第4章-第2课时:平面向量基本定理及坐标表示

合集下载

第四章 第二节 平面向量的基本定理及坐标表示

第四章  第二节  平面向量的基本定理及坐标表示

个正交基底{e1,e2},e1,e2分别是与x轴和y轴同方向
的 单位向量,这个基底也叫做直角坐标系xOy的基底.
返回
在坐标平面xOy内,任作一向量 AB =a,由平面向量基 本定理知,存在唯一的有序实数对(a ,a )使得 a=a1e1+
1 2
a2e2,(a1,a2) 就是向量a在基底{e1,e2}下的坐标,即a = (a1,a2),显然,0= (0,0) ,e1=(1,0),e2= (0,1) . (2)在直角坐标系中,一点A的位置被点A的位置向量 OA 所唯一确定.设A(x,y),则 OA =xe1+ ye2=(x,y) .
第 四 章 平 面 向 量、 数 系 的 扩 充 与 复 数 的 引 入
第二 节 平 面 向 量 的 基 本 定 理 及 坐 标 表示
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
提 能 力
返回
[备考方向要明了]
考 什 么 1.了解平面向量基本定理及其意义. 2.掌握平面向量的正交分解及坐标表示.
1 n ∴m= ,n=-1.∴m=-4. 4
答案:-4
返回
返回
1.平面向量基本定理的理解 (1)平面内任意两个不共线的向量都可以作为这个平面的 基底.单位正交基底是进行向量运算最简单的一组基 底.
(2)平面内任一向量都可以表示为给定基底的线性组合,
并且表示方法是唯一的.但不同的基底表示形式是 不同的. (3)用基底表示向量的实质是向量的线性运算.
3.会用坐标表示平面向量的加法、减法与数乘运算.
4.理解用坐标表示的平面向量共线的条件.
返回
怎 么 考 1.平面向量基本定理的应用及坐标表示下向量共线条件的 应用是重点. 2.向量的坐标运算可能单独命题,更多的是与其他知识点

第四章第二节平面向量的基本定理及坐标表示

第四章第二节平面向量的基本定理及坐标表示
返回
uuur 4.已知A(-2,4),B(3,-1),C(-3,-4).设 AB=a,
uuur
uur
uuur
uuur
BC =b,CA=c,且CM =3c,CN =-2b.
(1)求3a+b-3c;
(2)求满足a=mb+nc的实数m,n; uuuur
(3)求M、N的坐标及向量 MN 的坐标.
返回
解:由已知得a=(5,-5),b=(-6,-3),c=(1,8). (1)3a+b-3c=3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42). (2)∵mb+nc=(-6m+n,-3m+8n), ∴- -63mm+ +n8n==5, -5, 解得mn==--11.,
返回
(2)设
uuur OA
=xi+yj,则向量
uuur OA
的坐标(x,y)就是终点A
的坐
标,即若
uuur OA
=(x,y),则A点坐标为
(x,y)
,反之亦成
立.(O是坐标原点)
二、平面向量坐标运算
1.向量加法、减法、数乘向量及向量的模
设a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b=(x1-x2,y1-y2) , λa= (λx1,λy1) .
返回
[巧练模拟]—————(课堂突破保分题,分分必保!)
5.(2011·北京西城区期末)已知点 A(-1,1),点 B(2,y),向量
uuur a=(1,2),若 AB∥a,则实数 y 的值为
()
A.5
B.6
C.7
D.8
uuur
uuur
解析:因为 AB=(3,y-1),a=(1,2), AB∥a,

