AD_DA转换原理及应用
AD-DA原理
数字系统
D/A
A/D
转
转
换
换
1. 概述
典型数字控制系统框图
1. 概述
分类
网络权电阻DAC 倒梯形电阻网络DAC
DAC
权电流型DAC 权电容型DAC
开关树型DAC
输入/输 出方式
并行 串行
ADC
直接ADC 间接ADC
2.D/A转换器原理
(1) D/A功能: 将数字量成正比地转换成模拟量
4位 数字量
入到寄存器1
WR1 = 0时存入数据 WR1 = 1时锁定
数据由寄存器 1转送寄存器 2从输出端取
模拟量
0
WR2 = 0时存入数据 WR2 = 1时锁定
无控制信号, 随时可取
例1. 单步输入操作 ----- 适用于单个DAC工作
D... 7
CS WR1
Rfb
Iout1 - +
D0
ILE WR2 XFER
一、权电阻型D/A转换器
UREF
R
R
R
R
2n1
2n2
2i
2
R
Sn-1
Sn-2
Si
S1
S0
Rf
1
01
01
0 1 01
0
i
uO
Dn-1
Dn-2
Di
D1
D0
uO i iiRininnf0121Di UD2RRiEnRF1f2U•R•UURUR2R2EERRnFFRnREE1niF2niF0101DDi 2ii,2i , Di D(0,i1) (0, 1)
n1
Di 2i
i0
运算放大器的输出电压为
(完整版)AD、DA转换原理数模、模数转换
模拟量:
uo=K(D3×23+D2×22+D1×21+D0×20)10
uo=K(1×23+1×22+0×21+1×20)10
(K为比例系数)
2020/4/8
3
组成D/A转换器的基本指导思想:将数字量按 权展开相加,即得到与数字量成正比的模拟量。
n位D/A转换器方框图
D/A转换器的种类很多,主要有: 权电阻网络DAC、 T形电阻网络DAC 倒T形电阻网络DAC、 权电流DAC
2020/4/8
4
权电阻型D/A转换器
模拟开关, 受Di控制
输入代码,为1时,模拟开关上拨;
2020/4/8
为0时,模拟开关下拨。
求和放大 器
权电阻
网络
5
运算放大器总的输入电流为
I
n1
Ii
i0
n1
i0
UR 2n1 R
Di 2i
UR 2n1 R
n1
Di 2i
i0
运算放大器的输出电压为
U
Rf
I
RfUR 2n1 R
n 1
Di 2i
i0
若Rf=1/2R,代入上式后则得
U
RfUR 2n1 R
n1
Di 2i
i0
UR 2n
n1
Di 2i
i0
2020/4/8
6
当D=Dn-1…D0=0时 U=0
当D=Dn-1…D0=11…1时, 最大输出电压
Um
2n 1 2n UR
因而U的变化范围是
2n 1 0 ~ 2n UR
1
数/模和模/数转换
2020/4/8
典型数字控制系统框图
2
D/A转换
微型计算机原理及应用第12章AD及DA转换
31
编码就是把已经量化的模拟数值(它一定是量 化电平的整数倍)用二进制数码、BCD码或其他 码来表示。 至此,即完成了A/D转换的全过程,将 各采样点的模拟电压转换成了与之一一对应的 二进制数码。
32
实现A/D转换的方法很多,常用的有逐次逼近法、 双积分法及电压频率转换法等。 . 逐次逼近法A/D转换器 逐次逼近法A/D转换是一个具有反馈回路的闭路系 统。A/D转换器可划分成3大部分:比较环节、控制环节 、比较标准(D/A转换器)。 下 图就是逐次逼近法A/D转换器的原理电路。其主 要原理为:将一个待转换的模拟输入信号VIN与一个“推 测”信号V1相比较,根据推测信号是大于还是小于输入 信号来决定减小还是增大该推测信号,以便向模拟输入 信号逼近。推测信号由D/A变换器的输出获得,当推测 信号与模拟输入信号“相等”时,向D/A转换器输入的 数字即为对应的模拟输入的数字。 33
17
2.1 8位数模转换器DAC0832 例2 用DAC0832控制绘图仪 X-Y绘图仪由X、Y两个方向的电机驱动,其中一个电
机控制绘图笔沿X方向运动,另一个电机控制绘图笔沿Y方 向运动,从而绘出图形。因此对X-Y绘图仪的控制有两点 基本要求:一是需要两路D/A转换器分别给X通道和Y通道 提供模拟信号,二是两路模拟量要同步输出。
28
29
保持
所谓保持,就是将采样得到的模拟量值 保持下来,即是说,s(t)=0期间,使输出不是 等于0,而是等于采样控制脉冲存在的最后瞬 间的采样值。可见,保持发生在s(t)=0期间。 实际中进行A/D转换时所用的输入电压,就是 这种保持下来的采样电压,也就是每次采样结 束时的输入电压。
30
量化和编码
stack segment stack stack dw 32 dup(0) ends segment proc far assume ss:stack,cs:code „„ MOV DX,380H INC AL OUT DX,AL PUSH AX MOV AH,11 ;11号功能调用 INT 21H CMP AL,0 ;有键入AL=FFH,无键入AL=0 POP AX JE AGAIN ;无键入继续 ret endp ends end start
