2013高中数学备忘录1——集合与命题

合集下载

高中数学考前备忘录

高中数学考前备忘录

高中数学考前备忘录一.代数部分(一)集合与函数1.集合与函数(1)含有n 个元素的有限集合,共有2n个子集,其中非空真子集的个数为2n-2个。

(2)集合的相等指的是两个集合的元素完全相同,所以结构形式不相同的集合并不意味着 一定不相等。

(3)注意符号:∈、∉ 、⊂、⊆、的使用;空集切忌写作{φ}。

(4)用数形结合的思想解函数的有关问题,能作图的尽量作图,哪怕是草图也有助于你对 问题的分析。

(5)函数问题务必考虑定义域; (6)形如y=d cx b ax ++的值域为y ∈R,且y ≠ca;形如y=ax+c bx +的值域一般用变量代换,即设u=c bx +,且u ≥0,代入求解。

(7)利用基本不等式求最值,应注意三个条件均须满足,即“一正二等三定值”。

(8)指数、对数函数问题务必注意底数的取值范围,真数大于零的条件;若底数不确定, 要讨论。

(9)幂函数在第一象限的图象:当n>1时,是上抛物线 ;当0<n<1时,为右抛物线 ;当n<0时,是双曲线型 。

熟记y=x n当n=-2、-1、-21、31、 21、 1、2、3 时的图象和性质。

(10)方程实根的个数、图象交点的个数、取值范围的确定等问题,可先考虑用图象来解决,注意判别式的应用。

2.复合函数(两次复合)在单调区间上的增减性:增增得增,减减得增,减增得减。

3.函数的奇偶性:(1)函数有奇偶性的必要条件是:若x 在定义域内,则-x 必在定义域内;若f(x)是奇函数且x=0在定义域内,必有f(0)=0.(2)奇函数的和是奇函数,偶函数的和是偶函数,两个有奇偶性的函数相乘除,同性得偶, 异性得奇。

(3) 若奇函数在[a,b]上是增(减)函数,那么它在[-b,-a]上也是增(减)函数,即奇函数在关于原点的对称区间上增减性不变。

偶函数在对称区间上的增减性改变。

4.函数的周期性:(1)若f(x)≥0,则f(x)与f 2(x)周期相同。

高中数学知识考前备忘

高中数学知识考前备忘

高 中 数 学 知 识 回 味第一部分:函数一、考试内容及要求 1.集合、简易逻辑考试内容:集合:子集、补集、交集、并集;逻辑联结词,四种命题,充要条件. 考试要求:⑴理解集合、子集、补集、交集、并集的概念,了解空集和全集的意义,了解属于、包含、相等关系的意义,掌握有关的术语和符号,并会用它们正确表示一些简单的集合. ⑵理解逻辑联结词“或”、“且”、“非”的含义,理解四种命题及其相互关系,掌握充要条件的意义. 2.函数考试内容:映射,函数,函数的单调性;反函数,互为反函数的函数图像间的关系;指数概念的扩充,有理指数幂的运算性质,指数函数.;对数、对数的运算性质,对数函数. 函数的应用举例.考试要求:⑴了解映射的概念,理解函数的概念.⑵了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. ⑶了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.⑷理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.⑸理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图像和性质. ⑹能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、重要知识、技能技巧(省略的部分自己填写)1.函数是一种特殊的映射:f :A →B (A 、B 为非空数集), 定义域:⎩⎨⎧加条件的制约应用条件的限制或有附限定定义域复合函数对数或三角函数指数幂开方常涉及分母给解析式自然定义域:,,,,,,: 解决函数问题必须树立“定义域优先”的观点.2.函数值域、最值的常用解法⑴观察法;⑵配方法;⑶反表示法;如y=xx y b ax d cx 22cos 21sin -+=++或 ⑷△法;适用于经过去分母、平方、换元等变换后得到关于y 的一元二次方程的一类函数;⑸基本不等式法;⑹单调函数法;⑺数形结合法;⑻换元法;⑼导数法.3.关于反函数⑴求一个函数y=f(x)(定义域A ,值域D )的反函数步骤;(略) ⑵互为反函数的两函数的定义域、值域、图象间关系; ⑶分段函数的反函数分段求解;⑷有关性质:定义域为非单元素集的偶函数不存在反函数;单调函数必有反函数,且两函数单调性相同;奇函数的反函数仍为奇函数; 周期函数不存在反函数;f -1(a)=b ⇔f(b)=a. 4.函数奇偶性 ⑴判断①解析式⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎭⎫ ⎝⎛≠±=-=--=--=0)(,1)()(0)()()()()()(x f x f x f x f x f x f x f x f x f 或定义域关于原点对称②图象(关于y 轴或坐标原点对称)⑵性质:如果f(x)是奇函数且在x=0有定义,则f(0)=0;常数函数f(x)=0定义域(-l ,l)既是奇函数也是偶函数;在公共定义域上,两个奇、偶函数的运算性质.(略) 5.函数单调性 ⑴定义的等价形式如:2121)()(x x x f x f -->0⇔(x 1-x 2)[f(x 1)-f(x 2)]>0⑵判断:①定义法;②导数法;③结论法(慎用).奇偶函数在对称区间上的单调性;互为反函数的两函数单调性;复合函数的单调性(同增异减);常见函数的单调性(如y=x+xa,a ∈R ). 6.函数周期性⑴f(x)=f(x+a)对定义域中任意x 总成立,则T=a.如果一个函数是周期函数,则其周期有无数个.⑵f(x+a)=f(x -a),则T=2a. ⑶f(x+a)=-)(1x f ,则T=2a. ⑷f(x)图象关于x=a 及x=b 对称,a ≠b ,则T=2(b -a).⑸f(x)图象关于x=a 及点(b,c) (b ≠a)对称,则T=4(b -a). 7.函数图象的对称性⑴若f(a+x)=f(a -x)或[f(x)=f(2a -x)],则f(x)图象关于x=a 对称,特别地f(x)=f(-x)则关于x=0对称;⑵若f(a+x)+f(b -x)=2c ,则f(x)图象关于(2ba +,c)中心对称,特别地f(x)+f(-x)=0,则关于(0,0)对称; ⑶若f(a+x)=f(b -x),则y=f(x)关于x=2ba +对称; ⑷y=f(x)与y=f(2a -x)关于x=a 对称;y=f(x)与y=-f(x)+2b 关于y=b 对称;y=f(x)与y=-f(2a -x)+2b ,关于(a,b)对称.⑸y=f(a+x)与y=f(b -x),关于x=2ab -对称. 8.⑴要熟练掌握和二次函数有关的方程不等式等问题,并能结合二次函数的图象进行分类讨论;结合图象探索综合题的解题切入点。

高三数学 第一轮复习 01:集合与命题

高三数学 第一轮复习 01:集合与命题

高中数学第一轮复习01集合与命题·知识梳理·模块01:集合的概念和性质1、集合概念能够确切指定的一些对象组成的整体叫做集合,简称集。

集合中的各个对象叫做这个集合的元素.对于一个给定的集合,集合中的元素具有确定性、互异性、无序性。

集合常用大写字母、、、C B A …来表示,集合中的元素用、、、c b a …表示,如果a 是集合A 的元素,就记作A a ∈,读作“a 属于A ”;如果a 不是集合A 的元素,就记作A a ∉,读作“a 不属于A ”。

全体自然数组成的集合,即自然数集,记作:N ;不包含零的自然数组成的集合,记作*N ;全体整数组成的集合,即整数集,记作Z ;全体有理数组成的集合,即有理数集,记作Q ;全体实数组成的集合,即实数集,记作R ;实数集R (正实数集+R )、有理数集Q (负有理数集-Q )、整数集Z (正整数集+Z )、自然数集N (包含零)、不包含零的自然数集*N ;点的集合简称点集,即以直角坐标平面内的点作为元素构成的集合;含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集;规定空集不含元素,记作:∅。

2、集合的表示法集合的表示方法常用列举法和描述法将集合中的元素一一列举出来(不考虑元素的顺序),并且写在大括号内,这种表示集合的方法叫做列举法在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性,即:}{p x x A 满足性质=(集合A 中的元素都具有性质p ,而且凡具有性质p 的元素都在集合A 中),这种表示集合的方法叫做描述法。

模块02:集合之间的关系与运算1、集合之间的关系对于两个集合A 和B ,如果集合A 中任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作:A B ⊆或B A ⊇,读作“A 包含于B 或B 包含A ”。

空集是任何集合的子集,是任何非空集合的真子集,所以B A ⊆不要忘记Φ=A 。

高一集合与命题知识点

高一集合与命题知识点

高一集合与命题知识点在高中数学学科中,集合与命题是非常重要的知识点。

通过深入学习与理解这些知识,可以帮助我们更好地解决数学问题,并提高数学的应用能力。

本文将从集合和命题两个方面展开,介绍高一阶段的相关知识点。

一、集合集合是数学中最基础的概念之一,它是由若干个元素组成的整体。

在集合中,我们最常用的操作有并、交、差、补和集合的关系等。

下面将一一介绍这些操作:1. 并集:设有集合A和集合B,A和B的并集表示为A∪B,它包含了A和B的所有元素。

2. 交集:集合A和集合B的交集表示为A∩B,它包含了同时属于A和B的所有元素。

3. 差集:集合A和集合B的差集表示为A-B,它包含了属于A 但不属于B的所有元素。

4. 补集:集合A的补集表示为A',它包含了不属于A的所有元素。

5. 子集:若集合A的所有元素都属于集合B,则集合A是集合B的子集,表示为A⊆B。

在集合的基础上,我们还可以通过集合的运算来构建更复杂的集合,例如幂集和笛卡尔积:1. 幂集:设集合A的元素个数为n,那么A的所有子集构成的集合称为A的幂集,记作P(A)。

幂集的元素个数为2^n。

2. 笛卡尔积:设有集合A和集合B,A和B的所有有序对组成的集合称为A和B的笛卡尔积,记作A×B。

除了基本的集合操作外,我们还需要了解集合的性质和定理,例如:1. 并、交、差的运算规律:结合律、交换律、分配律等。

2. De Morgan定律:对于任意两个集合A和B,有(A∪B)'=A'∩B'和(A∩B)'=A'∪B'。

通过深入学习集合的相关知识,我们可以更好地理解和应用相关的数学概念和方法。

二、命题命题是指能够判断真假的陈述句。

在数学中,我们经常要处理各种各样的命题,因此了解命题的基本性质是非常重要的。

1. 命题的逻辑联结词:命题可以通过逻辑联结词进行组合,常见的逻辑联结词有与、或、非、蕴含和等值等。

2. 命题的真值表:我们可以通过真值表来判断命题的真假,真值表是由逻辑联结词和命题变元构成的表格。

高中数学知识点大纲

高中数学知识点大纲

高中数学知识点大纲一、集合与常用逻辑用语1. 集合的概念、表示方法及集合间的关系集合的定义:具有某种特定性质的对象的总体。

表示方法:列举法、描述法、图示法(Venn 图)。

集合间的关系:包含(子集、真子集)、相等。

2. 集合的运算交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A ∩ B。

并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作A ∪ B。

补集:设 U 为全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合,记作∁UA 。

3. 常用逻辑用语命题:能够判断真假的陈述句。

四种命题:原命题、逆命题、否命题、逆否命题,它们之间的真假关系。

充分条件与必要条件:若 p ⇒ q,则 p 是 q 的充分条件,q 是 p 的必要条件。

逻辑连接词:“且”“或”“非”。

全称量词与存在量词:全称命题与特称命题的否定。

二、函数1. 函数的概念定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。

函数的三要素:定义域、值域、对应法则。

2. 函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 x2 时,都有f(x1) f(x2)(或 f(x1) > f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

