当PB=BN 时,即=322, 解得:n=±, 此时点P 的坐标为(2,﹣)或(2,); ③当PN=BN 时,即=,解得:n=, 此时点P 的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l 上存在点P ,使△PBN 是等腰三角形,点的坐标为(2,12)、(2,﹣)、(2,)、(2,)或(2,).【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、两点间的距离以及等腰三角形的性质,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的性质解决最值问题;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,利用配方法将二次函数解析式变形为顶点式,再结合二次函数的性质解决最值问题是关键.。
九年级数学二次函数测试题含答案(精选5套)
九年级数学二次函数单元试卷(一)时间 90分钟满分: 100 分一、选择题(本大题共10 小题,每小题3分,共30 分)1.下列函数不属于二次函数的是()A.y=(x - 1)(x+2)B.y= 1(x+1) 2 2C. y=1 - 3 x2D. y=2(x+3)2- 2x22.函数 y=-x 2-4x+3图象顶点坐标是()A. (2,-1 )B. (-2,1)C.(-2 ,-1)D.(2, 1)3.抛物线 y1x 2 21的顶点坐标是()2A.( 2, 1) B .(-2 ,1) C .(2, -1)D.(-2 ,-1)4. y=(x - 1) 2+ 2 的对称轴是直线()A . x=- 1B. x=1C. y=- 1D. y=15.已知二次函数y mx2x m(m2) 的图象经过原点,则m 的值为()A.0或2B. 0C. 2D.无法确定6. 二次函数 y= x2的图象向右平移 3 个单位,得到新的图象的函数表达式是()A. y =x2+ 3B. y = x2-3C. y= (x + 3) 2D. y= (x - 3) 27.函数 y=2x2-3x+4 经过的象限是()A. 一、二、三象限B.一、二象限C. 三、四象限D.一、二、四象限8.下列说法错误的是()A.二次函数 y=3x2中,当 x>0 时, y 随 x 的增大而增大B.二次函数 y=- 6x2中,当 x=0 时, y 有最大值 0C. a 越大图象开口越小, a 越小图象开口越大D.不论 a 是正数还是负数,抛物线2≠0) 的顶点一定是坐标原点y=ax (a129.如图,小芳在某次投篮中,球的运动路线是抛物线y=-5x + 3.5 的一部分,若命中篮圈中心,则他与篮底的距离l是()A. 3.5m B. 4m C. 4.5m D. 4.6m10.二次函数 y=ax 2+ bx+ c 的图象如图所示,下列结论错误的是()A. a> 0.B. b> 0.C. c< 0.D. abc> 0.y y3.05m o x(第 9题)(第 10题)二、填空题(本大题共 4 小题,每小题3分,共12 分)11.一个正方形的面积为16cm2,当把边长增加x cm 时,正方形面积为y cm 2,则 y 关于 x 的函数为。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。
答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。
答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。
答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。
答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。
10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。
答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。
二次函数单元测试卷
二次函数单元测试卷一、选择题(每题3分,共30分)1. 二次函数y = x² - 2x + 1的顶点坐标是()A. (1, 0)B. (-1, 0)C. (0, 1)D. (0, -1)2. 二次函数y = -2x² + 4x - 5的对称轴是()A. x = 1B. x = -1C. x = 2D. x = -23. 二次函数y = 3(x - 1)² + 2的图象的开口方向是()A. 向上B. 向下C. 向左D. 向右4. 把二次函数y = x²的图象向右平移2个单位,再向上平移3个单位后,所得图象的函数表达式是()A. y=(x - 2)²+3B. y=(x + 2)²+3C. y=(x - 2)² - 3D. y=(x + 2)² - 35. 二次函数y = ax²+bx + c(a≠0),当y = 0时,得到一元二次方程ax²+bx + c = 0,若方程有两个相等的实数根,则二次函数的图象与x轴()A. 有两个交点B. 有一个交点C. 没有交点D. 无法确定6. 二次函数y = 2x² - 3x + 1与y轴的交点坐标是()A. (0, 1)B. (0, -1)C. (1, 0)D. (-1, 0)7. 已知二次函数y = ax²+bx + c(a≠0)的图象经过点(0, -1),(5, -1),则它的对称轴是()A. x = 0B. x = 2.5C. x = 5D. 无法确定8. 二次函数y = x²+bx + c的图象向左平移2个单位,再向上平移3个单位,得到二次函数y = x² - 2x + 1的图象,则b、c的值分别为()A. b = -6,c = 6B. b = -8,c = 14C. b = -8,c = 18D. b = -6,c = 89. 若二次函数y = kx² - 6x + 3的图象与x轴有交点,则k的取值范围是()A. k<3B. k≤3C. k<3且k≠0D. k≤3且k≠010. 对于二次函数y = ax²+bx + c(a≠0),若a>0,b = 0,c<0,则它的图象()A. 开口向上,对称轴是y轴,与y轴的交点在y轴负半轴B. 开口向上,对称轴是y轴,与y轴的交点在y轴正半轴C. 开口向下,对称轴是y轴,与y轴的交点在y轴负半轴D. 开口向下,对称轴是y轴,与y轴的交点在y轴正半轴二、填空题(每题3分,共15分)11. 二次函数y = -x²+2x - 3的二次项系数是______,一次项系数是______,常数项是______。
