VC数字图像处理编程
VC++图形图像处理源代码
delete pData; pData=NULL;
if(m_pBMI!=NULL) delete m_pBMI; m_pBMI=NULL; if(pfi!=NULL)
delete pfi; pfi=NULL; } CAvi::CAviCreate(CString &string)//读文件初始化该类 { HRESULT hr; pfi=new AVIFILEINFO; hr = AVIFileOpen(&pfile, // returned file pointer string, // file name OF_READ, // mode to open file with NULL); hr= AVIFileInfo(pfile, file://获取 AVI 信息,放入 pfi 中 pfi, sizeof(AVIFILEINFO) ); cx=pfi>dwWidth;//图象宽、高 cy=pfi>dwHeight; hr=AVIFileGetStream(//将 AVI 变成视频流 pfile, &pavi, streamtypeVIDEO, 0//LONG lParam ); m_pBMI=new BITMAPINFO;//定义 BMP 信息头 m_pBMI>bmiHeader.biBitCount=24; m_pBMI>bmiHeader.biClrImportant=0; m_pBMI>bmiHeader.biClrUsed=0; m_pBMI>bmiHeader.biCompression=BI_RGB; m_pBMI>bmiHeader.biHeight=cy; m_pBMI>bmiHeader.biWidth=cx; m_pBMI>bmiHeader.biPlanes=1; m_pBMI>bmiHeader.biSize=sizeof(BITMAPINFOHEADER); m_pBMI>bmiHeader.biXPelsPerMeter=0; m_pBMI>bmiHeader.biYPelsPerMeter=0; m_pBMI>bmiHeader.biSizeImage=cx*cy*3; pData=(BYTE*)new char[cx*cy*3];//根据 AVI 中 BMP 图象的信息定义缓冲区 } BOOL CAvi::AviRead(int mFrame)//将 AVI 文件的 M 帧数据读入 PData 缓冲区 { HRESULT hr; hr= AVIStreamRead( pavi, mFrame, 1, pData, cx*cy*3,
基于VC++的数字图像处理系统的设计与实现
度 级 图像 的 编 辑 , 以 进 行 图 像 导 入 和 导 出 , 图 设 置 , 以 调 整 图 片 尺 寸 , 转 和 翻 转 图 片 , 片 增 强 优 可 视 可 旋 图 化, 图像 边 缘 检 测 与 分 割 , 像 编 码 以及 打 印 输 出 图 片 。 图 关 键 词 : 字 图 像 处 理 ; 度 级 图像 ; 像 编 辑 数 灰 图
从 CW iAp 、 n p CDo u n 、 Viw、 c me t C e CM DI a w n 、 Fr me d CM DI i w n 类 对 应 地 派 生 出 C iAp Ch1 d d Ja p、 C iDo 、 Ja e CMan r me CCh lFr me五 个 类 , 五 个 类 的 实 例 分 别 是 应 用 程 序 对 象 、 档 对 象 、 Ja c C iViw、 iF a 、 i d a 这 文
l 数 字 图 像 处 理 系 统 开 发 技 术 基 础 1 1 C+ + 语 言 及 VC+ + 平 台 简 介 .
C +语 言 是 一个 面 向对 象 的语 言 , + 使用 C+ + 编写 的代 码 更加 简 捷 、 效 , 具 可 维 护性 和 可 重 用 高 更
性。 ‘
资 源编辑 器 , 建立 项 目配 置 的项 目管理 器 , 检查 程序 错 误 的集成 调式 等 工具 , 同时 , 还 提供 了功 能强 大 的 它
应 用 程 序 向 导 Ap W i r p z d和 类 向 导 C a s i r a lsW z d工 具 。 a
1 2 M F 技 术 简 介 . C
* 收 稿 日 期 : O 0 O — 2 21~ 9 2
ห้องสมุดไป่ตู้
数字图像处理实验报告 (图像编码)
实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。
二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。
数字图像处理领域的二十四个典型算法
数字图像处理领域的⼆⼗四个典型算法数字图像处理领域的⼆⼗四个典型算法及vc实现、第⼀章⼀、256⾊转灰度图⼆、Walsh变换三、⼆值化变换四、阈值变换五、傅⽴叶变换六、离散余弦变换七、⾼斯平滑⼋、图像平移九、图像缩放⼗、图像旋转数字图像处理领域的⼆⼗四个典型算法及vc实现、第三章图像处理,是对图像进⾏分析、加⼯、和处理,使其满⾜视觉、⼼理以及其他要求的技术。
图像处理是信号处理在图像域上的⼀个应⽤。
⽬前⼤多数的图像是以数字形式存储,因⽽图像处理很多情况下指数字图像处理。
本⽂接下来,简单粗略介绍下数字图像处理领域中的24个经典算法,然后全部算法⽤vc实现。
由于篇幅所限,只给出某⼀算法的主体代码。
ok,请细看。
⼀、256⾊转灰度图算法介绍(百度百科):什么叫灰度图?任何颜⾊都有红、绿、蓝三原⾊组成,假如原来某点的颜⾊为RGB(R,G,B),那么,我们可以通过下⾯⼏种⽅法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数⽅法:Gray=(R*30+G*59+B*11)/100 3.移位⽅法:Gray =(R*28+G*151+B*77)>>8; 4.平均值法:Gray=(R+G+B)/3; 5.仅取绿⾊:Gray=G; 通过上述任⼀种⽅法求得Gray后,将原来的RGB(R,G,B)中的R,G,B统⼀⽤Gray替换,形成新的颜⾊RGB(Gray,Gray,Gray),⽤它替换原来的RGB(R,G,B)就是灰度图了。
