高中数学第一章-集合与函数
数学必修一集合与函数概念知识点梳理

高中数学必修1知识点第一章集合与函数概念〖〗集合【】集合的含义与表示(1) 集合的概念集合中的元素具有确定性、互异性和无序性(2) 常用数集及其记法N表示自然数集,N 或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集•(3) 集合与元素间的关系对象a与集合M的关系是a M,或者a M,两者必居其一.(4) 集合的表示法①自然语言法:用文字叙述的形式来描述集合②列举法:把集合中的元素一一列举出来,写在大括号内表示集合③描述法:{X| x具有的性质},其中x为集合的代表元素•④图示法:用数轴或韦恩图来表示集合•(5) 集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集()•【】集合间的基本关系)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有2n2非空真子集.【】集合的基本运算(1)(2)—元二次不等式的解法〖〗函数及其表示【】函数的概念(1) 函数的概念① 设A、B 是两个非空的数集,如果按照某种对应法则 f ,对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合 A ,B 以及 A 到B 的对应法则f )叫做集合 A 到B 的一个函数,记作 f : A B .② 函数的三要素:定义域、值域和对应法则.③ 只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b 的实数x的集合叫做半开半闭区间,分别记做[a,b) , (a,b];满足x a, x a,x b,x b 的实数x 的集合分别记做[a, ),(a, ),( , b],( , b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须a b.(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y tanx中,x k (k Z).2⑥零(负)指数幕的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知 f (x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式a g(x) b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的•事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同•求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f (x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y) 0 ,则在a(y) 0时,由于x,y为实数,故必须有2b (y) 4a(y) c( y) 0 ,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5 )函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6) 映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合 A , B以及A到B的对应法则f )叫做集合A到B的映射,记作f : A B .②给定一个集合A到集合B的映射,且a A,b B .如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,u g(x)为增,则y f[g(x)]为增;若y f (u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u) 为增,u g(x)为减,则y f [g (x)]为减;若y f (u)为减,u g (x)为增,则y f[g(x)]为减.函数f (x)的最大值,记作f max (x)② 一般地,设函数y f (x)的定义域为I ,如果存在实数 m 满足:(1)对于任意的x I ,都有f (x) m ; (2)存在x o I ,使得f(X o ) m .那么,我们称 m 是函数f (x)的最小值,记作f max (X ) m .【】奇偶性(4 )函数的奇偶性函数的性质定义图象 判定方法如果对于函数f(x)定义(1)利用定义(要域内任意一个x ,都有(a f (a))先判断定义域是否函数的ZTf( — x)= — f(x),那么函C-关于原点对称)奇偶性1 a"数f(x)叫做奇函数.(-a, f f-fi))(2)利用图象(图象关于原点对称)(3) 打"2”函数f (x) x - (a 0)的图象与性质x f (x)分别在(,a ]、[.a,)上为增函数,分别在 [.a ,0)、(0,、a ]上为减函数. 最大(小)值定义 ①一般地,设函数y f(x)的定义域为I ,如果存在实数 满足:(1)对于任意的x I ,都有 f(x) M ; (2)存在 x o I ,使得 f (X o ) M .那么,我们称 M②若函数f(x)为奇函数,且在x 0处有定义,则f(0) 0 .③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数)两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商) 是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性) ;④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幕函数、三角函数等各种基本初等函数的图象.①平移变换h 0,左移h个单位y f(x)h o,右移ihi个单位y f(x h)v f(x)k 0上移k个单位y f(x)ky f(x)k 0,下移|k|个单位y f (x) k②伸缩变换y f(x) 01缩伸y f( x)y f(x)缩y Af(x)③对称变换y f(x)y f(x)y f(x)y f( x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法.。
人教版高中数学必修1课件:第一章__集合与函数概念_章末归纳总结课件

①方程(※)有两不等实根⇔Δ>0,方程(※)有两相等
实根⇔Δ=0,方程(※)无实根⇔Δ<0,方程(※)有实数解
⇔Δ≥0.
②方程(※)有零根⇔c=0.
Δ≥0 ③ 方 程 (※) 有 两 正 根 ⇔ x1+x2>0
x1x2>0
⇔较小的根 x=
-b- 2a
Δ >0 (a>0)
⇔-f(02)b>a>00
.
(2)集合 A 是直线 y=x 上的点的集合,集合 B 是抛物线 y=x2 的图象上点的集合,∴A∩B 是方程组yy= =xx2 的解为坐 标的点的集合,∴A∩B={(0,0),(1,1)}.
2.熟练地用数轴与Venn图来表达集合之间的关系 与运算能起到事半功倍的效果.
[例2] 集合A={x|x<-1或x>2},B={x|4x+p<0}, 若B A,则实数p的取值范围是________.
当 a≠0 时,应有 a=1a,∴a=±1.故选 D.
二、函数的定义域、值域、单调性、奇偶性、最值 及应用
1.解决函数问题必须第一弄清函数的定义域
[ 例 1] 函 数 f(x) = x2+4x 的 单 调 增 区 间 为 ________.
[解析] 由x2+4x≥0得,x≤-4或x≥0,又二次函数u =x2+4x的对称轴为x=-2,开口向上,故f(x)的增区间为 [0,+∞).
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)

第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
【精华】人教版高中数学必修一--第一章-集合与函数概念--