二次函数单元测试卷及答案
二次函数单元测试卷及答案第一部分:选择题(共10题,每题2分)1. 若 $f(x)=2x^2+6x+1$,则该函数的抛物线开口向上()。
A. 对B. 错2. 对于函数 $f(x)=ax^2+bx+c$,若 $a>0$,则抛物线开口()。
A. 向上B. 向下3. 已知 $f(x)=x^2+bx+c$,若 $b^2-4c>0$,则该函数()。
A. 有两个实根B. 无实根C. 有一个实根4. 若 $f(x)=\frac{1}{2}x^2+ax+b$ 的导函数为 $f'(x)=x+1$,则 $f(x)$ 的解析式为()。
A. $\frac{1}{2}x^2+x+1$B. $\frac{1}{2}x^2+2x+1$C.$\frac{1}{2}x^2+x+2$5. 设 $f(x)=2x^2-10x+8$,$g(x)=x^2-3x+7$,则 $f(x)-g(x)$ 的值域为()。
A. $(0,+\infty)$B. $(-\infty,0)$C. $[0,+\infty)$6. 函数 $f(x)=x^2-2mx+1$ 与 $y=0$ 交点的横坐标为 $4$,则 $m$ 的值为()。
A. $1$B. $2$C. $-1$7. 若 $f(x)=x^2+1$,则 $f(2x+1)$ 的最小值为()。
A. $2$B. $5$C. $6$8. 已知函数 $f(x)=ax^2+bx+c$ 在 $x=1$ 处有极值 $0$,则 $a+b+c$ 等于()。
A. $-1$B. $0$C. $1$9. 函数 $f(x)=x^2-2x+5$ 与 $g(x)=2x-1$ 的交点横坐标之和为()。
A. $0$B. $1$C. $2$10. 若 $f(x)=x^2-2x-15$,则 $f(x)$ 的零点为()。
A. $-3,5$B. $-5,3$C. $-3,-5$答案:1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.B 9.C 10.A第二部分:填空题(共5题,每题4分)1. 函数 $f(x)=x^2+2x+1$ 的零点是 _____________。
二次函数单元测试题
九年级数学《二次函数》单元测试题(一) 一.填空题:(每空2分共30分)1.二次函数y=-x2+6x+3的图象顶点为_______ __对称轴为_______ __.2.抛物线y=x2-3x-4与x轴的交点坐标是______ __.3.由y=2x2和y=2x2+4x-5的顶点坐标和二次项系数能够得出y=2x2+4x-5的图象可由y=2x2的图象向__________平移________个单位,再向_______平移______个单位得到.4、已知抛物线y=ax2+bx+c的图象如下,则:a+b+c_______0,a-b+c__________0.2a+b________05.一个二次函数的图象顶点坐标为(2,1),形状与抛物线y=-2x2相同,这个函数解析式为______ _ _____.6.二次函数y=2x2-x ,当x____ ___时y随x增大而增大,当x ____ _____时,y随x 增大而减小.7.抛物线y=ax2+bx+c的顶点在y轴上,则a.b.c中一定有__ _=0.8.已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过象限.二.解答题:(70分)9.(12分)根据以下条件求关于x的二次函数的解析式(1)当x=3时,y最小值=-1,且图象过(0,7).(2)与x轴交点的横坐标分别是x1=-3,x2=1时,且与y轴交点为(0,-2).10.(18分)某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费每提升2元,则减少10张床位租出,为了投资少而获利大,每床每晚应收费多少元?11.(20分)二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x=-1.①求函数解析式;②若图象与x轴交于A.B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积.12.(20分)如图抛物线与直线都经过坐标轴的正半轴上A(4,0),B两点,该抛物线的对称轴x=—1,与x轴交于点C,且∠ABC=90°,求:(1)直线AB的解析式;(2)抛物线的解析式。
数学九年级上学期《二次函数》单元测试卷(附答案)
12.若实数A、B满足A+B2=2,则A2+5B2的最小值为_____.
13.某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为__________元时,获得的利润最多.
(1)求抛物线的表达式;
(2)若在抛物线上存在点Q,使得C D平分∠A CQ,请求出点Q 坐标;
(3)在直线C D的下方的抛物线上取一点N,过点N作NG∥y轴交C D于点G,以NG为直径画圆在直线C D上截得弦GH,问弦GH的最大值是多少?
(4)一动点P从C点出发,以每秒1个单位长度的速度沿C﹣A﹣D运动,在线段C D上还有一动点M,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t的值;若不存在,请说明理由.