灰度分为256阶。
所以,⽤灰度表⽰的图像称作灰度图。
程序实现: ok,知道了什么叫灰度图,下⾯,咱们就来实现此256⾊灰度图。
这个Convert256toGray(),即是将256⾊位图转化为灰度图:void Convert256toGray(HDIB hDIB) { LPSTR lpDIB; // 由DIB句柄得到DIB指针并锁定DIB lpDIB = (LPSTR) ::GlobalLock((HGLOBAL)hDIB); // 指向DIB象素数据区的指针 LPSTR lpDIBBits; // 指向DIB象素的指针 BYTE * lpSrc; // 图像宽度 LONG lWidth; // 图像⾼度 LONG lHeight; // 图像每⾏的字节数 LONG lLineBytes; // 指向BITMAPINFO结构的指针(Win3.0) LPBITMAPINFO lpbmi; // 指向BITMAPCOREINFO结构的指针 LPBITMAPCOREINFO lpbmc; // 获取指向BITMAPINFO结构的指针(Win3.0) lpbmi = (LPBITMAPINFO)lpDIB; // 获取指向BITMAPCOREINFO结构的指针 lpbmc = (LPBITMAPCOREINFO)lpDIB; // 灰度映射表 BYTE bMap[256]; // 计算灰度映射表(保存各个颜⾊的灰度值),并更新DIB调⾊板 int i,j; for (i = 0; i < 256;i ++) { // 计算该颜⾊对应的灰度值 bMap[i] = (BYTE)(0.299 * lpbmi->bmiColors[i].rgbRed + 0.587 * lpbmi->bmiColors[i].rgbGreen + 0.114 * lpbmi->bmiColors[i].rgbBlue + 0.5); // 更新DIB调⾊板红⾊分量 lpbmi->bmiColors[i].rgbRed = i; // 更新DIB调⾊板绿⾊分量 lpbmi->bmiColors[i].rgbGreen = i; // 更新DIB调⾊板蓝⾊分量 lpbmi->bmiColors[i].rgbBlue = i; // 更新DIB调⾊板保留位 lpbmi->bmiColors[i].rgbReserved = 0; } // 找到DIB图像象素起始位置 lpDIBBits = ::FindDIBBits(lpDIB); // 获取图像宽度 lWidth = ::DIBWidth(lpDIB); // 获取图像⾼度 lHeight = ::DIBHeight(lpDIB); // 计算图像每⾏的字节数 lLineBytes = WIDTHBYTES(lWidth * 8); // 更换每个象素的颜⾊索引(即按照灰度映射表换成灰度值) //逐⾏扫描 for(i = 0; i < lHeight; i++) { //逐列扫描 for(j = 0; j < lWidth; j++) { // 指向DIB第i⾏,第j个象素的指针 lpSrc = (unsigned char*)lpDIBBits + lLineBytes * (lHeight - 1 - i) + j; // 变换 *lpSrc = bMap[*lpSrc]; } } //解除锁定 ::GlobalUnlock ((HGLOBAL)hDIB); }变换效果(以下若⽆特别说明,图⽰的右边部分都是为某⼀算法变换之后的效果):程序实现:函数名称:WALSH()参数:double * f - 指向时域值的指针double * F - 指向频域值的指针r -2的幂数返回值:⽆。
基于实践能力培养的《数字图像处理》课教学改革研究
0 引
言
多项相关项 目. 具备数字图像处理 的很多实践经验 。 因
此一直研究在《 数字图像处理》 的课 程 教学 和 实 验 教 学
中加 大 学 生 实 践 能 力 的 培 养 力 度 ,提 高学 生 的 编 程 能 力、 实践 能力 和 科 技 创 新 能 力 。
《 数 字 图像 处 理 》 是 随 着 计 算 机 和信 息 技 术 发 展 应 运 而 生 的一 门新 兴 课 程 . 已经 成 为 信 息 类 专 业 本科 生 重 要 的专 业 课 . 通 过 该 课 程 的学 习 . 要 求 学 生掌 握 数 字 图 像 处 理 的基 本 概 念 和基 本 原 理 .能 够 对 图像 进 行 各 种处理 , 例 如 图像 增 强 、 图像 运 算 、 图像 编码 、 边 缘 检 测
件 主要 有 Ma t L a b和 VC + + Ma t L a b是 目前 科 学研 究 与 工 程 领 域 中最 具 影 响力 、最 流 行 的科 学 与 工 程 计 算 软 件 工具 . 主 要 用 于 系 统 的 建模 和仿 真 . 在诸 多领 域 扮 演
等 为图像通信 、 模 式识别 、 计算机视觉 、 以及其他 交叉
学 科 等 工 程 领 域 的 应 用 奠 定基 础
随着 高 等 教 育 的不 断 普 及 和 院校 的扩 招 .大 学 毕
业 生 也 越 来 越 多 .就 业 成 为 学校 和 学 生 共 同 关 注 的 问
题 目前 大 部 分 中 小企 业 用 人单 位 从 事 本 专 业 技 术 工 作 的 岗位 都 要求 应 聘 人 员 具 有 一 定 的项 目经 验 或 较 强 的实 践 动 手 能 力 .这 就要 求 毕 业 后 直 接 就 业 的 学 生 在 学 好 课 程 的 同时 要 注 重 动 手 能 力 的培 养 传 统 的教 学
数字图像处理课程设计opencv
数字图像处理课程设计opencv一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论、方法和OpenCV编程技能。
通过本课程的学习,学生应能理解数字图像处理的基本概念,掌握常用的图像处理算法,并能够运用OpenCV库进行实际的图像处理操作。
具体来说,知识目标包括:1.理解数字图像处理的基本概念和原理。
2.掌握数字图像处理的基本算法和常用技术。