【精华】人教版高中数学必修一第一章集合与函数概念一、集合的概念集合是数学中最基本的概念之一,它是某些指定对象的总体。
这些对象被称为集合的元素。
集合可以是有序的,也可以是无序的。
例如,自然数集合{1, 2, 3, }是无序的,而有序对集合{(1, 2), (2, 3), }是有序的。
集合的表示方法有两种:列举法和描述法。
列举法是将集合中的所有元素一一列出,用花括号{}括起来。
例如,集合{1, 2, 3}表示包含元素1、2、3的集合。
描述法是使用文字描述集合中元素的特征,例如,自然数集合可以表示为{所有大于0的整数}。
集合的基本运算包括交集、并集、差集、补集等。
交集是指两个集合共同拥有的元素组成的集合;并集是指两个集合所有元素组成的集合;差集是指一个集合中有而另一个集合中没有的元素组成的集合;补集是指一个集合中所有不属于另一个集合的元素组成的集合。
二、函数的概念函数是数学中另一个基本的概念,它描述了两个变量之间的依赖关系。
在函数中,一个变量被称为自变量,另一个变量被称为因变量。
函数的表示方法有三种:解析法、表格法和图像法。
解析法是使用数学公式来表示函数的方法,例如,y = x^2 表示一个二次函数。
表格法是使用表格来表示函数的方法,表格中的每一行都代表一个函数值。
图像法是使用图形来表示函数的方法,图形中的每个点都代表一个函数值。
函数的基本性质包括单调性、奇偶性、周期性等。
单调性是指函数在某个区间内是递增或递减的;奇偶性是指函数在自变量取相反数时,函数值也取相反数;周期性是指函数在一定区间内重复出现。
三、集合与函数的关系集合与函数有着密切的关系。
集合可以用来表示函数的定义域和值域,而函数可以用来描述集合中元素之间的关系。
例如,一个函数可以将一个集合中的元素映射到另一个集合中的元素,从而建立两个集合之间的对应关系。
在解决数学问题时,集合与函数的概念常常被结合起来使用。
例如,在求解函数的值域时,需要先确定函数的定义域,然后根据函数的性质来求解值域。
高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1

❖ 本节重点:函数的概念、定义域、值域的求 法.
❖ 本节难点:(1)函数概念的理解.
❖ (2)实际应用问题中函数的定义域和复合函数 定义域.
❖ (一)对函数y=f(x)涵义的理解,应明确以 下几点:
❖ ①“A,B是非空数集”,若求得自变量取 值范围为∅,则此函数不存在.
❖ ②定义域、对应法则和值域是函数的三要 素,实际上,值域是由定义域和对应法则 决定的,所以看两个函数是否相等,只要 看这两个函数的定义域与对应法则是否相 同.
❖ (1)当每辆车的月租金定为3600元时,能租 出多少辆车?
❖ (2)当每辆车的月租金定为多少元时,租赁
[解析] (1)当每辆车的月租金为 3600 元时,未租出的 车辆数为:(3600-3000)÷50=12,所以这时租出了 88 辆车.
(2)设每辆车的月租金为 x 元,则租赁公司的月收益为: f(x)=(100-x-530000)(x-150)-x-530000×50,整理得:f(x) =-5x02 +162x-2100=-510(x-4050)2+307050.所以当 x= 4050 元时,f(x)最大,其最大值为 307050.即当每辆车的月租 金为 4050 元时,租赁公司的月收益最大,最大值为 307050 元.
❖ [分析] (1)据函数的定义:“对于集合A中的 任意一个元素,在集合B中有唯一确定的元素 与之对应”进行判断.
❖ (2)给定函数的解析式,也就给定了由定义域 到值域的对应法则,只要将自变量允许值代 入,就可以求得对应的函数值.
[解析] (1)①由 x2+y2=2 得 y=± 2-x2,因此由它不能 确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个±1.
②由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 值与之 对应,故由它可以确定 y 是 x 的函数.
高中数学必修一第一章知识点

偶与偶
+加
奇
偶
—减
奇
偶
乘
偶
奇
偶
除
偶
奇
偶
注:“性质法”中的结论只有在两个函数的公共定义域内才成立。
第一章集合与函数概念重要知识点
一、集合有关概念
1.集合的含义:把一些元素组成的总体叫做集合。
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上最高的山
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合
注意:常用数集及其记法:
(2)奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)判断函数奇偶性的步骤
首先确定函数的定义域,并判断其是否关于原点对称;
确定f(-x)与f(x)的关系;
作出相应结论:;若f(-x) =-f(x),则f(x)是奇函数;
若f(-x) = f(x),则f(x)是偶函数.
②对应法则
③值域: 的取值范围
如果两个函数的定义域相同,并且对应关系完全一致,
那么这两个函数相等
3.区间的概念
区间的分类:
开区间: ,
闭区间: ,
半开半闭区间: ,或 ,分别表示为 ,
五.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.
人教版高中数学目录

3 . 1 指数与指数函数 3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ)
必修二
第一章 立体几何初步
1. 1 空间几何体 1 .2 点、线、面之间的位置关系
第二章 平面解析几何初步
2 . 1 平面真角坐标系中的基本公式 2 .2 直线方程 2 .3 圆的方程 2 .4 空间直角坐标系
3
人教版高的复合与二阶矩阵的乘 法
选修 3-3
第一讲 从欧氏几何看球面
第三讲 逆变换与逆矩阵
第四讲 向量
变换的不变量与矩阵的特征
第二讲 球面上的距离和角 第三讲 球面上的基本图形
选修 4-3
第四讲 球面三角形
选修 4-4
第五讲 球面三角形的全等
第一讲 坐标系
第六讲 球面多边形与欧拉公式
第三章 不等式
3.1 不等关系与不等式 3.2 一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组)与平面区域
1
3.3.2 简单的线性规划问题 3.4 基本不等式
人教版高中数学目录
第二章 推理与证明 2. 1 合情推理与演绎证明
选修 1-1
第一章 常用逻辑用语
必修 3
第一章 算法初步
1 . 1 算法与程序框图 1 .2 基本算法语句 1 .3 算法案例
阅读与思考 割圆术
第二章 统计
2 . 1 随机抽样 阅读与思考 一个著名的案例 阅读与思考 广告中数据的可靠性 阅读与思考 如何得到敏感性问题的诚实反应
2 . 2 用样本估计总体 阅读与思考 生产过程中的质量控制图
第一章 统计案例 第二章 推理与证明 第三章 数系的扩充与复数的引入 第四章 框图
高一 集合 与 函数 知识点小结