AD和DA转换
AD和DA转换在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。
传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。
这种模拟量到数字量的转换称为模-数(A/D)转换。
处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。
A/D变换器简称为ADC和D/A变换器简称为DAC是数字系统和模拟系统的接口电路。
第一节基本概念一、D/A变换D/A变换器一般由变换网络和模拟电子开关组成。
输入n位数字量D(=D…DD)n-110分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。
(1)变换网络变换网络一般有权电阻变换网络、R-2RT型电阻变换网络和权电流变换网络等几种。
?、权电阻变换网络n-1-i 权电阻变换网络如图8-1所示,每一个电子开关S所接的电阻R等于2R(i=0,n-1),iin-1即与二进制数的位权相似,R=2R,R=R。
对应二进制位D=1时,电子开关S合上,0n-1iiR上流过的电流 iI=V/R。
iREFin-1令V/2R=I,则有 REFREFi I=2I, iREF即R上流过对应二进位权倍的基准电流,R称为权电阻。
iin-1 权电阻网络中的电阻从R到2R成倍增大,位数越多阻值越大,很难保证精度。
Rf? - … … v I- O n1 + IiI 0+ RRRR R--2 n1 ni 1 0S -S S S -2n1S i0n1V REFDDDD D --n1 n2 I 1 0图8-1 权电阻D/A变换器?、R-2R电阻变换网络R-2R电阻网络中串联臂上的电阻为R,並联臂上的电阻为2R,如图8-2所示。
从每个並联臂2R电阻往后看,电阻都为2R,所以流过每个与电子开关S相连的2R 电阻的电流Iii是前级电流I的一半。
《AD及DA转换》课件
《AD及DA转换》PPT课件
本PPT课件将深入介绍AD及DA转换的原理、分类、工作模式,以及采样率、 量化精度等关键概念。我们还会探讨信号处理技术、硬件实现和电路设计等 重要话题。
什么是AD和DA转换
AD(模数)转换将模拟信号转换为数字信号,DA(数模)转换将数字信号转换为模拟信号。这两种转换器 在许多电子系统中起着关键作用。
AD转换器可根据工作原理和特性进行分类,如逐次逼近型、积分型、双斜率 型和ΔΣ型等。每种类型都有其适用的应用场景和性能特点。
DA转换器的分类
DA转换器可以按照数字信号转换为模拟信号的方法进行分类,如加权电阻型、 串行型、并行型和PDM型等。不同类型的转换器适用于不同的应用需求。
AD转换器的工作模式
AD转换的原理和作用
AD转换器使用采样和量化技术将连续的模拟信号转换为离散的数字信号。它 在信号处理、通信系统和传感器中都有广泛应用。
DA转换的原理和作用
DA转换器将数字信号转换为模拟信号,使其能够在模拟电路中进行进一步处 理和传输。它在音频、视频和通信等领域中扮演着核心角色。
AD转换器的分类
AD_DA原理及主要技术指标
AD_DA原理及主要技术指标AD/DA原理是指模拟信号与数字信号之间的转换过程,其中AD (Analog to Digital)指模拟信号转换为数字信号的过程,DA(Digital to Analog)指数字信号转换为模拟信号的过程。
AD转换过程主要包括采样、量化和编码三个阶段。
首先,采样是将连续的模拟信号按照一定的时间间隔进行离散化处理,其中的模拟信号也被称为连续时间信号。
采样频率是指每秒对模拟信号进行采样的次数,常用单位为Hz。
接下来是量化,即将连续的模拟信号转换为离散的数字量,其精度由量化位数决定,量化位数越高,精度越高。
最后是编码,将量化后的数字信号通过编码器转换为二进制码,以便能够在数字系统中进行传输和处理。
DA转换过程主要包括解码和重构两个阶段。
首先,解码是将二进制码转换为离散的数字量,采用解码器进行解码。
接下来是重构,即将离散的数字量转换为连续的模拟信号,其精度由重构位数决定,重构位数越高,精度越高。
最后通过滤波器对重构后的模拟信号进行滤波处理,以去除可能产生的噪声和失真。
主要技术指标包括采样频率、量化位数、重构位数和信噪比等。
采样频率是指每秒对模拟信号进行采样的次数,频率越高,能够更准确地还原原始模拟信号,但也需要更高的系统性能和硬件成本。
常用的采样频率有8kHz、16kHz、32kHz、44.1kHz、48kHz等。
量化位数是指将模拟信号转换为数字信号时,对信号幅值的离散级数。
例如,8位的量化位数可以表示256个离散级数,12位的量化位数可以表示4096个离散级数。
量化位数越高,数字信号的分辨率越高,能够更准确地还原原始信号。
重构位数是指将数字信号转换为模拟信号时,对数字量的精度。
与量化位数类似,重构位数越高,模拟信号的分辨率越高,能够更准确地还原原始信号。