3.熟悉OpenCV库的基本结构和功能。
技能目标包括:1.能够运用OpenCV库进行数字图像处理的基本操作。
2.能够编写简单的数字图像处理程序。
3.能够分析和解决数字图像处理实际问题。
情感态度价值观目标包括:1.培养对数字图像处理的兴趣和热情。
2.培养学生的创新意识和实践能力。
3.培养学生的团队合作精神和沟通交流能力。
二、教学内容本课程的教学内容主要包括数字图像处理的基本理论、方法和OpenCV编程实践。
教学大纲如下:1.数字图像处理概述1.1 数字图像处理的基本概念1.2 数字图像处理的应用领域2.图像处理基本算法2.1 图像滤波2.2 图像增强2.3 图像边缘检测3.OpenCV库的使用3.1 OpenCV库的基本结构3.2 OpenCV库的基本功能4.图像处理实例分析4.1 图像去噪实例4.2 图像增强实例4.3 图像边缘检测实例三、教学方法本课程采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,使学生掌握数字图像处理的基本理论和方法。
2.讨论法:通过小组讨论,激发学生的思考,培养学生的创新意识和实践能力。
3.案例分析法:通过分析实际案例,使学生能够将理论知识应用于实际问题。
4.实验法:通过实验操作,使学生掌握OpenCV库的基本功能,并能够编写实际的图像处理程序。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。
1.教材:选用《数字图像处理》(李航著)作为主要教材,辅助以相关参考书籍。
数字图像处理课设报告
数字图像处理课程设计报告细胞识别目录第一部分页脚内容11、实验课题名称----------------------------------------------------------------------------------32、实验目的----------------------------------------------------------------------------------------33、实验内容概要----------------------------------------------------------------------------------3第二部分1、建立工程文件----------------------------------------------------------------------------------32、图像信息获取----------------------------------------------------------------------------------43、如何建立下拉菜单----------------------------------------------------------------------------64、标记Mark点------------------------------------------------------------------------------------65、二值化---------------------------------------------------------------------------------------------96、填洞------------------------------------------------------------------------------------------------97、收缩------------------------------------------------------------------------------------------------108、获取中心点--------------------------------------------------------------------------------------119、细胞计数-----------------------------------------------------------------------------------------1310、All-steps-----------------------------------------------------------------------------------------1311、扩展功能---------------------------------------------------------------------------------------14第三部分12、各步骤结果和错误举例--------------------------------------------------------------------16页脚内容2第四部分13、心得体会----------------------------------------------------------------------------------------22第一部分1、实验课题:细胞识别2、实验目的:对血液细胞切片图片进行各种处理,最终得出细胞的数目、面积等信息。
数字图像处理实验报告
数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=BM bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebi_PelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pi_els DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是 4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
基于VC与Matlab混合编程实现图像增强处理
或 减 弱 ,具 体变换 公式 为 :
舡 y 】 0 r ( xy )<a
