导数与极值

合集下载

导数与极值

导数与极值

当a=2,b=9时,f′(x)=3x2+12x+9=3(x+1)(x+3).
当x∈(-3,-1)时,f(x)为减函数;当x∈(-1,+∞)时, f(x)为增函数,
所以f(x)在x=-1时取得极小值,因此a=2,b=9.
【规律总结】 1.求参数值:利用函数的极值确定参数的值,常根据极
值点处导数为0和极值两个条件列方程组,利用待定系
(2)函数y=f(x)在点x=b的函数值f(b)比它在点x=b附 近其他点的函数值都大, 则b叫做极大值点,f(Байду номын сангаас) f′(b)=0 叫做函数y=f(x)的极大值. 其中_________,在点x=b f′(x)>0 附近的左侧 _________,右侧_________, f′(x)<0
【练习】 1.函数y=f(x)的导数y′与函数值和极值之间的关系为
【解析】因为在点x2左侧导数图象在x轴上方,导数为 正,在点x2右侧附近导数图象在x轴下方,导数为负,故
点x2为极大值点,因为在点x4左侧导数图象在x轴下方,
导数为负,在点x4右侧附近导数图象在x轴上方,导数为 正,故点x4为极小值点.
答案:x2 x4
【注意事项】 1.函数的极值可以在区间端点处取得吗? 提示:不可,因为在端点处不能反映两侧的函数值的变 化情况,况且端点处的导数不一定为0.
书本P38
【题型探究】 类型一:求函数的极值
书本P39例题2
【规律总结】求可导函数f(x)的极值的步骤 (1)定区间求导:确定函数的定义域,求导数f′(x). (2)解方程:求方程f′(x)=0的根. (3)列表:用函数的导数为0的点,顺次将函数的定义区间分成若
干个小开区间,并列成表格.

高考数学知识点:函数的极值与导数的关系_知识点总结

高考数学知识点:函数的极值与导数的关系_知识点总结

高考数学知识点:函数的极值与导数的关系_知识点总结高考数学知识点:函数的极值与导数的关系极值的定义:(1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点;(2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

极值的性质:(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小;(2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。

判别f(x0)是极大、极小值的方法:若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点,是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。

求函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

对函数极值概念的理解:极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,函数的最大值和最小值:在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。

导数与函数极值最值

导数与函数极值最值

导数与函数的极值与最值1. 函数的极值⑴.判断 f (x 0)是极值的方法一般地,当函数 y =f (x )在点 x 0 处连续时,①.如果在 x 0 附近的左侧 f ′(x )>0,右侧 f ′(x )<0,那么 f (x 0)是极大值; ②.如果在 x 0 附近的左侧 f ′(x )<0,右侧 f ′(x )>0,那么 f (x 0)是极小值. ⑵.求可导函数极值的步骤:①.求 f ′(x );②.求方程 f ′(x )=0 的根;③.检查 f ′(x )在方程 f ′(x )=0 的根左右值的符号.如果左正右负,那么 y =f (x )在这个根处取得极大值;如果左负右正,那么 y =f (x )在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.2. 函数的最值⑴.在闭区间[a ,b ]上连续的函数 y =f (x )在[a ,b ]上必有最大值与最小值.⑵.若函数 f (x )在[a ,b ]上单调递增,则 f (a )为函数的最小值,f (b )为函数的最大值;若函数 f (x )在[a ,b ]上单调递减,则 f (a )为函数的最大值,f (b )为函数的最小值.⑶.设函数 f (x )在[a ,b ]上连续,在(a ,b )内可导,求 f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①.求 f (x )在(a ,b )内的极值;②.将 f (x )的各极值与 f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 3. 利用极值求参数1. 极值点使得导函数为0,即极值点为导函数的零点.2. 极值点的个数就是导函数变号零点的个数3. 方法:①直接法:直接求方程,得到方程的根,在通过解不等式确定参数取值范围; ②分离参数法:将参数分离,构造新函数转化成求最值或者值域的问题; ③数形结合:先对解析式变形,在坐标系中画出函数图像,通过找交点求解.题型一 求极值【例1】(1)(2019·湖北高二期末)函数()f x 的导函数()f x '的图象如图所示,则( )A .12为()f x 的极大值点 B .2-为()f x 的极大值点 C .2为()f x 的极大值点D .45为()f x 的极小值点 (2)(2019·黑龙江铁人中学高二期中(文))函数()()2312f x x =-+的极值点是( ) A .0x =B .1x =C .1x =-或1D .1x =或0【解析】(1)对于A 选项,当122x -<<时,()0f x '>,当122x <<时,()0f x '<,12为()f x 的极大值点,A 选项正确;对于B 选项,当2x <-时,()0f x '<,当122x -<<时,()0f x '>,2-为()f x 的极小值点,B 错误; 对于C 选项,当122x <<时,()0f x '<,当2x >时,()0f x '>,2为()f x 的极小值点,C 选项错误; 对于D 选项,由于函数()y f x =为可导函数,且405f ⎛⎫'<⎪⎝⎭,45不是()f x 的极值点,D 选项错误.故:A. (2)函数的导数为2233()2(1)(3)6(1)f x x x x x '=-⨯=-, 当()0f x '=得0x =或1x =,当1x >时,()0f x '>,当01x <<时,()0f x '<, 所以1x =是极小值点.当0x <时,()0f x '<,当01x <<时,()0f x '<, 所以0x =不是极值点.故选B .【举一反三】1.(2018·安徽高二期末(理))函数()321313f x x x x =+--的极小值点是( ) A .1B .(1,﹣83)C .3-D .(﹣3,8)【解析】()223f x x x =+-',由2230x x +-=得31x =-或 函数()321313f x x x x =+--在(),3-∞-上为增函数,()3,1-上为减函数, ()1+∞,上为增函数,故()f x 在1x =处有极小值,极小值点为1.选A 2.(2019·安徽高二月考(文))已知函数()2ln f x ax b x =+在点M (1,1)处的切线方程为230x y +-=.(1)求函数()y f x =的解析式;(2)求函数()y f x =的单调区间和极值.【答案】(1)f (x )=x 2-4lnx (2)函数()f x 的单调递增区间是(,单调递减区间是)+∞.极小值为22ln 2-,无极大值 【解析】(1)()2bf x ax x'=+, 因为点M (1,1)处的切线方程为2x +y -3=0,所以()()11122f a f a b ⎧==⎪⎨=+=-'⎪⎩,所以14a b =⎧⎨=-⎩,则f (x )=x 2-4lnx ;(2)定义域为(0,+∞),()24242x f x x x x-'=-=,令()0f x '=,得x =. 列表如下:故函数()f x 的单调递增区间是(,单调递减区间是)+∞.极小值为222ln 2f=-=-,无极大值.题型二 求最值【例2】(2019·黑龙江铁人中学高二期中 )函数32()32f x x x =-+在区间[-1,1]上的最大值是( ) A .4 B .2 C .0 D .-2【答案】B【解析】令()2360f x x x '=-=,解得0x =2x =.()()()()02,22,12,10f f f f ==--=-=,故函数的最大值为2,所以本小题选B.【举一反三】1.(2019·湖南高一月考)已知函数2()4,[0,3],f x x x a x =-++∈若()f x 有最小值2-,则()f x 的最大值为____【解析】二次函数()y f x = 在[]0,2x ∈ 单调递增,当(]2,3x ∈ 单调递减故在x=0时取得最小值,即a=2题型三 利用极值最值求参数【例3】(1)(2019·河北唐山一中高三期中(理))若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为( ).A .1-B .32e --C .35e -D .1(2)(2019·贵州省铜仁第一中学高三(文))若函数()333f x x bx b =-+在()0,1内有极小值,则b 的取值范围为( ) A .01b <<B .1b <C .0b >D .12b <(3)(2019·安徽高二月考(文))若函数f (x )=13x 3+x 2-23在区间(a ,a +5)上存在最小值,则实数a 的取值范围是 A .[-5,0)B .(-5,0)C .[-3,0)D .(-3,0)【答案】(1)A(2)A(3)C 【举一反三】1.已知是函数的极小值点,则的范围是_____2.已知是函数的极小值点,则取值范围________3.已知函数有两个极值点,且,则( )4.(2019·新疆高三月考)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是____.5.若函数在区间内有极值,则取值范围( C )0x =()()()22222f x x a x a x a=-++a ()(),02,-∞⋃+∞1x =()()()2202xk f x x e x kx k =--+>k ()0,e ()221ln f x x x a x =-++12,x x 12x x <D ()212ln 2.4A f x +<-()212ln 2.4B f x -<()212ln 2.4C f x +>-()212ln 2.4D f x ->()()()2122ln 02ax f x a x x a =-++>1,02⎛⎫ ⎪⎝⎭a6. 若函数在上有小于零的极值点,实数的取值范围是( )7. 若函数在区间恰有一个极值点,则实数取值范围______.8. 已知函数在区间上至少有一个极值点,实数取值范围______ 课后训练:1.(2019·江西高三期中(文))若函数()32236f x x mx x =-+在区间()1,+∞上存在极值点,则实数m 的取值范围是( ) A .[)2,+∞ B .(),1-∞ C .(],2-∞ D .()2,+∞【答案】D 【解析】依题意()'2666f x x mx =-+,由于函数()32236f x x mx x =-+在区间()1,+∞上存在极值点,所以()'2666fx x mx =-+在区间()1,+∞上有正有负,由于二次函数()'2666f x x mx =-+开口向上,对称轴为2m x =,2364660m ∆=-⨯⨯>,解得2m <-或2m >.当2m <-时,对称轴12mx =<-,()'060f =>故此时在区间()1,+∞上()'0f x >,函数()f x 单调递增,没有极值点.当2m >时,由于()'16661260f m m =-+=-<,且二次函数()'2666f x x mx =-+开口向上,故()'2666f x x mx =-+区间()1,+∞上必存在零点,也即()f x 在区间()1,+∞上存在极值点. 故选:D.2.(2019·陕西高三(文))函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤【答案】C【解析】因为2()31f x ax '=+,所以221()31030f x ax a x =+=⇒=-<',即0a <,应选答案C 。

导数与函数的极值、最值

导数与函数的极值、最值

知识要点
双基巩固
典型例题
易错辨析
提升训练
【解】 (1)因 f(x)=x3-6x2+3x+1, 所以 f′(x)=3x2-12x+3, ∴f′(x)=3(x-2+ 3)(x-2- 3). 当 f′(x)>0 时,x>2- 3,或 x<2+ 3; 当 f′(x)<0 时,2- 3<x<2+ 3. ∴f(x)的单调增区间是(-∞,2- 3),(2+ 3,+∞),单调减 区间是(2- 3,2+ 3).
解析:f′(x)=x2-4=(x-2)(x+2),令f′(x)=0得,x1=-2,x2=2. 当x<-2时,f′(x)>0,-2<x<2时,f′(x)<0,f(x)在x=-2处取 得极大值.
答案:-2
知识要点
双基巩固
典型例题
易错辨析
提升训练
x2+a 5.若函数 f(x)= 在 x=1 处取极值,则 a=________. x+1 解析:∵f(x)在 x=1 处取极值,∴f′(1)=0.
知识要点
双基巩固
典型例题
易错辨析
提升训练
2.函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)内的图象如图 所示,则函数f(x)在开区间(a,b)内极小值点的个数为( )
A.1
B.2
C.3
D.4
解析:极值点在f′(x)的图象上应是f′(x) 的图象与x轴的交点的横坐标,且极小 值点的左侧图象在x轴下方,右侧图象
知识要点
双基巩固
典型例题
易错辨析
提升训练
∵g(x)在 x=0 和 x=2 点处连续, 又∵g(0)=1,g(1)=2-ln 4,g(2)=3-ln 9, 且 2-ln 4<3-ln 9<1, ∴g(x)的最大值是 1, g(x)的最小值是 2-ln 4. 所以在区间[0,2]上原方程恰有两个相异的实根时实数 a 的 取值范围是: 2-ln 4<a≤3-ln 9.

一轮复习--导数与函数的极值、最值

一轮复习--导数与函数的极值、最值

其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊 重,相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆ቤተ መጻሕፍቲ ባይዱ。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!

导数与极值

导数与极值

2.三次函数单调性与极值(设x1<x2) (1)当Δ≤0时,①若a>0,则f(x)在R上是增函数;
②若a<0,则f(x)在R上是减函数.
(2)当Δ>0时,①若a>0,则f(x)的增区间为(-∞,x1)和 (x2,+∞),减区间为(x1,x2),f(x1)为极大值,f(x2)为极
小值;②若a<0,则f(x)的减区间为(-∞,x1)和(x2,+∞),
【解析】函数y=f(x)的图象与y=g(x)的图象有且只有 三个不同的交点,即函数φ(x)=g(x)-f(x)的图象与x轴
的正半轴有且只有三个不同的交点.
因为φ(x)=x2-8x+6ln x+m,
6 2x 2 8x 6 2 x 1 x 3 (x>0), 所以φ′(x)= 2x 8 x x x
呢?
【解析】由例(2)解析可知:当m=-3或m=1时,直线y=m与 y=f(x)的图象有两个不同的交点;
当m<-3或m>1时,直线y=m与y=f(x)的图象只有一个交点.
2.(变换条件)若本例(2)中条件改为“已知函数f(x)= -x3+ax2-4在x= 4 处取得极值”,其他条件不变,小值f(1)=-3.
作出f(x)的大致图象如图所示:
因为直线y=m与函数y=f(x)的图象有三个不同的交点, 结合f(x)的图象可知,m的取值范围是(-3,1).
【延伸探究】 1.(变换条件,改变问法)若本例(2)“三个不同的交点”
改为“两个不同的交点”结果如何?改为“一个交点”
x x
x 3 x 1
x2
. 令f′(x)=0,得x=1.
当x变化时,f′(x)与f(x)的变化情况如下表: x f′(x) f(x) (0,1) ↘ 1 0 3 (1,+∞) + ↗

高中数学选修2-2函数的极值与导数课件

高中数学选修2-2函数的极值与导数课件

B. y=cos2x
C. y=tanx-x
课堂练习
2.曲线y=x4-2x3+3x在点P(-1,0)处的切线的斜率为( B )
A. –5
B. –6
C. –7
D. –8
课堂练习 3. 下列说法正确的是 ( C )
A. 函数在闭区间上的极大值一定比极小值大 B. 函数在闭区间上的最大值一定是极大值 C. 对于f(x)=x3+px2+2x+1,若|p|<√6,则f(x)无极值 D. 函数f(x)在区间(a,b)上一定存在最值
一般地,求函数y=f(x)的极值的方法是:解方程 f ' x 0 .当 f ' x0 0 时:
x (1)如果在 0 附近的左侧f′(x)>0,右侧f′(x)<0,那么
2如果在x0附近的左侧f ' x 0,右侧 f ' x 0, 那么f x0 是极小值.
f x0
是极大值;
口诀:左负右正为极小,左正右负为极大.
例题讲解
求函数y=(x2-1)3+1的极值. 解:定义域为R,y ’=6x(x2-1)2.由y ’=0可得x1=-1,x2=0,x3=1 当x变化时,y ’ ,y的变化情况如下表:
当x=0时,y有极小值,并且y极小值=0.
课堂练习
1 . 下列函数中,x=0是极值点的函数是( B )
A. y=-x3 D. y=1/x
人教版高中数学选修2-2
第1章 导数及其应用
函数的极值与导数
课前导入
一般地,函数的单调性与导数的关系: 在某个区间a, b内, 如果f ' x > 0, 那么 函数y = f x在这个区间内单调递增; 如果 f ' x < 0,那么函数 y = f x在这个区间内

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与性质1.1 极值的定义引入极值的概念,解释函数在某一点的局部性质。