人教版数学九年级上学期
《二次函数》单元测试
(满分120分,考试用时120分钟)
第Ⅰ卷(选择题)
一.选择题(共9小题)
1.对于二次函数y=2(x﹣2)2+1,下列说法中正确的是( )
A.图象的开口向下B.函数的最大值为1
C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小
2.抛物线y=﹣3x2向左平移2个单位,再向上平移5个单位,所得抛物线解析式为( )
A.8Cm2B.9Cm2C.16Cm2D.18Cm2
6.在抛物线y=Ax2-2Ax-3A上有A(-0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为()
二次函数单元测试(附答案)
二次函数单元测试卷一、选择题(20分)1.二次函数y=x2﹣x+1的图象与x轴的交点个数是( )A.0个B.1个C.2个D.不能确定2.若二次函数y=ax2﹣x+c的图象上所有的点都在x轴下方,则a,c应满足的关系是( )A.B.C.D.3.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( )A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a,b,c都小于04.若抛物线y=ax2﹣6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )A. B. C. D.5.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为( )A.6 B.4 C.3 D.16.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c﹣8=0的根的情况是( )A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根7.二次函数y=4x2﹣mx+5,当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么当x=1时,函数y的值为( )A.﹣7 B.1 C.17 D.258.(1997•山东)若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴9.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣x2+4x+2,则水柱的最大高度是( )A.2 B.4 C.6 D.2+10.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成( )A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m二、填空题(20分):11.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为__________.12.二次函数y=﹣x2+6x﹣9的图象与x轴的交点坐标为__________.13.抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是__________.14.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=__________.15.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点B的坐标是__________.16.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为__________.17.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是__________.18.已知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),则抛物线的关系式为__________.19.当n=__________,m=__________时,函数y=(m+n)x n+(m﹣n)x的图象是抛物线,且其顶点在原点,此抛物线的开口__________.20.若抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,且开口向下,对称轴在y轴左侧,则a的取值范围是__________.三、解答题(60分):21.(5分)求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.22.(6分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.23.(7分)下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 x2+bx+c … 3 ﹣1 3 (1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y>0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?24.(8分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.25.(7分)二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?26.(7分)有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)27.(10分)某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:x(万元)0 1 2 …y 1 1.5 1.8 …(1)根据上表,求y关于x的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?28.(10分)在直角坐标系中,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,抛物线上一点C的横坐标为1,且AC=3.(1)求此抛物线的函数关系式;(2)若抛物线上有一点D,使得直线DB经过第一、二、四象限,且原点O到直线DB的距离为,求这时点D的坐标.《二次函数》单元测试卷一、选择题1.二次函数y=x2﹣x+1的图象与x轴的交点个数是( )A.0个B.1个C.2个D.不能确定【考点】抛物线与x轴的交点.【分析】利用“二次函数的图象和性质与一元二次方程之间的关系”解答即可.【解答】解:判断二次函数图象与x轴的交点个数,就是当y=0时,方程x2﹣x+1=0解的个数,∵△=(﹣1)2﹣4×1×1=﹣3<0,此方程无解,∴二次函数y=x2﹣x+1的图象与x轴无交点.故选A.【点评】主要考查了二次函数的图象和性质与一元二次方程之间的关系,这些性质和规律要求掌握.2.若二次函数y=ax2﹣x+c的图象上所有的点都在x轴下方,则a,c应满足的关系是( ) A.B.C.D.【考点】抛物线与x轴的交点.