g ( y ) : { d - c f ) 一 a ] + c a f ( x y ) < b
_b … b 慨 y ]
良好 的运 算 效 率 ,在 数 字 图像 处 理 领 域 也 得 到 了广 泛 的 应 用 。Ma t l a b 是 一 种 以 矩 阵 为 基 本运 算 单 位 的 高 效率 的 数 值 计算 软件 ,带有 众 多 函数库 ,使 用方 便 ,可 应用 于 众 多领 域 。VC 在 开 发界 面W i n d o ws 应 用 程序 时具 有 明显优
刘大鹏
中 国人 民公 安 大 学 ,北京 1 0 0 0 3 8
刘 大鹏
( 1 9 7 9 -) , 男 . 硕 士研 究 生 ,主 要 研 究方 向为刑 事图 像技术 。
E ma i 『
摘要 通过 图像增 强处理 可改善 图像 判读和识别 效果。本文对 常用的分段 线性 图像
信 息 科 技
中 国 科 技 信 息 2 0 1 3 年 第2 0 期・ C H I N A S C I E N C E A N D T E C H N O L O G Y I N F O R M A T I O N O c t . 2 o 1 3 _
基于V C与Ma t l a b 混合编程实现 图像 增强处理
( 1 ) 利 用 Ma t [ a b 引 擎 :通 过 Ma t l a b 引 擎 可 以 在
6 8一
一
灰 度 增 强 处理 方 法进 行 了讨 论 ,对 V c 与M a t l a b 混合 编 程 方 法进 行 了介 绍 。通 过 混 合 编 程 方 法 实现 了 图像 增 强处 理 的应 用实 例 。 实 际 结 果证 明 ,本 文 所提 出的方法是 有效可行 的,具有现实应用意义。
VC++实现图像二值处理
Visual C++实现二值图像处理二值图像是一种简单的图像格式,它只有两个灰度级,即"0"表示黑色的像素点,"255"表示白色的像素点,至于如何从一幅普通的图像获得二值图像,请参考我近期在天极网上发表的《Visual C++编程实现图像的分割》一文。
二值图像处理在图像处理领域占据很重要的位置,在具体的图像处理应用系统中,往往需要对于获得的二值图像再进一步进行处理,以有利于后期的识别工作。
二值图像处理运算是从数学形态学下的集合论方法发展起来的,尽管它的基本运算很简单,但是却可以产生复杂的效果。
常用的二值图像处理操作有许多方法,如腐蚀、膨胀、细化、开运算和闭运算等等。
本文对这些内容作些研究探讨,希望对爱好图像处理的朋友有所帮助。
一、腐蚀和膨胀形态学是一门新兴科学,它的用途主要是获取物体拓扑和结果信息,它通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。
它在图像处理中的应用主要是:b5E2RGbCAP1.利用形态学的基本运算,对图像进行观察和处理,从而达到改善图像质量的目的;2.描述和定义图像的各种几何参数和特征,如面积,周长,连通度,颗粒度,骨架和方向性。
限于篇幅,我们只介绍简单二值图像的形态学运算,对于灰度图像的形态学运算,有兴趣的读者可以看有关的参考书。
二值图像基本的形态学运算是腐蚀和膨胀,简单的腐蚀是消除物体的所有边界点的一种过程,其结果是使剩下的物体沿其周边比原物体小一个像素的面积。
如果物体是圆的,它的直径在每次腐蚀后将减少两个像素,如果物体在某一点处任意方向上连通的像素小于三个,那么该物体经过一次腐蚀后将在该点处分裂为二个物体。
简单的膨胀运算是将与某物体接触的所有背景点合并到该物体中的过程。
过程的结果是使物体的面积增大了相应数量的点,如果物体是圆的,它的直径在每次膨胀后将增大两个像素。
如果两个物体在某一点的任意方向相隔少于三个像素,它们将在该点连通起来。
Visual+C++实现数字图像增强处理
前言对于一个图像处理系统来说,可以将流程分为三个阶段,在获取原始图像后,首先是图像预处理阶段、第二是特征抽取阶段、第三是识别分析阶段。
图像预处理阶段尤为重要,如果这阶段处理不好,后面的工作根本无法展开。
在实际应用中,我们的系统获取的原始图像不是完美的,例如对于系统获取的原始图像,由于噪声、光照等原因,图像的质量不高,所以需要进行预处理,以有利于提取我们感兴趣的信息。
图像的预处理包括图像增强、平滑滤波、锐化等内容。
图像的预处理既可以在空间域实现,也可以在频域内实现,我们主要介绍在空间域内对图像进行点运算,它是一种既简单又重要的图像处理技术,它能让用户改变图像上像素点的灰度值,这样通过点运算处理将产生一幅新图像。
下面我们开始介绍与图像点运算的相关知识。
一、图像的直方图图像直方图是图像处理中一种十分重要的图像分析工具,它描述了一幅图像的灰度级内容,任何一幅图像的直方图都包含了丰富的信息,它主要用在图象分割,图像灰度变换等处理过程中。
从数学上来说图像直方图是图像各灰度值统计特性与图像灰度值的函数,它统计一幅图像中各个灰度级出现的次数或概率;从图形上来说,它是一个二维图,横坐标表示图像中各个像素点的灰度级,纵坐标为各个灰度级上图像各个像素点出现的次数或概率。
如果不特别说明,本讲座中的直方图的纵坐标都对应着该灰度级在图像中出现的概率。
我们的例子是在一个对话框中显示一个图像的直方图,为实现该目的,我们定义了一个名为"ZFT"的对话框类用来显示图像的直方图,具体实现代码和效果图如下(关于代码实现部分可以参考笔者2001年在天极网上发表的一篇VC实现数字图像处理的文章)://////////////////////////////////直方图对话框构造函数;ZFT::ZFT(CWnd* pParent /*=NULL*/): CDialog(ZFT::IDD, pParent)//ZFT为定义的用来显示直方图的对话框类;{Width=Height=0;//对话框初始化阶段设置图像的宽和高为"0";}////////////////////////对话框重画函数;void ZFT::OnPaint(){CRect rect;//矩形区域对象;CWnd *pWnd;//得到图片框的窗口指针;pWnd=GetDlgItem(IDC_Graphic);//得到ZFT对话框内的"Frame"控件的指针;file://(IDC_Graphic为放置在对话框上的一个"Picture"控件,并讲类型设置为"Frame")。