高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法0)【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作:f A B→.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b是两个实数,且a b<,满足a x b≤≤的实数x的集合叫做闭区间,记做[,]a b;满足a x b<<的实数x的集合叫做开区间,记做(,)a b;满足a x b≤<,或a x b<≤的实数x的集合叫做半开半闭区间,分别记做[,)a b,(,]a b;满足,,,x a x a x b x b≥>≤<的实数x的集合分别记做[,),(,),(,],(,) a a b b+∞+∞-∞-∞.注意:对于集合{|}x a x b<<与区间(,)a b,前者a可以大于或等于b,而后者必须a b<.(3)求函数的定义域时,一般遵循以下原则:①()f x是整式时,定义域是全体实数.②()f x是分式函数时,定义域是使分母不为零的一切实数.③()f x是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tany x=中,()2x k k Zππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x的定义域为[,]a b,其复合函数[()]f g x的定义域应由不等式()a g x b≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值③判别式法:若函数()y f x=可以化成一个系数含有y的关于x的二次方程2()()()0a y xb y xc y++=,则在()0a y≠时,由于,x y为实数,故必须有2()4()()0b y a yc y∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,a Ab B∈∈.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法o②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[,0)、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 作max ()f x M =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高中数学课本目录

新人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1集合1.2函数及其表示1.3函数(de)基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数(de)应用3.1函数与方程3.2函数模型及其应用必修2第一章空间几何体1.1空间几何体(de)结构1.2空间几何体(de)三视图和直观图1.3空间几何体(de)表面积与体积第二章点、直线、平面之间(de)位置关系2.1空间点、直线、平面之间(de)位置关系2.2直线、平面平行(de)判定及其性质2.3直线、平面垂直(de)判定及其性质第三章直线与方程3.1直线(de)倾斜角与斜率3.2直线(de)方程3.3直线(de)交点坐标与距离公式第四章圆与方程4.1圆(de)方程4.2直线、圆(de)位置关系4.3空间直角坐标系必修3第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样阅读与思考一个着名(de)案例阅读与思考广告中数据(de)可靠性阅读与思考如何得到敏感性问题(de)诚实反应2.2用样本估计总体阅读与思考生产过程中(de)质量控制图2.3变量间(de)相关关系阅读与思考相关关系(de)强与弱第三章概率3.1随机事件(de)概率3.2古典概型3.3几何概型必修4第一章三角函数1.1任意角和弧度制1.2任意角(de)三角函数1.3三角函数(de)诱导公式1.4三角函数(de)图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型(de)简单应用第二章平面向量2.1平面向量(de)实际背景及基本概念2.2平面向量(de)线性运算2.3平面向量(de)基本定理及坐标表示2.4平面向量(de)数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差(de)正弦、余弦和正切公式3.2简单(de)三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理探究与发现解三角形(de)进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业第二章数列2.1数列(de)概念与简单表示法2.2等差数列2.3等差数列(de)前n项和2.4等比数列2.5等比数列前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单(de)线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单(de)逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数(de)计算3.3导数在研究函数中(de)应用3.4生活中(de)优化问题举例选修1-2第一章统计案例1.1回归分析(de)基本思想及其初步应用1.2独立性检验(de)基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系(de)扩充与复数(de)引入3.1数系(de)扩充和复数(de)概念3.2复数代数形式(de)四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语命题及其关系充分条件与必要条件简单(de)逻辑联结词全称量词与存在量词第二章圆锥曲线与方程曲线与方程椭圆双曲线抛物线选修2-2第一章导数及其应用变化率与导数导数(de)计算导数在研究函数中(de)应用生活中(de)优化问题举例定积分(de)概念微积分基本定理定积分(de)简单应用第二章推理与证明合情推理与演绎推理直接证明与间接证明数学归纳法第三章数系(de)扩充与复数(de)引入数系(de)扩充和复数(de)概念复数代数形式(de)四则运算选修2-3第一章计数原理分类加法计数原理与分步乘法计数原理排列与组合二项式定理第二章随机变量及其分布离散型随机变量及其分布列二项分布及其应用离散型随机变量(de)均值与方差正态分布第三章统计案例回归分析(de)基本思想及其初步应用独立性检验(de)基本思想及其初步应用选修3-1数学史选讲第一讲早期(de)算术与几何一古埃及(de)数学二两河流域(de)数学三丰富多彩(de)记数制度第二讲古希腊数学一希腊数学(de)先行者二毕达哥拉斯学派三欧几里得与原本四数学之神──阿基米德第三讲中国古代数学瑰宝一周髀算经与赵爽弦图二九章算术三大衍求一术四中国古代数学家第四讲平面解析几何(de)产生一坐标思想(de)早期萌芽二笛卡儿坐标系三费马(de)解析几何思想四解析几何(de)进一步发展第五讲微积分(de)诞生一微积分产生(de)历史背景二科学巨人牛顿(de)工作三莱布尼茨(de)“微积分”第六讲近代数学两巨星一分析(de)化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式(de)发现二高次方程可解性问题(de)