【分析】根据函数图象上所有点都在x轴下方可知,函数图象开口向下且顶点纵坐标小于0,列出不等式.【解答】解:由题意得:,解得:,故选A.【点评】本题考查了二次函数的图象在x轴下方的性质:开口向下,且与x轴无交点.3.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( )A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a,b,c都小于0【考点】二次函数图象与系数的关系.【分析】根据函数图象可以得到以下信息:a<0,b>0,c>0,再结合函数图象判断各选项.【解答】解:由函数图象可以得到以下信息:a<0,b>0,c>0,A、错误;B、错误;C、正确;D、错误;故选C.【点评】本题考查了二次函数图象与系数的关系,应先观察图象得到信息,再进行判断.4.若抛物线y=ax2﹣6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )A. B. C. D.【考点】二次函数图象上点的坐标特征.【分析】由抛物线y=ax2﹣6x经过点(2,0),求得a的值,再求出函数顶点坐标,求得顶点到坐标原点的距离.【解答】解:由于抛物线y=ax2﹣6x经过点(2,0),则4a﹣12=0,a=3,抛物线y=3x2﹣6x,变形,得:y=3(x﹣1)2﹣3,则顶点坐标M(1,﹣3),抛物线顶点到坐标原点的距离|OM|==.故选B.【点评】本题考查了二次函数图象上点的坐标特征,先求解析式,再求顶点坐标,最后求距离.5.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为( )A.6 B.4 C.3 D.1【考点】二次函数综合题.【专题】压轴题.【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【解答】解:在y=x2﹣4x+3中,当y=0时,x=1、3;当x=0时,y=3;即A(1,0)、B(3,0)、C(0,3)故△ABC的面积为:×2×3=3;故选C.【点评】本题考查根据解析式确定点的坐标.6.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c﹣8=0的根的情况是( )A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根【考点】抛物线与x轴的交点.【专题】压轴题.【分析】把抛物线y=ax2+bx+c向下平移8个单位即可得到y=ax2+bx+c﹣8的图象,由此即可解答.【解答】解:∵y=ax2+bx+c的图象顶点纵坐标为8,向下平移8个单位即可得到y=ax2+bx+c ﹣8的图象,此时,抛物线与x轴有一个交点,∴方程ax2+bx+c﹣8=0有两个相等实数根.【点评】考查方程ax2+bx+c+2=0的根的情况与函数y=ax2+bx+c的图象与x轴交点的个数之间的关系.7.二次函数y=4x2﹣mx+5,当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么当x=1时,函数y的值为( )A.﹣7 B.1 C.17 D.25【考点】二次函数的性质.【分析】因为当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么可知对称轴就是x=﹣2,结合顶点公式法可求出m的值,从而得出函数的解析式,再把x=1,可求出y的值.【解答】解:∵当x<﹣2时,y随x的增大而减小,当x>﹣2时,y随x的增大而增大,∴对称轴x=﹣=﹣=﹣2,解得m=﹣16,∴y=4x2+16x+5,那么当x=1时,函数y的值为25.故选D.【点评】主要考查了如何根据函数的单调性确定对称轴,并根据对称轴公式求字母系数从而求得函数值.8.(1997•山东)若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴【考点】二次函数图象与系数的关系.【分析】由直线y=ax+b不经过二、四象限,则a>0,b=0,再判断抛物线的开口方向和对称轴.【解答】解:∵直线y=ax+b不经过二、四象限,∴a>0,b=0,则抛物线y=ax2+bx+c开口方向向上,对称轴x==0.故选A.【点评】本题考查了一次函数和二次函数与其系数的关系,由一次函数判断出a、b的正负,在判断二次函数的性质.9.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣x2+4x+2,则水柱的最大高度是( )A.2 B.4 C.6 D.2+【考点】二次函数的应用.【专题】应用题.【分析】求最大高度,就要把抛物线解析式的一般形式改写成顶点式后,求顶点的纵坐标.【解答】解:y=﹣x2+4x+2=﹣(x﹣2)2+6,∵﹣1<0∴当x=2时,最大高度是6.故选C.【点评】注意抛物线的解析式的三种形式,在解决抛物线的问题中的作用.10.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成( )A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m【考点】二次函数的应用.【专题】几何图形问题.【分析】本题考查二次函数最小(大)值的求法.【解答】解:设长为x,则宽为,S=x,即S=﹣x2+2x,要使做成的窗框的透光面积最大,则x=﹣=﹣==1.5m.于是宽为==1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m.故选A.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.二、填空题:11.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为4.【考点】抛物线与x轴的交点.【专题】压轴题.【分析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并熟练运用.12.二次函数y=﹣x2+6x﹣9的图象与x轴的交点坐标为(3,0).【考点】抛物线与x轴的交点.【分析】解方程﹣x2+6x﹣9=0即可求得函数图象与x轴的交点坐标的横坐标.【解答】解:当y=0时,﹣x2+6x﹣9=0,解得:x=3.∴交点坐标是(3,0).【点评】考查二次函数与一元二次方程的关系.13.抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是1.【考点】抛物线与x轴的交点.【分析】抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形中:底边长为与x轴的两交点之间的距离,高为抛物线的顶点的纵坐标的绝对值,再利用三角形的面积公式即可求出b的值.【解答】解:由题意可得:抛物线的顶点的纵坐标为=﹣1,∴底边上的高为1;∵x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴的交点为(1,0)、(3,0);由题意得:底边长=|x1﹣x2|=2,∴抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积为:×2×1=1.