通过图形和实例直观展示极值的存在。

1.2 极值的判定条件介绍函数的导数与极值的关系,讲解导数为零的必要性和充分性。

分析导数为正和导数为负时函数的单调性,得出极值的判定条件。

1.3 极值的判定定理介绍罗尔定理、拉格朗日中值定理和柯西中值定理在极值判定中的应用。

证明极值的判定定理,并通过实例进行验证。

第二章:导数与函数的单调性2.1 导数的定义与计算引入导数的概念,解释导数表示函数在某一点的瞬时变化率。

讲解导数的计算规则,包括常数函数、幂函数、指数函数和三角函数的导数。

2.2 导数与函数的单调性分析导数正负与函数单调性的关系,得出单调递增和单调递减的定义。

通过实例和图形展示导数与函数单调性的联系。

2.3 单调性的应用讲解利用单调性解决函数极值问题的方法。

分析函数的单调区间和极值点,得出函数的单调性对极值的影响。

第三章:函数的极值点与导数3.1 极值点的定义与判定引入极值点的概念,解释极值点是函数导数为零或不存在的点。

讲解极值点的判定方法,包括导数为零和导数不存在的条件。

3.2 极值点的求解方法介绍求解极值点的方法,包括解析法和数值法。

讲解如何利用导数和图形求解函数的极值点。

3.3 极值点的应用分析极值点在实际问题中的应用,如最优化问题。

举例说明如何利用极值点解决实际问题。

第四章:函数的拐点与导数4.1 拐点的定义与判定引入拐点的概念,解释拐点是函数导数由正变负或由负变正的点。

讲解拐点的判定方法,包括导数的正负变化和二阶导数的符号。

4.2 拐点的求解方法介绍求解拐点的方法,包括解析法和数值法。

讲解如何利用导数和图形求解函数的拐点。

4.3 拐点的应用分析拐点在实际问题中的应用,如曲线拟合和物体的运动。

举例说明如何利用拐点解决实际问题。

第五章:函数的极值与图像5.1 极值与函数图像的关系分析极值点在函数图像中的位置和特征。

导数与函数的极值、最值 解析版

导数与函数的极值、最值 解析版

导数与函数的极值、最值【考试提醒】1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.【知识点】1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值都小,f′(a)=0;而且在点x =a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点处的函数值都大,f′(b)=0;而且在点x= b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件【核心题型】题型一 利用导数求解函数的极值问题根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.命题点1 根据函数图象判断极值1(2024·四川广安·二模)已知函数f x =ax+1e x,给出下列4个图象:其中,可以作为函数f x 的大致图象的个数为()A.1B.2C.3D.4【答案】D【分析】对a的情况进行分类讨论,借助于导数对函数的单调性进行分析即可判断函数的大致图象.【详解】由题意知,f x 定义域为R,当a=0时,f x =e x,由指数函数的单调性可知函数f x 单调递增,可对应①;当a>0时,f x =ax+a+1e x,令f x =0可得:x=-a+1a<0,所以当x∈-∞,-a+1a时,f x<0,当x∈-a+1a ,+∞时,f x >0,所以,函数f x 先减后增,且当x<-1a时,f x <0,此时可对应②;当a<0时,f x =ax+a+1e x,当f x =0时x=-a+1a,当x∈-∞,-a+1a时,f x >0,当x∈-a+1a ,+∞时,f x <0,所以,函数f x 先增后减,当a<-1时,x=-a+1a<0,且此时0<-1a<1,所以可对应③,当-1<a<0时,x=-a+1a>0,此时-1a>1,所以可对应④.故选:D2(23-24高三上·黑龙江·阶段练习)如图是函数y=f x 的导函数y=f x 的图象,下列结论正确的是()A.y=f x 在x=-1处取得极大值B.x=1是函数y=f x 的极值点C.x=-2是函数y=f x 的极小值点D.函数y=f x 在区间-1,1上单调递减【答案】C【分析】根据导函数的正负即可求解y=f x 的单调性,即可结合选项逐一求解.【详解】由图象可知:当x<-2时,f x <0,f x 单调递减,当x≥-2时,f x ≥0,f x 单调递增,故x=-2是函数y=f x 的极小值点,y=f x 无极大值.故选:C3(2023·河北·模拟预测)函数f(x)=1x4-1x2的大致图象是()A. B.C. D.【答案】D【分析】先判断函数的奇偶性,再利用导数法判断.【详解】解:因为函数f (x )=1x4-1x 2的定义域为:x |x ∈R ,x ≠0 ,且f -x =f x ,所以函数f x 是偶函数,当x >0时,f x =-4x -51-12x 2 ,令fx =0,得x =2,当0<x <2时,f x <0,当x >2时,f x >0,所以当x =2时,f x 取得极小值,故选:D4(2024高三·全国·专题练习)已知函数f (x )的导函数f ′(x )的图象如图所示,则下列结论正确的是()A.曲线y =f (x )在点(1,f (1))处的切线斜率小于零B.函数f (x )在区间(-1,1)上单调递增C.函数f (x )在x =1处取得极大值D.函数f (x )在区间(-3,3)内至多有两个零点【答案】D【详解】解析:由题意,得f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线斜率等于零,故A 错误;当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上单调递减,故B 错误;当-2<x <1时,f ′(x )<0,f (x )单调递减,当x >1,f ′(x )<0,f (x )单调递减,所以x =1不是f (x )的极值点,故C 错误;当x ∈(-3,-2)时,f ′(x )>0,f (x )单调递增,当x ∈(-2,3)时,f ′(x )≤0,f (x )单调递减,所以当f (-2)<0时,f (x )在(-3,3)上没有零点;当f (-2)=0时,f (x )在(-3,3)上只有一个零点;当f (-2)>0时,f (x )在(-3,3)上有两个零点.综上,函数f (x )在区间(-3,3)内至多有两个零点,故选D .命题点2 求已知函数的极值5(2024·宁夏银川·一模)若函数f (x )=x 2-ax -2 e x 在x =-2处取得极大值,则f (x )的极小值为()A.-6e 2B.-4eC.-2e 2D.-e【答案】C【分析】由题意求出a 的值,进而求出f x ,再解出极小值即可.【详解】因为函数f (x )=x 2-ax -2 e x 在x =-2处取得极大值,则f x =x 2+2-a x -2-a ⋅e x ,x ∈R 且f -2 =0,即4-22-a -2-a =0,所以a =2;所以f x =x 2-2x -2 ⋅e x ,f x =x 2-4 ⋅e x =x +2 x -2 e x ,令f x =0,则x =2或x =-2,由x ∈-∞,-2 ,f x >0,x ∈-2,2 ,f x <0,x ∈2,+∞ ,f x >0,所以f x 在-∞,-2 ,2,+∞ 上单调递增,在-2,2 上单调递减.所以函数f x 在x =-2处取得极大值,f 极小=f 2 =-2e 2.故选:C .6(2023·全国·模拟预测)函数f x =2x -tan x -π在区间-π2,π2的极大值、极小值分别为()A.π2+1,-π2+1B.-π2+1,-3π2+1C.3π2-1,-π2+1D.-π2-1,-3π2+1【答案】D【分析】求出f x ,由f (x )<0、f (x )>0可得答案.【详解】由题意,得f(x )=2-sin x cos x =2-1cos 2x =2cos 2x -1cos 2x,当x ∈-π2,-π4 ∪π4,π2 时,2cos 2x -1<0,f (x )<0;当x ∈-π4,π4时,2cos 2x -1>0,f (x )>0.所以f (x )在-π2,-π4 上单调递减,在-π4,π4 上单调递增,在π4,π2上单调递减.当x =-π4时,f (x )取得极小值,为f -π4 =-3π2+1;当x =π4时,f (x )取得极大值,为f π4 =-π2-1.故选:D .7(多选)(2024·全国·模拟预测)已知f (x )=e xx,x >0,-x 2-4x -1,x ≤0, 则方程f 2(x )-(k +3)f (x )+3k =0可能有( )个解.A.3 B.4C.5D.6【答案】BCD【分析】方程f 2(x )-(k +3)f (x )+3k =0得f (x )=3或f (x )=k ,作出函数图象,数形结合判断解的个数.【详解】f (x )=e x x x >0 ,有f(x )=e x x -1 x 2,当0<x <1时f (x )<0,f (x )单调递减;当x >1时f (x )>0,f (x )单调递增,当x =1时,f (x )有极小值f 1 =e.f (x )=-x 2-4x -1x ≤0 ,由二次函数的性质可知,f (x )在-∞,-2 上单调递增,在-2,0 上单调递减,当x =-2时,f (x )有极大值f (-2)=3.由f (x )=e xx,x >0,-x 2-4x -1,x ≤0 的图象如图所示,由f 2(x )-(k +3)f (x )+3k =0得f (x )=3或f (x )=k ,由图象可知f (x )=3有3个解,f (x )=k 可能有1,2,3,4个解,故方程f 2(x )-(k +3)f (x )+3k =0可能有4,5,6,7个解.故选:BCD .【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令f x =0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间a ,b 上是连续不断的曲线,且f a ⋅f b <0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点8(2024·辽宁鞍山·二模)f x =x 2e -x 的极大值为.【答案】4e2【分析】借助导数研究函数的单调性即可得其极大值.【详解】f x =2xe -x +x 2-e -x =2x -x 2 e -x =-x x -2 e -x ,当x ∈-∞,0 ∪2,+∞ 时,f x <0,当x ∈0,2 时,f x >0,故f x 在-∞,0 、2,+∞ 上单调递减,在0,2 上单调递增,故f x 有极大值f 2 =22e -2=4e2.故答案为:4e2命题点3 已知极值(点)求参数9(2024·全国·模拟预测)设x 1,x 2为函数f x =x x -2 x -a (其中a >0)的两个不同的极值点,若不等式f x 1 +f x 2 ≥0成立,则实数a 的取值范围为()A.1,4B.0,4C.0,1D.4,+∞【答案】A【分析】导函数为二次函数,x 1,x 2为对应的一元二次方程的两根,由f x 1 +f x 2 ≥0,代入函数解析式,结合韦达定理化简,可解出实数a 的取值范围.【详解】因为f x =x x -2 x -a ,所以f x =3x 2-22+a x +2a .又函数f x 有两个不同的极值点x 1,x 2,所以Δ=4a 2-2a +4 >0,x 1+x 2=22+a3,x 1x 2=2a 3.解法一:由f x 1 +f x 2 ≥0,得x 31+x 32-a +2 x 21+ x 22 +2a x 1+x 2 ≥0,即x 1+x 2 x 1+x 2 2- 3x 1x 2 -a +2 x 1+x 2 2-2x 1x 2 +2a x 1+ x 2 ≥0∗ .将x 1+x 2,x 1x 2的值代入(*)式,得a 2-5a +4≤0,解得1≤a ≤4,故选:A .解法二:函数y =ax 3+kx a ≠0 为奇函数,图象的对称中心为0,0 ,则函数y =a x -m 3+k x -m +n 图象的对称中心为m ,n 设g x =ax 3+bx 2+cx +d =a x -m 3+k x -m +n ,a x -m 3+k x -m +n =ax 3-3amx 2+3am 2+k x +n -am 3-km ,比较系数,有-3am =b 3am 2+k =c n -am 3-km =d,解得m =-b 3a ,k =c -b 23a ,n =2b 327a2-bc 3a +d =g -b3a 所以函数g x =ax 3+bx 2+cx +d a ≠0 图象的对称中心为-b 3a ,g -b3a,即若f x 存在两个相异的极值点x 1,x 2,则其对称中心为点x 1,f x 1 和点x 2,f x 2 的中点,即f x 1 +f x 2 2=f x 1+x22.由题设得f x 1 +f x 2 ≥0,即f x 1+x 22 ≥0,即f 2+a3≥0,所以a >0,a +23a +23-2 a +23-a ≥0,解得1≤a ≤4.故选:A .10(2024·四川绵阳·三模)若函数f x =12ax 2-x +b ln x a ≠0 有唯一极值点,则下列关系式一定成立的是()A.a >0,b <0B.a <0,b >0C.ab <14D.ab >0【答案】C【分析】求导,构造函数g x =ax 2-x +b a ≠0 ,利用二次函数零点的分布,结合分类讨论以及极值点的定义即可求解.【详解】fx =ax -1+b x =ax 2-x +b x,令g x =ax 2-x +b a ≠0 ,Δ=1-4ab ,若Δ=1-4ab ≤0,则g x =ax 2-x +b ≥0或g x =ax 2-x +b ≤0,此时f x 单调,不存在极值点,故不符合题意,若Δ=1-4ab >0,则方程g x =ax 2-x +b =0有两个实数根,由于f x =12ax 2-x +b ln x a ≠0 有唯一极值点,故g x =ax 2-x +b =0只能有一个正实数根,若另一个实数根为0,此时b =0,显然满足条件,若令一个实数根为负根,则ba <0,故ab <0,结合选项可知,ab <14一定成立,故选:C11(2024·辽宁·一模)已知函数f x =x 3+ax 2+bx +a 2在x =-1处有极值8,则f 1 等于.【答案】-4【分析】求导,即可由f -1 =8且f -1 =0求解a ,b ,进而代入验证是否满足极值点即可.【详解】f x =3x 2+2ax +b ,若函数f x 在x =-1处有极值8,则f -1 =8,f-1 =0,即-1+a -b +a 2=83-2a +b =0,解得:a =3,b =3或a =-2,b =-7,当a =3,b =3时,f x =3x 2+6x +3=3(x +1)2≥0,此时x =-1不是极值点,故舍去;当a =-2,b =-7时,f x =3x 2-4x -7=3x -7 x +1 ,当x >73或x <-1时,f x >0,当-1<x <73,f x <0,故x =-1是极值点,故a =-2,b =-7符合题意,故f x =x 3-2x 2-7x +4,故f 1 =-4.故答案为:-412(2024·全国·模拟预测)已知函数f x =ln x -x 2+ax -2a ∈R .(1)若f x 的极值为-2,求a 的值;(2)若m ,n 是f x 的两个不同的零点,求证:f m +n +m +n <0.【答案】(1)1(2)证明见解析【分析】(1)对函数f x 求导,再根据函数与导数的关系研究函数f x 的性质,即可得解;(2)由题意f m +n +m +n =1m -n m -n m +n -ln m n ,再设m >n >0,t =mn,进而构造函数g t =t -1t +1-ln t t >1 ,利用函数的单调性进行证明即可.【详解】(1)由题知f x 的定义域为0,+∞ ,fx =1x -2x +a =-2x 2+ax +1x.由f x =0可得2x 2-ax -1=0,解得x 1=a -a 2+84(舍去),x 2=a +a 2+84,且ax 2=2x 22-1,∴f x 在0,x 2 上单调递增,在x 2,+∞ 上单调递减,∴f x 有极大值f x 2 =ln x 2-x 22+ax 2-2=ln x 2-x 22+2x 22-1 -2=ln x 2+x 22-3.设h x =ln x +x 2-3,则h x 在0,+∞ 上单调递增,且h 1 =-2,故x 2=1,即a +a 2+84=1,解得a =1.(2)由条件可得f m =ln m -m 2+am -2=0,f n =ln n -n 2+an -2=0,两式相减,可得ln mn -m 2-n 2 +a m -n =0,故a =m +n -ln m nm -n,f m +n +m +n =1m +n-2m +n +a +m +n=1m +n -ln m nm -n =1m -n m -n m +n -ln m n.不妨设m >n >0,t =mn,则t >1,要证f m +n +m +n <0,只需证明m -n m +n -ln mn<0,即证t -1t +1-ln t <0.设g t =t -1t +1-ln t t >1 ,则gt =2t +12-1t =2t t +1 2t t +1 2=-t 2+1t t +1 2<0,∴g t 在1,+∞ 上单调递减,g t <1-11+1-ln1=0,故f m +n +m +n <0.【点睛】方法点睛:(1)研究函数零点、极值时,一般需要求导分析函数、导函数的单调性,并结合特值进行分析判断;(2)证明有关零点的不等式时,需要观察不等式,构造常用函数g t =t -1t +1-ln t t >1 证明即可.题型二 利用导数求函数最值求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.命题点1 不含参函数的最值13(2024·陕西·模拟预测)∀x ∈1,2 ,有a ≥-x 2ln x +x 2恒成立,则实数a 的取值范围为()A.e ,+∞B.1,+∞C.e2,+∞ D.2e ,+∞【答案】C【分析】构造函数μx =-x 2ln x +x 2,x ∈1,2 ,求导可得函数的单调性,即可求解最值μx max =μe =e 2,进而a ≥μx max 即可.【详解】由a ≥-x 2ln x +x 2在x ∈1,2 上恒成立,令μx =-x 2ln x +x 2,x ∈1,2 ,则μ x =-2x ln x -x +2x =-2x ln x +x =x -2ln x +1 .令μ x =0,则x =e ,当x ∈1,e 时,μ x >0,故μ x 在1,e 上单调递增;当x ∈e ,2 时,μ x <0,故μ x 在e ,2 上单调递减;则μx ≤μe =e 2,所以a ≥e2故选:C14(2024·四川·模拟预测)已知f x =x 2-2x +a ln x -x ,若存在x 0∈0,e ,使得f x 0 ≤0成立,则实数a 的取值范围是.【答案】-1,+∞【分析】先用导数证明不等式x -ln x -1≥0,然后对a ≥-1和a <-1分类讨论,即可得出结果.【详解】设g x =x -ln x ,则g x =1-1x =x -1x,从而当0<x <1时g x <0,当x >1时g x >0.所以g x 在0,1 上递减,在1,+∞ 上递增,故对任意x >0有x -ln x =g x ≥g 1 =1,即x -ln x -1≥0.一方面,当a ≥-1时,由于f 1 =1-2-a =-1-a ≤0,故存在x 0=1使得f x 0 ≤0成立;另一方面,当a <-1时,由于对任意x ∈0,e 都有f x =x 2-2x +a ln x -x =x -1 2-1+a ln x -x =x -1 2+-a x -ln x -1=x -1 2+-a x -ln x -1 +-a -1≥0+0+-a -1 (这里用到x -1 2≥0,-a >0,x -ln x -1≥0)=-a -1>0,所以对任意x ∈0,e 都有f x >0.综上,a 的取值范围是-1,+∞ .故答案为:-1,+∞ .【点睛】关键点点睛:对于求取值范围问题,本质上就是要确定一个集合,使得命题成立的充要条件是参数属于该集合. 故本题中我们从两个方面入手,证明了存在x 0∈0,e 使得f x 0 ≤0的充要条件是a ∈-1,+∞ ,即可解决问题15(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道l 1,l 2相交于点O ,一根长度为8的直杆AB 的两端点A ,B 分别在l 1,l 2上滑动(A ,B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP ⊥AB ,则△OAP 面积的取值范围是.【答案】(0,63]【分析】令∠OAB =x 0<x <π2,利用直角三角形边角关系及三角形面积公式求出△OAP 的面积函数,再利用导数求出值域即得.【详解】依题意,设∠OAB =x 0<x <π2,则OA =AB cos x =8cos x ,AP =OA cos x =8cos 2x ,因此△OAP 的面积f (x )=12OA ⋅AP sin x =32sin x cos 3x ,0<x <π2,求导得f (x )=32(cos 4x -3sin 2x cos 2x )=32cos 4x (1-3tan 2x ),当0<x <π6时,f (x )>0,当π6<x <π2时,f (x )<0,即函数f (x )在0,π6 上递增,在π6,π2上递减,因此f (x )max =f π6 =32×32 3×12=63,而f (0)=f π2 =0,则0<f (x )≤63,所以△OAP 面积的取值范围是(0,63].故答案为:(0,63]16(2024·全国·模拟预测)已知函数f x =ln x .(1)求函数g x =f xx的最值.(2)证明:xe x-14x 4-e 2-34x 3-ef x >0(其中e 为自然对数的底数).【答案】(1)最大值为g e =1e,无最小值;(2)证明见解析.【分析】(1)先求出函数的导数,根据导数得出函数的单调区间,从而得出函数的最值.(2)不等式转化为e x-14x3-e2-34x2-e ln xx>0,结合(1)知ln xx≤1e,从而证明:ex-14x3-e2-34x2-1≥0,再结合导数求函数的最小值证得结果.【详解】(1)由题意知g x =ln xx,定义域为0,+∞,从而g x =1-ln x x2.所以当x∈0,e时,g x >0;当x∈e,+∞时,g x <0.所以函数g x 在0,e上单调递增,在e,+∞上单调递减.所以函数g x 的最大值为g e =1e,无最小值.(2)欲证xe x-14x4-e2-34x3-ef x >0,只需证e x-14x3-e2-34x2-e ln xx>0.由(1)知ln xx≤1e,从而e ln xx≤1,当且仅当x=e时取等号.下面证明:e x-14x3-e2-34x2-1≥0.设h x =e x-14x3-e2-34x2-1,x>0,则h x =e x-34x2-e2-32x.设H x =e x-34x2-e2-32x,则H x =e x-32x-e2-32.设F x =e x-32x-e2-32,则Fx =e x-32,故当x∈0,ln 3 2时,F x <0;当x∈ln32,+∞时,F x >0.所以函数F x 在0,ln 3 2上单调递减,在ln32,+∞上单调递增.由于F0 =5-e22<0,F2 =e2-32>0,F ln32=32-32ln32-e2-32<0,故设存在唯一的x0∈ln 3 2 ,2,使F x0 =0,且当x∈0,x0时,F x <0,当x∈x0,+∞时,F x >0.故函数H x 在0,x0上单调递减,在x0,+∞上单调递增.又H0 =1,H1 =e-e22+34=4e+3-2e24<0,H2 =e2-3-e2-3=0,所以存在唯一的x1∈0,1,使H x1=0,故当x∈0,x1∪2,+∞时,H x >0;当x∈x1,2时,H x <0.从而函数h x 在0,x1,2,+∞上分别单调递增,在x1,2上单调递减.因为h0 =e0-0-0-1=0,h2 =e2-2-e2-3-1=0,所以h x ≥0在0,+∞上恒成立,当且仅当x=2时取等号.因为取等条件不相同,所以e x-14x3-e2-34x2-e ln xx>0恒成立,即xe x-14x4-e2-34x3-ef x >0成立.【点睛】本题第(2)问考查的是利用导数证明不等式.