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3

2015年高考数学(理)一轮总复习课件:第四章+平面向量与复数 第2节 平面向量的基本定理及坐标运算

2015年高考数学(理)一轮总复习课件:第四章+平面向量与复数 第2节 平面向量的基本定理及坐标运算
第二十五页,编辑于星期五:十一点 五十七分。
变式训练 3 (1)(2013·皖南八校高三第三次联考)已知向
量 a=(-1,2),b=(2,0)、c=(1,-1),若向量(λa+b)∥c,
则实数 λ 为( )
A.-2
B.-1
C.-13
D.-23
(2)若平面向量 a,b 满足|a+b|=1,a+b 平行于 x 轴,
-3)=- 3×(-1, 3),故向量 c 可以是(-1, 3)
【答案】 D
第二十二页,编辑于星期五:十一点 五十七分。
考向 3 平面向量共线的坐标表示
【例 3】 (1)已知向量O→A=(3,-4),O→B=(6,-3),O→C
=(m,m+1),若A→B∥O→C,则实数 m 的值为( )
A.-32
4.(2013·辽宁高考)已知点 A(1,3),B(4,-1),则与向量
A→B同方向的单位向量为( )
A.35,-45
B.45,-35
C.-35,45
D.-45,35
【解析】 A→B=(3,-4),则与其同方向的单位向量 e
=|AA→→BB|=15(3,-4)=35,-45. 【答案】 A
第二十九页,编辑于星期五:十一点 五十七分。
三个结论 1.若 a 与 b 不共线,λa+μb=0,则 λ=μ=0. 2.已知O→A=λO→B+μO→C(λ,μ 为常数),则 A,B,C 三 点共线的充要条件是 λ+μ=1. 3.平面向量的基底中一定不含零向量.
B.-14
1 C.2
3 D.2
(2)(2012·重庆高考改编)设 x,y∈R,向量 a=(x,1),b=
(1,y),c=(2,-4),且 a⊥c,b∥c,则|a+b|=________.

第四章 第二节 平面向量的基本定理及坐标表示

第四章  第二节  平面向量的基本定理及坐标表示

一、选择题1.设平面向量a =(-1,0),b =(0,2),则2a -3b =( )A .(6,3)B .(-2,-6)C .(2,1)D .(7,2)解析:2a -3b =(-2,0)-(0,6)=(-2,-6).答案:B2.(2012·黔西南州模拟)已知向量a =(1,1),b =(2,x ),若a +b 与4b -2a 平行,则实数x 的值是( )A .-2B .0C .1D .2解析:∵a +b =(3,1+x ),4b -2a =(6,4x -2),又a +b 与4b -2a 平行,∴3(4x -2)=6(1+x ),解得x =2.答案:D3.(2012·宁德模拟)已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32b B.12a -32b C .-32a -12b D .-32a +12b 解析:设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1).∴⎩⎪⎨⎪⎧ -1=λ+μ,2=λ-μ.∴⎩⎨⎧ λ=12,μ=-32.∴c =12a -32b . 答案:B4.(2012·嘉兴模拟)已知a ,b 是不共线的向量,AB =λa +b ,AC =a +μb ,λ,μ∈R ,那么A 、B 、C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:∵A 、B 、C 三点共线,∴存在实数t ,满足AB =t AC ,即λa +b =ta +μtb ,又a ,b 是不共线的向量,∴⎩⎪⎨⎪⎧λ=t ,1=μt ,∴λμ=1. 答案:D5.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A.14a +12b B.23a +13b C.12a +14b D.13a +23b 解析:由已知得DE =13EB , 又△DEF ∽△BEA ,∴DF =13AB . 即DF =13DC .∴CF =23CD , ∴CF =23CD =23(OD -OC ) =23⎝⎛⎭⎫12b -12a =13b -13a , ∴AF =AC +CF =a +13b -13a =23a +13b . 答案:B二、填空题6.(2011·湖南高考)设向量a ,b 满足|a |=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为________.解析:设a =(x ,y ),x <0,y <0,则x -2y =0且x 2+y 2=20,解得x =4,y =2(舍去),或者x =-4,y =-2,即a =(-4,-2).答案:(-4,-2)7.设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a 、b 的线性组合,即e 1+e 2=________a +________b .解析:∵e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2),∴⎩⎪⎨⎪⎧m -n =1,2m +n =1,∴m =23,n =-13. 答案:23 -13三、解答题8.已知点A (-1,2),B (2,8)以及AC =13AB ,DA =-13BA ,求点C ,D 的坐标和CD 的坐标.解:设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2),由题意得AC =(x 1+1,y 1-2),AB =(3,6),DA =(-1-x 2,2-y 2),BA =(-3,-6).因为AC =13 AB ,DA =-13BA , 所以有⎩⎪⎨⎪⎧ x 1+1=1y 1-2=2和⎩⎪⎨⎪⎧ -1-x 2=1,2-y 2=2, 解得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=-2,y 2=0. 所以点C ,D 的坐标分别是(0,4),(-2,0),从而CD =(-2,-4).9.已知A (1,1)、B (3,-1)、C (a ,b ).(1)若A 、B 、C 三点共线,求a 、b 的关系式;(2)若AC =2AB ,求点C 的坐标.解:(1)由已知得AB =(2,-2),AC =(a -1,b -1),∵A 、B 、C 三点共线,∴AB ∥AC .∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,解得⎩⎪⎨⎪⎧a =5,b =-3. ∴点C 的坐标为(5,-3).10.(2012·东营模拟)已知P 为△ABC 内一点,且3AP +4BP +5CP =0.延长AP 交BC 于点D ,若AB =a ,AC =b ,用a 、b 表示向量AP 、AD .解:∵BP =AP -AB =AP -a ,CP =AP -AC =AP -b ,又3AP +4BP +5CP =0,∴3AP +4(AP -a )+5(AP -b )=0,化简,得AP =13a +512b .设AD =t AP (t ∈R),则AD =13ta +512tb .① 又设BD =k BC (k ∈R),由BC =AC -AB =b -a ,得BD =k (b -a ).而AD =AB +BD =a +BD , ∴AD =a +k (b -a )=(1-k )a +kb .②由①②,得⎩⎨⎧ 13t =1-k ,512t =k .解得t =43. 代入①,有AD =49a +59b .。