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并能与几何知识结合使用.14.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=﹣3.3.【考点】图象法求一元二次方程的近似根.【专题】压轴题.【分析】先根据图象找出函数的对称轴,得出x1和x2的关系,再把x1=1.3代入即可得x2.【解答】解:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣1,﹣3.2),则对称轴为x=﹣1;所以=﹣1,又因为x1=1.3,所以x2=﹣2﹣x1=﹣2﹣1.3=﹣3.3.故答案为:﹣3.3【点评】考查二次函数和一元二次方程的关系.15.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点B的坐标是(0,0).【考点】二次函数的性质.【分析】此题可以先将点A的坐标代入抛物线和直线,求得a、b的值,再将两个函数联立成一元二次方程求得另一个交点坐标B.【解答】解:抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点A代入y=ax2,解得a=1;代入y=2x+b,解得:b=0;将两方程联立得:x2=2x,解方程得:x=0或2,则另一交点坐标B为(0,0).【点评】本题考查了待定系数法解函数及两函数图象的交点问题.16.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为y=﹣4(x﹣2)2+3.【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及所给的坐标可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向右平移2个单位,再向上平移3个单位,那么新抛物线的顶点为(2,3);可设新抛物线的解析式为y=a(x﹣h)2+k,把(3,﹣1)代入得a=﹣4,∴y=﹣4(x﹣2)2+3.【点评】题中由抛物线的顶点求解析式一般采用顶点式;解决本题的关键是得到新抛物线的顶点坐标.17.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是m>.【考点】抛物线与x轴的交点.【分析】由题意二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,可知(m+5)x2+2(m+1)x+m=0,方程二次项系数(m+5)>0,方程根的判别式△<0,根据以上条件从而求出m的取值范围.【解答】解:∵二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,∴(m+5)>0,△<0,∴m>﹣5,4(m+1)2﹣4(m+5)×m<0,解得m>.故m>【点评】此题主要考查一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根.18.已知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),则抛物线的关系式为y=﹣3x2﹣12x﹣9.【考点】待定系数法求二次函数解析式.【分析】由题知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),将点代入抛物线解析式,再根据待定系数法求出抛物线的解析式.【解答】解:抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),∴对称轴x=﹣=﹣2…①,又∵抛物线过点P(﹣2,3),且过A(﹣3,0)代入抛物线解析式得,由①②③解得,a=﹣3,b﹣12,c=﹣9,∴抛物线的关系式为:y=﹣3x2﹣12x﹣9.【点评】此题考查二次函数的基本性质及其对称轴和顶点坐标,运用待定系数法求抛物线的解析式,同时也考查了学生的计算能力.19.当n=2,m=2时,函数y=(m+n)x n+(m﹣n)x的图象是抛物线,且其顶点在原点,此抛物线的开口向上.【考点】二次函数的性质;二次函数的定义.【分析】对y=(m+n)x n+(m﹣n)x的图象是抛物线的判定,需满足n=2,又其顶点在原点,需满足m﹣n=0,则m、n的值即可求出,根据解得的函数解析式判断抛物线的开口方向.【解答】解:若函数y=(m+n)x n+(m﹣n)x的图象满足是抛物线,且其顶点在原点,则,解得,,故函数y=4x2,又由于a=4>0,则抛物线的开口向上.【点评】本题考查了二次函数的性质,需掌握抛物线函数需满足的条件及开口方向的判定.20.若抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,且开口向下,对称轴在y轴左侧,则a的取值范围是﹣1<a<0.【考点】二次函数的性质.【分析】抛物线经过(0,1)可得c的值,又经过(2,﹣3)可得a和b的关系,又开口向下,对称轴在y轴左侧,则需满足a<0,x=<0,解得a的取值范围.【解答】解:抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,则c=1,4a+2b+c=﹣3,即4a+2b=﹣4,化简得:2a+b=﹣2,又抛物线开口向下,对称轴在y轴左侧,则需满足:,解得:﹣1<a<0.【点评】本题综合考查了二次函数的各种性质,并与不等式结合体现出来.三、解答题:21.求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.【考点】二次函数的性质;抛物线与x轴的交点.【分析】本题已知二次函数的一般式,求顶点,可以通过配方法把解析式写成顶点式,求它与x轴的交点坐标,可以设y=0,求方程x2﹣2x﹣1=0的解.【解答】解:∵y=x2﹣2x﹣1=x2﹣2x+1﹣2=(x﹣1)2﹣2∴二次函数的顶点坐标是(1,﹣2)设y=0,则x2﹣2x﹣1=0∴(x﹣1)2﹣2=0(x﹣1)2=2,x﹣1=±∴x1=1+,x2=1﹣.二次函数与x轴的交点坐标为(1+,0)(1﹣,0).【点评】本题考查求二次函数的顶点坐标及x轴交点坐标的求法.22.已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)此题首先要将函数右边的式子化为完全平方式,才能知道顶点坐标和对称轴;(2)令y=0,求得抛物线在x轴上的交点坐标,那么长度就很快就能求出.【解答】解:(1)∵y=x2+x﹣=(x+1)2﹣3,∴抛物线的顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)当y=0时,x2+x﹣=0,解得:x1=﹣1+,x2=﹣1﹣,AB=|x1﹣x2|=.【点评】考查求抛物线的顶点坐标的方法及与x轴交点坐标特点.23.下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 x2+bx+c … 3 ﹣1 3 (1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y>0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?