证明时有三个关键点:一是不等式的等价变形,由第(1)问的提示可知,需要把所证明的不等式两端同时除以x,使不等式等价转化为e x-14x 3-e 2-34x 2-e ln xx>0;二是放缩法的应用,由(1)知ln x x ≤1e ,从而e ln x x ≤1,此时只需再证明不等式e x-14x 3-e 2-34x 2-1≥0即可;三是构造函数h x =e x-14x 3-e 2-34x 2-1,通过求导研究h x 的单调性,进一步求得h x 的最小值,在研究h x 单调性的过程中,需要注意特殊点、端点,以及隐零点的讨论.命题点2 含参函数的最值17(2024·四川成都·模拟预测)已知函数f (x )=e x -12(a +1)x 2-bx (a ,b ∈R )没有极值点,则ba +1的最大值为()A.e2B.e 2C.eD.e 22【答案】B【分析】转化为f (x )=e x -1a +1x -b ≥0恒成立,构造函数,求导,得到其单调性和最值,从而得到b ≤1a +1+ln a +1 a +1,故b a +1≤ln a +1 +1a +12,换元后,构造函数,求导得到其单调性和最值,求出答案.【详解】函数f x =e x -12a +1x 2-bx 没有极值点,∴f (x )=e x -1a +1x -b ≥0,或f (x )≤0恒成立,由y =e x 指数爆炸的增长性,f (x )不可能恒小于等于0,∴f (x )=e x -1a +1x -b ≥0恒成立.令h x =e x -1a +1x -b ,则h x =e x -1a +1,当a +1<0时,h x >0恒成立,h x 为R 上的增函数,因为e x ∈0,+∞ 是增函数,-1a +1x -b ∈-∞,+∞ 也是增函数,所以,此时h (x )∈-∞,+∞ ,不合题意;②当a +1>0时,h x =e x -1a +1为增函数,由h x =0得x =-ln a +1 ,令h x >0⇔x >-ln a +1 ,h x <0⇔x <-ln a +1 ,∴h x 在-∞,-ln a +1 上单调递减,在-ln a +1 ,+∞ 上单调递增,当x =-ln a +1 时,依题意有h x min =h -ln a +1 =1a +1+ln a +1 a +1-b ≥0,即b ≤1a +1+ln a +1 a +1,∵a +1>0,∴ba +1≤ln a +1 +1a +12,令a +1=x (x >0),u x =ln x +1x2x >0 ,则u x =x -ln x +1 ⋅2x x4=-2ln x +1x 3,令u x >0⇔0<x <1e ,令u x <0,解得x >1e,所以当x =1e 时,u x 取最大值u 1e=e2.故当a +1=1e,b =e 2,即a =e e -1,b =e 2时,b a +1取得最大值e 2.综上,若函数h x 没有极值点,则b a +1的最大值为e2.故选:B .【点睛】关键点睛:将函数没有极值点的问题转化为导函数恒大于等于0,通过构造函数,借助导数研究函数的最小值,从而得解.18(23-24高三下·重庆·阶段练习)若过点a ,b 可以作曲线y =ln x 的两条切线,则()A.b >ln aB.b <ln aC.a <0D.b >e a【答案】A【分析】设切点坐标为(x 0,y 0),由切点坐标求出切线方程,代入坐标(a ,b ),关于x 0的方程有两个不同的实数解,变形后转化为直线与函数图象有两个交点,构造新函数由导数确定函数的图象后可得.【详解】设切点坐标为(x 0,y 0),由于y =1x ,因此切线方程为y -ln x 0=1x 0(x -x 0),又切线过点(a ,b ),则b -ln x 0=a -x 0x 0,b +1=ln x 0+ax 0,设f (x )=ln x +ax,函数定义域是(0,+∞),则直线y =b +1与曲线f (x )=ln x +a x 有两个不同的交点,f (x )=1x -a x 2=x -ax 2,当a ≤0时,f (x )>0恒成立,f (x )在定义域内单调递增,不合题意;当a >0时,0<x <a 时,f (x )<0,f (x )单调递减,x >a 时,f (x )>0,f (x )单调递增,所以f (x )min =f (a )=ln a +1,结合图象可知b +1>ln a +1,即b >ln a .故选:A .19(2024·全国·模拟预测)函数f x =x +2 ln x +1 -ax 只有3个零点x 1,x 2,x 3x 1<x 2<x 3<3 ,则a +x 2的取值范围是.【答案】2,10ln23【分析】由题意对函数求导,为判断导数与零的大小关系,对导数再次求导求其最值,利用分类讨论思想,结合零点存在性定理,建立不等式组,可得答案.【详解】函数f x =x +2 ln x +1 -ax 的定义域为-1,+∞ ,则f x =ln x +1 +x +2x +1-a .设g x =f x ,则g x =1x +1-1x +1 2=xx +1 2,所以当x ∈-1,0 时,g x <0,f x 单调递减,当x ∈0,+∞ 时,g x >0,f x 单调递增,所以f x ≥f 0 =2-a .当2-a ≥0,即a ≤2时,f x ≥0,f x 单调递增,且f 0 =0,此时f x 只有1个零点,不满足题意;当2-a <0,即a >2时,由f1e a -1 =ln 1e a -1+1+1e a-1+21ea -1+1-a =e a +1-2a >0,f e a -1 =ln e a -1+1 +e a-1+2e a-1+1-a =1+1ea >0存在m ∈-1,0 ,n ∈0,+∞ ,使得f m =0,f n =0,当x ∈-1,m ∪n ,+∞ 时,f x >0;当x ∈m ,n 时,f x <0,所以f x 在-1,m 上单调递增,在m ,n 上单调递减,在n ,+∞ 上单调递增,又f 0 =0,易知f m >0,f n <0,由f1ea-1 =1ea-1+2 ln1ea-1+1-a1ea-1=-2ae -a <0,f e a -1 =e a -1+2 ln e a -1+1 -a e a -1 =2a >0,则f x 在-1,m ,n ,+∞ 上各有1个零点,此时满足题意.所以a >2,且x 2=0.由x 3<3,得f 3 =5ln4-3a >0,得a <10ln23.所以a +x 2的取值范围是2,10ln23.故答案为:2,10ln23.【点睛】关键点点睛:本题的关键是对a 分a ≤2和a >2讨论,当a >2时,需要利用零点存在性定理证明其满足题意,再根据x 3<3,则f 3 =5ln4-3a >0,解出即可.4.2024·北京海淀·一模)已知函数f (x )=xe a -12x .(1)求f (x )的单调区间;(2)若函数g (x )=f (x )+e -2a ,x ∈(0,+∞)存在最大值,求a 的取值范围.【答案】(1)f (x )的增区间为-∞,2 ,减区间为(2,+∞)(2)a ≥-1【分析】(1)对函数求导,得到f(x )=ea -12x 1-12x ,再求出f(x )>0和f(x )<0对应的x 取值,即可求出结果;(2)令h (x )=f (x )+e -2a ,对h (x )求导,利用导数与函数单调性间的关系,求出h (x )的单调区间,进而得出h (x )在(0,+∞)上取值范围,从而将问题转化成2e a -1+e -2a ≥e -2a 成立,构造函数m (x )=e x -1+e -2x ,再利用m (x )的单调性,即可求出结果.【详解】(1)易知定义域为R ,因为f (x )=xe a -12x ,所以f(x )=e a -12x -12xe a -12x =e a -12x 1-12x ,由f (x )=0,得到x =2,当x <2时,f (x )>0,当x >2时,f (x )<0,所以,函数f (x )的单调递增区间为-∞,2 ,单调递减区间为2,+∞ .(2)令h (x )=f (x )+e -2a ,则h (x )=f (x ),由(1)知,函数f (x )的单调递增区间为-∞,2 ,单调递减区间为2,+∞ ,所以h (x )在x =2时取得最大值h (2)=2e a -1+e -2a ,所以当x >2时,h (x )=xe a -12x +e -2a >e -2a =h (0),当0<x <2时,h (x )>h (0),即当x ∈(0,+∞)时,h (x )∈h (0),h (2) ,所以函数g (x )=xea -12x +e -2a 在(0,+∞)存在最大值的充要条件是2e a -1+e -2a ≥e -2a ,即2e a -1+e -2a +e -2a 2=e a -1+e -2a ≥0,令m (x )=e x -1+e -2x ,则m (x )=e x -1+e -2>0恒成立,所以m (x )=e x -1+e -2x 是增函数,又因为m (-1)=e -2-e -2=0,所以m (a )=e a -1+e -2a ≥0的充要条件是a ≥-1,所以a 的取值范围为-1,+∞ .【点睛】关键点点晴:本题的关键在于第(2)问,构造函数h (x )=xe a -12x +e -2a ,利用函数单调性得到x ∈(0,+∞)时,h (x )∈h (0),h (2) ,从而将问题转化成2e a -1+e -2a ≥e -2a ,构造函数m (x )=e x -1+e -2x ,再利用m (x )的单调性来解决问题【课后强化】基础保分练一、单选题1(2023·广西·模拟预测)函数f x =x 3+ax 在x =1处取得极小值,则极小值为()A.1B.2C.-2D.-1【答案】C【分析】求出函数f (x )的导数,利用极小值点求出a 值,再借助导数求出极小值作答.【详解】依题意,f x =3x 2+a ,因为函数f (x )在x =1处取得极小值,则f 1 =3+a =0,解得a =-3,此时f x =3x 2-3=3(x +1)(x -1),当x <-1或x >1时,f (x )>0,当-1<x <1,时f (x )<0,因此函数f (x )在-∞,-1 ,1,+∞ 上单调递增,在(-1,1)上单调递减,所以函数f x =x 3-3x 在x =1处取得极小值f (1)=-2.故选:C2(2024·四川凉山·二模)若f x =x sin x +cos x -1,x ∈-π2,π ,则函数f x 的零点个数为()A.0B.1C.2D.3【答案】C【分析】求导,研究函数单调性,极值,画图,根据图象得零点个数.【详解】f x =sin x +x cos x -sin x =x cos x ,当x ∈-π2,0 时,f x <0,f x 单调递减,当x ∈0,π2 时,f x >0,f x 单调递增,当x ∈π2,π 时,f x <0,f x 单调递减,又f -π2 =π2-1>0,f 0 =0,f π2 =π2-1>0,f π =-2<0,则f x =x sin x +cos x -1的草图如下:由图象可得函数f x 的零点个数为2.故选:C .3(2024·黑龙江哈尔滨·一模)在同一平面直角坐标系内,函数y=f x 及其导函数y=f x 的图象如图所示,已知两图象有且仅有一个公共点,其坐标为0,1,则()A.函数y=f x ⋅e x的最大值为1B.函数y=f x ⋅e x的最小值为1C.函数y=f xe x的最大值为1 D.函数y=f xe x的最小值为1【答案】C【分析】AB选项,先判断出虚线部分为y=f x ,实线部分为y=f x ,求导得到y=f x ⋅e x在R上单调递增,AB错误;再求导得到x∈(-∞,0)时,y=f(x)e x单调递增,当x∈(0,+∞)时,y=f(x)e x单调递减,故C正确,D错误.【详解】AB选项,由题意可知,两个函数图像都在x轴上方,任何一个为导函数,则另外一个函数应该单调递增,判断可知,虚线部分为y=f x ,实线部分为y=f x ,故y =f x ⋅e x+f x ⋅e x=f x +f x⋅e x>0恒成立,故y=f x ⋅e x在R上单调递增,则A,B显然错误,对于C,D,y =f (x)e x-f(x)e xe x2=f (x)-f(x)e x,由图像可知x∈(-∞,0),y =f (x)-f(x)e x>0恒成立,故y=f(x)e x单调递增,当x∈(0,+∞),y =f (x)-f(x)e x<0,y=f(x)e x单调递减,所以函数y=f(x)e x在x=0处取得极大值,也为最大值,f0e0=1,C正确,D错误.故选:C4(2024·陕西安康·模拟预测)已知函数f x =ae2x+be x+2x有2个极值点,则()A.0<a<b216B.b>0C.a<4bD.b>2a【答案】A【分析】求出函数的导函数,令t=e x,依题意可得关于t的方程2at2+bt+2=0有两个不相等的正实根t1、t2,则2a≠0Δ>0t1+t2>0t1t2>0,即可判断.【详解】函数f x =ae2x+be x+2x的定义域为R,且f x =2ae2x+be x+2,依题意f x =0有两个不相等实数根,令t=e x,则关于t的方程2at2+bt+2=0有两个不相等的正实根t1、t2,所以2a ≠0Δ=b 2-16a >0t 1+t 2=-b 2a >0t 1t 2=1a >0,所以0<a <b216,b <0.故选:A5(2024·全国·模拟预测)已知函数f x =a sin x +cos xe x+x 在0,π 上恰有两个极值点,则实数a的取值范围是()A.0,22e π4B.-∞,e πC.0,e πD.22e π4,+∞【答案】D【分析】函数f x 在0,π 上恰有两个极值点,fx 在0,π 上有两个变号零点,分离常数得a =e x 2sin x,转化为两函数图象有两个不同的交点,利用数形结合思想进行求解;或直接求函数f x 的单调性,求图象在0,π 上与x 轴有两个交点的条件.【详解】解法一:由题意可得f x =-2a sin xex+1,因为函数f x 在0,π 上恰有两个极值点,所以f x 在0,π 上有两个变号零点.令fx =-2a sin x e x+1=0,可得a =e x 2sin x ,令g x =e x 2sin x ,x ∈0,π ,则直线y =a 与函数y =g x ,x ∈0,π 的图象有两个不同的交点,g x =2e x sin x -cos x 2sin x 2=22e x sin x -π4 2sin x 2,当x ∈π4,π 时,g x >0,所以g x 在π4,π 上单调递增,当x ∈0,π4 时,g x <0,所以g x 在0,π4上单调递减,又g π4 =22e π4,当x 趋近于0时,g x 趋近于+∞,当x 趋近于π时,g x 趋近于+∞,所以可作出g x 的图象如图所示,数形结合可知a >22e π4,即实数a 的取值范围是22e π4,+∞,故选:D .解法二 由题意可得f x =-2a sin xex+1.因为函数f x 在0,π 上恰有两个极值点,所以f x 在0,π 上有两个变号零点.当a ≤0时,f x >0在0,π 上恒成立,不符合题意.当a >0时,令h x =fx =-2a sin x e x +1,则hx=22a sin x -π4 e x,当x ∈π4,π 时,h x >0,h x 单调递增,当x ∈0,π4时,h x <0,h x 单调递减,因为h 0 =h π =1,h π4 =1-2a e π4,所以h π4 =1-2a eπ4<0,则a >22e π4,即实数a 的取值范围是22e π4,+∞,故选:D .【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.二、多选题6(2024·全国·模拟预测)已知函数f x =ae x +bx在定义域内既存在极大值点又存在极小值点,则()A.ab >0B.b a ≤4e2C.4a -be 2>0 D.对于任意非零实数a ,总存在实数b 满足题意【答案】AD【分析】根据给定条件,分类讨论,逐项判断即可.【详解】由题意,得f x =ae x-b x 2=ax 2e x -b x 2.令f x =0,得x 2e x =b a .令g x =x 2e x ,则g x =x x +2 e x .当x ∈-∞,-2 ∪0,+∞ 时,g x >0,此时g x 单调递增;当x ∈-2,0 时,g x <0,此时g x 单调递减.∵g -2 =4e 2,g 0 =0,当x →-∞时,g x →0,∴当0<b a <4e2时,f x 在定义域内既存在极大值点又存在极小值点.故A 正确,B 不正确.当a <0时,由0<b a <4e2知,当b <0时,4a -be 2<0,故C 不正确.对于任意非零实数a ,总存在实数b ,使得0<b a <4e2成立,故D 正确.故选:AD .7(2024·湖北武汉·模拟预测)已知各项都是正数的数列a n 的前n 项和为S n ,且S n =a n 2+12a n,则下列结论正确的是()A.当m >n m ,n ∈N * 时,a m >a nB.S n +S n +2<2S n +1C.数列S 2n 是等差数列D.S n -1S n≥ln n 【答案】BCD【分析】计算数列首项及第二项可判定A ,利用等差数列的定义及S n ,a n 的关系可判定C ,从而求出S n 的通项公式结合基本不等式、函数的单调性可判定B 、D .【详解】对A ,由题意可知a 1=a 12+12a 1⇒a 21=1,所以a 1=1,则a 1+a 2=a 22+12a 2⇒a 22+2a 2-1=0,所以a 2=2-1<a 1,故A 错误;对C ,由S n =a n 2+12a n ⇒S n =S n -S n -12+12S n -S n -1⇒S 2n -S 2n -1=1n ≥2 ,故C 正确;对C ,所以S 2n =1+n -1 =n ⇒S n =n ,则S n +S n +2=n +n +2<2n +n +22=2S n +1,故B 正确;对D ,易知S n -1S n =n -1n,令f x =x -1x -2ln x x ≥1 ,则f x =1+1x2-2x =1x -1 2≥0,则f x 单调递增,所以f x ≥f 1 =0⇒n -1n ≥ln n ,即S n -1S n ≥ln n ,故D 正确.故选:BCD 三、填空题8(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段CE ,DF 与分别以OC ,OD 为直径的半圆弧组成)表示一条步道.其中的点C ,D 是线段AB 上的动点,点O 为线段AB ,CD 的中点,点E ,F 在以AB 为直径的半圆弧上,且∠OCE ,∠ODF 均为直角.若AB =1百米,则此步道的最大长度为百米.【答案】π2+42【分析】设半圆步道直径为x 百米,连接AE ,BE ,借助相似三角形性质用x 表示CE ,结合对称性求出步道长度关于x 的函数关系,利用导数求出最大值即得.【详解】设半圆步道直径为x 百米,连接AE ,BE ,显然∠AEB =90°,由点O 为线段AB ,CD 的中点,得两个半圆步道及直道CE ,DF 都关于过点O 垂直于AB 的直线对称,则AC =12-x ,BC =12+x ,又CE ⊥AB ,则Rt △ACE ∽Rt △ECB ,有CE 2=AC ⋅BC ,即有DF =CE =14-x 2,因此步道长f (x )=214-x 2+πx =1-4x 2+πx ,0<x <12,求导得f (x )=-4x 1-4x 2+π,由f(x )=0,得x =π2π2+4,当0<x <π2π2+4时,f (x )>0,函数f (x )递增,当π2π2+4<x <12时,f(x )<0,函数f (x )递减,因此当x =π2π2+4时,f (x )max =1-4π2π2+42+π22π2+4=π2+42,所以步道的最大长度为π2+42百米.故答案为:π2+429(2023·江西赣州·模拟预测)当x =0时,函数f x =ae -x +bx 取得极小值1,则a +b =.【答案】2【分析】求导函数f x =-ae -x +b ,根据f (0)=a =1f (0)=-a +b =0求得a ,b 的值,检验极值点后可得a +b 的值.【详解】函数f x =ae -x +bx ,则f x =-ae -x +b 当x =0时,函数f x =ae -x +bx 取得极小值1,所以f (0)=a =1f (0)=-a +b =0,解得a =1,b =1,所以f x =-e -x+1=e x -1ex ,则函数在x ∈-∞,0 时,f x <0,函数单调递减;在x ∈0,+∞ 时,f x >0,函数单调递增;符合x =0是函数的极值点;故a +b =2.故答案为:2.四、解答题10(2023·河南洛阳·一模)已知函数f x =12x 2+1x +12.(1)求f x 的图像在点2,f 2 处的切线方程;(2)求f x 在12,2上的值域.【答案】(1) 7x -4y -2=0;(2)2,3 .【分析】(1)把点2,f 2 代入函数解析式,得切点坐标,通过求导,得到切线的斜率,根据直线的点斜式方程,求切线方程.(2)解不等式f x >0,得函数增区间,解不等式f x <0,得函数减区间,结合x ∈12,2,确定函数单调性,求得最值,进而得出f x 在12,2上的值域.【详解】(1)因为f x =12x 2+1x +12,所以f x =x -1x2,所以f 2 =3,f 2 =74,故所求切线方程为y -3=74x -2 ,即7x -4y -2=0.(2)由(1)知f x =x 3-1x 2=x -1 x 2+x +1 x 2,x ∈12,2 .令f x >0,得1<x ≤2;令f x <0,得12≤x <1.所以f x 在12,1上单调递减,在1,2 上单调递增,所以f x min =f 1 =2.又f 12 =218,f 2 =3,因为f 2 >f 12,所以2≤f x ≤3,即f x 在12,2上的值域为2,3 .11(2024·上海静安·二模)已知k ∈R ,记f (x )=a x +k ⋅a -x (a >0且a ≠1).(1)当a =e (e 是自然对数的底)时,试讨论函数y =f (x )的单调性和最值;(2)试讨论函数y =f (x )的奇偶性;(3)拓展与探究:① 当k 在什么范围取值时,函数y =f (x )的图象在x 轴上存在对称中心?请说明理由;②请提出函数y =f (x )的一个新性质,并用数学符号语言表达出来.(不必证明)【答案】(1)详见解析;(2)详见解析;(3)①当k <0时,函数y =f (x )有对称中心12log (-k ),0,理由见解析;②答案见解析.【分析】(1)当a =e 时,求得f (x )=e x -k ⋅e -x ,分k ≤0和k >0,两种情况讨论,分别求得函数的单调性,进而求得函数的最值;(2)根据题意,分别结合f (-x )=f (x )和f (-x )=-f (x ),列出方程求得k 的值,即可得到结论;(3)根据题意,得到当k <0时,函数y =f (x )有对称中心12log (-k ),0 ,且k <0时,对于任意的x ∈R ,都有-x ∈R ,并且f (log a (-k )-x )=-f (x ).【详解】(1)解:当a =e 时,函数f (x )=e x +k ⋅e -x ,可得f (x )=e x -k ⋅e -x ,若k ≤0时,f (x )>0,故函数y =f (x )在R 上单调递增,函数y =f (x )在R 上无最值;若k >0时,令f (x )=0,可得x =12ln k ,当x ∈-∞,12ln k 时,f x <0,函数y =f (x )在-∞,12ln k 上为严格减函数;当x ∈12ln k ,+∞ 时,f x >0,函数y =f (x )在12ln k ,+∞ 上为严格增函数,所以,当x =12ln k 时,函数取得最小值,最小值为f 12ln k =2k ,无最大值.综上:当k ≤0时,函数f (x )在R 上无最值;当k >0时,最小值为2k ,无最大值.(2)解:因为“y =f (x )为偶函数”⇔“对于任意的x ∈R ,都有f (-x )=f (x )”即对于任意的x ∈R ,都有-x ∈R ,并且a x +k ⋅a -x =a -x +k ⋅a x ;即对于任意的x ∈R ,(k -1)(a x -a -x )=0,可得k =1,所以k =1是y =f (x )为偶函数的充要条件.因为“y =f (x )为奇函数”⇔“对于任意的x ∈R ,都有f (-x )=-f (x )”,即对于任意的x ∈R ,都有-x ∈R ,并且-a x -k ⋅a -x =a -x +k ⋅a x ,即对于任意的x ∈R ,(k +1)(a x +a -x )=0,可得k =-1,所以k =-1是y =f (x )为奇函数的充要条件,当k ≠±1时,y =f (x )是非奇非偶函数.(3)解:①当k <0时,函数y =f (x )有对称中心12log (-k ),0,当k <0时,对于任意的x ∈R ,都有-x ∈R ,并且f (log a (-k )-x )=-f (x ).证明:当k <0时,令f (x )=0,解得x =12log a (-k )为函数y =f (x )的零点,由f (x )=a x +k ⋅a -x ,。