信噪比(SNR)是模拟信号与数字信号之间的噪声水平,表示了有效信号与噪声之间的相对强度。
信噪比越高,数字信号的质量越好,表示数字信号中噪声所占比例较小。
AD-DA原理及主要指标
AD/DA原理及主要指标A是ANALOG,模拟;D是DIGITAL,数字。
A/D转换1 A/D转换定义AD转换是指模数转换,即将模拟信号转换为数字信号. 主要包括积分型,逐次逼近型,并联比较型/串联并联型数模转换芯片的转换速率,调制型,电容器阵列逐次比较型和电压-频率转换型.2 A/D转换原理输入端输入的模拟电压,经采样、保持、量化和编码四个过程的处理,转换成对应的二进制数码输出。
采样就是利用模拟开关将连续变化的模拟量变成离散的数字量。
由于经采样后形成的数字量宽度较窄,经过保持电路可将窄脉冲展宽,形成梯形波。
量化就是将阶梯形模拟信号中各个电压值转化为某个最小单位的整数倍,便于用数字量来表示。
编码就是将量化的结果(即整数倍值)用二进制数码来表示。
这个过程就实现了模/数转换。
3 AD转换器主要指标(1)分辩率(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。
分辩率又称精度,通常以数字信号的位数来表示。
(2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。
积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。
采样时间则是另外一个概念,是指两次转换的间隔。
为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。
因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。
(3)量化误差(Quantizing Error)由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。
通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。
(4)偏移误差(Offset Error)输入信号为零时输出信号不为零的值,可外接电位器调至最小。
(5)满刻度误差(Full Scale Error)满度输出时对应的输入信号与理想输入信号值之差。
第9章AD与DA转换
例如,满量程值为10V时,n位D/A转换器的 精度为±1/2 LSB,则其最大可能误差为:
精度为±0.05%表示最大可能误差为:
(3)转换速率 转换速率是指大信号工作时,模拟输出电压 的最大变化速度,单位为V/μs (4)建立时间 建立时间指的是,当输入数值满量程后,输 出模拟值稳定到最终值的±1/2LSB时所需要 的时间。该时间是表征D/A转换器性能的重要 指标,显然建立时间越大,转换速率越低。
DI7~ DI0:8位数据输入端,与CPU数据总线 相连。 CS:片选信号,输入,低电平有效,与ILE 配合决定WR1是否起作用。 ILE:输入锁存允许信号,输入,高电平有 效。
WR1 :写信号1,将数据8位输入数据锁存到输入寄 存器中,低电平有效。此信号必须同CS、ILE同时 有效,即当CS和WR1同时为低电平、ILE为高电平时, 输入数据不锁存;当WR1变为高电平、ILE变为低电 平时,输入数据被锁存在输入寄存器中。 WR2 :写信号2将锁存在输入寄存器中的数据送到8 位DAC寄存器中进行锁存,低电平有效。当WR2与传 送控制信号XFER同时为低电平时,DAC寄存器中的 数据不锁存;当WR2 或XFER变为高电平时,输入寄 存器中的数据被锁存在DAC寄存器中。
1.ADC0809引脚
ADC0809是28引脚的双列直插式芯片,如 图9-15所示。各引脚的定义及功能如下。
IN7~IN0:8路模拟电压输入端。 D7~D0:8位数字量输出端。 ADDA、ADDB和ADDC:地址输入端, 它们的不同组合可用来选择不同的模拟 输 入 通 道 , 编 码 000~111 分 别 对 应 IN0~IN7,如表9-1所示。 START:启动转换的控制信号,输入, 高电平有效。
ad和da的原理
ad和da的原理
ad和da分别是模拟信号和数字信号之间的转换过程中使用的
缩写词。
AD转换过程,即模拟信号(Analog Signal)转换为数字信号(Digital Signal)。
在AD转换中,模拟信号首先通过采样(Sampling)将连续的模拟信号转换为离散的信号,然后通过
量化(Quantization)将离散信号的幅值转换为一系列离散的
数值,最后通过编码(Encoding)将这些数值转换为二进制数,以便在计算机系统中传输和处理。
DA转换过程,则是数字信号转换为模拟信号。
在DA转换中,数字信号通过解码(Decoding)将二进制数转换为一系列离散的数值,然后通过数字到模拟转换器(DAC,Digital-to-Analog Converter)将这些离散数值转换为连续的模拟信号,