奇偶性:设函数 f(x)的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 f(−x) = −f(x),那么函数 f(x)就叫做奇函数;如果对于定义域 D 内的任意一个 x,都有 f(−x) = f(x),那么函数f(x)就叫做偶函数。

3. 常见函数一次函数:y = kx + b(k ≠ 0)。

二次函数:y = ax² + bx + c(a ≠ 0),其图象是抛物线,对称轴为 x = b / (2a) ,顶点坐标为(b / (2a), (4ac b²) / (4a)) 。

2013版高考数学考前3个月(上)专题复习课件专题一第一讲集合与常用逻辑用语

2013版高考数学考前3个月(上)专题复习课件专题一第一讲集合与常用逻辑用语

{1,2},则称(A,B)为一个“理想配集”,那么符合此条件
的“理想配集”的个数是(规定(A,B)与(B,A)是两个不同
本 的“理想配集”)
()

栏 A.4
B.8
C.9
D.16

开 关
解析 由 A 与 B 是集合 I 的子集,且 A∩B={1,2},得 A,B
应为{1,2},{1,2,3},{1,2,4},{1,2,3,4}中的一个.
题型与方法
第一讲
例 1 (2012·陕西)集合 M={x|lg x>0},N={x|x2≤4},则 M∩N

( C)
本 讲
A.(1,2)
B.[1,2)
C.(1,2]
栏 目
解析 M={x|lg x>0}={x|x>1},
开 关
N={x|x2≤4}={x|-2≤x≤2},
D.[1,2]
∴M∩N=(1,2].
第一讲
5.(2011·福建改编)在整数集 Z 中,被 5 除所得余数为 k 的
所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k
=0,1,2,3,4,给出如下四个结论:
本 讲
①2 011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];
栏 目
④“ 整 数 a , b 属 于 同 一 ‘ 类 ’” 的 充 要 条 件 是 “a -
讲 栏
一个命题的逆命题与它的否命题同真同假.



考点与考题
第一讲
3.含有一个量词的否定
(1)全称命题 p:∀x∈M,p(x),它的否定:∃x0∈M,綈 p(x0)
本 讲

高三复习数学11_集合与命题(有答案)

高三复习数学11_集合与命题(有答案)

1.1 集合与命题一、解答题。

1. 集合与元素(1)集合元素的三个特征:________、________、________.(2)元素与集合的关系是________或________关系,用符号________或________表示.(3)集合的表示法:________、________、________.2. 集合间的关系(1)子集:对任意的x∈A,都有x∈B,则A________B(或________).(2)真子集:若A⊆B,且A≠B,则A________B(或B________A).(3)空集:空集是任意集合的子集,是任何非空集合的真子集.即⌀⊆A,⌀________B (B≠⌀).(4)若A含有n个元素,则A的子集有________个,A的非空子集有________个,非空真子集有________个.(5)集合相等:若A⊆B,且B⊆A,则________.3. 集合的运算4. 命题的概念在数学中把用语言、符号或式子表达的,可以________的陈述句叫做命题.其中________的语句叫真命题,________的语句叫假命题.(常见结构:若p,则q)5. 简单的逻辑联结词(1)命题中的“________”、“________”、“________”叫做逻辑联结词.含逻辑联接词的命题称为复合命题.(2)简单复合命题的真值表:记忆口诀:“p∧q命题”________;“p∨q命题”有真为真;“¬p命题”________.6. 四种命题及相互关系7. 四种命题的真假关系(1)两个命题互为逆否命题,它们有________的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性________关系.8. (2019·河北衡水中学模拟)已知集合A={x|y=√x2−2x},B={y|y=x2+1},则A∩B=()A.[1,+∞)B.[2,+∞)C.(−∞,0]∪[2,+∞)D.[0,+∞)9. 已知集合A={x|−1<x<2},B={y|y=x+a,x∈A},C={z|z=x2,x∈A},若B⊆C求实数a的取值范围.10. 已知p:方程x2+mx+1=0有两个不相等的负实数根;q:不等式4x2+4(m−2)x+1>0的解集为R.若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.11. 命题p:函数y=3x−3−x是R上的增函数.命题q:函数y=3x+3−x是R上的减函数.则在命题p∨q,p∧q,(¬p)∧q,p∧(¬q)中,真命题个数是________.12. (2019·济南一中模拟)原命题:“a,b为两个实数,若a+b≥2,则a,b中至少有一个不小于1”,下列说法错误的是()A.逆命题为:a,b为两个实数,若a,b中至少有一个不小于1,则a+b≥2,为假命题B.否命题为:a,b为两个实数,若a+b<2,则a,b都小于1,为假命题C.逆否命题为:a,b为两个实数,若a,b都小于1,则a+b<2,为真命题D.a,b为两个实数,“a+b≥2”是“a,b中至少有一个不小于1”的必要不充分条件13. 设A={x|x2+px+q=0}≠⌀,M={1,3,5,7,9},N={1,4,7,10}.若A∩M=⌀,A∩N=A,求p、q的值.14. 小结与反思___________________________________________________________________________ _____________________________________________________________________________________________ __________________15. 已知集合A={1,2,3,4},B={y|y=3x−2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}16. 设集合A={x∈N|14≤2x≤16},B={x|y=ln(x2−3x)},则A∩B中元素的个数是()A.1B.2C.3D.417. 命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数18. 已知集合A={1,3,√m},B={1,m},A∪B=A,则m=()A.0或√3B.0或3C.1或√3D.1或319. 已知c>0且c≠1,设P:函数y=c x在R上单调递减;Q:不等式x+|x−2c|>1的解集为R,若“P或Q”是真命题,“P且Q”是假命题,则c的取值范围是()A.(12,+∞) B.(1,+∞) C.(0,12] D.(0,12]∪(1,+∞)20. 已知命题“若函数f (x )=e x −mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A.否命题“若函数f (x )=e x −mx 在(0,+∞)上是减函数,则m >1”是真命题B.逆命题“若m ≤1,则函数f (x )=e x −mx 在(0,+∞)上是增函数”是假命题C.逆否命题“若m >1,则函数f (x )=e x −mx 在(0,+∞)上是减函数”是真命题D.逆否命题“若m >1,则函数f (x )=e x −mx 在(0,+∞)上不是增函数”是真命题21. 下列命题:①“全等三角形的面积相等”的逆命题;②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60∘”的逆否命题.其中真命题的序号是________(把所有真命题的序号填在横线上)22. 已知M ={(x,y)|y−3x−2=a +1},N ={(x,y)|(a 2−1)x +(a −1)y =15},若M ∩N =⌀,则a 的值为________.23. 非空数集A 如果满足:①0∉A ;②若对∀x ∈A ,有1x ∈A ,则称A 是“互倒集”.给出以下数集:①{x ∈R |x 2+ax +1=0};②{x|x 2−4x +1<0};③{y|y =ln x x ,x ∈[1e ,1)∪(1,e]};④{y|y ={2x +25,x ∈[0,1)x +1x,x ∈[1,2]}. 其中“互倒集”的个数是________.24. 已知集合A ={x|x 2−2x −3≤0},B ={x|x 2−2mx +m 2−4≤0,x ∈R ,m ∈R } 若A ∩B =[0,3],求实数m 的值;若A ⊆∁R B ,求实数m 的取值范围.25. 已知集合A ={y|y 2−(a 2+a +1)y +a (a 2+1)>0},B ={y|y =12x 2−x +52,0≤x ≤3}.若A ∩B =⌀,求a 的取值范围;当a 取使不等式x 2+1≥ax 恒成立的a 的最小值时,求(∁R A)∩B .26. 已知全集U=R,非空集合A={x|x−2x−(3a+1)<0},B={x|x−a2−2x−a<0}.当a=12时,求(∁U B)∩A;命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.参考答案与试题解析1.1 集合与命题一、解答题。

高中数学易错、易混、易忘问题备忘录(育才中学整理)

高中数学易错、易混、易忘问题备忘录(育才中学整理)

高中数学易错、易混、易忘问题备忘录(育才中学整理)一、集合、逻辑、复数、不等式1.注意元素与集合的关系、集合与集合的关系,要能准确表示这些关系.例1.若}1|{->=x x M ,则下列选项正确的是A .0⊆MB .{0}∈MC .φ∈MD .{0}⊆M 2.注意区分集合中元素的形式..:①{}x x y x -=2|,②{}x x y y -=2|,③{}x x y y x -=2|),(;④{}02=-x x ⑤{}0|2=-x x x ;例2.{|3}M x y x ==+, N ={}2|1,y y x x M =+∈,则M N =___例3.{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____3. 遇到B A ⊆或∅=B A 不要遗忘了∅=A 的情况。

例4.}0158|{2=+-=x x x A ,,}01|{=-=ax x B 若A B ⊆,求实数a 的值.(不要遗忘a =0的情况)例5.}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。

4.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况.例6、已知集合{}0232=+-=x x x A ,{}022=+-=mx x x B ,且B B A = ,实数m 的取值范围是A .{}2222<≤-m m B 。

{}2222≤≤-m m C 。

{}2222≤<-m m D 。

{}22223<<-=m m m 或5.常用数集的表示: 自然数集N ;正整数集+*N N 或;有理数集Q ;实数集R ;复数集C .⒍ 原命题: p q ⇒;逆命题: q p ⇒;否命题: p q ⌝⇒⌝;逆否命题: q p ⌝⇒⌝;互为逆否的两个命题是等价的.例7.“βαsin sin ≠”是“βα≠”的 条件。

2013年新课标江苏高考数学复习资料(含答案)

2013年新课标江苏高考数学复习资料(含答案)