函数的极值与导数 课件

函数的极值与导数 课件
互动 1 满足 f′(x0)=0 的点 x0 是函数 f(x)的极值点吗? 【解析】 不一定,必须再加上 x0 左右导数的符号相反,才能 断定函数在 x0 处取得极值.
互动 2 函数 y=f(x)在给定区间(a,b)内一定有极值点吗? 【解析】 不一定.若函数 y=f(x)在区间(a,b)内是单调函数, 就没有极值点.
例 2 求下列函数的极值: (1)f(x)=x3-12x; (2)f(x)=sinx(1+cosx)(0<x<2π);
(3)f(x)= 2x -2. x2+1
【思路分析】
求f(x)的定义域 → 求f′(x) →
解方程f′(x)=0 → 列表分析 → 结论
【解析】 (1)函数 f(x)的定义域为 R;
思考题 2 求下列函数的极值: (1)f(x)=x3-3x2-9x+5; (2)f(x)=lnxx.
【解析】 (1)f′(x)=3x2-6x-9.
解方程 3x2-6x-9=0,得 x=-1 或 x=3.
当 x 变化时,f′(x)与 f(x)的变化情况如下表:
x
(-∞,-1) -1 (-1,3)
3
【解析】 (1)∵f(x)=2x2-ekxx+k, ∴f′(x)=-2x2+(ke+x 4)x-2k. ∵f(x)无极值,∴f′(x)≥0 或 f′(x)≤0 恒成立. ∵ex>0,∴f′(x)与 g(x)=-2x2+(k+4)x-2k 同号. ∵g(x)的二次项系数为-2, ∴g(x)≤0 恒成立,令 Δ=(k+4)2-16k=(k-4)2≤0,则 k= 4. ∴当 k=4 时,f(x)无极值.
【解析】 以 d、e 两点为例,y=f(x)在点 x=d 处的函数值 f(d)比它在点 x=d 附近其他点的函数值都小,f′(d)=0;在 x=d 的附近的左侧 f′(x)<0,右侧 f′(x)>0.类似地函数 y=f(x)在点 x =e 的函数值 f(e)比它在 x=e 附近其他点的函数值都大,f′(e) =0;在 x=e 附近的左侧 f′(x)>0,右侧 f′(x)<0.