VC++数字图像处理
Visual C++数字图像处理广义地讲,凡是记录在纸介质上的、拍摄在底片和照片上的、显示在电视、投影仪和计算机屏幕上的所有具有视觉效果的画面都可以称为图像。
根据图像记录方式的不同,图像可分为两大类:一类是模拟图像(Analog Image),另一类是数字图像(Digital Image)。
模拟图像是通过某种物理量(光、电等)的强弱变化来记录图像上各点的亮度信息的,例如模拟电视图像;而数字图像则完全是用数字(即计算机存储的数据)来记录图像亮度信息的。
所谓数字图像处理(Digital Image Processing),就是指用数字计算机及其他相关的数字技术,对数字图像施加某种或某些运算和处理,从而达到某种预期的处理目的。
随着数字技术和数字计算机技术的飞速发展,数字图像处理技术在近 20 多年的时间里,迅速发展成为一门独立的有强大生命力的学科,其应用领域十分广泛。
作为数字图像处理技术的实现环节,本书将在 Visual C++环境下介绍图像各种典型算法的编程实现。
而作为一本书的开始,本章我们将介绍图像编程的基础知识,如数字图像的点阵数据、调色板概念、BMP 文件结构以及设备无关位图(DIB)等,它是后面章节学习的基础。
1.1 图像、颜色表和色彩空间1.1.1 图像组成数字图像的基本单位是像素(Pixel),也就是说,数字图像是像素的集合。
如图 1-1 所示,图中每个格点代表一个像素,该图是一个白色背景下包含灰色矩形的图像。
图 1-1 放大后的矩形图像数字图像通常存放在计算机的外存储器设备中,例如硬盘、光盘等,在需要进行显示和处理时才被调入内存的数组中。
从本质上讲,图像数据在计算机内存或硬盘中是以字符型数据存在的,这与其他整型数据或者浮点型数据没有任何区别,都是一种数字表达符号,当把它在计算机屏幕上显示出来时,才是我们人眼看到的真正有意义的数字图像。
普通的显示器屏幕也是由许多点(像素)构成的,显示时,电子枪每次从左到右、从上到下进行扫描,为每个像素着色,利用人眼的视觉暂留效应就可以显示出一屏完整的图像。
数字图像处理课程内容及要求
《数字图像处理》实验内容及要求实验内容一、灰度图像的快速傅立叶变换1、 实验任务对一幅灰度图像实现快速傅立叶变换(DFT ),得到并显示出其频谱图,观察图像傅立叶变换的一些重要性质。
2、 实验条件微机一台、vc++6。
0集成开发环境。
3、实验原理傅立叶变换是一种常见的图像正交变换,通过变换可以减少图像数据的相关性,获取图像的整体特点,有利于用较少的数据量表示原始图像。
二维离散傅立叶变换的定义如下:112()00(,)(,)ux vy M N j M Nx y F u v f x y eπ---+===∑∑傅立叶反变换为:112()001(,)(,)ux vy M N j M Nu v f x y F u v eMNπ--+===∑∑式中变量u 、v 称为傅立叶变换的空间频率。
图像大小为M ×N.随着计算机技术和数字电路的迅速发展,离散傅立叶变换已经成为数字信号处理和图像处理的一种重要手段。
但是,离散傅立叶变换需要的计算量太大,运算时间长。
库里和图基提出的快速傅立叶变换大大减少了计算量和存储空间,因此本实验利用快速傅立叶变换来得到一幅灰度图像的频谱图。
快速傅立叶变换的基本思路是把序列分解成若干短序列,并与系数矩阵元素巧妙结合起来计算离散傅立叶变换.若按照奇偶序列将X(n)进行划分,设:()(2)()(21)g n x n h n x n =⎧⎨=+⎩ (n=0,1,2, (12)-)则一维傅立叶变换可以改写成下面的形式:1()()N mnNn X m x n W -==∑11220()()N N mn mnN N n n g n W h n W --===+∑∑ 1122(2)(21)(2)(21)NN m n m n N N n n x n W x n W --+===++∑∑1122022(2)(21)NN mn mn mN N N n n x n W x n W W --===++∑∑ =G(m)+mN W H(m)因此,一个求N 点的FFT 可以转换成两个求2N点的 FFT 。
C语言课程设计--图像处理
序号:学号: ********CHANG Z H OU U N I V E RSITY课程设计设计课程名称:C语言课程设计题目:数字图像处理—几何变换1学生姓名:***学院(系):******* 专业班级:***** 指导教师:*** 专业技术职务:*****设计时间:**** 年*月** 日**** 年* 月**目录1、系统的意义以及主要功能 (2)系统的意义 (2)图像的功能 (2)2、整个系统的功能结构图以及调用关系 (2)3、各个功能实现流程图 (2)彩色图像变成灰度图像 (2)几何变换之--旋转 (3)几何变换之--镜像 (3)4、调试运行,程序的界面以及输入数据,以及输出结果 (4)原图 (4)彩色图像变为灰度图像 (4)灰度图像水平镜像 (4)灰度图像垂直镜像 (5)彩色图像水平镜像 (5)彩色图像垂直镜像 (5)灰度图像旋转(48) (6)彩色图像旋转(90) (6)5、使用说明 (6)6、C语言源程序代码 (7)7、心得体会 (12)8、实习日志 (13)9、参考文献 (13)~ 1 ~1、系统的意义以及主要功能系统的意义目前图像处理的应用越来越广泛,已经渗透到工业、航空航天、军事等各领域,在国民经济中发挥越来越大的作用图像的功能读入一幅彩色的数字图像,完成一系列的几何运算,并输出每个运算的效果图1.将彩色图像变为灰度图像2.将灰度图像旋转任意角度;并对彩色图像进行相应旋转3.将灰度图像和彩色图像进行水平镜像和垂直镜像2、整个系统的功能结构图以及调用关系3几何变换之--旋转几何变换之--镜像~ 3 ~4、调试运行,程序的界面以及输入数据,以及输出结果原图彩色图像变为灰度图像灰度图像水平镜像~ 4 ~灰度图像垂直镜像彩色图像水平镜像彩色图像垂直镜像~ 5 ~灰度图像旋转(48)彩色图像旋转(90)5、使用说明编译链接后出现对话框和原始图片,按任意键即可在对话框中输入,根据对话框提示输入数字完成对应功能,出现功能图像按任意键摧毁窗口,即可继续输入完成对应功能。
数字图像处理实习综合课程.