2013年高考数学第一轮复习资料第一章集合第一节集合的含义、表示及基本关系A组1.已知A={1,2},B={x|x∈A},则集合A与B的关系为________.解析:由集合B={x|x∈A}知,B={1,2}.答案:A=B2.若∅{x|x2≤a,a∈R},则实数a的取值范围是________.解析:由题意知,x2≤a有解,故a≥0.答案:a≥03.已知集合A={y|y=x2-2x-1,x∈R},集合B={x|-2≤x<8},则集合A与B的关系是________.解析:y=x2-2x-1=(x-1)2-2≥-2,∴A={y|y≥-2},∴B A.答案:B A4.(2012年高考广东卷改编)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(V enn)图是________.解析:由N={x|x2+x=0},得N={-1,0},则N M.答案:②5.(2011年苏、锡、常、镇四市调查)已知集合A={x|x>5},集合B={x|x>a},若命题“x∈A”是命题“x∈B”的充分不必要条件,则实数a的取值范围是________.解析:命题“x∈A”是命题“x∈B”的充分不必要条件,∴A B,∴a<5.答案:a<56.(原创题)已知m∈A,n∈B,且集合A={x|x=2a,a∈Z},B={x|x=2a+1,a∈Z},又C={x|x=4a +1,a∈Z},判断m+n属于哪一个集合?解:∵m∈A,∴设m=2a1,a1∈Z,又∵n∈B,∴设n=2a2+1,a2∈Z,∴m+n=2(a1+a2)+1,而a1+a2∈Z,∴m+n∈B.B组1.设a,b都是非零实数,y=a|a|+b|b|+ab|ab|可能取的值组成的集合是________.解析:分四种情况:(1)a>0且b>0;(2)a>0且b<0;(3)a<0且b>0;(4)a<0且b<0,讨论得y=3或y=-1.答案:{3,-1}2.已知集合A={-1,3,2m-1},集合B={3,m2}.若B⊆A,则实数m=________.解析:∵B⊆A,显然m2≠-1且m2≠3,故m2=2m-1,即(m-1)2=0,∴m=1.答案:13.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数是________个.解析:依次分别取a=0,2,5;b=1,2,6,并分别求和,注意到集合元素的互异性,∴P+Q={1,2,6,3,4,8,7,11}.答案:84.已知集合M={x|x2=1},集合N={x|ax=1},若N M,那么a的值是________.解析:M ={x |x =1或x =-1},N M ,所以N =∅时,a =0;当a ≠0时,x =1a=1或-1,∴a =1或-1.答案:0,1,-15.满足{1}A ⊆{1,2,3}的集合A 的个数是________个.解析:A 中一定有元素1,所以A 有{1,2},{1,3},{1,2,3}.答案:36.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、B 、C 之间的关系是________.解析:用列举法寻找规律.答案:A B =C7.集合A ={x ||x |≤4,x ∈R },B ={x |x <a },则“A ⊆B ”是“a >5”的________.解析:结合数轴若A ⊆B ⇔a ≥4,故“A ⊆B ”是“a >5”的必要但不充分条件.答案:必要不充分条件8.(2011年江苏启东模拟)设集合M ={m |m =2n ,n ∈N ,且m <500},则M 中所有元素的和为________.解析:∵2n <500,∴n =0,1,2,3,4,5,6,7,8.∴M 中所有元素的和S =1+2+22+…+28=511.答案:511 9.(2012年高考北京卷)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:610.已知A ={x ,xy ,lg(xy )},B ={0,|x |,y },且A =B ,试求x ,y 的值.解:由lg(xy )知,xy >0,故x ≠0,xy ≠0,于是由A =B 得lg(xy )=0,xy =1.∴A ={x,1,0},B ={0,|x |,1x}.于是必有|x |=1,1x=x ≠1,故x =-1,从而y =-1.11.已知集合A ={x |x 2-3x -10≤0},(1)若B ⊆A ,B ={x |m +1≤x ≤2m -1},求实数m 的取值范围; (2)若A ⊆B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围; (3)若A =B ,B ={x |m -6≤x ≤2m -1},求实数m 的取值范围. 解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3]. (2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈∅.,即不存在m 值使得A =B .12.已知集合A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.解:由x2-3x+2≤0,即(x-1)(x-2)≤0,得1≤x≤2,故A={x|1≤x≤2},而集合B={x|(x-1)(x-a)≤0},(1)若A是B的真子集,即A B,则此时B={x|1≤x≤a},故a>2.(2)若B是A的子集,即B⊆A,由数轴可知1≤a≤2.(3)若A=B,则必有a=2第二节集合的基本运算A组1.(2011年高考浙江卷改编)设U=R,A={x|x>0},B={x|x>1},则A∩∁U B=____.解析:∁U B={x|x≤1},∴A∩∁U B={x|0<x≤1}.答案:{x|0<x≤1}2.(2012年高考全国卷Ⅰ改编)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有________个.解析:A∩B={4,7,9},A∪B={3,4,5,7,8,9},∁U(A∩B)={3,5,8}.答案:33.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=________.解析:由题意知,N={0,2,4},故M∩N={0,2}.答案:{0,2}4.(原创题)设A,B是非空集合,定义AⓐB={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤2},B={y|y≥0},则AⓐB=________.解析:A∪B=[0,+∞),A∩B=[0,2],所以AⓐB=(2,+∞).答案:(2,+∞)5.(2012年高考湖南卷)某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设两项运动都喜欢的人数为x,画出韦恩图得到方程15-x+x+10-x+8=30x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12(人).答案:126.(2010年浙江嘉兴质检)已知集合A={x|x>1},集合B={x|m≤x≤m+3}.(1)当m=-1时,求A∩B,A∪B;(2)若B⊆A,求m的取值范围.解:(1)当m=-1时,B={x|-1≤x≤2},∴A∩B={x|1<x≤2},A∪B={x|x≥-1}.(2)若B⊆A,则m>1,即m的取值范围为(1,+∞)B组1.若集合M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},则M∩N=________.解析:因为集合N={-1,0,1,2},所以M∩N={-1,0}.答案:{-1,0}2.已知全集U={-1,0,1,2},集合A={-1,2},B={0,2},则(∁U A)∩B=________.解析:∁U A={0,1},故(∁U A)∩B={0}.答案:{0}3.(2010年济南市高三模拟)若全集U=R,集合M={x|-2≤x≤2},N={x|x2-3x≤0},则M∩(∁U N)=________.解析:根据已知得M∩(∁U N)={x|-2≤x≤2}∩{x|x<0或x>3}={x|-2≤x<0}.答案:{x|-2≤x<0} 4.集合A={3,log2a},B={a,b},若A∩B={2},则A∪B=________.解析:由A∩B={2}得log2a=2,∴a=4,从而b=2,∴A∪B={2,3,4}.答案:{2,3,4}5.(2009年高考江西卷改编)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为________.解析:U =A ∪B 中有m 个元素,∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素,∴A ∩B 中有m -n 个元素.答案:m -n6.(2009年高考重庆卷)设U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.解析:U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7}, 得∁U (A ∪B )={2,4,8}.答案:{2,4,8}7.定义A ⊗B ={z |z =xy +xy,x ∈A ,y ∈B }.设集合A ={0,2},B ={1,2},C ={1},则集合(A ⊗B )⊗C 的所有元素之和为________.解析:由题意可求(A ⊗B )中所含的元素有0,4,5,则(A ⊗B )⊗C 中所含的元素有0,8,10,故所有元素之和为18.答案:188.若集合{(x ,y )|x +y -2=0且x -2y +4=x ,y )|y =3x +b },则b =________.解析:由⎩⎪⎨⎪⎧ x +y -2=0,x -2y +4=0.⇒⎩⎪⎨⎪⎧x =0,y =2.点(0,2)在y =3x +b 上,∴b =2.9.设全集I ={2,3,a 2+2a -3},A ={2,|a +1|},∁I A ={5},M ={x |x =log 2|a |},则集合M 的所有子集是________.解析:∵A ∪(∁I A )=I ,∴{2,3,a 2+2a -3}={2,5,|a +1|},∴|a +1|=3,且a 2+2a -3=5,解得a =-4或a =2,∴M ={log 22,log 2|-4|}={1,2}.答案:∅,{1},{2},{1,2}10.设集合A ={x |x 2-3x +2=0},B ={x |x 2+2(a +1)x +(a 2-5)=0}.(1)若A ∩B ={2},求实数a 的值;(2)若A ∪B =A ,求实数a 的取值范围.解:由x 2-3x +2=0得x =1或x =2,故集合A ={1,2}.(1)∵A ∩B ={2},∴2∈B ,代入B 中的方程,得a 2+4a +3=0⇒a =-1或a =-3;当a =-1时,B ={x |x 2-4=0}={-2,2},满足条件;当a =-3时,B ={x |x 2-4x +4=0}={2},满足条件;综上,a 的值为-1或-3.(2)对于集合B ,Δ=4(a +1)2-4(a 2-5)=8(a +3).∵A ∪B =A ,∴B ⊆A ,①当Δ<0,即a <-3时,B =∅满足条件;②当Δ=0,即a =-3时,B ={2}满足条件;③当Δ>0,即a >-3时,B =A ={1,2}才能满足条件,则由根与系数的关系得⎩⎪⎨⎪⎧1+2=-2(a +1)1×2=a 2-5⇒⎩⎪⎨⎪⎧a =-52,a 2=7,矛盾.综上,a 的取值范围是a ≤-3. 11.已知函数f (x )=6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B . (1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值. 解:A ={x |-1<x ≤5}.(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3}, ∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},∴有-42+2×4+m =0,解得m =8,此时B ={x |-2<x <4},符合题意. 12.已知集合A ={x ∈R |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 是单元素集,求a 的值及集合A ; (3)求集合M ={a ∈R |A ≠∅}.解:(1)A 是空集,即方程ax 2-3x +2=0无解.若a =0,方程有一解x =23,不合题意.若a ≠0,要方程ax 2-3x +2=0无解,则Δ=9-8a <0,则a >98.综上可知,若A =∅,则a 的取值范围应为a >98.(2)当a =0时,方程ax 2-3x +2=0只有一根x =23,A ={23}符合题意.当a ≠0时,则Δ=9-8a =0,即a =98时,方程有两个相等的实数根x =43,则A ={43}.综上可知,当a =0时,A ={23};当a =98时,A ={43}.(3)当a =0时,A ={23}≠∅.当a ≠0时,要使方程有实数根,则Δ=9-8a ≥0,即a ≤98.综上可知,a 的取值范围是a ≤98,即M ={a ∈R |A ≠∅}={a |a ≤98}第二章 函数第一节 对函数的进一步认识A 组1.(2009年高考江西卷改编)函数y =-x 2-3x +4x的定义域为________.解析:⎩⎪⎨⎪⎧-x 2-3x +4≥0,x ≠0,⇒x ∈[-4,0)∪(0,1]答案:[-4,0)∪(0,1]2.(2010年绍兴第一次质检)如图,函数f (x )的图象是曲线段OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (1f (3))的值等于________.