导数与函数的极值和最值考点及题型

导数与函数的极值和最值考点及题型

第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版

《函数的极值与导数》教案完美版第一章:极值的概念与定义1.1 极值的概念引入极值的概念,让学生了解函数在某一点取得局部最值的含义。

通过图像和实际例子来说明极值的存在和重要性。

1.2 极值的定义介绍极值的定义,包括局部极值和全局极值。

解释极值的必要条件和充分条件。

第二章:导数与极值的关系2.1 导数的定义与性质复习导数的定义和基本性质,包括导数的符号变化与函数单调性的关系。

2.2 导数与极值的关系引入导数与极值的关系,讲解导数为零的点可能是极值点的原理。

通过实例来说明导数在判断极值中的作用。

第三章:一元函数的极值判定3.1 判定极值的存在性介绍判定极值存在性的方法,包括罗尔定理和拉格朗日中值定理。

3.2 判定极值的具体方法讲解利用导数符号变化判断极值的方法,包括导数单调性和零点存在性定理。

第四章:多元函数的极值4.1 多元函数极值的概念引入多元函数极值的概念,让学生了解多元函数在不同维度上的极值问题。

4.2 多元函数极值的判定讲解多元函数极值的判定方法,包括拉格朗日乘数法和海森矩阵。

第五章:实际应用中的极值问题5.1 应用背景介绍通过实际例子介绍极值在各个领域中的应用,如优化问题、物理学、经济学等。

5.2 实际应用案例分析分析具体案例,让学生了解如何运用极值理论和方法解决问题。

第六章:利用极值解决实际问题6.1 优化问题概述介绍优化问题的概念,解释最小值和最大值在优化问题中的作用。

举例说明优化问题在工程、经济等领域的应用。

6.2 利用极值解决优化问题讲解如何利用函数的极值解决优化问题,包括确定最优解的方法和步骤。

通过实际案例分析,让学生掌握优化问题的解决技巧。

第七章:函数极值的存在性定理7.1 拉格朗日中值定理复习拉格朗日中值定理的内容,解释其在函数极值存在性判断中的应用。

利用拉格朗日中值定理证明函数极值的存在性。

7.2 罗尔定理与极值存在性讲解罗尔定理的内容及其在函数极值存在性判断中的应用。

结合罗尔定理和拉格朗日中值定理,证明函数极值的存在性。

考点14 导数与函数的极值、最值

考点14 导数与函数的极值、最值

考点十四导数与函数的极值、最值知识梳理1.函数的极值的定义一般地,设函数f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0 ),就说f(x0)是函数的极大值,x0叫做函数的极大值点.如果对x0附近的所有的点,都有f(x)>f(x0 ),就说f(x0)是函数的极小值,x0叫做函数的极小值点.极大值与极小值统称为函数的极值.极大值点与极小值点统称为极值点.注意:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′=0,但x=0不是极值点.2.判断f(x0 )是极大、极小值的方法当函数f(x)在点x0处连续时,若x0满足f′(x0 )=0,且在x0的两侧f(x)的导数值异号,则x0是f(x)的极值点,f(x0 )是极值.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x) ;(2)求方程f′(x) =0的根;(3)检查f′(x)在x0两侧的符号①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.4.函数的最值在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(1)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.5.函数的极值与最值的区别与联系极值是个“局部”概念,而函数最值是个“整体”概念.函数的极值表示函数在某一点附近的情况,是在局部对函数值的比较;函数的最值表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.函数的极值不一定是最值,最值也不一定是极值.典例剖析题型一 利用导数求函数的极值例1 已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.解析 函数f (x )的定义域为R ,f ′(x )=-x (x 2-5x +4)e x =-x (x -1)(x -4)e x ,当x 变化时,f (x )、f ′(x )的符号变化情况如下:∴f (x )的极大值为f (0)=0和f (4)=32e 4,f (x )的极小值为f (1)=-1e.变式训练 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型二 利用极值求参数例2 设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 答案 -14解析 由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以f (1)是函数f (x )的极小值,所以a =-14.变式训练 已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足条件.题型三 利用导数求函数的最值例3 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值.变式训练 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎣⎡⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .解题要点 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.当堂练习1.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ________.① 在(-∞,0)上为减函数 ② 在x =0处取极小值 ③ 在(4,+∞)上为减函数 ④ 在x =2处取极大值答案 ③解析 由f ′(x )的图象可知,f (x )在(-∞,0)上单调递增,在(0,2)上单调递减,∴f (x )在x =0处取得极大值,同理f (x )在x =2处取得极小值,故①,②,④均不正确 ,由f ′(x )的图象可知f (x )在(4,+∞)上单调递减.2.函数f (x )=(x 2-1)2+2的极值点是________.①x =1 ②x =-1 ③x =1或-1或0 ④x =0 答案 ③解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3. 若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则a 与b 的关系是________. 答案 a +2b =0解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.4.函数f (x )=xe x ,x ∈[0,4]的最大值是________.答案 1e5.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=x 2+2x -a(x +1)2,由f (x )在x =1处取得极值知f ′(1)=0,∴a =3.课后作业一、 填空题1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.函数f (x )=x 3-32x 2-6x 的极值点的个数是________.答案 2解析 f ′(x )=3x 2-3x -6=3(x 2-x -2)=3(x -2)(x +1).令f ′(x )=0,得x =-1或x =2.易知x =-1为f (x )的极大值点,x =2为f (x )的极小值点.故f (x )的极值点有2个. 3.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________. 答案 -16解析 由f ′(x )=12-3x 2=0,得x =-2或x =2. 又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9, ∴函数f (x )在[-3,3]上的最小值为-16.4.f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________. 答案 e -1解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e<12+2-e<0,所以f (1)>f (-1).5.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________. 答案 3百万件解析 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.6.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.答案 -23解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23. 7.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1) ②函数f (x )有极大值f (-2)和极小值f (1) ③函数f (x )有极大值f (2)和极小值f (-2) ④函数f (x )有极大值f (-2)和极小值f (2) 答案 ④解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 8.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37.9.函数f (x )=x 3+ x 2-x +2在[0,2]上的最小值是________. 答案4927解析 f ′(x )=3x 3+2x -1,f ′(x )=0,x ∈[0,2],得x =13.比较f (0)=2,f (13)=4927,f (2)=12.可知最小值为4927.10.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为__________ 元时利润最大,利润的最大值为__________. 答案 30 23 000解析 设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20),∴y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0,∴p =30或p =-130(舍去),则p ,y ,y ′变化关系如下表:∴当p =30时,y 取极大值为23 000元.又y =-p 3+150p 2+11 700p -166 000在(20,+∞)上只有一个极值,故也是最值. ∴该商品零售价定为每件30元,所获利润最大为23 000元.11.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.二、解答题12. (2015北京文节选)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值解析 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx.由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.13.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2处取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9, 因此c 的取值范围为(-∞,-1)∪(9,+∞).。

【高中数学】导数与函数的极值、最值

【高中数学】导数与函数的极值、最值
考法(一) 利用导数求函数的极值或极值点 [典例] (2018·天津高考改编)设函数 f(x)=(x-t1)·(x-t2)(x-t3),其中 t1,t2,t3∈R,且
高中数学学科
t1,t2,t3 是公差为 d 的等差数列.
(1)若 t2=0,d=1,求曲线 y=f(x)在点(0,f(0))处的切线方程;
所以 f′(x)=ex(cos x-sin x)-1,f′(0)=0.
又因为 f(0)=1,
所以曲线 y=f(x)在点(0,f(0))处的切线方程为 y=1.
(2)设 h(x)=ex(cos x-sin x)-1,
则 h′(x)=ex(cos x-sin x-sin x-cos x)=-2exsin x.
N=-19,M-N=1-(-19)=20.
2.(2018·梅州期末)函数 y=f(x)的导函数的图象如图所示,则下列说法错误的是( )
A.(-1,3)为函数 y=f(x)的单调递增区间
高中数学学科
B.(3,5)为函数 y=f(x)的单调递减区间
C.函数 y=f(x)在 x=0 处取得极大值
D.函数 y=f(x)在 x=5 处取得极小值
高中数学学科
导数与函数的极值、最值
一、基础知识
1.函数的极值 (1)函数的极小值: 函数 y=f(x)在点 x=a 的函数值 f(a)比它在点 x=a 附近其他点的函数值都小,f′(a)=0; 而且在点 x=a 附近的左侧 f′(x)<0,右侧 f′(x)>0,则点 a 叫做函数 y=f(x)的极小值点, f(a)叫做函数 y=f(x)的极小值. (2)函数的极大值: 函数 y=f(x)在点 x=b 的函数值 f(b)比它在点 x=b 附近其他点的函数值都大,f′(b)=0; 而且在点 x=b 附近的左侧 f′(x)>0,右侧 f′(x)<0,则点 b 叫做函数 y=f(x)的极大值点, f(b)叫做函数 y=f(x)的极大值. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值.

函数的极值与导数

函数的极值与导数

极大值 和_______ 极小值 统称为极值. 极值点,_______
练习1:指出下图中的极大值、极小值、极 值点、极值
y y=f(x) P(x1,f(x1)) Q(x2,f(x2)) o a x1 x2 x3 b x
4
2、上图的左右端点是极值点吗?极值点 在图像的什么地方出现? 3、一个函数只有一个极大值和一个极小 值吗?它的极大值一定大于它的极小值吗?
• 1.理解极大值、极小值的概念. • 2.会用导数求最高次幂不超过三次的 多项式函数的极大值、极小值. 重点: 利用导数求函数的极大值、极小值.
(一)导学案自主探究(一) 在点t=a附近的图像有什么特点(自左向右上 升还是下降)?此点附近的导数符号有什么 变化?在t=a时,函数h(t)在此点的导数是多少?
∴a=-6,b=9. ………………………6 分
• (2)f′(x)=-18x2+18x=-18x(x-1) ……… ……… 8分 • 当f′(x)=0时,x=0或x=1. • 当f′(x)>0时,0<x<1; • 当f′(x)<0时,x<0或x>1. ……… ……… ……… ……… 10分 • ∴函数f(x)=-6x3+9x2的极小值为 f(0)=0. ……… 12分
3
当 x 变化时,f′(x)、f(x)的变化情况如下表:
x

1
(1,+
∞)
f ′ (x )

0

0

f(
x)

大值

小值
2 ∴f(x)的递增区间为-∞,-3和(1,+∞),递减区间 2 为-3,1. 2 49 2 当 x=-3时,f(x)有极大值,f-3=27;

导数与函数的单调性、极值、最值

导数与函数的单调性、极值、最值
因为-e2<-1e,所以 a=-e2 为所求. 故实数 a 的值为-e2.
[变式训练] (2017·北京卷)已知函数 f(x)=excos x-x. (1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)求函数 f(x)在区间0,π2上的最大值和最小值.
解:(1)因为 f(x)=excos x-x,所以 f(0)=1, f′(x)=ex(cos x-sin x)-1,所以 f′(0)=0, 所以 y=f(x)在(0,f(0))处的切线方程为 y=1. (2)f′(x)=ex(cos x-sin x)-1,令 g(x)=f′(x),
考点 2 利用导数求函数的最值(讲练互动) 【例】 (2019·广东五校联考)已知函数 f(x)=ax+ln x,其中 a 为常数. (1)当 a=-1 时,求 f(x)的最大值; (2)若 f(x)在区间(0,e]上的最大值为-3,求 a 的值. 解:(1)易知 f(x)的定义域为(0,+∞), 当 a=-1 时,f(x)=-x+ln x,f′(x)=-1+1x=1-x x, 令 f′(x)=0,得 x=1. 当 0<x<1 时,f′(x)>0;当 x>1 时,f′(x)<0.
由题设知 f′(1)=0,即(1-a)e=0,解得 a=1. 此时 f(1)=3e≠0. 所以 a 的值为 1. (2)f′(x)=[ax2-(2a+1)x+2]ex =(ax-1)(x-2)ex. 若 a>12,则当 x∈(1a,2)时,f′(x)<0; 当 x∈(2,+∞)时,f′(x)>0.
②当 a>0 时,令 f′(x)=0,得 ex=a,即 x=ln a, 当 x∈(-∞,ln a)时,f′(x)<0;
当 x∈(ln a,+∞)时,f′(x)>0, 所以 f(x)在(-∞,ln a)上单调递减,在(ln a,+∞) 上单调递增,故 f(x)在 x=ln a 处取得极小值且极小值为 f(ln a)=ln a,无极大值. 综上,当 a≤0 时,函数 f(x)无极值; 当 a>0 时,f(x)在 x=ln a 处取得极小值 ln a,无极大 值.

2021届高考数学(理)考点复习:导数与函数的极值、最值(含解析)

2021届高考数学(理)考点复习:导数与函数的极值、最值(含解析)