最终得到模拟信号。
AD和DA的原理是基于模拟信号和数字信号的不同特性来实
现的。
模拟信号是连续的,在时间和幅值上都可以取任意值;而数字信号是离散的,只能取有限个数值。
AD转换将模拟信
号的连续性转换为离散性,通过采样和量化将模拟信号离散化为数字信号。
DA转换则将数字信号的离散性转换为连续性,
通过解码和DAC将数字信号还原为模拟信号。
AD和DA的应用广泛,例如在音频设备中,AD转换将模拟
声音信号转换为数字信号进行处理和存储,然后DA转换将数
字信号转换回模拟信号输出。
这样的转换能够实现高质量的音频处理和传输,在音乐、广播等领域发挥重要作用。
电路中的AD转换与DA转换
电路中的AD转换与DA转换在当今信息时代,电子设备已经渗透到我们生活的方方面面。
而这些电子设备的运作离不开AD转换(模数转换)和DA转换(数模转换)这两个关键环节。
本文将介绍AD转换和DA转换的原理、应用以及相关技术发展。
一、AD转换AD转换是模拟信号转换为数字信号的过程。
在电子设备中,传感器等设备输出的信号多为模拟信号,需要通过AD转换将其转换成数字信号,才能由电子器件进行处理和存储。
AD转换器通常由采样器、量化器和编码器组成。
采样器的作用是将模拟信号在一定的时间间隔内取样,量化器将取样的模拟信号分成有限个离散值进行量化,编码器将量化后的离散值转换成二进制数字信号。
通过这一过程,AD转换器能够将连续变化的模拟信号转换为离散的数字信号。
AD转换器广泛应用于各个领域,如音频、视频、电力系统等。
在音频领域,AD转换器用于将声音等模拟信号转换为数字信号,实现录音、播放等功能。
在电力系统中,AD转换器用于电能计量、监测等方面。
二、DA转换DA转换是数字信号转换为模拟信号的过程。
数字信号由计算机或其他数字系统处理和存储,而大部分外围设备如音箱、显示器等则需要模拟信号进行驱动。
DA转换器通常由数字信号输入端和模拟输出端组成。
数字信号输入端接收来自计算机或其他数字系统的数字信号,将数字信号按照一定的波形进行放大、滤波等处理后,经过模拟输出端输出为模拟信号。
这样,数字系统生成的数字信号便可以控制外围设备的模拟输出。
DA转换器广泛应用于音频设备、显示设备等领域。
在音频设备中,DA转换器用于将计算机中存储的音频文件转换为模拟信号,通过音箱输出高质量的音乐。
在显示设备中,DA转换器则将计算机生成的数字图像信号转换为模拟信号,驱动显示器显示各种图像。
三、技术发展随着科技的不断进步,AD转换与DA转换技术也得到了快速的发展与创新。
目前,高速、高精度、低功耗、小型化是AD转换与DA转换技术的发展方向。
在AD转换技术方面,新型的Delta-Sigma调制技术、超大规模集成电路技术等被广泛应用,提高了AD转换器的精度和信噪比。
a d转换器工作原理
a d转换器工作原理
AD转换器是模拟信号和数字信号之间的转换器。
在AD转换过程中,模拟信号首先经过采样,然后经过量化和编码,最后转换为数字信号输出。
AD转换器的工作原理如下:
1. 采样:AD转换器会连续地对模拟信号进行采样,即在确定的时间间隔内获取一系列离散的样本值。
采样定理规定采样频率应该是模拟信号最高频率的两倍以上,以避免信号失真。
2. 量化:采样后的模拟信号经过量化处理,将连续的模拟信号转换为离散的量化电平。
量化的目的是将连续的模拟信号离散化,使其能够用数字形式表示。
量化过程中会根据固定的量化级别将连续的模拟信号映射到特定的离散电平上。
3. 编码:量化后的模拟信号需要通过编码转换为数字信号。
编码过程中使用的编码方式包括二进制编码、格雷码等。
编码后的信号将每个量化电平映射为一个数字代码,以表示该离散电平的数值。
4. 数字信号输出:编码后的数字代码通过输出接口输出为数字信号,供其他数字电路或设备使用。
数字信号可以在计算机系统中进行数字信号处理、分析和存储等操作。
总的来说,AD转换器通过采样、量化和编码的过程将连续的模拟信号转换为离散的数字信号。
采样将模拟信号离散化,量
化将离散化后的信号分级表示,编码将信号转换为数字代码,最后输出为数字信号。
这样可以实现模拟信号的数字化处理和传输。
AD和DA转换器
A/D 和D/A 转换器在数字系统的应用中,通常要将一些被测量的物理量通过传感器送到数字系统进行加工处理;经过处理获得的输出数据又要送回物理系统,对系统物理量进行调节和控制。
传感器输出的模拟电信号首先要转换成数字信号,数字系统才能对模拟信号进行处理。
这种模拟量到数字量的转换称为模-数(A/D)转换。
处理后获得的数字量有时又需转换成模拟量,这种转换称为数-模(D/A)变换。
A/D 变换器简称为ADC 和D/A 变换器简称为DAC 是数字系统和模拟系统的接口电路。
第一节 基本概念一、D/A 变换D/A 变换器一般由变换网络和模拟电子开关组成。
输入n 位数字量D (=D n-1…D 1D 0)分别控制这些电子开关,通过变换网络产生与数字量各位权对应的模拟量,通过加法电路输出与数字量成比例的模拟量。