解析:由图象知f (3)=1,f (1f (3))=f (1)=2.答案:23.(2009年高考北京卷)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得x ≤1时,3x =2,∴x =log 32;当x >1时,-x =2,x =-2(舍去).故x =log 32.答案:log 32 4.(2010年黄冈市高三质检)函数f :{1,2}→{1,2}满足f [f (x )]>1的这样的函数个数有________个.解析:如图.答案:15.(原创题)由等式x 3+a 1x 2+a 2x +a 3=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3定义一个映射f (a 1,a 2,a 3)=(b 1,b 2,b 3),则f (2,1,-1)=________.解析:由题意知x 3+2x 2+x -1=(x +1)3+b 1(x +1)2+b 2(x +1)+b 3, 令x =-1得:-1=b 3;再令x =0与x =1得⎩⎪⎨⎪⎧-1=1+b 1+b 2+b 33=8+4b 1+2b 2+b 3,解得b 1=-1,b 2=0. 答案:(-1,0,-1)6.已知函数f (x )=⎩⎪⎨⎪⎧1+1x (x >1),x 2+1 (-1≤x ≤1),2x +3 (x <-1).(1)求f (1-12-1),f {f [f (-2)]}的值;(2)求f (3x -1);(3)若f (a )=32, 求a .解:f (x )为分段函数,应分段求解.(1)∵1-12-1=1-(2+1)=-2<-1,∴f (-2)=-22+3,又∵f (-2)=-1,f [f (-2)]=f (-1)=2,∴f {f [f (-2)]}=1+12=32.(2)若3x -1>1,即x >23,f (3x -1)=1+13x -1=3x3x -1;若-1≤3x -1≤1,即0≤x ≤32,f (3x -1)=(3x -1)2+1=9x 2-6x +2;若3x -1<-1,即x <0,f (3x -1)=2(3x -1)+3=6x +1.∴f (3x -1)=⎩⎨⎧3x 3x -1(x >23),9x 2-6x +2 (0≤x ≤23),6x +1 (x <0).(3)∵f (a )=32,∴a >1或-1≤a ≤1.当a >1时,有1+1a =32,∴a =2;当-1≤a ≤1时,a 2+1=32,∴a =±22.∴a =2或±22.B 组1.(2010年广东江门质检)函数y =13x -2+lg(2x -1)的定义域是________. 解析:由3x -2>0,2x -1>0,得x >23.答案:{x |x >23}2.(2010年山东枣庄模拟)函数f (x )=⎩⎪⎨⎪⎧-2x +1,(x <-1),-3,(-1≤x ≤2),2x -1,(x >2),则f (f (f (32)+5))=_.解析:∵-1≤32≤2,∴f (32)+5=-3+5=2,∵-1≤2≤2,∴f (2)=-3,∴f (-3)=(-2)×(-3)+1=7.答案:73.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________.解析:∵对任意的x ∈(-1,1),有-x ∈(-1,1), 由2f (x )-f (-x )=lg(x +1),① 由2f (-x )-f (x )=lg(-x +1),②①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1),∴f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1).答案:f (x )=23lg(x +1)+13lg(1-x ),(-1<x <1)4.设函数y =f (x )满足f (x +1)=f (x )+1,则函数y =f (x )与y =x 图象交点的个数可能是________个.解析:由f (x +1)=f (x )+1可得f (1)=f (0)+1,f (2)=f (0)+2,f (3)=f (0)+3,…本题中如果f (0)=0,那么y =f (x )和y =x 有无数个交点;若f (0)≠0,则y =f (x )和y =x 有零个交点.答案:0或无数5.设函数f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+bx +c (x ≤0),若f (-4)=f (0),f (-2)=-2,则f (x )的解析式为f (x )=________,关于x 的方程f (x )=x 的解的个数为________个.解析:由题意得⎩⎪⎨⎪⎧16-4b +c =c 4-2b +c =-2 ⎩⎪⎨⎪⎧b =4c =2,∴f (x )=⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0).由数形结合得f (x )=x 的解的个数有3个.答案:⎩⎪⎨⎪⎧2 (x >0)x 2+4x +2 (x ≤0) 36.设函数f (x )=log a x (a >0,a ≠1),函数g (x )=-x 2+bx +c ,若f (2+2)-f (2+1)=12,g (x )的图象过点A (4,-5)及B (-2,-5),则a =__________,函数f [g (x )]的定义域为__________.答案:2 (-1,3)7.(2009年高考天津卷改编)设函数f (x )=⎩⎪⎨⎪⎧x 2-4x +6,x ≥0x +6,x <0,则不等式f (x )>f (1)的解集是________.解析:由已知,函数先增后减再增,当x ≥0,f (x )>f (1)=3时,令f (x )=3, 解得x =1,x =3.故f (x )>f (1)的解集为0≤x <1或x >3.当x <0,x +6=3时,x =-3,故f (x )>f (1)=3,解得-3<x <0或x >3. 综上,f (x )>f (1)的解集为{x |-3<x <1或x >3}.答案:{x |-3<x <1或x >3}8.(2009年高考山东卷)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0,f (x -1)-f (x -2), x >0,则f (3)的值为________.解析:∵f (3)=f (2)-f (1),又f (2)=f (1)-f (0),∴f (3)=-f (0),∵f (0)=log 24=2,∴f (3)=-2.答案:-29.有一个有进水管和出水管的容器,每单位时间进水量是一定的,设从某时刻开始,5分钟内只进水,不出水,在随后的15分钟内既进水,又出水,得到时间x 与容器中的水量y 之间关系如图.再随后,只放水不进水,水放完为止,则这段时间内(即x ≥20),y 与x 之间函数的函数关系是________.解析:设进水速度为a 1升/分钟,出水速度为a 2升/分钟,则由题意得⎩⎪⎨⎪⎧5a 1=205a 1+15(a 1-a 2)=35,得⎩⎪⎨⎪⎧a 1=4a 2=3,则y =35-3(x -20),得y =-3x +95,又因为水放完为止,所以时间为x ≤953,又知x ≥20,故解析式为y =-3x +95(20≤x ≤953).答案:y =-3x +95(20≤x ≤953)10.函数f (x )=(1-a 2)x 2+3(1-a )x +6.(1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的定义域为[-2,1],求实数a 的值. 解:(1)①若1-a 2=0,即a =±1,由题意知g (x )≥0对x ∈R 恒成立,∴⎩⎪⎨⎪⎧ 1-a 2>0,Δ≤0,∴⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0, ∴-511≤a <1.由①②可得-511≤a ≤1.(2)由题意知,不等式(1-a 2)x 2+3(1-a )x +6≥0的解集为[-2,1],显然1-a 2≠0且-2,1是方程(1-a 2)x 2+3(1-a )x +6=0的两个根.∴⎩⎪⎨⎪⎧ 1-a 2<0,-2+1=3(1-a )a 2-1,-2=61-a2,Δ=[3(1-a )]2-24(1-a 2)>0∴⎩⎪⎨⎪⎧a <-1或a >1,a =2,a =±2.a <-511或a >1∴a =2.11.已知f (x +2)=f (x )(x ∈R ),并且当x ∈[-1,1]时,f (x )=-x 2+1,求当x ∈[2k -1,2k +1](k ∈Z )时、f (x )的解析式.解:由f (x +2)=f (x ),可推知f (x )是以2为周期的周期函数.当x ∈[2k -1,2k +1]时,2k -1≤x ≤2k +1,-1≤x -2k ≤1.∴f (x -2k )=-(x -2k )2+1.又f (x )=f (x -2)=f (x -4)=…=f (x -2k ),∴f (x )=-(x -2k )2+1,x ∈[2k -1,2k +1],k ∈Z .12.在2008年11月4日珠海航展上,中国自主研制的ARJ 21支线客机备受关注,接到了包括美国在内的多国订单.某工厂有216名工人接受了生产1000件该支线客机某零部件的总任务,已知每件零件由4个C 型装置和3个H 型装置配套组成,每个工人每小时能加工6个C 型装置或3个H 型装置.现将工人分成两组同时开始加工,每组分别加工一种装置,设加工C 型装置的工人有x 位,他们加工完C 型装置所需时间为g (x ),其余工人加工完H 型装置所需时间为h (x ).(单位:h ,时间可不为整数)(1)写出g (x ),h (x )的解析式;(2)写出这216名工人完成总任务的时间f (x )的解析式; (3)应怎样分组,才能使完成总任务的时间最少?解:(1)g (x )=20003x (0<x <216,x ∈N *),h (x )=1000216-x(0<x <216,x ∈N *).(2)f (x )=⎩⎨⎧20003x (0<x ≤86,x ∈N *).1000216-x (87≤x <216,x ∈N *).(3)分别为86、130或87、129.第二节 函数的单调性A 组1.(2009年高考福建卷改编)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.①f (x )=1x ②f (x )=(x -1)2 ③f (x )=e x ④f (x )=ln(x +1)解析:∵对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),∴f (x )在(0,+∞)上为减函数.答案:①2.函数f (x )(x ∈R )的图象如右图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是________.12]时,g (x )为减函数. 解析:∵0<a <1,y =log a x 为减函数,∴log a x ∈[0,由0≤log a x ≤12a ≤x ≤1.答案:[a ,1](或(a ,1))3.函数y =x -4+15-3x 的值域是________.解析:令x =4+sin 2α,α∈[0,π2],y =sin α+3cos α=2sin(α+π3),∴1≤y ≤2.答案:[1,2]4.已知函数f (x )=|e x +aex |(a ∈R )在区间[0,1]上单调递增,则实数a 的取值范围__.解析:当a <0,且e x +a e x ≥0时,只需满足e 0+ae 0≥0即可,则-1≤a <0;当a =0时,f (x )=|e x |=e x符合题意;当a >0时,f (x )=e x +a e x ,则满足f ′(x )=e x -ae x ≥0在x ∈[0,1]上恒成立.只需满足a ≤(e 2x )min成立即可,故a ≤1,综上-1≤a ≤1.答案:-1≤a ≤15.(原创题)如果对于函数f (x )定义域内任意的x ,都有f (x )≥M (M 为常数),称M 为f (x )的下界,下界M 中的最大值叫做f (x )的下确界,下列函数中,有下确界的所有函数是________.①f (x )=sin x ;②f (x )=lg x ;③f (x )=e x ;④f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)解析:∵sin x ≥-1,∴f (x )=sin x 的下确界为-1,即f (x )=sin x 是有下确界的函数;∵f (x )=lg x 的值域为(-∞,+∞),∴f (x )=lg x 没有下确界;∴f (x )=e x 的值域为(0,+∞),∴f (x )=e x 的下确界为0,即f (x )=e x 是有下确界的函数;∵f (x )=⎩⎪⎨⎪⎧ 1 (x >0)0 (x =0)-1 (x <-1)的下确界为-1.∴f (x )=⎩⎪⎨⎪⎧1 (x >0)0 (x =0)-1 (x <-1)是有下确界的函数.答案:①③④6.已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围. 解:(1)x ∈R ,f (x )<b ·g (x x ∈R ,x 2-bx +b =(-b )2-4b b <0或b >4.(2)F (x )=x 2-mx +1-m 2,Δ=m 2-4(1-m 2)=5m 2-4,①当Δ≤0即-255≤m ≤255时,则必需⎩⎨⎧m2≤0-255≤m ≤255-255≤m ≤0.②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),若m2≥1,则x 1≤0.⎩⎪⎨⎪⎧ m 2≥1F (0)=1-m 2≤0m ≥2.若m2≤0,则x 2≤0, ⎩⎪⎨⎪⎧m 2≤0F (0)=1-m 2≥0-1≤m <-255.综上所述:-1≤m ≤0或m ≥2.B 组1.(2010年山东东营模拟)下列函数中,单调增区间是(-∞,0]的是________.