2021届高考数学(理)考点复习导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 概念方法微思考1.对于可导函数f (x ),“f ′(x 0)=0”是“函数f (x )在x =x 0处有极值”的________条件.(填“充要”“充分不必要”“必要不充分”) 提示 必要不充分2.函数的最大值一定是函数的极大值吗?提醒 不一定,函数的最值可能在极值点或端点处取到.1.(2019•新课标Ⅱ)已知函数()(1)1f x x lnx x =---.证明: (1)()f x 存在唯一的极值点;(2)()0f x =有且仅有两个实根,且两个实根互为倒数. 【解析】(1)函数()(1)1f x x lnx x =---. ()f x ∴的定义域为(0,)+∞, 11()1x f x lnx lnx x x-'=+-=-,y lnx =单调递增,1y x=单调递减,()f x ∴'单调递增, 又f '(1)10=-<,f '(2)1412022ln ln -=-=>, ∴存在唯一的0(1,2)x ∈,使得0()0f x '=.当0x x <时,()0f x '<,()f x 单调递减, 当0x x >时,()0f x '>,()f x 单调递增, ()f x ∴存在唯一的极值点.(2)由(1)知0()f x f <(1)2=-, 又22()30f e e =->,()0f x ∴=在0(x ,)+∞内存在唯一的根x a =,由01a x >>,得011x a<<, 1111()()(1)10f a f ln a a a a a=---==, ∴1a是()0f x =在0(0,)x 的唯一根, 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.2.(2019•江苏)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数. (1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值; (3)若0a =,01b <,1c =,且()f x 的极大值为M ,求证:427M . 【解析】(1)a b c ==,3()()f x x a ∴=-, f (4)8=,3(4)8a ∴-=, 42a ∴-=,解得2a =.(2)a b ≠,b c =,设2()()()f x x a x b =--. 令2()()()0f x x a x b =--=,解得x a =,或x b =.2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---.令()0f x '=,解得x b =,或23a bx +=. ()f x 和()f x '的零点均在集合{3A =-,1,3}中,若:3a =-,1b =,则2615333a b A +-+==-∉,舍去. 1a =,3b =-,则2231333a b A +-==-∉,舍去. 3a =-,3b =,则263133a b A +-+==-∉,舍去.. 3a =,1b =,则2617333a b A ++==∉,舍去. 1a =,3b =,则2533a b A +=∉,舍去. 3a =,3b =-,则263133a b A +-==∈,. 因此3a =,3b =-,213a bA +=∈, 可得:2()(3)(3)f x x x =-+. ()3[(3)](1)f x x x '=---.可得1x =时,函数()f x 取得极小值,f (1)22432=-⨯=-. (3)证明:0a =,01b <,1c =, ()()(1)f x x x b x =--.2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++. △22214(1)124444()332b b b b b =+-=-+=-+.令2()3(22)0f x x b x b '=-++=.解得:21111(0,]3b b b x +--+=,2211b b b x ++-+=.12x x <,12223b x x ++=,123b x x =,可得1x x =时,()f x 取得极大值为M ,2111()3(22)0f x x b x b '=-++=,令11(0,]3x t =∈,可得:23221t tb t -=-.43211112()()(1)()(1)21t t t M f x x x b x t t b t t -+-∴==--=--=-, 432261282(21)t t t tM t -+-+'=-. 令32()61282g t t t t =-+-+,22()182482(32)0g t t t t '=-+-=--<,∴函数()g t 在1(0,]3t ∈上单调递减,14()039g =>. ()0t g t ∴>.0M ∴'>.∴函数()M t 在1(0,]3t ∈上单调递增,14()()327M t M ∴=. 3.(2018•北京)设函数2()[(31)32]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(2,f (2))处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【解析】(Ⅰ)函数2()[(31)32]x f x ax a x a e =-+++的导数为2()[(1)1]x f x ax a x e '=-++.曲线()y f x =在点(2,f (2))处的切线斜率为0, 可得2(4221)0a a e --+=, 解得12a =; (Ⅱ)()f x 的导数为2()[(1)1](1)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则1x <时,()0f x '>,()f x 递增;1x >,()0f x '<,()f x 递减. 1x =处()f x 取得极大值,不符题意;若0a >,且1a =,则2()(1)0x f x x e '=-,()f x 递增,无极值; 若1a >,则11a<,()f x 在1(a ,1)递减;在(1,)+∞,1(,)a -∞递增,可得()f x 在1x =处取得极小值; 若01a <<,则11a >,()f x 在1(1,)a递减;在1(a ,)+∞,(,1)-∞递增,可得()f x 在1x =处取得极大值,不符题意;若0a <,则11a<,()f x 在1(a ,1)递增;在(1,)+∞,1(,)a -∞递减,可得()f x 在1x =处取得极大值,不符题意. 综上可得,a 的范围是(1,)+∞.4.(2018•北京)设函数2()[(41)43]x f x ax a x a e =-+++.(Ⅰ)若曲线()y f x =在点(1,f (1))处的切线与x 轴平行,求a ; (Ⅱ)若()f x 在2x =处取得极小值,求a 的取值范围. 【解析】(Ⅰ)函数2()[(41)43]x f x ax a x a e =-+++的导数为2()[(21)2]x f x ax a x e '=-++.由题意可得曲线()y f x =在点(1,f (1))处的切线斜率为0, 可得(212)0a a e --+=,且f (1)30e =≠, 解得1a =;(Ⅱ)()f x 的导数为2()[(21)2](2)(1)x x f x ax a x e x ax e '=-++=--, 若0a =则2x <时,()0f x '>,()f x 递增;2x >,()0f x '<,()f x 递减. 2x =处()f x 取得极大值,不符题意;若0a >,且12a =,则21()(2)02x f x x e '=-,()f x 递增,无极值; 若12a >,则12a <,()f x 在1(a,2)递减;在(2,)+∞,1(,)a -∞递增, 可得()f x 在2x =处取得极小值; 若102a <<,则12a >,()f x 在1(2,)a 递减;在1(a,)+∞,(,2)-∞递增, 可得()f x 在2x =处取得极大值,不符题意; 若0a <,则12a <,()f x 在1(a,2)递增;在(2,)+∞,1(,)a -∞递减, 可得()f x 在2x =处取得极大值,不符题意. 综上可得,a 的范围是1(2,)+∞.5.(2018•新课标Ⅲ)已知函数2()(2)(1)2f x x ax ln x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .【解析】(1)当0a =时,()(2)(1)2f x x ln x x =++-,(1)x >-.()(1)1xf x ln x x '=+-+,2()(1)x f x x ''=+,可得(1,0)x ∈-时,()0f x '',(0,)x ∈+∞时,()0f x '' ()f x ∴'在(1,0)-递减,在(0,)+∞递增, ()(0)0f x f ∴''=,()(2)(1)2f x x ln x x ∴=++-在(1,)-+∞上单调递增,又(0)0f =.∴当10x -<<时,()0f x <;当0x >时,()0f x >.(2)解:由2()(2)(1)2f x x ax ln x x =+++-,得222(12)(1)(1)()(12)(1)211x ax ax x ax x ln x f x ax ln x x x ++-++++'=+++-=++, 令2()(12)(1)(1)h x ax x ax x ln x =-++++, ()4(421)(1)h x ax ax a ln x '=++++.当0a ,0x >时,()0h x '>,()h x 单调递增, ()(0)0h x h ∴>=,即()0f x '>,()f x ∴在(0,)+∞上单调递增,故0x =不是()f x 的极大值点,不符合题意.当0a <时,12()84(1)1ah x a aln x x -''=++++, 显然()h x ''单调递减, ①令(0)0h ''=,解得16a =-.∴当10x -<<时,()0h x ''>,当0x >时,()0h x ''<,()h x ∴'在(1,0)-上单调递增,在(0,)+∞上单调递减, ()(0)0h x h ∴''=,()h x ∴单调递减,又(0)0h =,∴当10x -<<时,()0h x >,即()0f x '>,当0x >时,()0h x <,即()0f x '<,()f x ∴在(1,0)-上单调递增,在(0,)+∞上单调递减, 0x ∴=是()f x 的极大值点,符合题意;②若106a -<<,则(0)160h a ''=+>,161644(1)(21)(1)0a a aah ea e++-''-=--<,()0h x ∴''=在(0,)+∞上有唯一一个零点,设为0x ,∴当00x x <<时,()0h x ''>,()h x '单调递增,()(0)0h x h ∴'>'=,即()0f x '>,()f x ∴在0(0,)x 上单调递增,不符合题意;③若16a <-,则(0)160h a ''=+<,221(1)(12)0h a e e''-=->,()0h x ∴''=在(1,0)-上有唯一一个零点,设为1x ,∴当10x x <<时,()0h x ''<,()h x '单调递减,()(0)0h x h ∴'>'=,()h x ∴单调递增, ()(0)0h x h ∴<=,即()0f x '<,()f x ∴在1(x ,0)上单调递减,不符合题意. 综上,16a =-.6.(2017•全国)已知函数32()3(1)12f x ax a x x =-++. (1)当0a >时,求()f x 的极小值;(Ⅱ)当0a 时,讨论方程()0f x =实根的个数. 【解析】2()36(1)123(2)(2)f x ax a x ax x '=-++=--. (1)当0a >时,令()0f x '=,得2x =或2x a=; ①当01a <<时,有22>,列表如下: x(,2)-∞2 2(2,)a 2a 2(,)a+∞ ()f x ' +0 -0 +()f x极大值极小值故极小值为22124()a f a a -=.②当1a =时,有22a=,则2()3(2)0f x x '=-,故()f x 在R 上单调递增,无极小值; ③当1a >时,有22<,列表如下: x2(,)a-∞2a 2(,2)a 2 (2,)+∞()f x ' +0 -0 +()f x极大值极小值故极小值为f (2)124a =-.(Ⅱ)解法一:①当0a =时,令2()3123(4)f x x x x x =-+=--,得0x =或4x =,有两个根; ②当0a <时,令()0f x '=,得2x =或2x =,有202<<,列表如下: x2(,)a -∞2a2(,2)a2 (2,)+∞ ()f x ' -0 +0 -()f x极小值极大值故极大值为f (2)1240a =->,极小值22124()0a f a a -=<,因此()0f x =有三个根.解法二:①当0a =时,令2()3123(4)f x x x x x =-+=--,得0x =或4x =,有两个根; ②当0a <时,2()[3(1)12]f x x ax a x =-++,对于二次函数23(1)12y ax a x =-++,0x =不是该二次函数的零点,△29(1)240a a =+->,则该二次函数有两个不等的非零零点, 此时,方程()0f x =有三个根.7.(2017•山东)已知函数2()2cos f x x x =+,()(cos sin 22)x g x e x x x =-+-,其中 2.71828e ≈⋯是自然对数的底数.(Ⅰ)求曲线()y f x =在点(π,())f π处的切线方程;(Ⅱ)令()h x g =()x a -()()f x a R ∈,讨论()h x 的单调性并判断有无极值,有极值时求出极值. 【解析】2()()2I f ππ=-.()22sin f x x x '=-,()2f ππ∴'=.∴曲线()y f x =在点(π,())f π处的切线方程为:2(2)2()y x πππ--=-.化为:2220x y ππ---=.()()II h x g =()x a -2()(cos sin 22)(2cos )x f x e x x x a x x =-+--+()(cos sin 22)(sin cos 2)(22sin )x x h x e x x x e x x a x x '=-+-+--+-- 2(sin )()2(sin )()x x lna x x e a x x e e =--=--.令()sin u x x x =-,则()1cos 0u x x '=-,∴函数()u x 在R 上单调递增. (0)0u =,0x ∴>时,()0u x >;0x <时,()0u x <.(1)0a 时,0x e a ->,0x ∴>时,()0h x '>,函数()h x 在(0,)+∞单调递增;0x <时,()0h x '<,函数()h x 在(,0)-∞单调递减. 0x ∴=时,函数()h x 取得极小值,(0)12h a =--.(2)0a >时,令()2(sin )()0x lna h x x x e e '=--=. 解得1x lna =,20x =.①01a <<时,(,)x lna ∈-∞时,0x lna e e -<,()0h x '>,函数()h x 单调递增; (,0)x lna ∈时,0x lna e e ->,()0h x '<,函数()h x 单调递减; (0,)x ∈+∞时,0x lna e e ->,()0h x '>,函数()h x 单调递增.∴当0x =时,函数()h x 取得极小值,(0)21h a =--.当x lna =时,函数()h x 取得极大值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. ②当1a =时,0lna =,x R ∈时,()0h x ',∴函数()h x 在R 上单调递增. ③1a <时,0lna >,(,0)x ∈-∞时,0x lna e e -<,()0h x '>,函数()h x 单调递增; (0,)x lna ∈时,0x lna e e -<,()0h x '<,函数()h x 单调递减; (,)x lna ∈+∞时,0x lna e e ->,()0h x '>,函数()h x 单调递增.∴当0x =时,函数()h x 取得极大值,(0)21h a =--.当x lna =时,函数()h x 取得极小值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. 综上所述:0a 时,函数()h x 在(0,)+∞单调递增;0x <时,函数()h x 在(,0)-∞单调递减. 0x =时,函数()h x 取得极小值,(0)12h a =--.01a <<时,函数()h x 在(,)x lna ∈-∞,(0,)+∞是单调递增;函数()h x 在(,0)x lna ∈上单调递减.当0x =时,函数()h x 取得极小值,(0)21h a =--.当x lna =时,函数()h x 取得极大值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++. 当1a =时,0lna =,函数()h x 在R 上单调递增.1a >时,函数()h x 在(,0)-∞,(,)lna +∞上单调递增;函数()h x 在(0,)lna 上单调递减.当0x =时,函数()h x 取得极大值,(0)21h a =--.当x lna =时,函数()h x 取得极小值,2()[2sin()cos()2]h lna a ln a lna lna lna =--+++.8.(2017•江苏)已知函数32()1(0,)f x x ax bx a b R =+++>∈有极值,且导函数()f x '的极值点是()f x的零点.(Ⅰ)求b 关于a 的函数关系式,并写出定义域; (Ⅱ)证明:23b a >;(Ⅲ)若()f x ,()f x '这两个函数的所有极值之和不小于72-,求实数a 的取值范围.【解析】(Ⅰ)解:因为32()1f x x ax bx =+++, 所以2()()32g x f x x ax b ='=++,()62g x x a '=+, 令()0g x '=,解得3ax =-.由于当3a x >-时()0g x '>,()()g x f x ='单调递增;当3ax <-时()0g x '<,()()g x f x ='单调递减;所以()f x '的极小值点为3ax =-,由于导函数()f x '的极值点是原函数()f x 的零点,所以()03af -=,即33102793a a ab -+-+=,所以223(0)9a b a a=+>.因为32()1(0,)f x x ax bx a b R =+++>∈有极值, 所以2()320f x x ax b '=++=有实根,所以24120a b ->,即222903a a a-->,解得3a >,所以223(3)9a b a a=+>.(Ⅱ)证明:由(1)可知h (a )42332245913(427)(27)81381a a b a a a a a=-=-+=--, 由于3a >,所以h (a )0>,即23b a >;(Ⅲ)解:由(1)可知()f x '的极小值为2()33a a fb '-=-,设1x ,2x 是()y f x =的两个极值点,则1223ax x +=-,123b x x =,所以332212121212()()()()2f x f x x x a x x b x x +=++++++22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++3422273a ab=-+,又因为()f x ,()f x '这两个函数的所有极值之和不小于72-,所以23242372327392a a ab a b a -+-+=--, 因为3a >,所以3263540a a --, 所以22(36)9(6)0a a a -+-, 所以2(6)(2129)0a a a -++, 由于3a >时221290a a ++>, 所以60a -,解得6a , 所以a 的取值范围是(3,6].9.(2017•新课标Ⅱ)已知函数2()f x ax ax xlnx =--,且()0f x . (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 【解析】(1)因为2()()(0)f x ax ax xlnx x ax a lnx x =--=-->, 则()0f x 等价于()0h x ax a lnx =--,求导可知1()h x a x'=-. 则当0a 时()0h x '<,即()y h x =在(0,)+∞上单调递减, 所以当01x >时,0()h x h <(1)0=,矛盾,故0a >. 因为当10x a <<时()0h x '<、当1x a>时()0h x '>, 所以1()()min h x h a=,又因为h (1)10a a ln =--=, 所以11a=,解得1a =; 另解:因为f (1)0=,所以()0f x 等价于()f x 在0x >时的最小值为f (1), 所以等价于()f x 在1x =处是极小值, 所以解得1a =;(2)由(1)可知2()f x x x xlnx =--,()22f x x lnx '=--, 令()0f x '=,可得220x lnx --=,记()22t x x lnx =--,则1()2t x x'=-,令()0t x '=,解得12x =, 所以()t x 在区间1(0,)2上单调递减,在1(2,)+∞上单调递增,所以1()()2102min t x t ln ==-<,又2212()0t e e=>,所以()t x 在1(0,)2上存在唯一零点,所以()0t x =有解,即()0f x '=存在两根0x ,2x ,且不妨设()f x '在0(0,)x 上为正、在0(x ,2)x 上为负、在2(x ,)+∞上为正, 所以()f x 必存在唯一极大值点0x ,且00220x lnx --=, 所以222200000000000()22f x x x x lnx x x x x x x =--=-+-=-, 由012x <可知20002111()()224max f x x x <-=-+=; 由1()0f e '<可知0112x e <<,所以()f x 在0(0,)x 上单调递增,在0(x ,1)e 上单调递减,所以0211()()f x f e e>=;综上所述,()f x 存在唯一的极大值点0x ,且220()2e f x --<<. 10.(2016•山东)设2()(21)f x xlnx ax a x =-+-,a R ∈. (1)令()()g x f x =',求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求正实数a 的取值范围. 【解析】(1)由()f x ln '= 22x ax a -+, 可得()g x ln = 22x ax a -+,(0,)x ∈+∞, 所以112()2axg x a x x-'=-=, 当0a ,(0,)x ∈+∞时,()0g x '>,函数()g x 单调递增; 当0a >,1(0,)2x a∈时,()0g x '>,函数()g x 单调递增, 1(2x a∈,)+∞时,()0g x '<,函数()g x 单调递减. 所以当0a 时,()g x 的单调增区间为(0,)+∞; 当0a >时,()g x 的单调增区间为1(0,)2a,单调减区间为1(2a ,)+∞.⋯(6分)(2)由(1)知,f '(1)0=.①当102a <<时,112a >,由(1)知()f x '在1(0,)2a内单调递增, 可得当(0,1)x ∈时,()0f x '<,当1(1,)2x a∈时,()0f x '>. 所以()f x 在(0,1)内单调递减,在1(1,)2a内单调递增, 所以()f x 在1x =处取得极小值,不合题意. ②当12a =时,112a=,()f x '在(0,1)内单调递增,在(1,)+∞内单调递减, 所以当(0,)x ∈+∞时,()0f x ',()f x 单调递减,不合题意. ③当12a >时,1012a <<,()f x 在1(0,)2a上单减, 当1(2x a∈,1)时,()0f x '>,()f x 单调递增, 当(1,)x ∈+∞时,()0f x '<,()f x 单调递减. 所以()f x 在1x =处取极大值,符合题意.综上可知,正实数a 的取值范围为1(2,)+∞.⋯(12分)11.(2017•北京)已知函数()cos x f x e x x =-. (1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)求函数()f x 在区间[0,]2π上的最大值和最小值.【解析】(1)函数()cos x f x e x x =-的导数为()(cos sin )1x f x e x x '=--, 可得曲线()y f x =在点(0,(0))f 处的切线斜率为0(cos0sin 0)10k e =--=, 切点为0(0,cos00)e -,即为(0,1),曲线()y f x =在点(0,(0))f 处的切线方程为1y =;(2)函数()cos x f x e x x =-的导数为()(cos sin )1x f x e x x '=--, 令()(cos sin )1x g x e x x =--,则()g x 的导数为()(cos sin sin cos )2sin x x g x e x x x x e x '=---=-,当[0x ∈,]2π,可得()2sin 0x g x e x '=-,即有()g x 在[0,]2π递减,可得()(0)0g x g =,则()f x 在[0,]2π递减,即有函数()f x 在区间[0,]2π上的最大值为0(0)cos001f e =-=;最小值为2()cos 2222f e πππππ=-=-.1.(2020•道里区校级一模)已知函数21()(1)2f x xlnx m x x =-+-有两个极值点,则实数m 的取值范围为( ) A .1(e-,0)B .1(1,1)e--C .1(,1)e-∞-D .