【考点】二次函数图象与几何变换;待定系数法求二次函数解析式;二次函数与不等式(组).【专题】图表型.【分析】根据与x轴的交点坐标得到什么时候y>0.讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.【解答】解:(1)这个代数式属于二次函数.当x=0,y=3;x=4时,y=3.说明此函数的对称轴为x=(0+4)÷2=2.那么﹣=﹣=2,b=﹣4,经过(0,3),∴c=3,二次函数解析式为y=x2﹣4x+3,当x=1时,y=0;当x=3时,y=0.(每空2分)(2)由(1)可得二次函数与x轴的交点坐标,由于本函数开口向上,可根据与x轴的交点来判断什么时候y>0.当x<1或x>3时,y>0.(3)由(1)得y=x2﹣4x+3,即y=(x﹣2)2﹣1.将抛物线y=x2﹣4x+3先向左平移2个单位,再向上平移1个单位即得抛物线y=x2.【点评】常由一些特殊点入与y轴的交点,对称轴等得到二次函数的解析式.24.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【考点】待定系数法求二次函数解析式;二次函数图象与几何变换;抛物线与x轴的交点.【专题】压轴题;分类讨论.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了用待定系数法求抛物线解析式、函数图象交点、图形面积的求法等知识.不规则图形的面积通常转化为规则图形的面积的和差.25.二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?【考点】二次函数图象与几何变换;二次函数的图象;抛物线与x轴的交点.【专题】压轴题;开放型.【分析】(1)由平移规律求出新抛物线的解析式;(2)令y=0,求出x的值,即可得交点坐标.抛物线开口向上,当x的值在两交点之外y 的值大于0.【解答】解:(1)画图如图所示:依题意得:y=(x﹣1)2﹣2=x2﹣2x+1﹣2=x2﹣2x﹣1∴平移后图象的解析式为:x2﹣2x﹣1(2)当y=0时,x2﹣2x﹣1=0,即(x﹣1)2=2,∴,即∴平移后的图象与x轴交于两点,坐标分别为(,0)和(,0)由图可知,当x<或x>时,二次函数y=(x﹣1)2﹣2的函数值大于0.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)【考点】二次函数的应用.【专题】几何图形问题.【分析】设窗框的宽为x米,窗框的高为,则窗框的面积为S=x•,再求得面积的最大值即可.【解答】解:设窗框的宽为x米,则窗框的高为米.则窗的面积S=x•S=.当x==1.2(米)时,S有最大值.此时,窗框的高为=1.8(米)【点评】本题考查了二次函数在实际生活中的运用.27.某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:x(万元)0 1 2 …y 1 1.5 1.8 …(1)根据上表,求y关于x的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?【考点】二次函数的应用.【专题】应用题;图表型.【分析】(1)设所求函数关系式为y=ax2+bx+c,代入三点求出a、b、c,(2)由利润看成是销售总额减去成本和广告费列出关系式,(3)把二次函数化成顶点坐标式,观察S随x的变化.【解答】解:(1)设所求函数关系式为y=ax2+bx+c,把(0,1),(1,1.5),(2,1.8)分别代入上式,得解得∴y=﹣x2+x+1(2)S=(3﹣2)×10y﹣x=(﹣x2+x+1)×10﹣x=﹣x2+5x+10.(3)∵S=﹣x2+5x+10=﹣.∴当0≤x≤2.5时,S随x的增大而增大.因此当广告费在0﹣2.5万元之间时,公司的年利润随广告费的增大而增大【点评】本题考查的是二次函数在实际生活中的应用,比较简单.28.在直角坐标系中,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,抛物线上一点C的横坐标为1,且AC=3.(1)求此抛物线的函数关系式;(2)若抛物线上有一点D,使得直线DB经过第一、二、四象限,且原点O到直线DB的距离为,求这时点D的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)欲求抛物线的解析式,需求出m、n的值,根据抛物线的解析式,易得顶点A 的坐标,然后将x=1代入抛物线的解析式中,可得点C的坐标,即可根据AC的长得到第一个关于m、n的等量关系式;由于抛物线的顶点在x轴上,即抛物线与x轴只有一个交点,即根的判别式△=0,联立两个关于m、n的式子即可求出m、n的值,从而得到该抛物线的解析式.(2)根据(1)的抛物线解析式可求得点B的坐标,即可得到OB的长;过O作OM⊥BD于M,根据题意可知OM=,进而可利用勾股定理求得BM的长;在△EOF中,OM⊥EF,易证得△OBM∽△FOM,根据相似三角形所得比例线段即可求得OF的长,也就得到了F 点的坐标,进而可利用待定系数法求得直线BD的解析式,联立抛物线的解析式即可求出点D的坐标.【解答】解:(1)根据题意,画出示意图如答图所示,过点C作CE⊥x轴于点E;∵抛物线上一点C的横坐标为1,且AC=3,∴C(1,n﹣2m+2),其中n﹣2m+2>0,OE=1,CE=n﹣2m+2;∵抛物线的顶点A在x轴负半轴上,∴A(m,0),其中m<0,OA=﹣m,AE=OE+OA=1﹣m;由已知得,由(1)得n=m2﹣1;(3)把(3)代入(2),得(m2﹣2m+1)2+(m2﹣2m+1)﹣90=0,∴(m2﹣2m+11)(m2﹣2m﹣8)=0,∴m2﹣2m+11=0(4)或m2﹣2m﹣8=0(5);对方程(4),∵△=(﹣2)2﹣4×11=﹣40<0,∴方程m2﹣2m+11=0没有实数根;由解方程(5),得m1=4,m2=﹣2,∵m<0,∴m=﹣2.把m=﹣2代入(3),得n=3,∴抛物线的关系式为y=x2+4x+4(2)∵直线DB经过第一、二、四象限;设直线DB交x轴正半轴于点F,过点O作OM⊥DB于点M,∵点O到直线DB的距离为,∴OM=,∵抛物线y=x2+4x+4与y轴交于点B,∴B(0,4),∴OB=4,∴BM=;∵OB⊥OF,OM⊥BF,∴△OBM∽△FOM,∴,∴,∴OF=2BO=8,F(8,0);∴直线BF的关系式为y=﹣x+4;∵点D既在抛物线上,又在直线BF上,∴,解得,∵BD为直线,∴点D与点B不重合,∴点D的坐标为.【点评】此题是二次函数的综合题,涉及到勾股定理、根的判别式、二次函数解析式的确定、相似三角形的判定和性质以及函数图象交点坐标的求法等重要知识,综合性强,难度较大.。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 二次函数y=ax^2+bx+c(a≠0)的图象开口向上,则a的取值范围是()。
A. a>0B. a<0C. a=0D. a≠0答案:A2. 抛物线y=x^2-4x+3的顶点坐标是()。
A. (1,0)B. (2,1)C. (2,-1)D. (4,3)答案:C3. 若抛物线y=-2x^2+4x-1与x轴有两个交点,则这两个交点的坐标是()。