数字图像处理课程综合实习指导书武汉大学遥感信息工程学院实验中心数字图像处理课程综合实习说明实习目的本实习内容旨在让学生通过用 VC 等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
为学生进一步学习数字摄影测量、遥感和地理信息系统等专业课程以及应用图像处理解决实际问题奠定基础。
实习要求:(1实习前应认真复习和熟悉图像的存储格式、图像处理的常用算法的理论知识。
(2实习者应熟悉 C 或 VC 程序设计语言。
(3每人固定用一台计算机,以班级学号名建立文件夹,将自己的实习成果存放在自己的文件夹中。
(4实习完成后,老师将根据最后成果评分。
(5每个同学最后要递交一份实习报告和按实习要求编写的程序。
实习考核评分办法:(1 考勤(迟到、早退、旷课扣分 (20分 ;(2 编程实现的算法和功能(50分 ;(3 实习报告(30分 ;第一部分数字图像处理的基础知识1、数字图像概念数字图像是连续图像的一种近似表示,通常用由采样点的值所组成的矩阵来表示 :每一个采样点叫做一个像素(pixel 。
上式中 m,n 分别为数字图像的行数和列数。
在计算机内,通常采用二维数组来表示数字图像的矩阵。
把像素按不同的方式进行组织或存储, 就得到不同的图像格式, 把图像数据存成文件就得到图像文件。
图像文件按其数字图像格式的不同一般具有不同的扩展名, 常见的图像文件格式有:RAW 格式、 BMP 格式、 TGA 格式、 PCX 格式、 GIF 格式、 TIFF 格式等。
2、 BMP 文件构成BMP 格式:这是一种常用的数字影像格式, 一个 BMP 文件大体上分成如下 4个部分:BITMAPFILEHEADER (位图文件头、 BITMAPINFOHEADER (位图信息头、 Palette (调色版、 DIB Pixels(DIB 图像数据。
第一部分:位图文件头 BITMAPFILEHEADER ,它是一个结构typedef struct tagBITMAPFILEHEADER{WORD bfType;DWORD bfSize;WORD bfReserved1;WORD bfReserved2;DWORD bfOffBits;}BITMAPFILEHEADER, FAR *LPBITMAPFILEHEADER;该结构的长度是固定的,为 14个字节,各参数说明如下:✧ bfType :指定文件类型,必须是 0x424D ,即字符串“BM”。
Visual C++数字图像处理典型案例详解
第1章 数字图像处理软件开发概述“心有多大,舞台就有多大。
”开发数字图像处理软件,需要想象力,而要把想象变成现实,则需要得心应手的开发平台。
目前常用于开发数字图像处理软件的平台可以粗略地分为通用平台和专用平台两大类。
通用平台不是专门针对数字图像处理软件开发而打造的,但是却可以用于开发数字图像处理系统,如Visual C++、Matlab等。
为了提高开发效率,通用平台往往结合专门的软件包(如OpenCV、VTK 等)或工具箱(如Matlab中的Image Processing工具箱等)进行数字图像处理软件开发。
专用平台则是专为数字图像处理或更进一步的机器视觉系统开发量身定制的,这类开发平台中均内置了大量专门用于数字图像处理的数据结构、对象、函数或组件模块,可供开发人员方便地调用,在更高的层次上进行数字图像处理系统的开发,如Halcon、VisionPro等。
本章主要介绍本书将要用到的几种开发平台及其配置和使用方法。
本章要点Visual C++处理数字图像的基本方法在Visual C++中使用OpenCV在Visual C++中使用VTK1.1 Visual C++“工欲善其事,必先利其器。
”Visual C++便是众多开发工具中的“一把所向披靡的利器”。
Visual C++(简称VC)是Microsoft公司的Visual Studio开发工具箱中的一个C++程序开发环境。
自诞生以来,凭借着C++语言的强大威力、开发环境的良好支持,以及与Windows操作系统的“血缘”关系,一直是Windows操作系统环境下最主要的开发工具之一。
使用VC可以完成各种各样应用程序的开发,从底层软件到上层直接面向用户的软件,而且用VC开发出的产品与Windows操作系统最具“亲和力”。
掌握了VC,就等于进入了Windows编程的自由王国。
VC在数字图像处理软件开发中也占据着极其重要的地位。
第1章Visual C++1.1.1 Visual C++概述VC是一个面向对象的可视化集成开发系统,它不但具有程序框架自动生成、灵活方便的类管理、代码编写和界面设计集成交互操作、可开发多种程序等优点,而且通过简单的设置就可使其生成的程序框架支持数据库接口、OLE2、WinSock网络、3D控制界面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VC数字图像处理编程图像处理就是对图像信息进行加工处理,以满足人的视觉心理和实际应用的需要。