解决三伽罗瓦与群论四古希腊三大几何问题(de)解决第八讲对无穷(de)深入思考一古代(de)无穷观念二无穷集合论(de)创立三集合论(de)进一步发展与完善第九讲中国现代数学(de)开拓与发展一中国现代数学发展概观二人民(de)数学家──华罗庚三当代几何大师──陈省身选修3-3球面上(de)几何引言第一讲从欧氏几何看球面一平面与球面(de)位置关系二直线与球面(de)位置关系和球幂定理三球面(de)对称性第二讲球面上(de)距离和角一球面上(de)距离二球面上(de)角第三讲球面上(de)基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间(de)关系二、球面“等腰”三角形三球面三角形(de)周长四球面三角形(de)内角和第五讲球面三角形(de)全等第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体(de)欧拉公式三用球面多边形(de)内角和公式证明欧拉公式第七讲球面三角形(de)边角关系一球面上(de)正弦定理和余弦定理二用向量方法证明球面上(de)余弦定理1.向量(de)向量积2.球面上余弦定理(de)向量证明三从球面上(de)正弦定理看球面与平面四球面上余弦定理(de)应用──求地球上两城市间(de)距离第八讲欧氏几何与非欧几何一平面几何与球面几何(de)比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何(de)意义选修3-4对称与群引言第一讲平面图形(de)对称群一平面刚体运动1.平面刚体运动(de)定义2.平面刚体运动(de)性质二对称变换1.对称变换(de)定义2.正多边形(de)对称变换3.对称变换(de)合成4.对称变换(de)性质5.对称变换(de)逆变换三平面图形(de)对称群第二讲代数学中(de)对称与抽象群(de)概念一n元对称群Sn二多项式(de)对称变换三抽象群(de)概念1.群(de)一般概念2.直积第三讲对称与群(de)故事一带饰和面饰二化学分子(de)对称群三晶体(de)分类四伽罗瓦理论选修4-1几何证明选讲第一讲相似三角形(de)判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形(de)判定及性质1.相似三角形(de)判定2.相似三角形(de)性质四直角三角形(de)射影定理第二讲直线与圆(de)位置关系一圆周角定理二圆内接四边形(de)性质与判定定理三圆(de)切线(de)性质及判定定理四弦切角(de)性质五与圆有关(de)比例线段第三讲圆锥曲线性质(de)探讨一平行射影二平面与圆柱面(de)截线三平面与圆锥面(de)截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵(de)相等二二阶矩阵与平面向量(de)乘法(二)一些重要线性变换对单位正方形区域(de)作用第二讲变换(de)复合与二阶矩阵(de)乘法一复合变换与二阶矩阵(de)乘法二矩阵乘法(de)性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵(de)性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组(de)矩阵形式2.逆矩阵与二元一次方程组第四讲变换(de)不变量与矩阵(de)特征向量一变换(de)不变量——矩阵(de)特征向量1.特征值与特征向量2.特征值与特征向量(de)计算二特征向量(de)应用(de)简单表示2.特征向量在实际问题中(de)应用选修4-5不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式(de)基本性质2.基本不等式3.三个正数(de)算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式(de)解法第二讲讲明不等式(de)基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式(de)柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式选修4-6初等数论初步引言第一讲整数(de)整除一整除1.整除(de)概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余(de)概念2.同余(de)性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程(de)特解三多元一次不定方程第四讲数伦在密码中(de)应用一信息(de)加密与去密二大数分解和公开密钥选修4-7优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——法1.黄金分割常数2.黄金分割法——法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法(de)最优性五其他几种常用(de)优越法1.对分法2.盲人爬山法3.分批试验法4.多峰(de)情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果(de)分析4.正交表(de)特性二正交试验(de)应用选修4-9风险与决策引言第一讲风险与决策(de)基本概念一风险与决策(de)关系二风险与决策(de)基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策第二讲决策树方法第三讲风险型决策(de)敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下(de)马尔可夫型决策理论1.马尔可夫链(de)平稳分布2.平稳分布与马尔可夫型决策(de)长期准则3.平稳准则(de)应用案例。
高一数学必修一综合复习课件

函数图象广泛应用于解题过程中;利用数形结合解 题具有直观 明了 易懂的优点 在历届高考试题中; 常出现有关函数图象和利用图象解题的试题
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
1设集合A=x|y=x2;B=x;y|y=x2;则A∩B=________ ;
2设集合M=y|y=x2+1;x∈R;N=y|y=x+1;x∈R;则 M∩N=
A 0;1;0;2
B 0;1;0;2
C y|y=1或y=2
D y|y≥1
必修1 第一章 集合与函数的概念
必修1 第一章 集合与函数的概念
栏目导引
已知y=fx在定义域1;1上是减函数;且f1a<fa21;求a 的取值范围
解析: ∵f(x)是在定义域(-1,1)上的减函数,
-1<1-a<1,
∴-1<a2-1<1, 1-a>a2-1.
解得 0<a<1.
必修1 第一章 集合与函数的概念
栏目导引
函数的图象及应用
注意使用集合间的运算法则或运算思想;解决一些逻 辑关系较复杂的问题;例如运用补集思想解决问题等
必修1 第一章 集合与函数概念
正确理解一个集合;首先要注意这个集合的表示方法 ;然后看这个集合是有限集还是无限集;还要注意用 描述法表示的集合中的元素的属性 最后再运用集合 的运算性质转化为方程组或不等式组求解
答案: 1∅ 2D
必修1 第一章 集合与函数的概念
栏目导引
2 要充分注意集合元素的互异性
集合元素的互异性;是集合的重要属性;在解题中;集 合中元素的互异性常常忽略;从而导致解题的失败 下面再结合例题进一步讲解;以强化对集合元素互异 性的认识
高中数学第一章集合与函数概念1.1.3集合的基本运算第1课时并集、交集课件新人教A版必修1