(1)变换网络变换网络一般有权电阻变换网络、R-2RT 型电阻变换网络和权电流变换网络等几种。
ⅰ、权电阻变换网络权电阻变换网络如图8-1所示,每一个电子开关S i 所接的电阻R i 等于2n-1-i R (i=0~n-1),即与二进制数的位权相似,R 0=2n-1R ,R n-1=R 。
对应二进制位D i =1时,电子开关S i 合上,R i 上流过的电流 I i =V REF /R i 。
令V REF /2n-1R=I REF ,则有 I i =2i I REF ,即R i 上流过对应二进位权倍的基准电流,R i 称为权电阻。
权电阻网络中的电阻从R 到2n-1R 成倍增大,位数越多阻值越大,很难保证精度。
图8-1 权电阻D/A 变换器ⅱ、R-2R 电阻变换网络R-2R 电阻网络中串联臂上的电阻为R ,並联臂上的电阻为2R ,如图8-2所示。
从每个並联臂2R 电阻往后看,电阻都为2R ,所以流过每个与电子开关S i 相连的2R 电阻的电流I i 是前级电流I i+1的一半。
因此, I i =2i I 0=2i I REF /2n ,即与二进制i 位权成正比。
AD_DA原理及主要技术指标
AD_DA原理及主要技术指标AD(模数转换器)与DA(数模转换器)是数字信号处理中常用的模拟转换器。
AD将模拟信号转换为数字信号,而DA则将数字信号转换为模拟信号。
两者在数字系统与模拟系统之间起着重要的桥梁作用。
本文将介绍AD_DA的原理及主要技术指标。
AD原理:AD原理基于采样定理,即将连续时间的模拟信号转换为离散时间的数字信号。
在AD转换过程中,首先通过取样器获取模拟信号的离散样点,然后由量化器将取样点量化为离散的数字信号。
主要技术指标:1.量化精度:量化精度决定了AD转换器的分辨率,以位数表示,常见的有8位、10位、12位、16位等。
位数越大,分辨率越高,对信号的重建越精准。
2.采样率:采样率指的是AD转换器每秒采样的次数,常用单位为Hz。
采样率要满足采样频率大于信号频率两倍以上的采样定理,否则会产生混叠效应。
3.带宽:AD转换器的带宽是指转换器能够正确采样和重建信号的频率范围。
带宽越大,能够处理的信号频率范围越宽。
4.功耗:功耗是指AD转换器在工作过程中消耗的电能。
低功耗的AD转换器具有节能环保的特点。
5.采样保持电路:采样保持电路对模拟信号进行采样并保持,以确保量化器能够准确对信号进行量化,有利于提高AD转换器的性能。
DA原理:DA原理是将数字信号转换为模拟信号的过程。
在DA转换过程中,首先通过数值控制器获得数字信号,然后由DA转换器将数字信号转换为模拟信号输出。
主要技术指标:1.分辨率:分辨率是指DA转换器的数字输入可以表示的最小幅度变化。
分辨率越高,输出模拟信号的精度越高。
2.采样率:采样率指的是DA转换器每秒从数字输入读取的次数,常用单位为Hz。
采样率决定了DA转换器能够输出多少个模拟信号样本。
3.输出精度:输出精度指的是DA转换器输出模拟信号与所期望模拟信号之间的偏差。
输出精度越高,输出模拟信号的准确性越高。
4.失真度:失真度是指DA转换器输出的模拟信号与原始模拟信号之间的差异。
DA与AD转换器的基本原理
DA与AD一、D/A转换器的基本原理1、分辨率分辨率是指输入数字量的最低有效位(LSB)发生变化时,所对应的输出模拟量(电压或电流)的变化量。
它反映了输出模拟量的最小变化值。
分辨率与输入数字量的位数有确定的关系,可以表示成FS / 。
FS表示满量程输入值,n为二进制位数。
对于5V的满量程,采用8位的DAC时,分辨率为5V/256=19.5mV;当采用12位的DAC时,分辨率则为5V/4096=1.22mV。
显然,位数越多分辨率就越高。
2、线性度线性度(也称非线性误差)是实际转换特性曲线与理想直线特性之间的最大偏差。
常以相对于满量程的百分数表示。
如±1%是指实际输出值与理论值之差在满刻度的±1%以内。
3、绝对精度和相对精度绝对精度(简称精度)是指在整个刻度范围内,任一输入数码所对应的模拟量实际输出值与理论值之间的最大误差。
绝对精度是由DAC的增益误差(当输入数码为全1时,实际输出值与理想输出值之差)、零点误差(数码输入为全0时,DAC的非零输出值)、非线性误差和噪声等引起的。
绝对精度(即最大误差)应小于1个LSB。
相对精度与绝对精度表示同一含义,用最大误差相对于满刻度的百分比表示。
应当注意,精度和分辨率具有一定的联系,但概念不同。
DAC的位数多时,分辨率会提高,对应于影响精度的量化误差会减小。
但其它误差(如温度漂移、线性不良等)的影响仍会使DAC的精度变差。
DAC0832与80C51单片机的接口1、单缓冲工作方式此方式适用于只有一路模拟量输出,或有几路模拟量输出但并不要求同步的系统。
双极性模拟输出电压:双极性输出时的分辨率比单极性输出时降低1/2,这是由于对双极性输出而言,最高位作为符号位,只有7位数值位。
2、双缓冲工作方式多路D/A转换输出,如果要求同步进行,就应该采用双缓冲器同步方式。