①y =-1x②y =-(x -1) ③y =x 2-2 ④y =-|x |解析:由函数y =-|x |的图象可知其增区间为(-∞,0].答案:④2.若函数f (x )=log 2(x 2-ax +3a )在区间[2,+∞)上是增函数,则实数a 的取值范围是________.解析:令g (x )=x 2-ax +3a ,由题知g (x )在[2,+∞)上是增函数,且g (2)>0.∴⎩⎪⎨⎪⎧a 2≤2,4-2a +3a >0,∴-4<a ≤4.答案:-4<a ≤4 3.若函数f (x )=x +a x (a >0)在(34,+∞)上是单调增函数,则实数a 的取值范围__.解析:∵f (x )=x +a x (a >0)在(a ,+∞)上为增函数,∴a ≤34,0<a ≤916.答案:(0,916]4.(2009年高考陕西卷改编)定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则下列结论正确的是________.①f (3)<f (-2)<f (1) ②f (1)<f (-2)<f (3) ③f (-2)<f (1)<f (3) ④f (3)<f (1)<f (-2)解析:由已知f (x 2)-f (x 1)x 2-x 1<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (2)=f (-2),即f (3)<f (-2)<f (1).答案:①5.(2010年陕西西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是________.解析:由题意知,f (x )为减函数,所以⎩⎪⎨⎪⎧0<a <1,a -3<0,a 0≥(a -3)×0+4a ,解得0<a ≤14.6.(2010年宁夏石嘴山模拟)函数f (x )的图象是如下图所示的折线段OAB ,点A 的坐标为(1,2),点B 的坐标为(3,0),定义函数g (x )=f (x )·(x -1),则函数g (x )的最大值为________.解析:g (x )=⎩⎪⎨⎪⎧2x (x -1) (0≤x <1),(-x +3)(x -1) (1≤x ≤3),当0≤x <1时,最大值为0;当1≤x ≤3时,在x =2取得最大值1.答案:17.(2010年安徽合肥模拟)已知定义域在[-1,1]上的函数y =f (x )的值域为[-2,0],则函数y =f (cos x )的值域是________.解析:∵cos x ∈[-1,1],函数y =f (x )的值域为[-2,0],∴y =f (cos x )的值域为[-2,0].答案:[-2,0]8.已知f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是________.解析:∵函数y =[f (x )]2+f (x 2)的定义域为⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9,∴x ∈[1,3],令log 3x =t ,t ∈[0,1], ∴y =(t +2)2+2t +2=(t +3)2-3,∴当t =1时,y max =13.答案:139.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为__________.解析:令μ=2x 2+x ,当x ∈(0,12)时,μ∈(0,1),而此时f (x )>0恒成立,∴0<a <1.μ=2(x +14)2-18,则减区间为(-∞,-14).而必然有2x 2+x >0,即x >0或x <-12.∴f (x )的单调递增区间为(-∞,-12).答案:(-∞,-12)10.试讨论函数y =2(log 12x )2-2log 12x +1的单调性.解:易知函数的定义域为(0,+∞).如果令u =g (x )=log 12x ,y =f (u )=2u 2-2u +1,那么原函数y=f [g (x )]是由g (x )与f (u )复合而成的复合函数,而u =log 12x 在x ∈(0,+∞)内是减函数,y =2u 2-2u +1=2(u -12)2+12在u ∈(-∞,12)上是减函数,在u ∈(12,+∞)上是增函数.又u ≤12,即log 12x ≤12,得x ≥22;u >12,得0<x <22.由此,从下表讨论复合函数y =f [g (x )]的单调性:故函数y =2(log 12x )2-2log 12x +1在区间(0,22)上单调递减,在区间(22,+∞)上单调递增.11.(2010年广西河池模拟)已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f (x 1x 2)<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,所以f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数,由f (|x |)<f (9),得|x |>9,∴x >9或x <-9.因此不等式的解集为{x |x >9或x <-9}.12.已知:f (x )=log 3x 2+ax +bx ,x ∈(0,+∞),是否存在实数a ,b ,使f (x )同时满足下列三个条件:(1)在(0,1]上是减函数,(2)在[1,+∞)上是增函数,(3)f (x )的最小值是1.若存在,求出a 、b ;若不存在,说明理由.解:∵f (x )在(0,1]上是减函数,[1,+∞)上是增函数,∴x =1时,f (x )最小,log 31+a +b1=1.即a +b =2.设0<x 1<x 2≤1,则f (x 1)>f (x 2).即x 12+ax 1+b x 1>x 22+ax 2+bx 2恒成立.由此得(x 1-x 2)(x 1x 2-b )x 1x 2>0恒成立.又∵x 1-x 2<0,x 1x 2>0,∴x 1x 2-b <0恒成立,∴b ≥1.设1≤x 3<x 4,则f (x 3)<f (x 4)恒成立.∴(x 3-x 4)(x 3x 4-b )x 3x 4<0恒成立.∵x 3-x 4<0,x 3x 4>0,∴x 3x 4>b 恒成立.∴b ≤1.由b ≥1且b ≤1可知b =1,∴a =1.∴存在a 、b ,使f (x )同时满足三个条件.第三节 函数的性质A 组1.设偶函数f (x )=log a |x -b |在(-∞,0)上单调递增,则f (a +1)与f (b +2)的大小关系为________.解析:由f (x )为偶函数,知b =0,∴f (x )=log a |x |,又f (x )在(-∞,0)上单调递增,所以0<a <1,1<a +1<2,则f (x )在(0,+∞)上单调递减,所以f (a +1)>f (b +2).答案:f (a +1)>f (b +2)2.(2010年广东三校模拟)定义在R 上的函数f (x )既是奇函数又是以2为周期的周期函数,则f (1)+f (4)+f (7)等于________.解析:f (x )为奇函数,且x ∈R ,所以f (0)=0,由周期为2可知,f (4)=0,f (7)=f (1),又由f (x +2)=f (x ),令x =-1得f (1)=f (-1)=-f (1)⇒f (1)=0,所以f (1)+f (4)+f (7)=0.答案:03.(2009年高考山东卷改编)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则f (-25)、f (11)、f (80)的大小关系为________.解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数是以8为周期的周期函数,则f (-25)=f (-1),f (80)=f (0),f (11)=f (3),又因为f (x )在R 上是奇函数,f (0)=0,得f (80)=f (0)=0,f (-25)=f (-1)=-f (1),而由f (x -4)=-f (x )得f (11)=f (3)=-f (-3)=-f (1-4)=f (1),又因为f (x )在区间[0,2]上是增函数,所以f (1)>f (0)=0,所以-f (1)<0,即f (-25)<f (80)<f (11).答案:f (-25)<f (80)<f (11)4.(2009年高考辽宁卷改编)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 取值范围是________.解析:由于f (x )是偶函数,故f (x )=f (|x |),由f (|2x -1|)<f (13),再根据f (x )的单调性得|2x -1|<13,解得13<x <23.答案:(13,23) 5.(原创题)已知定义在R 上的函数f (x )是偶函数,对x ∈R ,f (2+x )=f (2-x ),当f (-3)=-2时,f (2011)的值为________.解析:因为定义在R 上的函数f (x )是偶函数,所以f (2+x )=f (2-x )=f (x -2),故函数f (x )是以4为周期的函数,所以f (2011)=f (3+502×4)=f (3)=f (-3)=-2.答案:-26.已知函数y =f (x )是定义在R 上的周期函数,周期T =5,函数y =f (x )(-1≤x ≤1)是奇函数,又知y =f (x )在[0,1]上是一次函数,在[1,4]上是二次函数,且在x =2时函数取得最小值-5.(1)证明:f (1)+f (4)=0;(2)求y =f (x ),x ∈[1,4]的解析式;(3)求y =f (x )在[4,9]上的解析式.解:(1)证明:∵f (x )是以5为周期的周期函数,∴f (4)=f (4-5)=f (-1), 又∵y =f (x )(-1≤x ≤1)是奇函数,∴f (1)=-f (-1)=-f (4),∴f (1)+f (4)=0.(2)当x ∈[1,4]时,由题意可设f (x )=a (x -2)2-5(a >0),由f (1)+f (4)=0,得a (1-2)2-5+a (4-2)2-5=0,∴a =2,∴f (x )=2(x -2)2-5(1≤x ≤4).(3)∵y =f (x )(-1≤x ≤1)是奇函数,∴f (0)=0,又知y =f (x )在[0,1]上是一次函数,∴可设f (x )=kx (0≤x ≤1),而f (1)=2(1-2)2-5=-3,∴k =-3,∴当0≤x ≤1时,f (x )=-3x ,从而当-1≤x <0时,f (x )=-f (-x )=-3x ,故-1≤x ≤1时,f (x )=-3x .∴当4≤x ≤6时,有-1≤x -5≤1,∴f (x )=f (x -5)=-3(x -5)=-3x +15.当6<x ≤9时,1<x -5≤4,∴f (x )=f (x -5)=2[(x -5)-2]2-5=2(x -7)2-5.∴f (x )=⎩⎪⎨⎪⎧-3x +15, 4≤x ≤62(x -7)2-5, 6<x ≤9. B 组1.(2009年高考全国卷Ⅰ改编)函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则下列结论正确的是________.①f (x )是偶函数 ②f (x )是奇函数 ③f (x )=f (x +2) ④f (x +3)是奇函数解析:∵f (x +1)与f (x -1)都是奇函数,∴f (-x +1)=-f (x +1),f (-x -1)=-f (x -1),∴函数f (x )关于点(1,0),及点(-1,0)对称,函数f (x )是周期T =2[1-(-1)]=4的周期函数.∴f (-x -1+4)=-f (x -1+4),f (-x +3)=-f (x +3),即f (x +3)是奇函数.答案:④2.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (-2)=f (-1)=-1,f (0)=2,f (1)+f (2)+…+f (2009)+f (2010)=________.解析:f (x )=-f (x +32)⇒f (x +3)=f (x ),即周期为3,由f (-2)=f (-1)=-1,f (0)=2,所以f (1)=-1,f (2)=-1,f (3)=2,所以f (1)+f (2)+…+f (2009)+f (2010)=f (2008)+f (2009)+f (2010)=f (1)+f (2)+f (3)=0.答案:03.(2010年浙江台州模拟)已知f (x )是定义在R 上的奇函数,且f (1)=1,若将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则f (1)+f (2)+f (3)+…+f (2010)=________.解析:f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),将f (x )的图象向右平移一个单位后,得到一个偶函数的图象,则满足f (-2+x )=-f (x ),即f (x +2)=-f (x ),所以周期为4,f (1)=1,f (2)=f (0)=0,f (3)=-f (1)=-1,f (4)=0,所以f (1)+f (2)+f (3)+f (4)=0,则f (1)+f (2)+f (3)+…+f (2010)=f (4)×502+f (2)=0.答案:04.(2010年湖南郴州质检)已知函数f (x )是R 上的偶函数,且在(0,+∞)上有f ′(x )>0,若f (-1)=0,那么关于x 的不等式xf (x )<0的解集是________.解析:在(0,+∞)上有f ′(x )>0,则在(0,+∞)上f (x )是增函数,在(-∞,0)上是减函数,又f (x )在R 上是偶函数,且f (-1)=0,∴f (1)=0.从而可知x ∈(-∞,-1)时,f (x )>0;x ∈(-1,0)时,f (x )<0;x ∈(0,1)时,f (x )<0;x ∈(1,+∞)时,f (x )>0.