1.已知集合M={1,2,3,4},N={-2,2},下列结论成立的
是( )
A.N⊆M
B.M∪N=M
C.M∩N=N
D.M∩N={2}
【答案】D
【解析】∵-2∈N,但-2∉M,∴A,B,C三个选项均
不对.
2.已知集合S={(x,y)|y=1,x∈R},T={(x,y)|x=1,
y∈R},则S∩T=( )
A.∅
B.{1}
C.(1,1)
D.{(1,1)}
【答案】D
【解析】集合S表示直线y=1上的点,集合T表示直线x=1
上的点,S∩T表示直线y=1与直线x=1的交点,故选D.
3.若集合A={x|-2<x<5},B={x|x≤-1或x≥4},则A∪B =________,A∩B=________.
【答案】R {x|4≤x<5或-2<x≤-1} 【解析】借助数轴可知A∪B=R,A∩B={x|4≤x<5或-2 <x≤-1}.
类别
自然语言
符号语言
由属__于__集合 A_且__属__于_集
合 B 的所有元素组成的 A∩B=
交集 集合,称为 A 与 B 的交 __{_x_|x_∈__A_,____ 集,记作_A_∩_B___(读作 __且__x_∈__B_}____
“_A_交__B__”)
图形语言
2.并集与交集的运算性质
x,y43xx++y2=y=6,7
={(1,2)}.
【方法规律】求交集运算应关注两点: (1)求交集就是求两集合的所有公共元素形成的集合. (2)利用集合的并、交求参数的值时,要检验集合元素的互 异性.
2.已知M={1,2,a2-3a-1},N={-1,a,3},M∩N= {3},求实数a的值.
高中数学第一章集合与函数概念1.1.3集合的基本运算第一课时并集、交集课件新人教A版必修1

(B){x|x<3}
(C){x|0<x<3} (D){x|x<0或x>3}
C)
5.(集合间的关系及运算)若A⊆B则A∩B= 答案:A B
,A∪B=
.
课堂探究·素养提升
题型一 集合的并集、交集的简单运算 【例1】 (1)(202X·全国Ⅰ卷)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B 等于( ) (A){1,3} (B){3,5} (C){5,7} (D){1,7}
又A={1,2,3},所以A∪B={0,1,2,3}.
故选C.
【备用例1】 满足M∪N={a,b}的集合M,N共有( ) (A)7组 (B)8组 (C)9组 (D)10组
解析:满足M∪N={a,b}的集合M,N有:
M= ,N={a,b};
M={a},N={b}; M={a},N={a,b}; M={b},N={a}; M={b},N={a,b};
(1)因为 A∩B=B,所以 B⊆ A,B= ,{0},{2},{0,2}. 当 B= 时,Δ=4a2-4(a2-a)=4a<0,所以 a<0;
当
B={0}或{2}时,则
4a 0,
a
2
a
0
⇒
a=0,或
4a 0
4
4a
a
2
a
0
无解,所以
a=0;
B={0,2},则
a2 a 4 4a
变式探究2:若本例题中将A∪B=A,改为A∩B=A,其他条件不变,求实数a的值.
解:因为 A={1,2},A∩B=A,所以 A⊆ B. 又 B={x|x2-ax+a-1=0}. 所以 B 中含元素 1,2,即 1,2 是方程 x2-ax+a-1=0 的两根,
人教版高中数学必修一第一章知识点