3、直通工作方式当DAC0832芯片的片选信号、写信号、及传送控制信号的引脚全部接地,允许输入锁存信号ILE引脚接+5V时,DAC0832芯片就处于直通工作方式,数字量一旦输入,就直接进入DAC寄存器,进行D/A转换。
中频信号的ad和da转换芯片
中频信号的ad和da转换芯片中频信号的AD和DA转换芯片一、引言中频信号的AD和DA转换芯片是现代电子技术领域中非常重要的器件之一。
AD转换芯片负责将模拟信号转换为数字信号,而DA转换芯片则将数字信号转换为模拟信号。
本文将对中频信号的AD和DA转换芯片进行详细介绍,包括其工作原理、应用领域以及相关的技术发展。
二、AD转换芯片1. 工作原理AD转换芯片是一种将连续变化的模拟信号转换为离散的数字信号的器件。
其工作原理是将模拟信号通过采样和量化的方式,将连续变化的模拟信号转换为离散的数字信号。
具体来说,AD转换芯片首先对模拟信号进行采样,即以一定的时间间隔对信号进行取样。
然后,通过量化将每个采样点的幅值转换为相应的数字数值。
最后,通过编码将数量化后的数字数值表示为二进制的形式。
2. 应用领域AD转换芯片在各个领域都有广泛的应用。
在通信领域,AD转换芯片被用于将模拟语音信号转换为数字信号,以实现电话通信的数字化。
在测量仪器领域,AD转换芯片则被用于对各种物理量进行测量,如温度、压力、湿度等。
此外,AD转换芯片还被广泛应用于音频设备、图像处理、医疗仪器等领域。
3. 技术发展随着科技的不断进步,AD转换芯片的性能也得到了大幅提升。
目前,高速、高精度的AD转换芯片已经成为市场的主流产品。
其中,采用Σ-Δ调制技术的AD转换芯片具有较高的分辨率和动态范围,适用于对信号精度要求较高的应用。
另外,随着物联网技术的兴起,低功耗、小尺寸的AD转换芯片也得到了广泛应用。
三、DA转换芯片1. 工作原理DA转换芯片是一种将数字信号转换为模拟信号的器件。
其工作原理是通过数字信号控制模拟电路,实现对模拟信号的重建。
具体来说,DA转换芯片首先将输入的数字信号进行解码,得到相应的数字数值。
然后,通过数模转换器将数字数值转换为模拟电压或电流输出。
最后,通过滤波器对输出信号进行滤波,以去除数字信号的残留成分,得到纯净的模拟信号输出。
2. 应用领域DA转换芯片在各个领域都有广泛的应用。
第12章-AD与DA 转换
⑧ OE——输出允许信号,高电平有效。当
微处理器送出该信号时,ADC0808/0809 的输出 三态门被打开,使转换结果通过数据总线被读走。 在中断工作方式下,该信号往往是 CPU 发出的中 断请求响应信号。
11
12.1.1 ADC0808芯片工作原理
3.工作时序与使用说明
ADC0808/0809 的工作时序如图 12-3 所示。当通道选择地址有效时, ALE 信号一 出现,地址便马上被锁存,这时转换启动信 号 紧 随 ALE 之 后 ( 或 与 ALE 同 时 ) 出 现 。 START 的上升沿将逐次逼近寄存器 SAR 复位, 在该上升沿之后的 2us+8 个时钟周期内(不 定), EOC 信号将变低电平,以指示转换操 作正在进行中,直到转换完成后 EOC再变高 电平。微处理器收到变为高电平的 EOC 信号
后,便立即送出OE信号,打开三态门,读取
转换结果。 图12-3 ADC0808工作时序
12
12.1.1 ADC0808芯片工作原理
模拟输入通道的选择可以相对于转换开始操 作独立地进行(当然,不能在转换过程中进行), 实际中通常是将通道选择和启动转换结合起来完 成(因为ADC0808的时间特性允许这样做),这 样可以用一条写指令既选择模拟通道又启动转换。 在与微机接口时,输入通道的选择可有两种
⑧ 使用时不需进行零点和满刻度工作原理
2.内部结构和外部引脚
ADC0808的内部结构如图12-1所示,外部引脚如图12-2所示。
图12-1 ADC0808 图 内部结构图 12-2 ADC0808外部引脚图
8
12.1.1 ADC0808芯片工作原理
内部各部分的作用和工作原理在内部结构图中已一目了然,在此就不再赘述,下面仅 对各引脚定义分述如下: ① IN0 ~ IN7 —— 8 路模拟输入,通 过3根地址译码线ADDA、ADDB、ADDC
实验十DA、AD转换实验报告
引言概述:一、DA转换原理和应用1.DA转换的定义和基本原理a.数字信号和模拟信号之间的转换原理b.不同类型的DA转换器(例如R2R网络)2.DA转换的应用领域a.音频信号处理中的DA转换b.视频信号处理中的DA转换二、AD转换原理和应用1.AD转换的定义和基本原理a.模拟信号和数字信号之间的转换原理b.不同类型的AD转换器(例如SAR、deltasigma)2.AD转换的应用领域a.传感器信号处理中的AD转换b.信号采集与处理中的AD转换三、DA和AD转换的性能参数和评估1.DA转换器的性能参数a.分辨率和精确度b.失真和噪声2.AD转换器的性能参数a.采样率和位深b.信噪比和动态范围3.性能参数的评估方法a.理论计算和模拟仿真b.实验测试和数据分析四、DA和AD转换算法及其优化1.DA转换算法a.插值算法b.量化算法2.AD转换算法a.采样算法b.量化算法3.转换算法的优化方法a.比特数调整和噪声滤波b.时钟同步和非线性校准五、实验结果和分析——基于具体实验数据的数据解读与讨论1.DA转换实验结果和数据分析a.实验过程和数据采集b.数据处理和效果评估2.AD转换实验结果和数据分析a.实验过程和数据采集b.数据处理和效果评估总结:通过对DA和AD转换的原理、应用、性能参数评估以及相关算法和优化的探讨,我们了解了这两种重要的信号转换技术在电子工程中的重要性和实际应用。