∴不等式的解集为(-∞,-1)∪(0,1)答案:(-∞,-1)∪(0,1). 5.(2009年高考江西卷改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2009)+f (2010)的值为________.解析:∵f (x )是偶函数,∴f (-2009)=f (2009).∵f (x )在x ≥0时f (x +2)=f (x ),∴f (x )周期为2.∴f (-2009)+f (2010)=f (2009)+f (2010)=f (1)+f (0)=log 22+log 21=0+1=1.答案:16.(2010年江苏苏州模拟)已知函数f (x )是偶函数,并且对于定义域内任意的x ,满足f (x +2)=-1f (x ),若当2<x <3时,f (x )=x ,则f (2009.5)=________.解析:由f (x +2)=-1f (x ),可得f (x +4)=f (x ),f (2009.5)=f (502×4+1.5)=f (1.5)=f (-2.5)∵f (x )是偶函数,∴f (2009.5)=f (2.5)=52.答案:527.(2010年安徽黄山质检)定义在R 上的函数f (x )在(-∞,a ]上是增函数,函数y =f (x +a )是偶函数,当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,则f (2a -x 1)与f (x 2)的大小关系为________.解析:∵y =f (x +a )为偶函数,∴y =f (x +a )的图象关于y 轴对称,∴y =f (x )的图象关于x =a 对称.又∵f (x )在(-∞,a ]上是增函数,∴f (x )在[a ,+∞)上是减函数.当x 1<a ,x 2>a ,且|x 1-a |<|x 2-a |时,有a -x 1<x 2-a ,即a <2a -x 1<x 2,∴f (2a -x 1)>f (x 2).答案:f (2a -x 1)>f (x 2)8.已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1).若f (a )=-2,则实数a =________.解析:当x ≥0时,f (x )=x (x +1)>0,由f (x )为奇函数知x <0时,f (x )<0,∴a <0,f (-a )=2,∴-a (-a +1)=2,∴a =2(舍)或a =-1.答案:-1 9.(2009年高考山东卷)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数.若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.解析:因为定义在R 上的奇函数,满足f (x -4)=-f (x ),所以f (4-x )=f (x ),因此,函数图象关于直线x =2对称且f (0)=0.由f (x -4)=-f (x )知f (x -8)=f (x ),所以函数是以8为周期的周期函数.又因为f (x )在区间[0,2]上是增函数,所以f (x )在区间[-2,0]上也是增函数,如图所示,那么方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,不妨设x 1<x 2<x 3<x 4.由对称性知x 1+x 2=-12,x 3+x 4=4,所以x 1+x 2+x 3+x 4=-12+4=-8. 答案:-810.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.解:∵f (x )是奇函数,可得f (0)=-f (0),∴f (0)=0.当x >0时,-x <0,由已知f (-x )=x lg(2+x ),∴-f (x )=x lg(2+x ),即f (x )=-x lg(2+x ) (x >0).∴f (x )=⎩⎪⎨⎪⎧-x lg(2-x ) (x <0),-x lg(2+x ) (x ≥0).即f (x )=-x lg(2+|x |)(x ∈R ).11.已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ).(1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值.解:(1)证明:∴函数定义域为R ,其定义域关于原点对称. ∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0.∴f (x )+f (-x )=0,得f (-x )=-f (x ),∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ),∴f (x +y )-f (x )=f (y ).∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数.又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1).∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0.即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.12.已知函数f (x )的定义域为R ,且满足f (x +2)=-f (x ).(1)求证:f (x )是周期函数;(2)若f (x )为奇函数,且当0≤x ≤1时,f (x )=12x ,求使f (x )=-12在[0,2010]上的所有x 的个数.解:(1)证明:∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴f (x )是以4为周期的周期函数.(2)当0≤x ≤1时,f (x )=12x ,设-1≤x ≤0,则0≤-x ≤1,∴f (-x )=12(-x )=-12x .∵f (x )是奇函数,∴f (-x )=-f (x ),∴-f (x )=-12x ,即f (x )=12x .故f (x )=12x (-1≤x ≤1)又设1<x <3,则-1<x -2<1,∴f (x -2)=12(x -2),又∵f (x -2)=-f (2-x )=-f [(-x )+2]=-[-f (-x )]=-f (x ),∴-f (x )=12(x -2),∴f (x )=-12(x -2)(1<x <3).∴f (x )=⎩⎨⎧12x (-1≤x ≤1)-12(x -2) (1<x <3)由f (x )=-12,解得x =-1.∵f (x )是以4为周期的周期函数.故f (x )=-12的所有x =4n -1(n ∈Z ).令0≤4n -1≤2010,则14≤n ≤50234,又∵n ∈Z ,∴1≤n ≤502(n ∈Z ),∴在[0,2010]上共有502个x 使f (x )=-12.第三章 指数函数和对数函数第一节 指数函数A 组1.(2010年黑龙江哈尔滨模拟)若a >1,b <0,且a b +a -b =22,则a b -a -b 的值等于________.解析:∵a >1,b <0,∴0<a b <1,a -b >1.又∵(a b +a -b )2=a 2b +a -2b +2=8,∴a 2b +a -2b =6,∴(a b -a -b )2=a 2b +a -2b -2=4,∴a b -a -b =-2.答案:-22.已知f (x )=a x +b 的图象如图所示,则f (3)=________.解析:由图象知f (0)=1+b =-2,∴b =-3.又f (2)=a 2-3=0,∴a =3,则f (3)=(3)3-3=33-3. 答案:33-33.函数y =(12)2x -x 2的值域是________.解析:∵2x -x 2=-(x -1)2+1≤1, ∴(12)2x -x 2≥12.答案:[12,+∞) 4.(2009年高考山东卷)若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________.解析:函数f (x )的零点的个数就是函数y =a x 与函数y =x +a 交点的个数,由函数的图象可知a >1时两函数图象有两个交点,0<a <1时两函数图象有惟一交点,故a >1. 答案:(1,+∞)5.(原创题)若函数f (x )=a x-1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a 等于________.解析:由题意知⎩⎪⎨⎪⎧ 0<a <1a 2-1=0a 0-1=2无解或⎩⎪⎨⎪⎧a >1a 0-1=0a 2-1=2⇒a = 3.答案: 3 6.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.解:(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b2+a=0,解得b =1.从而有f (x )=-2x+12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2.(2)法一:由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数,又因f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.法二:由(1)知f (x )=-2x +12x +1+2,又由题设条件得-2t 2-2t +12t 2-2t +1+2+-22t 2-k +122t 2-k +1+2<0即(22t 2-k +1+2)(-2t 2-2t +1)+(2t 2-2t +1+2)(-22t 2-k +1)<0整理得23t 2-2t -k >1,因底数2>1,故3t 2-2t -k >0上式对一切t ∈R 均成立,从而判别式Δ=4+12k <0,解得k <-13.B 组1.如果函数f (x )=a x +b -1(a >0且a ≠1)的图象经过第一、二、四象限,不经过第三象限,那么一定有________.①0<a <1且b >0 ②0<a <1且0<b <1 ③a >1且b <0 ④a >1且b >0解析:当0<a <1时,把指数函数f (x )=a x 的图象向下平移,观察可知-1<b -1<0,即0<b <1.答案:②2.(2010年保定模拟)若f (x )=-x 2+2ax 与g (x )=(a +1)1-x 在区间[1,2]上都是减函数,则a 的取值范围是________.解析:f (x )=-x 2+2ax =-(x -a )2+a 2,所以f (x )在[a ,+∞)上为减函数,又f (x ),g (x )都在[1,2]上为减函数,所以需⎩⎪⎨⎪⎧a ≤1a +1>1⇒0<a ≤1.答案:(0,1]3.已知f (x ),g (x )都是定义在R 上的函数,且满足以下条件①f (x )=a x ·g (x )(a >0,a ≠1);②g (x )≠0;若f (1)g (1)+f (-1)g (-1)=52,则a 等于________. 解析:由f (x )=a x ·g (x )得f (x )g (x )=a x ,所以f (1)g (1)+f (-1)g (-1)=52⇒a +a -1=52,解得a =2或12.答案:2或124.(2010年北京朝阳模拟)已知函数f (x )=a x (a >0且a ≠1),其反函数为f -1(x ).若f (2)=9,则f -1(13)+f (1)的值是________.解析:因为f (2)=a 2=9,且a >0,∴a =3,则f (x )=3x =13,∴x =-1,故f -1(13)=-1.又f (1)=3,所以f -1(13)+f (1)=2.答案:25.(2010年山东青岛质检)已知f (x )=(13)x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ),则g (x )的表达式为________.解析:设y =g (x )上任意一点P (x ,y ),P (x ,y )关于x =1的对称点P ′(2-x ,y )在f (x )=(13)x 上,∴y=(13)2-x =3x -2.答案:y =3x -2(x ∈R ) 6.(2009年高考山东卷改编)函数y =e x +e -xe x -e-x 的图象大致为________.解析:∵f (-x )=e -x+e x e -x -e x =-e x+e-xe x -e -x =-f (x ),∴f (x )为奇函数,排除④.又∵y =e x +e -x e x -e -x =e 2x +1e 2x -1=e 2x -1+2e 2x -1=1+2e 2x -1在(-∞,0)、(0,+∞)上都是减函数,排除②、③.答案:①7.(2009年高考辽宁卷改编)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x +1),则f (2+log 23)=________.解析:∵2<3<4=22,∴1<log 23<2.∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)log 224=2-log 224=2log 2124=124.答案:1248.(2009年高考湖南卷改编)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K , f (x )>K .取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为________.解析:由f (x )=2-|x |≤12得x ≥1或x ≤-1,∴f K (x )=⎩⎪⎨⎪⎧2-|x |,x ≥1或x ≤-1,12,-1<x <1.则单调增区间为(-∞,-1].答案:(-∞,-1]。