第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是aM,或者aM,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图AB(1)AA子集B (或A)A中的任一元素都属于B(2)A(3)若AB且BC,则AC(4)若AB且BA,则ABA(B)BA或真子集AB(或BA)AB,且B中至少有一元素不属于AA(A为非空子集)(1)(2)若AB且BC,则ACBA集合相等AB A中的任一元素都属于B,B中的任一元素都属于A(1)AB(2)BAA(B)n个子集,它有2n1个真子集,它有2n1个非空子集,(7)已知集合A有n(n1)个元素,则它有2n它有22非空真子集. (8)交集、并集、补集1【1.1.3】集合的基本运算名称记号意义性质示意图AB 交集{x|x A,且(1)AAA(2)AAB(3)ABAxB}ABBAB 并集{x|x A,或(1)AAA(2)AAAB(3)ABAxB}ABB1A(e U A)2()AeAUU补集e U A{x|xU,且xA} 痧U(A B)(U A)(?U B)痧U(AB)(U A)(?U B)【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x|a(a0){x|axa}|x|a(a0)x|xa或xa}把axb看成一个整体,化成|x|a,|axb|c,|axb|c(c0)|x|a(a0)型不等式来求解(2)一元二次不等式的解法判别式24bac000二次函数2(0)yaxbxcaO的图象一元二次方程20(0)axbxcax1,22bb4ac2abxx122a无实根(其中x1x2)的根20(0) axbxca的解集b{x|xx或xx2}{x|x}12aR 220(0)axbxca的解集{x|xxx}12〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:AB.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且ab,满足a xb的实数x的集合叫做闭区间,记做[a,b];满足axb的实数x的集合叫做开区间,记做(a,b);满足a xb,或axb的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,xa,xb,xb的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|axb}与区间(a,b),前者a可以大于或等于b,而后者必须ab.(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤ytanx中,()xkkZ.2⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式ag(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数yf(x)可以化成一个系数含有y的关于x的二次方程2a(y)xb(y)xc(y)0,则在a(y)0时,由于x,y为实数,故必须有byaycy,从而确定函数的值域或最值.2()4()()0④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作f:AB.②给定一个集合A到集合B的映射,且aA,bB.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的定义图象判定方法性质 如果对于属于定义域I 内某(1)利用定义个区间上的任意两个自变量 的值x2,当x . 1、x 1.<.x .2.时,都y y=f(X) f(x)2(2)利用已知函数的 单调性有f .(x ...).<.f(.x ...).,那么就说 12 f(x)在这个区间上是增函数. ...f(x)1(3)利用函数图象(在 某个区间图o x 1x 2x 象上升为增)函数的(4)利用复合函数 单调性(1)利用定义如果对于属于定义域I 内某yy=f(X)(2)利用已知函数的个区间上的任意两个自变量 11、x .<.x .的值x2,当x .2.时,都 有f .(x ..12.).,那么就说f(x) 1f(x) 2单调性 (3)利用函数图象(在 某个区间图f(x)在这个区间上是减函数. ...o xx 12x象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为 增函数,减函数减去一个增函数为减函数.③对于复合函数yf[g(x)],令ug(x),若yf(u)为增,ug(x)为增,则yf[g(x)]为增;若yf(u)为减,ug(x)为减,则y f[g(x)]为增;若yf(u)为 增,ug(x)为减,则y f[g(x)]为减;若yf(u)为减,ug(x)为增,则yyf[g(x)]为减.a(2)打“√”函数()(0)fxxax的图象与性质 f(x)分别在(,a ]、[a ,)上为增函数,分别在ox[a,0)、(0,a]上为减函数.(3)最大(小)值定义①一般地,设函数yf(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2)存在x I,使得f(x0)M.那么,我们称M是函数f(x)的最大值,记作0f max(x)M.5②一般地,设函数yf(x)的定义域为I,如果存在实数m满足:(1)对于任意的xI,都有f(x)m;(2)存在x0I,使得f(x0)m.那么,我们称m是函数f(x)的最小值,记作f max(x)m.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的定义图象判定方法性质如果对于函数f(x)定义域内(1)利用定义(要先任意一个x,都有.f(.-.x..)=.-.判断定义域是否关于f(x)....,那么函数f(x)叫做奇.函.原点对称)数..(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内(1)利用定义(要先任意一个x,都有f(-.x..)=.f.(x.)..,..判断定义域是否关于那么函数f(x)叫做偶.函.数..原点对称)(2)利用图象(图象关于y轴对称)②若函数f(x)为奇函数,且在x0处有定义,则f(0)0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换yfxyfxh()h0,h()左移个单位右移|个单位h0,h|yfxyfxk()kk()0,上移个单位下移|个单位k0,k|变换②伸缩01,伸yf(x)yf(x)1,缩6yfxyAfx()0A1,缩()A1,伸③对称变换x轴yf(x)y轴yf(x)yf(x)yf(x)原点直线1yxyf(x)yf(x)yf(x)yf(x)去掉轴左边图象yyf(x)yf(|x|)保留y轴右边图象,并作其关于y轴对称图象保留轴上方图象yfxyfx()x|()|将轴下方图象翻折上去x(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.7。
高中数学必修一最全知识点汇总

高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
高中数学必修1概念

高中数学必修1概念第一章、集合与函数概念1.1.1集合的含义与表示1. 元素:一般地,我们把研究对象统称为元素。
元素常用小写字母a,b,c,…表示。
2. 集合:把一些元素组成的总体叫做集合,集合通常用大写字母A , B , C ,…表示。
集合依据所含元素的个数可分为有限集和无限集。
【注意:理解集合的定义要注意以下五点:⑴注意组成集合的对象的广泛性,凡是看得见的、摸得着的、想得到的任何事物都可以作为组成集合的对象。
⑵集合是一个原始的、不加定义的概念,如同点、直线、平面等也都是不加定义的原始概念一样,要形象地理解,而不必记忆。
⑶集合是一个整体,已暗含“所有”、“全都”、“全体”的含义,因此一些对象一旦组成了集合,那么这个集合就是这些对象的全体,而非个别对象,⑷构成集合的对象必须是“确定”的,其中“确定”是指构成集合的对象具有非常明确的特征,这个特征不是模棱两可的。
⑸集合中的元素是互不相同的,即相同的元素归入一个集合时,该元素只能出现一次。
】3. 元素与集合的关系(有两种)⑴属于关系:如果a是集合A的元素,就说a属于集合A,记作a∈A,读作a属于集合A⑵不属于关系:如果a不是集合A的元素,就说a不属于集合A,记作a∉A,读作a不属于集合A。
【注意:对于元素与集合的关系要从以下四个方面理解:⑴a∈A与a∉A取决于a是不是集合A中的元素,根据集合中元素的确定性,可知对任何a与A,在a∈A与a∉A这两种情况中必有一种且只有一种成立。
⑵集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素必须符合条件。
⑶符合∈、∉是表示元素与集合之间的关系的,不能用来表示集合与集合之间的关系。
⑷∈、∉的开口方向向着集合。
4. 集合中元素的三个特性:⑴确定性:是指集合中的元素是确定的,即任何一个对象都能明确它是或不是某个集合的元素,两者必居其一,它是判断一组对象是否形成集合的唯一标准。
⑵互异性:是指给定一个集合的元素中,任何两个元素都是不同的,因而在同一个集合中,不能重复出现同一个元素,元素中含参数的集合运算题,最终结果务必检验元素的互异性,利用互异性将不适合题意的参数值舍掉。
高中数学集合与函数概念知识点总结