同时,通过实验数据的分析和结果的讨论,我们也对其性能和优化方法有了更深入的了解。
DA和AD转换在音频和视频信号处理、传感器信号处理以及信号采集与处理等领域都有着广泛的应用,因此对其进行深入研究和优化,在提高信号处理质量和准确性方面具有重要意义。
希望本实验报告能为读者进一步了解并应用DA和AD转换技术提供有益的参考和指导。
AD和DA转换器的基本原理
AD和DA转换器的基本原理在现代电子设备中,AD(模数)和DA(数模)转换器是至关重要的部件。
它们在各种应用中起着核心的作用,例如音频处理、传感器信号转换、通信系统等。
本文将介绍AD和DA转换器的基本原理,以及它们在实际应用中的关键性。
AD转换器(Analog-to-Digital Converter)是实现模拟信号到数字信号转换的器件。
它能将连续的模拟信号转换成离散的数字信号。
AD转换器通常由样本保持电路、量化电路和编码电路组成。
首先,样本保持电路将连续的模拟信号抽样并保持在一定的时间段内。
然后,量化电路将抽样到的模拟信号离散化,并将其表示为数字化的数值。
最后,编码电路将离散化的数值转换为二进制码,以便计算机或其他数字系统能够处理。
AD转换器的原理基于对信号的近似,即通过将信号离散化,以获得与实际信号相近的数字表示。
这一过程主要涉及到两个关键概念:采样率和分辨率。
采样率指的是在一定时间内对模拟信号进行采样的频率,通常以赫兹为单位表示。
采样率越高,对模拟信号的抽样越频繁,数字信号的重构越精确。
分辨率则表示AD转换器可以表示的最小电平差异。
分辨率越高,AD转换器能够更准确地表示模拟信号的细节和变化。
在实际应用中,AD转换器广泛应用于数据采集、音频信号处理和传感器信号转换等领域。
以音频处理为例,AD转换器能够将模拟的声音信号转换为数字形式,以便被数字信号处理器(DSP)进行各种音频效果的实时计算和调整。
此外,AD转换器还被用于传感器信号的转换,如温度传感器、压力传感器等。
通过与微处理器的配合,AD转换器能够将传感器输出的模拟信号转换为数字信号,用于实时监测和控制。
相对于AD转换器,DA转换器(Digital-to-Analog Converter)的功能则相反。
它将数字信号转换成模拟信号,以便于在实际电路中进行处理或输出。
DA转换器通常由数字编码电路和模拟滤波电路组成。
数字编码电路接收计算机或其他数字系统输出的二进制码,并将其转换成相应的电压或电流值。
AD_DA转换基本原理
AD_DA转换基本原理AD-DA转换是模拟信号与数字信号之间的转换过程,AD是模拟信号转换为数字信号的过程,DA是数字信号转换为模拟信号的过程。
模拟信号是连续变化的电信号,而数字信号是离散的电信号。
AD-DA转换器在很多领域中被广泛应用,如通信、音频处理、图像处理等。
AD转换的基本原理是使用采样和量化的方法将连续变化的模拟信号转换为离散的数字信号。
采样是指将连续的信号在时间上进行离散化,将信号在一定的时间间隔内进行采集。
量化是指对采样后的信号进行离散化处理,将连续的信号值映射到一组离散值。
采样和量化的间隔称为采样周期和量化间隔,采样周期越小,量化间隔越小,转换精度越高。
在AD转换过程中,首先需要选择一个足够高的采样率,以保证对原始信号的采样能够准确还原。
然后将连续的模拟信号用采样周期将其分为离散的信号样本,每一个样本对应一个离散时间点。
接下来,在每一个采样时间点,通过量化器将信号的幅度映射为一个离散的数字值。
量化的精度决定了数字信号的分辨率和动态范围,一般以位表示,如8位、16位等。
DA转换的基本原理是将离散的数字信号转换为连续变化的模拟信号。
在DA转换过程中,首先需要进行数字信号的解码,将离散的数字值转换为连续的数值。
然后使用保持电路(sample-and-hold)将这些连续的数值保持为恒定的电压信号。
接着,使用模拟滤波器对保持的数值进行平滑处理,去除高频分量和其他干扰。
最后,通过放大器将平滑后的信号放大到合适的幅度,得到模拟输出信号。
在DA转换过程中的重要环节是数字信号的解码和模拟滤波器的设计。
解码过程需要将离散的数字值映射为一组连续的数值,这通常通过查表或者插值的方式实现。
模拟滤波器的设计目的是对离散的数字信号进行平滑处理,去除不需要的高频分量和噪声。
滤波器的选择取决于系统的需求,可以是低通滤波器、带通滤波器等。
AD-DA转换器的性能主要由转换精度、抖动、信噪比和带宽等参数决定。