(1,)-+∞【答案】B【解析】由21()(1)2f x xlnx m x x =-+-,得()(1)f x lnx m x '=-+,0x >.要使21()(1)2f x xlnx m x x =-+-有两个极值点,只需()(1)0f x lnx m x '=-+=有两个变号根,即1lnxm x+=有两个变号根. 令()lnxg x x=,(0)x >,则21()lnx g x x -'=,由()0g x '=得x e =,易知当(0,)x e ∈时,()0g x '>,此时()g x 单调递增; 当(,)x e ∈+∞时,()0g x '<,此时()g x 单调递减. 所以1()()max g x g e e==, 而1()0g e e=-<,1lim lim 01x x lnx x x →+∞→+∞==,作出()y g x =,1y m =+的图象,可知:101m e <+<,解得111m e-<<-+. 故选B .2.(2020•内江三模)函数2()(12)22ax f x a x lnx =+--在区间1(2,3)内有极小值,则a 的取值范围是( ) A .1(2,)3--B .1(2,)2--C .(2-,11)(33--⋃,)+∞D .(2-,11)(22--⋃,)+∞【答案】D【解析】22(12)2(1)(2)()(12)ax a x ax x f x ax a x x x+--+-'=++-==, 当0a =时,()2f x x '=-,所以在1(2,2)上,()0f x '<,()f x 单调递减,在(2,3)上,()0f x '>,()f x 单调递增, f (2)为函数()f x 的极小值,符合题意,当0a >时,令()0f x '=,得1x a=-,2x =,且102a -<<,所以在1(2,2)上,()0f x '<,()f x 单调递减,在(2,3)上,()0f x '>,()f x 单调递增, f (2)为函数()f x 的极小值,符合题意,当0a <时,令()0f x '=,得1x a=-,2x =,且102a <-<,若()f x 在1(2,2)有极小值,只需12112a a ⎧-<⎪⎪⎨⎪->⎪⎩或12a ->,解得122a -<<-,或102a -<<,综上所述,122a -<<-,或12a -<,故选D .3.(2020•德阳模拟)已知函数2()2f x ax x lnx =-+有两个极值点1x ,2x ,若不等式1212()()f x f x x x t +<++恒成立,那么t 的取值范围是( )A .[1-,)+∞B .[222ln --,)+∞C .[32ln --,)+∞D .[5-,)+∞【答案】D【解析】函数()f x 的定义域为(0,)+∞,2221()ax x f x x-+'=(0)x >, 因为函数2()2f x ax x lnx =-+有两个极值点1x ,2x ,所以方程22210ax x -+=在(0,)+∞上有两个不相等的正实数根, 则121248010102a x x a x x a ⎧⎪=->⎪⎪+=>⎨⎪⎪=>⎪⎩,解得102a <<.因为222121211122212121212122()()()22[()2]3()()12f x f x x x ax x lnx ax x lnx x x a x x x x x x ln x x ln a a+-+=-++-+--=+--++=---,设h (a )212ln a a=---,h '(a )22aa-=,易知h '(a )0>在1(0,)2上恒成立, 故h (a )在1(0,)2上单调递增,故h (a )1()52h <=-,所以5t -,所以t 的取值范围是[5-,)+∞. 故选D .4.(2020•汕头校级三模)已知函数21()(1)2x x f x x e ae ax =--+只有一个极值点,则实数a 的取值范围是( )A .(-∞,10][2,)+∞B .(-∞,10][3,)+∞C .(-∞,10][4,)+∞D .(-∞,1][03-,)+∞【答案】A 【解析】21()(1)2x x f x x e ae ax =--+,2()x xf x xe ae a '∴=-+,()f x 只有一个极值点,()f x '∴只要一个变号零点.(1)当0a =时,()x f x xe '=,易知0x =是()f x 的唯一极值点; (2)当0a ≠时,方程2()0x x f x xe ae a '=-+=可化为1x x x e e a-=-, 令1()g x x a=,()x xh x e e -=-,可得两函数均为奇函数, ∴只需判断0x >时,两函数无交点即可.①当0a <时,1()0g x x a=<,()0x x h x e e -=->,所以()g x 与()h x 有唯一交点0x =,且当0x >时,()()g x h x <;当0x <时,()()g x h x >. 0x ∴=是()f x 的唯一极值点;②当0a >时,()0x x h x e e -'=+>,即()h x 在(0,)+∞上单调递增,且(0)0h =,lim ()x h x →+∞=+∞,设()h x 过原点的切线为y kx =,切点为(m ,)(0)km m >, 则m m m me e k km e e --⎧+=⎨=-⎩,解得0m =,2k =, 如图所示,当1y x a=在直线2y x =下方(第一象限)或与2y x =重合时,0x =是唯一交点,能满足()0f x '=的变号零点,即函数()f x 的极值点, 12a∴.综上所述,实数a 的取值范围为(-∞,10][2,)+∞.故选A .5.(2020•山西模拟)已知函数3()(2)x e f x t lnx x x x=-++仅有一个极值点1,则实数t 的取值范围是( ) A .1(,]33e ⎧⎫-∞⎨⎬⎩⎭B .1(,]3-∞C .1(,]23e ⎧⎫-∞⎨⎬⎩⎭ D .1(,]2-∞【答案】B 【解析】由题意知函数()f x 的定义域为(0,)+∞,222(1)(23)()(1)1323()(2)xx e x x t x e x f x t x x x x -+--+'=-+-=, 因为函数恰有一个极值点1,所以023xe t x -=+无解,令()(0)23x e g x x x =>+,则2(21)()0(23)x e x g x x +'=>+,所以()g x 在(0,)+∞上单调递增,从而1()(0)3g x g >=,所以13t 时,023x e t x -=+无解,3()(2)x e f x t lnx x x x =-++仅有一个极值点1,所以t 取值范围是1(,]3-∞.故选B .6.(2020•南平三模)函数3211()(2)(0)32f x x a x x a =-++>在(,)e +∞内有极值,那么下列结论正确的是( )A .当1(0,2)a e e ∈+-时,11a e e a -->B .当1(2,)2ea e e ∈+-时,11a e e a --<C .当(,)2ea e ∈时,11a e e a -->D .当1(,)a e e e∈+时,11a e e a --<【答案】B【解析】令2()()(2)1(0)g x f x x a x a ='=-++>,则△2(2)40a =+->, 若()f x 在(,)e +∞内仅有一个极值点,即()g x 在(,)e +∞内有一个零点, 则20()(2)10a g e e a e >⎧⎨=-++<⎩,解得12a e e >+-; 若()f x 在(,)e +∞内仅有两个极值点,即()g x 在(,)e +∞内有两个零点, 则20()(2)1022a g e e a e a e ⎧⎪>⎪=-++>⎨⎪+⎪>⎩,无解, ∴当12a e e>+-时,函数()f x 在(,)e +∞内有极值, 现考查不等式11a e e a --<,两边同时取对数可得,1(1)a e lna -<-,即1(1)0a e lna ---<, 令1()1(1),2h a a e lna a e e=--->+-,则1()1e h a a-'=-,令h '(a )0>,解得1a e >-, ∴函数h (a )在1(2,1)e e e+--上单调递减,在(1,)e -+∞上单调递增, 又111(2)3(1)(2)h e e e ln e e e e+-=+---+-112(1)10e e lne e e<+---=-<,h (e )(1)(1)0e e lne =---=,∴当1(2)a e e e∈+-时,h (a )0<成立,即11a e e a --<,∴选项B 正确. 故选B .7.(2020•龙岩模拟)已知函数()xf x ax lnx=-在(1,)+∞上有极值,则实数a 的取值范围为( ) A .1(,]4-∞B .1(,)4-∞C .1(0,]4D .1[0,)4【答案】B 【解析】21()()lnx f x a lnx -'=-,设22111()()()lnx g x lnx lnx lnx -==-, 函数()f x 在区间(1,)+∞上有极值,()()f x g x a ∴'=-在(1,)+∞上有变号零点,令1t lnx=,由1x >可得0lnx >,即0t >, 得到22111()244y t t t =-=--+, ∴14a <. 故选B .8.(2020•武汉模拟)设函数2()(32)()f x lnx a x x a R =+-+∈在定义域内只有一个极值点,则实数a的取值范围为( ) A .8(,)9+∞B .8(0,)9C .(,0)-∞D .(0,)+∞【答案】C【解析】2()(32)f x lnx a x x =+-+,定义域为(0,)+∞,21231()(23)ax ax f x a x x x-+'=+-=, 设2()231g x ax ax =-+,①当0a =时,()1g x =,故()0f x '>, ()f x ∴在(0,)+∞上为增函数,所以无极值点.②当0a >时,△298a a =-, 若809a<时△0,()0g x ,故()0f x ', 故()f x 在(0,)+∞上递增,所以无极值点. 若89a >时△0>,设()0g x =的两个不相等的实数根为1x ,2x ,且12x x <, 且1232x x +=,而(0)10g =>,则12304x x <<<, 所以当1(0,)x x ∈,()0g x >,()0f x '>,()f x 单调递增; 当1(x x ∈,2)x ,()0g x <,()0f x '<,()f x 单调递减; 当2(x x ∈,)+∞,()0g x >,()0f x '>,()f x 单调递增. 所以此时函数()f x 有两个极值点;③当0a <时△0>,设()0g x =的两个不相等的实数根为1x ,2x ,且12x x <,但(0)10g =>,所以120x x <<,所以当2(0,)x x ∈,()0g x >,()0f x '>,()f x 单调递増; 当2(x x ∈,)+∞,()0g x <,()0f x '<,()f x 单调递减. 所以此时函数()f x 只有一个极值点. 综上得:当0a <时()f x 有一个极值点. 故选C .9.(2020•昆明一模)已知函数221()(44)(4)2x f x e x x k x x =--++,2x =-是()f x 的唯一极小值点,则实数k 的取值范围为( ) A .2[e -,)+∞ B .3[e -,)+∞ C .2[e ,)+∞ D .3[e ,)+∞【答案】D【解析】由题可知,21()(4424)(24)(2)[(4)]2x x f x e x x x k x x e x k '=--+-++=+-+,2x =-是()f x 的唯一极小值点,(4)0x e x k ∴-+恒成立,即(4)x k e x --,令()(4)x g x e x =-,则()(3)x g x e x '=-,当3x <时,()0g x '<,()g x 单调递减;当3x >时,()0g x '>,()g x 单调递增,∴3()(3)min g x g e ==-,3k e ∴--,即3k e .故选D .10.(2020•江西模拟)已知定义在(0,)+∞上的函数()()x a f x e ln x a -=-+,其中0a >,e 为自然对数的底数.(1)求证:()f x 有且只有一个极小值点; (2)若不等式()212f x x a ln ++-在(0,)+∞上恒成立,求实数a 的取值范围.【解析】(1)证明:由于1()x a f x e x a-'=-+ 21()0()x a f x e x a -''=+>+,则()f x ' 在(0,)+∞ 上单调递增.令()x g x e x =-,则()1x g x e '=-,故当(,0)x ∈-∞时,()0g x '<,()g x 单调递减 当(0,)x ∈+∞ 时,()0g x '>,()g x 单调递增, 则()(0)1min g x g ==,即1x e x x +>,由于1(0)0aaa a e f e a e a --'=-=<,1(1)021f a e a '+=->+,故0(0,1)x a ∃∈+,使得0()0f x '=,且当0(0,)x x ∈时0()0f x '<,()f x 单调递减; 当0(x x ∈,)+∞时,0()0f x '>,()f x 单调递增.因此()f x 在(0,)+∞ 有且只有一个极小值点0x ,无极大值点. (2)由于不等式()212f x x a ln ++- 在(0,)+∞ 上恒成立,()i 必要性:当1x = 时,不等式成立,即 1(1)312a e ln a a ln --++--令1()(1)312,()0a g a ln a a e ln g a -=+++--, 由于11()0123a g a e a a -'=++>++,则g (a ) 在 (0,)+∞ 上单调递增,又由于g (1)0=,则g (a )0 的解为01a <. ()ii 充分性:下面证明当01a < 时, ()212f x x a ln ++- 在(0,)+∞ 上恒成立令()()2112x a h x e ln x a x a ln -=-++++, 由于01a <,01a >--,1x a x --,1x a x e e --,01a x x <++,()(1)ln x a ln x ++,()(1)ln x a ln x -+-+,12,2122,2122,2122a x a x x a x x a x +++++++-++-+,则1()(1)2212x h x e ln x x ln --+++令1()(1)2212x m x e ln x x ln -=-+++,则 11()122x m x e x x -'=-++,1231()0(1)(22)x m x e x x -''=++>++, ()m x ' 在(0,)+∞ 上单调递增,由于m '(1)0=,则当(0,1)x ∈时,()0m x '<,()m x 单调递减, 当(1,)x ∈+∞ 时,()0m x '>,()m x 单调递增, 故()m x m =(1)0=,即()0m x 恒成立, 因此,当01a < 时,()212f x x a ln ++- 在(0,)+∞ 上恒成立.故a 的取值范围为(0,1].11.(2020•红河州三模)已知函数()()1af x lnx a R x =-∈+. (1)求曲线()y f x =在点(1,f (1))处的切线方程;(2)若函数()f x 存在两个极值点1x ,2x ,求实数a 的取值范围,并证明:1()f x ,f (1),2()f x 成等差数列.【解析】(1)由()1af x lnx x =-+得21()(1)a f x x x '=++,故切线斜率k f ='(1)14a=+, 又f (1)2a =-,故切线方程为:(1)(1)24a ay x +=+-,即(4)4430a x y a +---=;(2)2221(2)1()(0)(1)(1)a x a x f x x x x x x +++'=+=>++,由题意知:1x ,2x 是方程()0f x '=在(0,)+∞内的两个不同实数解, 令2()(2)1(0)g x x a x x =+++>,注意到(0)10g =>,其对称轴为直线2x a =--, 故只需220(2)40a a -->⎧⎨=+->⎩,解得:4a <-, 即实数a 的取值范围是(,4)-∞-,由1x ,2x 是方程2(2)10x a x +++=的两根,得:122x x a +=--,121x x =,故12()()f x f x + 1212()()11a a lnx lnx x x =-+-++ 121212122()1x x ln x x a x x x x ++=-+++22121a aa --+=---+a =-,又f (1)2a=-,即12()()2f x f x f +=(1),故1()f x ,f (1),2()f x 成等差数列.12.(2020•启东市校级模拟)已知函数()(0)f x alnx a =≠与212y x e=的图象在它们的交点(,)P s t 处具有相同的切线. (1)求()f x 的解析式;(2)若函数2()(1)()g x x mf x =-+有两个极值点1x ,2x ,且12x x <,求21()g x x 的取值范围. 【解析】(1)根据题意,函数()(0)f x alnx a =≠与212y x e= 可知()af x x'=,1y x e '=,两图象在点(,)P s t 处有相同的切线,所以两个函数切线的斜率相等, 即1as e s=,化简得s ae =, 将(,)P s t 代入两个函数可得22s alns e=②,综合上述两式①②可解得1a =,所以()f x lnx =.(2)函数22()(1)()(1)g x x mf x x mlnx =-+=-+,定义域为(0,)+∞,222()2(1)m x x mg x x x x-+'=-+=, 因为1x ,2x 为函数()g x 的两个极值点,所以1x ,2x 是方程2220x x m -+=的两个不等实根, 由根与系数的关系知121x x +=,122mx x =,(*), 又已知12x x <,所以121012x x <<<<,222211()(1)g x x mlnx x x -+=,将(*)式代入得22222222212()(1)2(1)121g x x x x lnx x x lnx x x -+-==-+-, 令()12h t t tlnt =-+,1(2t ∈,1),()21h t lnt '=+,令()0h t '=,解得:t e=,当1(2t ∈)e 时,()0h t '<,()h t 在1(2e 单调递减;当(t e ∈,1)时,()0h t '>,()h t 在(e,1)单调递增;所以2()(11min eh t h ee===-, 1(){()2h t max h <,h (1)},11()2022h ln h =-<=(1),即21()g x x 的取值范围是2[1e -0). 13.(2020•河南模拟)设函数()f x xlnx =,()()x g x ae a R =∈.(1)若曲线()y f x =在1x =处的切线也与曲线()y g x =相切,求a 的值. (2)若函数()()()G x f x g x =-存在两个极值点. ①求a 的取值范围;②当22ae 时,证明:()0G x <. 【解析】(1)()f x xlnx =,()1f x lnx '=+,(0,)x ∈+∞,f ∴(1)0=,f '(1)1=,故曲线()f x 在1x =处的切线方程是1y x =-; 设直线1y x =-与()y g x =相切于点0(x ,01)x -,()x g x ae '=,00()x g x ae ∴'=,由00011x x ae ae x ⎧=⎪⎨=-⎪⎩,得022x a e -=⎧⎨=⎩; (2)()1x G x lnx ae '=+-, ①()G x 在(0,)+∞上存在两个极值点等价于()0G x '=在(0,)+∞上有2个不同的根,由10x lnx ae +-=,可得1xlnx a e +=,令1()xlnx t x e +=, 则11()xlnx x t x e --'=,令1()1h x lnx x =--,可得211()0h x x x'=--<, 故()h x 在(0,)+∞递减,且h (1)0=, 当(0,1)x ∈时,()0h x >,()0t x '>,()t x 递增, 当(1,)x ∈+∞时,()0h x <,()0t x '<,()t x 递减, 故t (1)1e=是极大值也是最大值,又当0x →时,()t x →-∞,当x →+∞时,()0t x >且趋向于0, 要使()0G x '=在(0,)+∞有2个根,只需10a e<<, 故a 的取值范围是1(0,)e;②证明:设()()xG x ae F x lnx x x==-, 2(1)()xx a x e F x x--'=, 当01x <时,22a e,()0F x ∴'>,则()F x 在(0,1)递增,()F x F ∴(1)0ae =-<,当1x >时,2(1)()[](1)x a x xF x e x a x -'=---, 令()(1)x x H x e a x =--,则21()0(1)x H x e a x '=+>-,22a e ,H ∴(2)22220ae e a a -=-=, 取(1,2)m ∈,且使2(1)m e a m >-,即2211ae m ae <<-, 则22()0(1)m mH m e e e a m =-<-=-,()H m H (2)0,故()H x 存在唯一零点0(1,2)x ∈, 故()F x 有唯一的极大值点0(1,2)x ∈, 由0()0H x =,可得000(1)x x e a x =-,故0001()1F x lnx x =--,0(1,2)x ∈,020011()0(1)F x x x '=+>-,故0()F x 为(1,2)上的增函数, 0()F x F ∴<(2)222102ae ln ln =--<, 综上,当22a e 时,总有()0G x x<,即()0G x <.14.(2020•河南模拟)已知函数21()22f x x ax lnx =-+,a R ∈. (1)讨论()f x 的单调性;(2)若()f x 有两个极值点1x ,212()x x x <,求21()2()f x f x -的取值范围. 【解析】(1)()f x 的定义域是(0,)+∞,2121()2x ax f x x a x x-+'=-+=,令221y x ax =-+, 当△2440a =-即11a -时,0y ,此时()f x 在(0,)+∞递增, 当1a <-时,2210x ax -+=有2个负根,此时()f x 在(0,)+∞递增,当1a >时,2210x ax -+=有2个正根,分别是211x a a =-221x a a =+- 此时()f x 在1(0,)x 递增,在1(x ,2)x 递减,在2(x ,)+∞递增, 综上,1a 时,()f x 在(0,)+∞递增,1a >时,()f x 在2(0,1)a a -递增,在2(1a a --21)a a +-递减,在2(1a a +-)+∞递增;(2)由(1)得:122x x a +=,121x x =,1a >,21121ax x =+,22221ax x =+, 1a >,1(0,1)x ∴∈,2(1,)x ∈+∞, 222122211111()2()22(2)22f x f x x ax lnx x ax lnx ∴-=-+--+ 2221211212x x lnx lnx =-++-+222222111()212x lnx ln x x =-++-+2222211312x lnx x =-+++,令22t x =,则1t >,113()122g t t lnt t =-+++,则222211332(1)(2)()2222t t t t g t t t t t -+----'=--+==,当12t <<时,()0g t '>,当2t >时,()0g t '<, 故()g t 在(1,2)递增,在(2,)+∞递减,g (2)13222ln =+, 21()2()f x f x ∴-的取值范围是(-∞,132]22ln +. 15.(2020•运城模拟)设函数()f x xlnx =.(1)求曲线()y f x =在点(1,f (1))处的切线方程;(2)若函数2()()F x f x ax =-有两个极值点,求实数a 的取值范围; (3)当120x x >>时,221212()()()2m x x f x f x ->-恒成立,求实数m 的取值范围. 【解析】(1)()1f x lnx '=+,()f x 在点(1,f (1))处的切线斜率k f ='(1)1=,则切线方程为1y x =-,(2)()()212F x f x ax lnx ax '='-=+-.()F x 有两个极值点. 即()F x '有两个零点,即120lnx ax +-=有两个不等实根,12lnxa x+=, 令21()()lnx lnxg x g x x x+-='=, 在(0,1)上()0g x '>,()g x 在(0,1)上单调递增.在(1,)+∞上单调递减,()max g x g =(1)1=.x →+∞时,()0g x →. 即12(0,1),(0,)2a a ∈∈.(3)221212()()()2m x x f x f x ->-可化为222211()()22m m f x x f x x ->-. 设2()()2m Q x f x x =-,又120x x >>. ()Q x ∴在(0,)+∞上单调递减,()10Q x lnx mx ∴'=+-在(0,)+∞上恒成立,即1lnxmx+. 又1()lnxh x x+=在(0,1)上单调递增,在(1,)+∞上单调递减. ()h x ∴在1x =处取得最大值.h (1)1=.1m ∴.16.(2020•鹿城区校级模拟)已知函数2()(3)1()f x axlnx x a x a R =-+-+∈. (Ⅰ)当1a =时,求曲线()f x 在(1,f (1))处的切线方程; (Ⅱ)若()f x 存在两个极值点1x ,212()x x x <. ①求a 的取值范围;。