A. (1/2,0) 和 (3/2,0)B. (1,0) 和 (3,0)C. (1,0) 和 (-3,0)D. (-1,0) 和 (3,0)答案:B4. 二次函数y=ax^2+bx+c(a≠0)的对称轴是直线x=1,则b的值是()。
A. -2aB. 2aC. -aD. a答案:B5. 抛物线y=x^2-6x+8与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C6. 二次函数y=-x^2+2x+3的图象与y轴的交点坐标是()。
A. (0,3)B. (0,-3)C. (0,2)D. (0,-2)答案:A7. 二次函数y=x^2-2x-3与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C8. 抛物线y=-2x^2+4x+1的顶点坐标是()。
A. (1,3)B. (2,5)C. (-1,3)D. (-2,5)答案:A9. 二次函数y=x^2-4x+c的图象经过点(2,0),则c的值是()。
A. 0B. 4C. 8D. 16答案:C10. 抛物线y=x^2-6x+8与直线y=2x-4的交点坐标是()。
A. (2,0) 和 (4,4)B. (2,0) 和 (4,0)C. (2,4) 和 (4,0)D. (0,2) 和 (4,4)答案:A二、填空题(每题3分,共15分)11. 二次函数y=2x^2-4x+1的顶点坐标是()。
答案:(1,-1)12. 二次函数y=-3x^2+6x-3与x轴的交点坐标是()。
二次函数单元测试卷
二次函数单元测试卷一、选择题(每题2分,共10分)1. 二次函数的基本形式是:A. y = ax^2 + bx + cB. y = ax^2 + bxC. y = ax^2D. y = ax + c2. 对于二次函数y = ax^2 + bx + c,当a > 0时,其图像开口:A. 向上B. 向下C. 向左D. 向右3. 二次函数的顶点坐标可以通过公式(-b/2a, f(-b/2a))来计算,其中f(-b/2a)表示:A. 顶点的x坐标B. 顶点的y坐标C. 函数的最小值D. 函数的最大值4. 如果二次函数的图像与x轴有两个交点,那么判别式Δ = b^2 - 4ac:A. 大于0B. 等于0C. 小于0D. 无法确定5. 二次函数的对称轴是直线x = -b/2a,这条直线:A. 总是通过顶点B. 总是通过原点C. 总是垂直于x轴D. 总是平行于y轴二、填空题(每题2分,共10分)6. 二次函数y = 3x^2 - 6x + 5的顶点坐标是________。
7. 当a < 0时,二次函数y = ax^2 + bx + c的图像开口________。
8. 如果二次函数的图像与x轴有一个交点,那么判别式Δ = b^2 -4ac等于________。
9. 二次函数y = -2x^2 + 4x - 1的对称轴是直线x = ________。
10. 函数y = x^2 + 2x + 3的最小值是________。
三、解答题(每题5分,共20分)11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(-1, 6),求a和b的值。
12. 给定二次函数y = 2x^2 - 8x + 3,求其顶点坐标和对称轴。
13. 如果二次函数y = 4x^2 - 12x + 9与x轴相交,求交点坐标。
14. 函数y = -3x^2 + 6x + 1的最大值是多少?并说明取得最大值时x的值。
第1章 二次函数单元测试题(试卷答案答题卷)
二次函数单元测试班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本题有10题,每小题4分,共40分)1. 若二次函数y =ax 2(a ≠0)的图象经过点M (2,-3),则它也经过( )A .M'(-2,-3)B .M'(-2,3)C .M'(-3,-2)D .M'(-3,2)2. 下列函数中,当x >0时y 值随x 值的增大而减小的是( ) A .y =x 2B .y =x -1C .y =34xD .y =1x3. 已知点A (-2,a ),B (1,b ),C (3,c )是抛物线y =x 2-2x +2上的三点,则a ,b ,c 的大小关系为( )A .a >c >bB .b >a >cC .c >a >bD .b >c >a4. 如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大其中结论正确的个数是( ) A .4个B .3个C .2个D .1个5. 在平面直角坐标系中,将抛物线y =x 2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为( ) A .y =(x +2)2+2B .y =(x -2)2-2C .y =(x -2)2+2D .y =(x +2)2-26. 函数y =kx与y =-kx 2+k (k ≠0)在同一直角坐标系中的图象可能是( )A .B .C .D .7. 二次函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( ) A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠08. 已知二次函数y =3x 2-12x +13,则函数值y 的最小值是( )A .3B .2C .1D .-19. 若二次函数y =x 2+mx 的对称轴是x =3,则关于x 的方程x 2+mx =7的解为( ) A .x 1=0,x 2=6 B .x 1=1,x 2=7C .x 1=1,x 2=-7D .x 1=-1,x 2=710.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中△GEF 与矩形ABCD 重合部分的面积(S )随时间(t )变化的图象大致是( )二、填空题(本题有6小题,每小题5分,共30分)11.写出一个开口向下的二次函数的表达式____________________________.12.在同一平面直角坐标系内,将函数y =2x 2+4x +1的图象先沿x 轴向右平移2个单位长度,再沿y 轴向下平移1个单位长度,得到新函数图象的顶点坐标是___________________. 13.如图所示,桥拱是抛物线,其函数的解析式为y =-14x 2,当水位线在AB 位置时,水面的宽为12 m ,此时水面离桥顶的高度h 是__________m .st OA .stOB .C .stOD .st OGDCE F ABb a14.已知二次函数y =ax 2+bx +c (a ≠0)中自变量x 和函数值y 的部分对应值如下表:x … -32 -1 -12 0 12 1 32 … y…-54-2-94-2-5474…则该二次函数的表达式为__________________.15.某种火箭被竖直向上发射时,它的高度h (m )与时间t (s )的关系可以用公式h =-5t 2+150t +10表示.经过________s ,火箭达到它的最高点.16.如图,把抛物线y =12x 2平移得到抛物线m .