高中数学各章节知识点汇总

高中数学各章节知识点汇总

高中数学各章节知识点汇总高中数学各章节知识点汇总名目第一章集合与命题 (1)一、集合 (1)二、四种命题的形式 (2)三、充分条件与必要条件 (2)第二章别等式 (1)第三章函数的基本性质 (2)第四章幂函数、指数函数和对数函数(上) (3)一、幂函数 (3)二、指数函数 (3)三、对数 (3)四、反函数 (4)五、对数函数 (4)六、指数方程和对数方程 (4)第五章三角比 (5)一、任意角的三角比 (5)二、三角恒等式 (5)三、解歪三角形 (7)第六章三角函数的图像与性质 (8)一、周期性 (8)第七章数列与数学归纳法 (9)一、数列 (9)二、数学归纳法 (10)第八章平面向量的坐标表示 (12)第九章矩阵和行列式初步 (14)一、矩阵 (14)二、行列式 (14)第十章算法初步 (16)第十一章坐标平面上的直线 (17)第十二章圆锥曲线 (19)第十三章复数 (21)第一章集合与命题一、集合1.1 集合及其表示办法集合的概念1、把可以确切指定的一些对象组成的整体叫做集合简称集2、集合中的各个对象叫做那个集合的元素3、假如a是集合A的元素,就记做a∈A,读作“a属于A”4、假如a别是集合A的元素,就记做a ? A,读作“a别属于A”5、数的集合简称数集:全体自然数组成的集合,即自然数集,记作N别包括零的自然数组成的集合,记作N*全体整数组成的集合,即整数集,记作Z全体有理数组成的集合,即有理数集,记作Q全体实数组成的集合,即实数集,记作R我们把正整数集、负整数集、正有理数、负有理数、正实数集、负实数集表示为Z+、Z-、Q+、Q-、R+、R-6、把含有有限个数的集合叫做有限集、含有无限个数的集合叫做无限极7、空集是指别用含有任何元素的集合,记作?集合的表示办法1、在大括号内先写出那个集合的元素的普通形式,再画一条竖线,在竖线之后写上集合中元素所共同具有的特性,这种集合的表示办法叫做描述法1.2 集合之间的关系子集1、关于两个集合A和B,假如集合A中任何一具元素都属于集合B,这么集合A叫做集合B 的子集,记做A?B或B?A,读作“A包含于B”或“B包含A”2、空集包含于任何一具集合,空集是任何集合的子集3、用平面区域来表示集合之间关系的办法叫做集合的图示法,所用图叫做文氏图相等的集合1、关于两个集合A和B,假如A?B,且B?A,这么叫做集合A与集合B相等,记作“A=B”,读作“集合A等于集合B”,假如两个集合所含元素彻底相同,这么这两个集合相等1.3 集合的运算交集1、由交集A和交集B的所有公共元素的集合叫做A与B的交集,记作A∩B,读作A交B并集1、由所有属于集合A或者属于集合B的元素组成的集合叫做集合A、B 的并集,记作A∪B,读作A并B补集1、在研究集合与集合之间的关系时,这些集合往往是某个给定集合的子集,那个确定的集合叫做全集2、U是全集,A是U的子集。

高考数学复习备忘录(一)集合与简易逻辑

高考数学复习备忘录(一)集合与简易逻辑

1高考数学备忘录(一)集合与简易逻辑【知识要点】(一).集合的概念、关系及运算(1)集合元素的特性:确定性、互异性、无序性.(2)集合与集合之间的关系:A ⊆B ,B ⊆C ⇒A ⊆C .(3)空集是任何集合的子集.(4)含有n 个元素的集合的子集有2n .个,真子集有2n -1.个,非空真子集有2n -2.个.(5)重要结论:A ∩B =A ⇔A ⊆B .,A ∪B =A ⇔B ⊆A .【易错警示】1.忽略集合元素互异性:在求解与集合有关的参数问题时,一定要注意集合元素的互异性,否则容易产生增根.2.忽略空集:空集是任何集合的子集,是任何非空集合的真子集,在分类讨论时要注意“空集优先”的原则.3.区分代表元素研究集合问题,一定要抓住集合中的代表元素,如:{x y x lg |=}与{x y y lg |=}及{x y y x lg |),(=}三集合并不表示同一集合;【高考热点预测】集合的基本性质以及集合之间的基本关系与运算,与不等式的解集、函数的定义域、值域、方程的解集等知识结合在一起考查.【过关题】1. 已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为( )A 、3B 、6C 、8D 、102. 定义集合A ={x |f (x )=2x -1},B ={y |y =log 2(2x +2)},则A ∩∁R B = ( )A .(1,+∞)B .[0,1]C .[0,1)D .[0,2)(答:D,B )(二)四种命题的相互关系(三)充分必要条件设集合A ={x |x 满足条件p },B ={x |x 满中条件q },则有__A B__.__B A__.注.(1)定义法:正、反方向推,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇒/p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A⊆B,则A是B的充分条件(B是A的必要条件):若A=B,则是B的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.(四).简单的逻辑联结词(1)命题p∨q,只要p,q有一真,即为真;命题p∧q,只有p,q均为真,才为真;¬p和p为真假对立的命题.(2)命题p∨q的否定是(¬p)∧(¬q);命题p∧q的否定是(¬p)∨(¬q).(五).全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定¬p:∃x0∈M,¬p(x0).(2)特称命题p:∃x0∈M,p(x).它的否定¬p:∀x∈M,¬p(x).【易错警示】(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。

高中数学备忘录

高中数学备忘录

高中数学备忘录一、集合与命题1.集合的特性:集合中的元素具有确定性、无序性、互异性;2.列举法:将集合中的元素一一列举出来写在大括号内表示集合的方法;3.描述法:将集合中元素的通性描述出来写在大括号内表示集合的方法;通式:{|}x P ;4.空集(记为∅)是指不含任何元素的集合;它是任何集合的子集,是任何非空集合的真子集;5.“ ∈∉,”表示元素与集合间的从属关系; “ ()⊆⊆,,”表示集合与集合间的包含关系。

6.给出下列条件:①集合A 中任何一个元素都是集合B 中的元素;②集合B 至少存在一个元素不在集合A 中;③集合B 中任何一个元素都是集合A 中的元素. 如果集合 A B 、满足①,则A 是B 的子集;如果集合 A B 、满足①、②,则A 是B 的真子集;如果集合 A B 、满足①、③,则A 与B 是相等的集合; 注意:A B ⊆(或 A B A A B B ==、),讨论时别忘A =∅的情况;考察集合的关系借助韦恩图。

7.集合的含义:(1){|()}A x y f x ==表示函数的定义域; (2){|()}B y y f x ==表示函数的值域; (3){( )|()}C x y y f x ==,表示方程(,)0f x y =的解的集合,或表示曲线上的点的集合;…… 8.集合的运算:{| }A B x x A x B =∈∈且;{| }A B x x A x B =∈∈或;{| }UA x x U x A =∈∉,且 ;9.运算性质: A B B C A C ⊆⊆⇒⊆,且;()A B B A A B A B B A ∅⊆=⊆⊆=或;UBA U AB =⇔⊆;()UU U AB AB =;()U U A A =;()U U U A BC A B =;UUA B A A B B A B B A =⇔=⇔⊆⇔⊆UAB ⇔=∅; U U U U ∅==∅;;10. 正整数(整数)分类:被2整除与否可分为*21 2(())k k k N Z -∈或,; 被3整除与否可分为*32 31 3(())k k k k N Z --∈或,,; 被4整除与否可分为*43 42 41 4(())k k k k k N Z ---∈或,,,;其余依此类推; 11. n 个元素的子集有2n 个;真子集有21n -个;非空子集有21n -个;非空真子集有22n -个。

高中数学易错、易混、易忘问题备忘录

高中数学易错、易混、易忘问题备忘录

高中数学易错、易混、易忘问题备忘录西安高新一中 王东明1. 研究集合问题,一定要抓住集合的代表元素,如:{}lg x y x =与{}lg y y x =。

● “属于关系”与“包含关系”的符号易用混,元素与集合的关系用“∈或”,而集合与集合之间用 ,⊆等.2. 进行集合的交、并、补运算时,不要忘了集合本身和空集的特殊情况,不要忘了借助于数轴和文氏图进行求解。

● 忽视φ的讨论①求集合的子集时是否忘记φ;②集合A 、B ,A ∩B =φ时,你是否注意到:A =φ (或B =φ);③集合A 、B ,A ⊆B 时,注意A =φA B A A B B A ====Φ例1:已知A={x|2x +(m+2)x+1=0,x ∈R},若A ∩R +=φ,求实数m 取值范围. 解此题就要分A=φ和A ≠φ两种情况讨论,答案是m>-4.例2:已知A={x|121-≤≤+m x m },B={x|52≤≤-x },若A ⊆B ,求实数m 的取值范围.解此题就要分A=φ和A ≠φ两种情况讨论,答案是(∞-,3]3. 你会用补集的思想解决有关问题吗?4. 映射的概念了解了吗?映射:f A B →中,你是否注意到了A 中元素的任意性和B 中与它对应元素的唯一性,哪几种对应能够构成影射?5. 求不等式(方程)的解集,或求定义域时,你按要求写成集合形式了吗?6. 求一个函数的解析式或一个函数的反函数时,你注明函数的定义域了吗?7. 求一个函数的反函数时,你是按照“先求反函数,后求值”这条原则解题的的吗?例如,已知111(),()1x f x f x x-+=-求。

①求反函数的步骤掌握了吗?(①反解x ,②互换x 、y ,③注明定义域(此定义域如何求?))②函数与其反函数之间的一个有用的结论:1()()f b a f a b -=⇔=③原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数1()y f x -=也单调递增;但一个函数存在反函数,此函数不一定单调.例如:1()f x x=,分段函数1(0),()(0).x x f x x x +≥⎧=⎨-<⎩8. 几种命题的真值表记住了吗?充要条件的概念记住了吗?如何判断?9. 不等式,(0)ax b c ax b c c +<+>>的解法掌握了吗?给定区间最值。