高中数学集合与函数概念知识点总结第一章集合与函数概念1.1.1集合的含义与表示一、集合的含义我们先看一些实例:①1~20以内的所有质数(素数);有限集②到直线 l 的距离等于定长 d 的所有的点;③全体自然数;无限集④方程 x2+3x+2=0 的所有实数根;⑤某中学2019年9月入学的所有高一新生.分别归纳概括出它们具有什么共同特征?一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫做集合(简称为集).通常用大写的拉丁字母 A,B,C,…表示集合,小写的拉丁字母 a,b,c ,…表示集合中的元素.注意:几种特殊的数集问题:如何理解“把一些元素组成的总体叫做集合”,这些集合里的元素必须具备什么特性?二、集合中元素的特性先思考以下两个问题:① 高一级身高较高的同学,能否构成集合? 否② 高一级身高160cm以上的同学,能否构成集合? 能③ 2, 4, 2 这三个数能否组成一个集合?否1.确定性:集合中的元素必须是确定的。
即确定了一个集合,任何一个元素是不是这个集合的元素也就确定了。
(具有某种属性)如:高一级身高160cm以上的同学组成的集合.2.互异性:集合中的元素是互异的。
即集合元素是没有重复现象的。
(互不相同)如:2, 4, 2 这三个数不能组成一个集合,但2,4可组成集合.3.无序性:集合中的元素是不讲顺序的。
即元素完全相同的两个集合,不论元素顺序如何,都表示同一个集合。
(不考虑顺序)如:集合A:大西洋,太平洋,印度洋组成的集合集合B:印度洋,大西洋,太平洋组成的集合集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合相等.三、元素与集合的关系高一级所有的同学组成的集合记为A, a是高一(7)班的同学,b是高二(7)班的同学,那么a与A,b与A之间各自有什么关系?四、集合的表示(1)自然语言表示法1~20以内的质数组成的集合(2)列举法例如,地球上四大洋组成的集合:{太平洋,大西洋,印度洋,北冰洋}例1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程 x2=x 的所有实数根组成的集合;(3)由1~20以内既能被2整除,又能被3整除的所有自然数组成的集合.解:(1)设小于10的所有自然数组成的集合为A,则A={0,1,2,3,4,5,6,7,8,9}(2)设方程 x2=x 的所有实数根组成的集合为B,则B={0,1}(3)设所求集合为C,则C={6,12,18}集合的分类:有限集,无限集:你能用列举法表示不等式 x -7< 3 的解集吗?无限集(3).描述法:用集合所含元素的共同特征表示集合的方法称为描述法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、集合的定义与表示
1、通常,我们把研究的对象称为元素,而某些拥有共同特征的元素所组 成的总体叫做集合。并用花括号{}括起来,用大写字母带表一个集合,其 中的元素用逗号分割。
2、集合有三个特征:确定性、互异性和无序性。就是根据这三个特征来 判断是否为一个集合。
讨论1:下列对象能构成集合吗?为什么? 1、著名的科学家 2、1,2,2,3这四个数字 3、我们班上的高个子男生
讨论2:集合{a,b,c,d}与{b,c,d,a}是同一个集合吗?
三、数集的介绍和集合与元素的关系表示
1、常见数集的表示
N:自然数集(含0)即非负整数集
N+或N*:正整数集(不含0)
Z:
整数集
Q: 有理数集
R:
实数集
2、集合与元素的关系(属于∈或不属于 )
若一个元素m在集合A中,则说 m∈A,读作“元素m属于集合A” 否则,称为mA,读作“元素m不属于集合A。
练习题
1、直线y=x上的点集如何表示?
x+y=2 2、方程组
x-y=1
的解集如何表示?
3、若{1,a}和{a,a2}表示同一个集合, 则a的值不能为多少?
集合间的基本关系
实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系, 你会想到集合之间的什么关系? 观察下面几个例子,你能发现两个集合之间的关系吗?
高中数学课件
人教版必修一精品ppt
第一章:集合与函数
第一节:集合
集合的含义与表示
一、请关注我们的生活,会发现………
1、高一(9)班的全体学生:A={高一(9)班的学生} 2、中国的直辖市:B={中国的直辖市} 3、2,4,6,8,10,12,14:C={ 2,4,6,8,10,12,14} 4、我国古代的四大发明:D={火药,印刷术,指南针,造纸术} 5、2004年雅典奥运会的比赛项目:E={2008年奥运会的球类项目}
例如:1∈N, -5 ∈ Z, Q 1.5 N
四、集合的表示方法
1、列举法
就是将集合中的元素一一列举出来并放在大括号内表示集合的方法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
例如:book中的字母组成的集合表示为:{b,o,o,k}{b,o,k} 一次函数y=x+3与y=-2x+6的图像的交点组成的集合。{1,4{}(1,4 )}
6、已知A {x | x 2 3x 2 0},B {x | x 2 ax a 1 0}若A B A,求实数a的值.
7、设集合 A {x | 2 x 1} {x | x 1},B {x | a x b}若A B {x | x 2}, A B {x | 1 x 3},求a,b的值. (解得a 1,b 3)
2、描述法
就是用确定的条件表示某些对象是否属于这个集合的方法。其一般示为:A={x|x是 book中的字母} 所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z} 所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
注意:1、中间的“|”不能缺失; 2、不要忘记标明x∈R或者k∈Z,除非上下文明确表示 。
A
CB
2,3
-1,1
-2
交集的运算性质:
(1) A A A (2)A (3)A B B A (4)A B A, A B B (5)A B 则 A B A
思考题:如何用集合语言描述?
设平面内直线l1上的点的集合为L1,直线l2 上点的集合为L2,试用集合 的运算表示l1 ,l2的位置关系.
练习题
1、下列命题: 重点考察对空集的理解!
(1)空集没有子集;
(2)任何集合至少有两个子集;
(3)空集是任何集合的真子集;
(4)若 A,则A .其中正确的有(
)
A.0个
B.1个 C.2个
D.3个
2.设x ,y
R,A
{(x,y) |
y
-
3
x
-
2},B
{(x,y) |
y x
-
3 2
1},
则A,B的关系是 ______.
如果两个集合的元素完全相同,则它们相等。
例:集合A={x|x为小于5的素数},集合A={x ∈ R|(x-1)(x-3)=0},这两 个集合相等吗。
五、集合的分类
根据集合中元素个数的多少,我们将集合分为以下两大类: 1、有限集:含有有限个元素的集合称为有限集特别,不含任何元素的集 合称为空集,记为 ,注意:不能表示为{}。 2.无限集:若一个集合不是有限集,则该集合称为无限集
4、已知A {x | x 2 px 2 0},B {x | x 2 qx r 0}且A B {2,1,5}, A B {2},求p,q,r的值. (解得 : p 1, q 3, r 10) 5、设A {4,2a 1,a2},B {a 5,1 a,9},已知A B {9},求a的值,并求出A B .
设A、B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合 A中的任何一个元素x,在集合B中都有唯一确定的元素y与之相对应,那么就称 对应f:A→B为集合A到集合B的一个映射。
国家
首都
中国 美国 韩国 日本
北京 华盛顿 首尔 东京
因此,函数是映射的一 种特殊形式
三、函数的三种表示方法
解析法,图像法,列表法。详见课本P19页。
-1 1 2 3
并集的运算性质:
(1) A A A (2) A A (3) A B B A (4) A A B, B A B, A B A B (5) A B则A B B
注意:计算并集和交集的时候尽可能的转化为图像,减少犯错的几率,常用 的图像有Venn图,数轴表示法,坐标表示法。尤其是涉及到不等式和坐标点 的时候。
四、开区间、闭区间和半开半闭区间
实数R的区间可以表示为(- ∞ ,+ ∞ )
★深入理解函数表示方法的解析法
五、着重强调的几个问题及考试陷阱
1、函数是高中数学乃至大学数学中最为重要的组成部分,大部分的章节都会与
函数进行穿插出题。
2、不管是映射还是函数,都是唯一确定的对应,即对于A中的元素有且仅有一
6、设集合A {x | x2 4x 0},B {x | x2 2(a 1)x a2 - 1 0,a R}, 若B A,求实数a的值.
7、判断下列表示是否正确:
(1)a {a}; (2) {a} ∈{a,b};
(3){a,b} {b,a}; (4){-1,1}{-1,0,1}
(5)0;
练习题
1、判断正误 (1)若U={四边形},A={梯形}, 则CUA={平行四边形} (2)若U是全集,且AB,则CUACUB (3)若U={1,2,3},A=U,则CUA=
2. 设集合A={|2a-1|,2},B={2,3,a2+2a-3},且CBA={5},求实数a的值。 3. 已知全集U={1,2,3,4,5},非空集A={xU|x2-5x+q=0},求CUA及q的值。
因此,函数就是表达了两个变量之间变化关系的一个表达式。其准确定义 如下:
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的 任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集 合A到集合B的一个函数(function),记作y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值(因变量),函数值的集合{f(x)|x ∈A}叫做函数的值域。而对应 的关系f则成为对应法则,则上面两个例子中,对应法则分别是“乘以10再加20” 和“平方后乘以4.9”
3.已知A {x | 2 x 5},B {x | a 1 x 2a 1},B A, 求实数 a的取值范围 .
4、补集与全集
4、设集合A={x|1≤x≤3},B={x|x-a≥0},若A是B的真子集,求实数 a的取值范围。
5、设A={1,2},B={x|xA},问A与B有什么关系?并用列举法写出B?
(6) {-1,1}.
集合与集合的运算
1、交集
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集, 记作A∩B,即
A∩B={x|x∈A,且x∈B} A∩B可用右图中的阴影部分来表示。
U A A∩B B
其实,交集用通俗的语言来说,就是找两个集中中共同存在的元素。
例题: 1、A={-1,1,2,3},B={-1,-2,1},C={-1,1};
A∪B = {x|x∈A,或x∈B}
A∪B可用右图中的阴影部分来表示
U
A
B
其实,并集用通俗的语言来说,就是把两个集合的元素合并到一起。所以交 集是“求同”,并集是存异。 例题: 设集合A={x|-1<x<2},集合B={x|1<x<3} 求A∪B.
解: A∪B={x|-1<x<2} ∪ {x|1<x<3} ={x|-1<x<3}
如图,阴影部分即CSA.
S A
如果集合S包含我们所要研究的各个集合,这时集合S看作一个全集, 通常记作U。
{ 例题、不等式组
2x-1>0 3x-6 0
的解集为A,U=R,试求A及CUA,并把它们
分别表示在数轴上。
思考:
1、CUA在U中的补集是什么?
2、U=Z,A={x|x=2k,k∈Z}, B={x|x=2k+1,K∈Z},则CUA=___, CUB=____。
个B中的元素与其相对应。深入的理解这句话就可以得到:可以多对一,而不能
一对多。
平方
√ 1
-1
1
2
4
-2
开方
×2
4