简单的说,依靠计算机对图像进行各种目的的处理我们就称之为数字图像处理。
早期的数字图像处理的目的是以人为对象,为了满足人的视觉效果而改善图像的质量,处理过程中输入的是质量差的图像,输出的是质量好的图像,常用的图像处理方法有图像增强、复原等。
随着计算机技术的发展,有一类图像处理是以机器为对象,处理的目的是使机器能够自动识别目标,这称之为图像的识别.图像处理技术博大精深,不仅需要有很强的数学功底,还需要熟练掌握一门计算机语言,在当前流行的语言中,Visual C++这个开发平台是图像开发人员的首选工具。
第一节图像的文件格式要利用计算机对数字化图像进行处理,首先要对图像的文件格式要有清楚的认识,自然界的图像以模拟信号的形式存在,在用计算机进行处理以前,首先要数字化,比如摄像头(CCD)摄取的信号在送往计算机处理前,一般情况下要经过数模转换,这个任务常常由图像采集卡完成,它的输出一般为裸图的形式;如果用户想要生成目标图像文件,必须根据文件的格式做相应的处理。
随着科技的发展,数码像机、数码摄像机已经进入寻常百姓家,我们可以利用这些设备作为图像处理系统的输入设备来为后续的图像处理提供信息源。
无论是什么设备,它总是提供按一定的图像文件格式来提供信息,比较常用的有BMP 格式、JPEG格式、GIF格式等等,所以我们在进行图像处理以前,首先要对图像的格式要有清晰的认识,只有在此基础上才可以进行进一步的开发处理。
在讲述图像文件格式前,先对图像作一个简单的分类。
除了最简单的图像外,所有的图像都有颜色,而单色图像则是带有颜色的图像中比较简单的格式,它一般由黑色区域和白色区域组成,可以用一个比特表示一个像素,"1"表示黑色,"0"表示白色,当然也可以倒过来表示,这种图像称之为二值图像。
我们也可以用8个比特(一个字节)表示一个像素,相当于把黑和白等分为256个级别,"0"表示为黑,"255"表示为白,该字节的数值表示相应像素值的灰度值或亮度值,数值越接近"0",对应像素点越黑,相反,则对应像素点越白,此种图像我们一般称之为灰度图像。
单色图像和灰度图像又统称为黑白图像,与之对应存在着彩色图像,这种图像要复杂一些,表示图像时,常用的图像彩色模式有RGB模式、CMYK模式和HIS模式,一般情况下我们只使用RGB模式,R 对应红色,G对应绿色,B对应蓝色,它们统称为三基色,这三中色彩的不同搭配,就可以搭配成各种现实中的色彩,此时彩色图像的每一个像素都需要3个样本组成的一组数据表示,其中每个样本用于表示该像素的一个基本颜色。
对于现存的所有的图像文件格式,在这里主要介绍BMP图像文件格式,并且文件里的图像数据是未压缩的,因为图像的数字化处理主要是对图像中的各个像素进行相应的处理,而未压缩的BMP图像中的像素数值正好与实际要处理的数字图像相对应,这种格式的文件最合适我们对之进行数字化处理。
请读者记住,压缩过的图像是无法直接进行数字化处理的,如JPEG、GIF等格式的文件,此时首先要对图像文件解压缩,这就要涉及到一些比较复杂的压缩算法。
后续章节中我们将针对特殊的文件格式如何转换为BMP格式的文件问题作专门的论述,经过转换,我们就可以利用得到的未压缩的BMP文件格式进行后续处理。
对于JPEG、GIF等格式,由于涉及到压缩算法,这要求读者掌握一定的信息论方面的知识,如果展开的话,可以写一本书,限于篇幅原因,我们只作一般性的讲解,有兴趣的朋友可以参考相关书籍资料。
一、BMP文件结构1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成。
文件头主要包含文件的大小、文件类型、图像数据偏离文件头的长度等信息;位图信息头包含图象的尺寸信息、图像用几个比特数值来表示一个像素、图像是否压缩、图像所用的颜色数等信息。
颜色信息包含图像所用到的颜色表,显示图像时需用到这个颜色表来生成调色板,但如果图像为真彩色,既图像的每个像素用24个比特来表示,文件中就没有这一块信息,也就不需要操作调色板。
文件中的数据块表示图像的相应的像素值,需要注意的是:图像的像素值在文件中的存放顺序为从左到右,从下到上,也就是说,在BMP文件中首先存放的是图像的最后一行像素,最后才存储图像的第一行像素,但对与同一行的像素,则是按照先左边后右边的的顺序存储的;另外一个需要读者朋友关注的细节是:文件存储图像的每一行像素值时,如果存储该行像素值所占的字节数为4的倍数,则正常存储,否则,需要在后端补0,凑足4的倍数。
2. BMP文件头BMP文件头数据结构含有BMP文件的类型、文件大小和位图起始位置等信息。
3. 位图信息头BMP位图信息头数据用于说明位图的尺寸等信息。
注意:对于BMP文件格式,在处理单色图像和真彩色图像的时候,无论图象数据多么庞大,都不对图象数据进行任何压缩处理,一般情况下,如果位图采用压缩格式,那么16色图像采用RLE4压缩算法,256色图像采用RLE8压缩算法。