抛物线m 经过点A (-6,0)和原点(0,0),它的顶点为P ,它的对称轴与抛物线y =12x 2交于点Q ,则图中阴影部分的面积为___________.三、解答题(本题有8小题,共80分)17.抛物线y =ax 2+bx +c 经过点(-1,0),(3,0),(0,-3),求它的开口方向、对称轴和顶点坐标.18.已知二次函数y =(x -3)2-2.(1)先确定其图象的开口方向、对称轴和顶点坐标,再画出草图; (2)根据图象分析该函数图象经过怎样的变换可得y =x 2-2x 的图象.19.某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件. (1)当售价定为每件30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元? 20.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)运动的路线是抛物线y =-35x 2+3x +1的一部分,如图所示.(1)求演员弹跳离开地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?请说明理由.21.如图,抛物线y =a (x -1)2+4与x 轴交于点A ,B ,与y 轴交于点C ,过点C 作CD ∥x 轴交抛物线的对称轴于点D ,连接BD ,已知点A 的坐标为(-1,0) (1)求该抛物线的解析式; (2)求梯形COBD 的面积.22.在一次数学活动课上,老师出了一道题: (1)解方程x 2-2x -3=0.巡视后,老师发现同学们解此题的方法有公式法、配方法和十字相乘法(分解因式法).接着,老师请大家用自己熟悉的方法解第二题:(2)解关于x 的方程mx 2+(m -3)x -3=0(m 为常数,且m ≠0).老师继续巡视,及时观察、点拨大家.再接着,老师将第二道题变式为第三道题: (3)已知关于x 的函数y =mx 2+(m -3)x -3(m 为常数).求证:不论m 为何值,此函数的图象恒过x 轴、y 轴上的两个定点. 请你也用自己熟悉的方法解上述三道题.23.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y =ax 2+bx (a ≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边的距离分别为12 m ,32m .(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线型图案?24.如图,矩形ABCD 的两边长AB =18cm ,AD =4cm ,点P ,Q 分别从A ,B 同时出发,P 在边AB 上沿AB 方向以每秒2cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1cm 的速度匀速运动.设运动时间为x (s ),△PBQ 的面积为y (cm 2). (1)求y 关于x 的函数关系式,并写出x 的取值范围; (2)求△PBQ 的面积的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学达教育初三数学(二次函数)单元测试
一. 填空题:(每小题3分)
1. 抛物线2)1(2--=x y 的顶点坐标是____________
2. 若抛物线2)2(x m y -=的开口向下,则m 的取值范围是_______
3. 函数1422++=x x y ,当x=______时,y 随x 的增大而减少.
4. 抛物线bx x y +=22的对称轴在y 轴的右侧,则b 的取值范围是______
5. 已知抛物线c x x y +-=2
12的顶点在x 轴上,则c=_________ 6. 一个二次函数的图象与抛物线23x y =的形状相同,且顶点为(1,4),那么这个函数的关系式是_________________________________
7. 若二次函数9)1(22-++=m x m y 有最大值,且图象经过原点,则m=______
8. 二次函数当x=4时,有最小值2,且图象过点(2,0),则函数关系式为______________
9. 抛物线342--=x x y 与x 轴交于A,B,顶点为P,则 △PAB 的面积是_________
二、选择题: (每小题3分)
1、二次函数522-+=x x y 取最小值时,自变量x 的值是 ( )
A. 2
B. -2
C. 1
D. -1
2.下列函数中,图象一定经过原点的函数是 ( )
A. 23-=x y
B.X
y 1= C.x x y 22+= D.12+=x y 4、把抛物线1422++-=x x y 的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是 ( )
A.6)1(22+--=x y
B. 6)1(22---=x y
C .6)1(22++-=x y D. 6)1(22-+-=x y
5、二次函数c bx ax y ++=2( )
A a>0 b<0 c>0
B a<0 b<0 c>0
C a<0 b>0 c<0
D a<0 b>0 c>0
6、二次函数c bx ax y ++=2 A B C D
三、解答题:(第1至4题每题12分,第5题7分)
1、 已知二次函数5632+--=x x y
(1) 求这个函数图象的顶点坐标、对称轴以及函数的最大值;
(2) 若另一条抛物线k x x y --=2与上述抛物线只有一个公共点,求k 的值。
2、 根据所给的条件,求二次函数的解析式
(1) 当0=x 时,1-=y ,当2
12或
-=x 时,函数值y 都为0;
(2) 抛物线的顶点坐标是()3,2-与y 轴的交点的纵坐标是7。
3、 已知抛物线m x x y +-=2
(1) 写出它的开口方向,对称轴,并用m 表示它的顶点坐标;
(2) 试求m 在什么范围内取值时,抛物线全部在x 轴上方。
4、 如图是一条高速公路上隧道口在平面直角坐标系上的示意图,点1A A 和,点1B B 和分别关于y
轴对称。
隧道拱部分为1BCB 为一段抛物线,最高点C 离路面1AA 的距离为8m ,点B 离路面
1AA 的距离为6m ,隧道的宽1AA 为16 m 。
(1) 求隧道拱抛物线1BCB 的函数关系式;
(2) 离均为7m ,它能否安全通过这个隧道。
5、 启明公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件。
为了获得
更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x (万元)时,
产品的年销售量将是原销售量的y 倍,且10
7107102++-=x x y 。
如果把利润看作是销售总额减去成本费和广告费
(1) 试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告是多少万元时,
公司获得的年利润最大,最大年利润是多少万元?
(2) 把(1)中的最大利润留出3万元作广告,其余的投资新项目,现有6个项目可供选择。
各项目每股投资金额和预计年收益如下表:
投资方式?写出每种投资方式所选的项目。