函数的极值与导数函数的最大(小)值与导数

函数的极值与导数函数的最大(小)值与导数

1.3.2 函数的极值与导数 1.3.3 函数的最大(小)值与导数一、知识点阅读1. 函数的极值与极值点设函数)(x f 在点0x 及其附近有定义,且对0x 附近的所有点x 都有)()(0x f x f <,则称)(0x f 为函数的一个极大值,称0x 为极大值点.设函数)(x f 在点0x 及其附近有定义,且对0x 附近的所有点x 都有)()(0x f x f >,则称)(0x f 为函数的一个极小值,称0x 为极小值点.注意:①极值分为极大值和极小值,二者都是函数值,是y 的取值;②极值点分为极大值点和极小值点,二者都是自变量值,是x 的取值; ③极值点总是定义域内部的点,区间端点值不可能为函数的极值点,极值点可能不止一个,可能也没有,且函数的极小值不一定比极大值小. 2. 求函数)(x f 的极值的步骤(1)确定函数)(x f 的定义域,求导数)('x f ; (2)求方程0)('=x f 的根;(3)用方程的根顺次将定义域分成若干个小区间,并列表判断)('x f 在各个根左右的正负:如果左正右负,那么)(x f 在这个根处取极大值;如果左负右正,那么)(x f 在这个根处取极小值;如果左右同号,那么)(x f 在这个根处不存在极值.例如:(1)若函数)(x f 的定义域为],[b a ,求导数)('x f ;(2)若解得方程0)('=x f 的根分别为21,x x ,且),(,21b a x x ∈;3. 函数)(x f 的最大值和最小值如果在区间],[b a 上可导函数)(x f y =的图象是一条连续不断的曲线,那么该函数在],[b a 上一定有最大值和最小值,且函数的最值必定在极值点或区间端点处取得.4. 函数)(x f 在区间],[b a 上的最大值和最小值的求法 (1)当函数)(x f 在区间],[b a 上单调若)(x f 在],[b a 上单调递增,则最大值为)()(max b f x f =,最小值)()(min a f x f =; 若)(x f 在],[b a 上单调递减,则最大值为)()(max a f x f =,最小值)()(min b f x f =. (2)当)(x f 在],[b a 上不单调(即在],[b a 上既有递增的部分也有递减的部分) 第一步:先求出在),(b a 内的极值;第二步:比较各极值与端点函数值)(),(b f a f 的大小,其中最大的一个为最大值,最小的一个为最小值.注意:极值未必是最值,最值也未必是极值(理解). 二、题型阅读例1 函数)(x f 的定义域为],[b a ,其导函数)('x f 在],[b a 上的图象如图所示,则函数在],[b a 上的极小值点为 ;极大值点为 .解:如图∵1x 左边0)('>x f ,右边0)('<x f , ∴1x 为函数的极大值点;∵2x 左边0)('<x f ,右边0)('>x f ,同理判断4x 是极大值点,5x 是极小值点. ∵3x 左右两边导函数符号同号, ∴3x 不是极值点.综上,极小值点为2x ,5x ;极大值点为1x ,4x . 例2 求函数193)(23+--=x x x x f 的极值. 解:依题意963)('2--=x x x f .解方程09632=--x x ,得11-=x ,32=x .由上表知,)(x f 的极大值为6;极小值为-26. 例3 求函数1)(23+-+=x x x x f 在]1,2[-的最大值和最小值.解:依题意求导123)('2-+=x x x f .解方程01232=-+x x ,得11-=x ,312=x . ∵端点函数值11)2()2()2()2(23-=+---+-=-f ,21111)1(23=+-+=f ,极值为21)1()1()1()1(23=+---+-=-f ,2722131)31()31()31(23=+-+=f . ∴函数)(x f 在]1,2[-上的最大值为2,和最小值-1.【模仿2】求函数3)(x x x f -=的极值.【模仿3】已知函数193)(23+--=x x x x f ,则)(x f 在区间]4,2[-的的最大值为 ,最小值为 .例4 已知函数23)(bx ax x f -=在点2=x 有极小值4-,试确定b a ,的值并判断)(x f 的单调性.解:依题意bx ax x f 23)('2-=,∵)(x f 在点2=x 有极小值4-, ∴04122223)2('2=-=⋅-⋅=b a b a f ① 44822)2(23-=-=⋅-⋅=b a b a f ②联立①②,得3,1==b a . ∴233)(x x x f -=,符合题意.由063)('2>-=x x x f ,得2,0><x x 或.因此,在区间)0,(-∞,),2(∞+上)(x f 为增函数, 在区间)2,0(上)(x f 为减函数.注意:0)('0=x f /⇒⇐)(x f 在0x x =处取极值;因为0x 有可能不在给定的区间内,所以左边不能推出右边.例5 已知函数c bx ax x x f +++=23)(在32-=x 与1=x 处都取极值.(1)试求b a ,的值;(2)若对]2,1[-∈x ,不等式2)(c x f <恒成立,求c的取值范围.解:(1)依题意b ax x x f ++=23)('2,由已知得⎪⎩⎪⎨⎧=++==+-⋅+-⨯=-,,023)1('0)32(2)32(3)32('2b a f b a f 解得⎪⎩⎪⎨⎧-=-=.2,21b a若对]2,1[-∈x ,不等式2)(c x f <恒成立,只需)(x f 在]2,1[-上的最大值2max )(c x f <即可.【模仿4】已知函数bx ax x x f --=23)(在点1-=x 有极大值5,试确定b a ,的值并判断)(x f 的单调性.比较]2,1[-上极值和端点函数值:2722)32(+=-c f , 23)1(-=c f ,21)1(+=-c f ,2)2(+=c f .∴2)2()(max +==c f x f .∴22c c <+,解得2,1>-<c c 或. ∴c 的取值范围为),2()1,(∞+--∞ .小结:解答恒成立问题的一般思路是“分离参数,然后转化为最值问题”,例如a x f >)(恒成立⇔a x f >min )(;a x f <)(恒成立⇔a x f <max )(.三、综合训练1. 已知函数x x x f 3)(3+=,则)(x f 有( )A. 极大值4B. 极小值-4C. 不存在极值D. 极值点为±1 2. 已知函数93)(23-++=x ax x x f 在3-=x 处取得极值,则=a ( ) A. 5 B. 4 C. 3 D. 2 3. 已知函数x x x f -=3)(,则)(x f 有( )A. 极大值点为﹣2B. 极小值点-1C. 极大值为﹣2D. 极小值为0 4. 如图函数)(x f 的导函数)('x f 的图象如图所示,下列结论正确的是( )A. 1是极小值点B. 2是极大值点C.23是极小值点 D. 2是极小值点5. 函数)(x f 在其定义域内可导,)(x f y =的大致图象如下图左所示,则导函数)('x f y =的大致图象为( )6. 函数13)(23+-=x x x f 的极小值点为 . 7. 函数x x x f ln )(-=在区间]2,0[上的最小值为 .8. 函数x x ax x f 2)(23++=在R 上有一个极值,则a 的取值为 ,若在R 上有两个极值,则a 的取值范围是.)x )))x A9. 当]2,1[∈x 时,不等式03423≥++-x x ax 恒成立,则a 的取值范围是 .10. 设函数x x x f ln 2)(2-=. (1)求函数)(x f 的极值;(2)若2)(a a x f ≥+恒成立,试求a 的取值范围.。

导数与极值

导数与极值

函数的极值与导数是什么?
分两种情况:
1、可导函数的极值点导数一定等于0,但是如果没有前面的“可导”两个字就错了,如函数f(x)=|x|,在x=0 时是极值点,但是x=0这点导数不存在。

2、导数等于0的点也不一定是极值点,如函数f(x)=sinx,在x=0处导数等于0 但是x=0时不是极值点。

要判断是否是极值点,除了导数等于0,还要判断这个点左右导数值是否相反。

函数可导的条件:
如果一个函数的定义域为全体实数,即函数在其上都有定义。

函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。

可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

导数求极值公式

导数求极值公式

您好!
1、求极大极小值步骤:
求导数f'(x);
求方程f'(x)=0的根;
检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

f'(x)无意义的点也要讨论。

即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。

2、求极值点步骤:
求出f'(x)=0,f"(x)≠0的x值;
用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。

上述所有点的集合即为极值点集合。

扩展资料:
定义:
若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。

同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值。

极值的概念来自数学应用中的最大最小值问题。

根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。

如果极值点不是边界点,就一定是内点。

因此,这里的首要任务是求得一个内点成为一个极值点的必要条件。

——容选自网络,仅供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 2
x
f ( x)
f (x)
1 (, ) 12

1 12 0
1 ( ,) 12 +
单调递减
49 24
单调递增
1 49 1 所以, 当 x 时, f (x)有极小值 f ( ) . 12 24 12
练习1
求下列函数的极值:
(1) f ( x) x 27 x; (2) f ( x) 6 x x 2 3 (3) f ( x) 6 12 x x ; 解: 2 (3) 令f ( x) 12 3x 0, 解得 x1 2, x2 2.
3 2
a , b,c
x 1 和 x 1
的值,并求出函数的极值。

五、 归纳小结
(1)极大值极小值的概念 (2)如何求函数的极值 (3)可导函数f(x),点是极值点的必要条件是在 该点的导数为0;极大值未必大于极小值;区间端 点不能成为极值点;函数的极值不不是唯一的
作业
一.课本32页 A组第5大题.
b
极小值统 称为极值
f′ (x)>0
x
三. 函数极值的应用
下图是函数ຫໍສະໝຸດ y f ( x) 的图象, 指出哪些是极大值点,
哪些是极小值点.
y
y f ( x)
x4 x5 x6 b x
a x0 x 1 O
x2 x3
极值的特点
(1)函数的极值是就函数在某一点附近的小区间 而言的,在函数的整个定义区间内可能有多个极大 值或极小值 (2)极大值不一定比极小值大 (3)端点不能作为极值点 (4)可导函数f(x),点是极值点的必要条件 是在该点的导数为0 y
二. 函数极值概念
1、极大值:函数y=f(x)在点x=a处的函数值f(a) 比它在点x=a附近其他点的函数值都大. f′(a)=0,且在 点x=a附近的左侧f′(x)>0, 右侧f′(x)<0 我们就说f(a)是函数 y=f(x)的一个极大值. 点a叫做极大值点.
y
f′(a)=0 f′(x)<0 f′ (x)>0
例:y=x3
o x
例1: 求函数 解:
1 3 f x x 4x 4 3
的极值
f ( x) x 2 4. 令 f ( x) 0, 解得 x 2, 或 x 2. 当 f ( x) 0 , 即 x 2 , 或 x 2 ; 当 f ( x) 0 , 即 2 x 2 . 当 x 变化时, f ( x ) 的变化情况如下表:
3 2
所以, 当 x = –2 时, f (x)有极小值 – 10 ; 当 x = 2 时, f (x)有极大值 22 .
总结:求函数极值的步骤
(1)确定函数的定义域,求导数f/(x);
(2)解方程 f/(x0)=0; (3)列表,根据表格(或草图)求出极值
例2:设 f ( x) ax bx cx ,在 处有极值,且 f ( 1) =-4,求
3
1 二:函数 f ( x) = a sin x + sin 3x 在 3 p 处具有极值,求 a的值 x=
求下列函数的极值:
(1) f ( x) = x - 27 x; (2) f ( x) = 6 x - x - 2 (3) f ( x) = 6 + 12 x - x
3 2
3
练习1
求下列函数的极值:
(1) f ( x) x 27 x; (2) f ( x) 6 x x 2 3 (3) f ( x) 6 12 x x ; 解: 2 (1) 令f ( x) 3x 27 0, 解得 x1 3, x2 3.列表:
王新敞
奎屯 新疆
x
(–∞, –2)
–2
f ( x)
+
0
(–2, 2) –
2
4 3
( 2 , + ∞)
单调递减 f (x) 单调递增 28 ∴当 x = –2 时, f (x)有极大值: f (2)
3 4 当 x = 2 时, f (x)有极小值 :f (2) 3
28 3
0
+
单调递增
3 2
x
(–∞, –3)
–3
(–3, 3) – 单调递减
3 0
( 3 , + ∞)
f ( x)
+
0
+
单调递增
f (x) 单调递增
54
54
所以, 当 x = –3 时, f (x)有极大值 54 ; 当 x = 3 时, f (x)有极小值 – 54 .
练习1
求下列函数的极值:
(1) f ( x) x 27 x; (2) f ( x) 6 x x 2 3 (3) f ( x) 6 12 x x ; 解: 1 (2) f ( x) 12 x 1,令 f ( x) 0, 解得 x . 列表: 12
1.3.2函数的极值与导数
玉屏民族中学 饶望远
一、 回 顾
如何利用函数导数判断其单调性?
在某个区间(a, b)内, f '( x ) > 0 f ( x)在(a, b)内单调递增
f '( x ) < 0 f ( x)在(a, b)内单调递减
一、复习导入
1. 求出函数 f ( x) x3 27 x 的单调区间 有没搞错,

2 f ( x) 3x 27
你记住 令 f ( x ) 0, 得临界点 x1 3, x2 3 了吗?
(-∞,-3) -3 0 (-3,3) 3 0
怎么这里没有填上?
区间 f ’(x) f(x)
(3,+∞)
+
-
+
f(x) (-∞,-3) 、 (3 ,+ f ’在 (x)>0 x<-3 或 x>3∞)内单调递增, f(x) 在 (-3,3)内单调递减。 f’ (x)<0 求导数 3<x<3—求临界点—列表—写出单调性
a
x
二. 函数极值概念
2、极小值:函数y=f(x)在点x=b的函数值f(b)
比它在点x=b附近其他点的函数值都小, 极大值,
f′(b)=0,且在点x=b附近的左侧 f′(x)<0, 右侧f′(x)>0 y 我们就说f(b)是函数的 y=f(x)一个极小值. 点b叫做极小值点. f′(x)<0
f′ (b)=0
相关文档
最新文档