4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色。
颜色表中RGBQUAD结构数据的个数由BITMAPINFOHEADER 中的biBitCount项来确定,当biBitCount=1,4,8时,分别有2,16,256个颜色表项,当biBitCount=24时,图像为真彩色,图像中每个像素的颜色用三个字节表示,分别对应R、G、B值,图像文件没有颜色表项。
位图信息头和颜色表组成位图信息,BITMAPINFO结构定义如下:注意:RGBQUAD数据结构中,增加了一个保留字段rgbReserved,它不代表任何颜色,必须取固定的值为"0",同时, RGBQUAD结构中定义的颜色值中,红色、绿色和蓝色的排列顺序与一般真彩色图像文件的颜色数据排列顺序恰好相反,既:若某个位图中的一个像素点的颜色的描述为"00,00,ff,00",则表示该点为红色,而不是蓝色。
5. 位图数据位图数据记录了位图的每一个像素值或该对应像素的颜色表的索引值,图像记录顺序是在扫描行内是从左到右,扫描行之间是从下到上。
这种格式我们又称为Bottom_Up位图,当然与之相对的还有Up_Down形式的位图,它的记录顺序是从上到下的,对于这种形式的位图,也不存在压缩形式。
位图的一个像素值所占的字节数:当biBitCount=1时,8个像素占1个字节;当biBitCount=4时,2个像素占1个字节;当 biBitCount=8时,1个像素占1个字节;当biBitCount=24时,1个像素占3个字节,此时图像为真彩色图像。
当图像不是为真彩色时,图像文件中包含颜色表,位图的数据表示对应像素点在颜色表中相应的索引值,当为真彩色时,每一个像素用三个字节表示图像相应像素点彩色值,每个字节分别对应R、G、B分量的值,这时候图像文件中没有颜色表。
二、GIF图像文件格式GIF图象格式的全称为Graphics Interchange Format,从这个名字可以看出,这种图像格式主要是为了通过网络传输图像而设计的。
GIF文件不支持24位真彩色图像,最多只能存储256色的图像或灰度图像;GIF格式文件也无法存储CMY和HIS模型的图像数据;另外,GIF图像文件的各种数据区域一般没有固定的数据长度和存储顺序,所以为了方便程序寻找数据区,将数据区中的第一个字节作为标志符;最后需要读者注意的是GIF文件存储图像数据是有二种排列顺序:顺序排列或交叉排列。
交叉排列的方式适合网络传输,这样一来允许用户在不完全掌握图像数据之前,获取当前图像的轮廓数据。
GIF文件格式分为87和89两个版本,对于87这个版本,该文件主要是有五个部分组成,它,们是按顺序出现的:文件头块、逻辑屏幕描述块、可选择的调色板块、图像数据块、最后是标志文件结束的尾块,该块总是取固定的值3BH。
其中第一和第二两个块用GIF图像文件头结构描述:GIF格式中的调色板有通用调色板和局部调色板之分,因为GIF格式允许一个文件中存储多个图像,因此有这两种调色板,其中通用调色板适于文件中的所有图像,而局部调色板只适用于某一个图像。
格式中的数据区域一般分为四个部分,图像数据识别区域,局部调色板数据,采用压缩算法得到的图象数据区域和结束标志区域。
在GIF89版本中,它包含七个部分,分别是文件头、通用调色板数据、图像数据区和四个补充数据区,它们主要是用于提示程序如何处理图像的。
三、JEPG图像文件JEPG简称为联合摄影专家小组,作为一种技术,主要用于数字化图像的标准编码,JPEG主要采用有损的压缩编码方式,它比GIF、BMP图像文件要复杂的多,这不是短短的几页篇幅可以将清楚的,万幸的是,我们可以通过一些别的方法将该格式转化为BMP格式。
读者需要知道的是在对JEPG文件格式编码时,通常需要分为以下四步:颜色转化、DCT变换、量化、编码。
以上介绍了一些常用的图像文件,对比较复杂的格式,如GIF和JEPG,仅仅作了极其浮浅的介绍,后文我们会和它们作进一步的接触。
实际应用中,还有许多图像格式,文章中都没有提到,读者如果需要做进一步的研究,还需要参考一些关于图像格式方面的资料。
BMP图像的基本操作上一讲我们主要介绍了图像的格式,其中重点说明了BMP文件的存储格式,同时对JEPG和GIF等常用格式作了简单的介绍。
本节主要讲述如何操作BMP文件,如对其读、写和显示等。
在实现数字图象处理的过程中,主要是通过对图像中的每一个像素点运用各种图像处理算法来达到预期的效果,所以进行图像处理的第一步,也是我们最关心的问题,是如何得到图像中每一个像素点的亮度值;为了观察和验证处理的图像效果,另一个需要解决的问题是如何将处理前后的图像正确的显示出来。
我们这章内容就是解决这些问题。
随着科技的发展,图像处理技术已经渗透到人类生活的各个领域并得到越来越多的应用,但是突出的一个矛盾是图像的格式也是越来越多,目前图像处理所。