人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)

人教版高中数学必修四平面向量的基本定理及坐标表示课件 (3)
互相垂直
填要点·记疑点
单位向量
xi+yj
有序数对(x,y)
a=(x,y)
2.平面向量的坐标运算(1)若a=(x1,y1),b=(x2,y2),则a+b= ,即两个向量和的坐标等于这两个向量相应坐标的和.
(x,y)
(x2-x1,y2-y1)
(x1+x2,y1+y2)
反思与感悟 选定基底之后,就要“咬定”基底不放,并围绕它做中心工作,千方百计用基底表示目标向量.要充分利用平面几何知识,将平面几何知识中的性质、结论与向量知识有机结合,具体问题具体分析,从而解决问题.
反思与感悟 用基底表示向量的关键是利用三角形或平行四边形将基底和所要表示的向量联系起来.解决此类题时,首先仔细观察所给图形.借助于平面几何知识和共线向量定理,结合平面向量基本定理解决.
跟踪训练3 如图,已知△ABC是等边三角形.
解 (1)∵△ABC为等边三角形,∴∠ABC=60°.
如图,延长AB至点D,使AB=BD,
∵∠DBC=120°,
解 ∵E为BC的中点,∴AE⊥BC,
当堂测·查疑缺
1
2
3
4
1.等边△ABC中, 与的夹角是( )A.30° B.45° C.60° D.120°
D
1
2
3
4
2.设e1、e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;④e1+e2与e1-e2.其中能作为平面内所有向量的一组基底的序号是_________.(写出所有满足条件的序号)解析 对于③4e2-2e1=-2e1+4e2=-2(e1-2e2),∴e1-2e2与4e2-2e1共线,不能作为基底.
思考2 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如图,向量i、j是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a|=4,以向量i、j为基底,向量a如何表示?