2013高考数学重要知识点扫描

2013高考数学重要知识点扫描

2013届高三数学考前提醒1.看清楚集合的代表元素:集合}{2,M y y x x R =|=∈,}{21,N y y x x R =|=+∈,则M N = ;[1,)+∞ 集合}{2,M y y x x R =|=∈,}{21,N x y x x R =|=+∈,则M N = ;[0,)+∞ 集合}{2(,),M x y y x x R =|=∈,}{2(,)1,N x y y x x R =|=+∈,则M N = ;∅2. 正确理解集合的元素:设集合{|(1,2)(3,4),}M a a R λλ==+∈,{|(2,3)(4,5)N a a λ==+,}R λ∈,则=N M _____ (答:)}2,2{(--)3. 集合中的等价转换:A B B B A =⇔⊆ A B B A B=⇔⊆ 4. 不能忽视空集:⑴}0158|{2=+-=x x x A ,,}01|{=-=ax x B 若A B ⊆,求实数a 的值.(不要遗忘a =0即B =∅的情况)⑵}012|{2=--=x ax x A ,如果A R +=∅ ,求a 的取值。

(答:a ≤0)5.命题中的“正难则反”:①已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。

(答:3(3,)2-)②要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是_____.(答:81[7,)8)6. 注意等价命题,认清哪个是条件哪个是结论:如:“βαsin sin ≠”是“βα≠”的 条件。

(答:充分非必要条件)7.二次项系数是字母的要注意讨论:()()222210a x a x -+--<对一切R x ∈恒成立,则a 的取值范围是_______(答:(1,2]); 8. 函数定义域是研究函数的首要对象:(1)函数y=2)3lg()4(--x x x 的定义域是 ;(2)函数(2)xf 的定义域是(0,1],求2(log )f x 的定义域.(3)判断函数()3f x x =|+|-3的奇偶性(4)若2211()f x x xx+=+,则()f x =(5)函数()x f y =是R 上的奇函数,且0x >时,()12xf x =+,则()f x 的表达式为 (6)若函数212log (3)y x ax a =-+在区间[)2,+∞上是减函数,则实数a 的取值范围是9. 证明函数单调性的规范写法取值, 作差(分解因式), 判正负.10.三角换元的作用:函数4y x =++____(答:[1,4]); 11、反函数的一个有用结论:()1().fa b f b a -=⇔=12.函数奇偶性定义的应用:设)(x f 是定义域为R 的任一函数, ()()()2f x f x F x +-=,()()()2f x f x G x --=。

高三一轮复习:集合与命题

高三一轮复习:集合与命题

高三一轮复习:集合与命题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高三一轮复习:集合【知识要点】一、集合的概念:能够确切指定的一些对象组成的整体。

(“∈”、“∉”) 1、元素的性质:确定性、无序性、互异性(检验)。

2、集合的分类:有限集、无限集、空集(∅); 高中阶段常见数集和点集;常见的数集:N *、N 、Z 、Q 、R 、C 。

3、表示方法:列举法、描述法、图示法。

二、集合之间的关系: 1、子集:B A ⊆或A B ⊇。

2、真子集:A ⊂≠B ⇔B A ⊆且B A ≠。

3、相等的集合:⇔=B A B A ⊆且B A ⊇。

【注】(1)空集是任何集合的子集,空集是任何非空集合的真子集; (2)任何集合是其自身的子集;(3)集合的传递性:若B A ⊆,C B ⊆,则C A ⊆;(4)含有n 个元素的集合的子集的个数为n 2,真子集的个数为12-n ,非空子集的个数为12-n ,非空真子集的个数为22-n 。

三、集合的运算:1、交集:=B A {A x x ∈|且B x ∈};2、并集:=B A {A x x ∈|或B x ∈};3、补集:UA ={U x x ∈|且A x ∉}。

【例题解析】1、用列举法表示下列集合:(1)集合=A {1|2-=x y y ,2||≤x ,∈x Z }; (2)集合=B {1|),(2-=x y y x ,2||≤x ,∈x Z };(3)集合83C x x x ⎧⎫=∈∈⎨⎬+⎩⎭N Z ,;【解】(1)=A {1-,0,3};(2)=B {)3,2(,)3,2(-,)0,1(-,)0,1(,)1,0(-}; (3)=C {2-,1-,1,5}。

2、已知集合ππ24k A x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,,ππ42k B x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,,则集合A与B 的关系是A B ⊂≠。

【解】(21)π4k A x x k ⎧+⎫==∈⎨⎬⎩⎭Z ,,(2)π4k B x x k ⎧+⎫==∈⎨⎬⎩⎭Z ,,则A B ⊂≠。

2013届高考数学全套核心知识点总结

2013届高考数学全套核心知识点总结

高考数学全套知识点总结(通用版)——至臻高考 姜老师1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅ 注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ()若,;2A B A B A A B B ⊆⇔== (3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。

()(∵,∴·∵,∴·,,)335305555015392522∈--<∉--≥⇒∈⎡⎣⎢⎫⎭⎪M a a M a aa5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型? ()()例:函数的定义域是y x x x =--432lg()()()(答:,,,)022334 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_。

2013届高考数学一轮复习讲义第一章1.4集合与常用逻辑用语的综合应用

2013届高考数学一轮复习讲义第一章1.4集合与常用逻辑用语的综合应用

(2)若綈 r 是綈 p 的必要非充分条件,求实数 a 的取值范围.
学生解答展示
审题视角
(1)可以求出 p、q 的不等式的解集,再对 p、q 否定,即求出 它们对应不等式的解集的补集,也可以直接对不等式否定,但 注意对分式不等式否定时,注意分母为零的情况. (2)綈 r 是綈 p 的必要非充分条件等价于綈 p⇒綈 r 且綈 r⇒ 綈 p.
于是-(-44+)×0=0=-a22-(a+1,1),
得 a=1.即 P={1}.
充分条件、必要条件问题
例 2 已知 p:x2-4x-32≤0;q:[x-(1-m)][x-(1+m)]≤0 (m>0).若“非 p”是“非 q”成立的必要但不充分条件,求 m 的取值范围. p:-4≤x≤8,从而 p 为真时 x 的取值范围是集合 P=[-4,8].
∴綈 p 是綈 q 的充分不必要条件.
[6 分]
(2)r:(x-a)(x-a-1)<0,∴a<x<a+1. ∴綈 r:x≤a 或 x≥a+1.
∵綈 r 是綈 p 的必要非充分条件.
∴綈 p⇒綈 r 且綈 r⇒綈 p, ∴2≤a 或 a+1≤23,∴a≥2 或 a≤-13. ∴a 的取值范围是a|a≥2或a≤-13.
(2)充分性 由 a1=1,得 a2=3-a1=2.
因为(an+1+an+2)-(an+an+1)=[2(n+1)+1]-(2n+1)=2,
即 an+2-an=2,所以数列{a2k-1}是首项为 1、公差为 2 的等差数列, 数列{a2k}是首项为 2、公差为 2 的等差数列,从而 a2k-1=1+2(k -1)=2k-1,a2k=2+2(k-1)=2k,故 an=n,进而 an+1-an=1, ∴{an}为等差数列. 故数列{an}为等差数列的充要条件是 a1=1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学备忘录——集合与命题
1. 区分集合中元素的形式:
例1.集合R x x y y M ∈==,,R x x y y N ∈+-==,1,则=N M
例2.集合{}R x x y y x M ∈==,),(2
,{}
R x x
y y x N ∈+-==,1),(2
,=N M
例3.集合()(){}R M ∈+==λλ,4,32,1,集合()(){}
R N ∈+==λλ,5,43,2,则=N M
2.研究集合必须注意集合元素的特征,即集合元素的三性:确定性、互异性、无序性。

例4.已知集合{},,lg()A x xy xy =,集合{}y x B ,||,0=,且B A =,则=+y x
3.集合的性质:① 任何一个集合P 都是它本身的子集,记为P P ⊆。

② 空集是任何集合P 的子集,记为P ⊆∅。

③ 空集是任何非空集合P 的真子集,记为P ≠
⊂∅。

注意:若条件为B A ⊆,在讨论的时候不要遗忘了∅=A 的情况。

例5.集合}012|{2=--=x ax x A ,如果∅=+
R A ,实数a 的取值范围 集合的运算:④ ()()C B A C B A =、()()C B A C B A =; ()()()U U U C A
B C A C B =、()()
()U U U C A B C A C B =。


∅=⇔⊆⇔⊆⇔=⇔=B C A A C B C B A B B A A B A U U U 。

⑥ 对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数
依次为:012
2n
n n n n n C C C C +++
+=、12-n 、12-n 、22-n 。

例6.满足条件{}{}5,4,3,2,12,1⊆⊂≠
A 的集合A 共有 个。

4.研究集合之间的关系,当判断不清时,建议通过“具体化...”的思想进行研究。

例7.已知{}N k k x x M ∈+==,12,{}
N k k x x N ∈±==,14,则N M _____。

5.补集思想....
常运用于解决否定型或正面较复杂的有关问题。

例8.设函数()()122242
2
+----=p p x p x x f 在区间[]1,1-上至少存在一个实数C ,
使()0>c f ,求实数p 的取值范围
6.命题是表达判断的语句。

判断正确的叫做真命题;判断错误的叫做假命题。

① 命题的四种形式及其内在联系: 原命题:如果α,那么β;
逆命题:如果β,那么α; 否命题:如果α,那么β; 逆否命题:如果β,那么α;
② 等价命题:对于甲、乙两个命题,如果从命题甲可以推出命题乙,同时从命题乙也可以推出命题甲,既“甲⇔乙”,那么这样的两个命题叫做等价命题。

③ 互为逆否命题一定是等价命题,但等价命题不一定是互为逆否命题。

④ 当某个命题直接考虑有困难时,可通过它的逆否命题来考虑。

例9.“βαs i n s i n
≠”是“βα≠”的 条件。

⑤ 注意命题“如果α,那么β”的否定与它的否命题的区别:
命题“如果α,那么β”的否定是“如果α,那么β”;否命题是“如果α,那么β”。

*例10.“若a 和b 都是偶数,则b a +是偶数”的否命题是 否定是
7.常见结论的否定形式:
8.充要条件:
首先必须区分谁是条件、谁是结论,然后由推导关系判断结果。

一般地,充要条件的范围具有如下的包含关系 例题答案
1.[]1,0 2. ⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛21,22,21,22 3. (){}2,2-- 4. 2- 5. 0≤a 6. 7 7. N M ≠
⊂ 8. ⎪⎭
⎫ ⎝⎛
-23,3 9. 充分非必要条件 10. 否命题是“若a 和b 不都是偶数,则
b a +是奇数”;否定是“若a 和b 都是偶数,则b a +是奇数”。

充分条

充要条件
必要条件。

相关文档
最新文档