转换精度越高,代表着数字信号与模拟信号的差距越小。
AD与DA转换简介及其应用
A/D与D/A转换简介及其应用班级:姓名:学号:一、背景随着现代科学技术的迅猛发展,特别是数字系统已广泛应用于各种学科领域及日常生活,微型计算机就是一个典型的数学系统。
但是数字系统只能对输入的数字信号进行处理,其输出信号也是数字信号。
而在工业检测控制和生活中的许多物理量都是连续变化的模拟量,如温度、压力、流量、速度等,这些模拟量可以通过传感器或换能器变成与之对应的电压、电流或频率等电模拟量。
为了实现数字系统对这些电模拟量进行检测、运算和控制,就需要一个模拟量与数字量之间的相互转换的过程。
即常常需要将模拟量转换成数字量,简称为AD 转换,完成这种转换的电路称为模数转换器(Analog to Digital Converter) ,简称ADC;或将数字量转换成模拟量,简称DA转换,完成这种转换的电路称为数模转换器(Digital to Analog Converter) ,简称DAC。
二、ADC和DAC基本原理及特点1、模数转换器(ADC)的基本原理模拟信号转换为数字信号,一般分为四个步骤进行,即取样、保持、量化和编码。
前两个步骤在取样-保持电路中完成,后两步骤则在ADC中完成。
常用的ADC有积分型、逐次逼近型、并行比较型/串并行型、Σ -Δ调制型、电容阵列逐次比较型及压频变换型。
其基本原理及特点:1)积分型(如TLC7135) 。
积分型ADC工作原理是将输入电压转换成时间或频率,然后由定时器/计数器获得数字值。
其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。
初期的单片ADC大多采用积分型,现在逐次比较型已逐步成为主流。
双积分是一种常用的AD 转换技术,具有精度高,抗干扰能力强等优点。
但高精度的双积分AD芯片,价格较贵,增加了单片机系统的成本。
2)逐次逼近型(如TLC0831) 。
逐次逼近型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章数/ 模、
模/ 数变换器
§10. 1 概述
§10. 2 数/ 模转换器
§10. 3 模/ 数转换器
§10. 2 数/ 模转换器( DAC )
10. 2. 1 权电阻网络型
10. 2. 2 权电流型
10. 2. 3 T型电阻网络型
10. 2. 4 D/A变换器的主要技术指标10. 2. 5 集成DAC 0832及其应用
三、D/A转换器的转换速度
为了便于定量地描述D/A转换器的转换
速度,定义了建立时间t
S 和转换速率SR两
个参数。
1. 建立时间t S
通常以大信号工作情况下( 输入由全0 变为全1 或者由全1 变为全0 )
输出电压到达某一规定值所需要的时
间定为建立时间t
S。
建立时间最短的可达0. 1m s 。
这个参数的值越小越好。
三、D/A转换器的转换速度
2. 转换速率SR
转换速率SR 以大信号工作状态下输出模拟电压的变化率表示。
D/A转换器完成一次转换所需要的时间应包括建立时间和上升(或下降)时
间两部分,它的最大值为
T TR(max)= t S+ V O(max)/ SR
为输出电压的最大值。
其中V
O(max)
10. 2. 5 集成DAC 0832及其应用
D/A转换器集成电路有多种型号。
下面仅以DAC0832为例来介绍集成电路D/A 变换器。
它是八位的D/A 转换器,即在对其输入八位数字量后,通过外接
的运算放大器,可以获得相应的模
拟电压值。
下图是它的封装管脚图和内部电路图:
§10. 3 模/ 数转换器( ADC )
10. 3. 1 采样定理
10. 3. 2 并联比较型
10. 3. 3 逐次逼近型
10. 3. 4 A / D 转换器的主要技术指标10. 3. 5 集成ADC0804及其应用
因为输入的模拟量在时间上是连续的,10. 3. 1 采样定理
在A / D 转换中,而输出的数字信号是离散量,所以进行转换时只能在一系列选定的瞬间(亦即瞬间坐标轴上的一些规定点) 对输入的模拟信号采样,然后再把这些采样值转换为输出的数字量。
A / D 转换过程应包括:采样、保持、量化、编码这四个步骤。
10. 3. 4 A / D 转换器的主要技术指标
一、分辨率:以输出二进制代码的
位数表示分辨率。
位数越多,量化误差
越小,转换精度越高。
二、转换速度:完成一次A / D转换
所需要的时间,即从它接到转换命
令起直到输出端得到稳定的数字量输
出所需要的时间。
三、相对精度:实际转换值和理想
特性之间的最大偏差。
四、其它:功率、电源电压、电压
范围等。
10. 3. 5 集成ADC0804及其应用
A / D转换组件有多种型号可供选择,如:高速的,高分辨率的,高速且高精度的等等。
使用者可根据任务要求进行选择。
下面以ADC0804为例,介绍集成电路A / D 变换器。
ADC 0804 是分辨率为八位的模数转换组件,采用逐次逼近型工作原理。