高二数学课件:第四章 第二节 平面向量的基本定理及向量坐标运算

高二数学课件:第四章 第二节 平面向量的基本定理及向量坐标运算
θ 或∠AOB 则向量a与b的夹角是__________. OA =a,OB b,
0°≤θ ≤180° ②范围:向量a与b的夹角的范围是_____________.
同向 ③当θ =0°时,a与b_____. 反向 当θ =180°时,a与b_____. 垂直 当θ =90°时,a与b_____.
【即时应用】
(1)已知a=(-1,3),b=(x,-1),且a、b共线,则x=_______. (2)设a=(1,1),b=(-1,0),若向量λ a+b与向量c=(2,1)共线,则 λ =_________.
【解析】(1)∵a∥b,∴(-1)2-3x=0,∴x= . (2)∵λa+b=λ(1,1)+(-1,0)=(λ-1,λ), 又∵(λa+b)∥c,∴(λ-1)·1-2λ=0,∴λ=-1.
两向量a=(x1,y1),b=(x2,y2)相等的充要条件是它们的对应坐标
x1 x 2 分别相等,即 利用向量相等可列出方程组求其中的未 , y y 2 1
知量,从而解决求字母取值、求点的坐标及向量的坐标等问题.
uuu r uuu r 【例2】(1)(2012·广东高考)若向量 BA 2,3 ,CA 4,7 ,
∴ a d c, 代入②
方法二: 设 AB a,AD b, 因为M,N分别为CD,BC的中点,
1 1 所以 BN b, DM a, 2 2 2 1 a (2d c) c b a 3 2 ⇒ 因而 b 2 (2c d ) d a 1 b 3 2 4 4 2 2 即 AB d c, AD c d. 3 3 3 3
p q 3 p 1 ∴ , ∴ . 2p q 2 q 4 1 答案:(1)( 3 , (2)(5,4) ) 2 2

平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示全文共四篇示例,供读者参考第一篇示例:平面向量是我们在高中数学学习中接触到的一个重要知识点,它在几何学和代数学中都有着重要的作用。

平面向量本质上是有大小和方向的量,它可以用箭头表示出来,箭头的长度表示向量的大小,箭头的方向表示向量的方向。

而平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,下面我就来详细介绍一下。

一、平面向量的基本定理1. 平行向量的概念两个向量如果它们的方向相同或者相反,那么我们称这两个向量为平行向量。

平行向量的特点是它们的模相等,方向相同或者相反。

2. 向量的加法如果有两个向量a和b,它们的起点相同,那么我们可以通过平行四边形法则将这两个向量相加,即将向量b平移至向量a的终点,然后连接向量a的起点和向量b的终点,这条连接线就是向量a+b的结果。

3. 向量的数量积向量的数量积,也称为点积或内积,是两个向量的特殊乘积。

设有两个向量a和b,它们之间夹角为θ,那么a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长。

二、平面向量的坐标表示在平面直角坐标系中,我们可以用坐标表示一个向量。

设有一个向量a,它在平面直角坐标系中的起点为O(0,0),终点为A(x,y),那么我们可以用坐标(x,y)表示向量a。

在平面直角坐标系中,向量a与坐标轴之间的夹角为θ,那么向量a的方向角为θ。

根据三角函数的定义,我们有cosθ=x/|a|,sinθ=y/|a|,tanθ=y/x,这三个公式可以帮助我们求解向量的方向角。

对于向量的数量积和叉积,我们也可以通过向量的坐标表示来进行计算。

设向量a在坐标系中的起点为O(0,0),终点为A(x1,y1),向量b在坐标系中的起点为O(0,0),终点为B(x2,y2),那么向量a和向量b 的数量积为x1x2+y1y2,向量a和向量b的叉积为x1y2-x2y1。

平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,通过深入理解这些知识点,我们可以更好地解决平面向量的相关问题,为我们的数学学习打下坚实的基础。

平面向量基本定理及其坐标表示教案

平面向量基本定理及其坐标表示教案

平面向量基本定理及其坐标表示教案教学目标:1. 理解平面向量的基本定理;2. 学会将平面向量用坐标表示;3. 掌握平面向量的坐标运算。

教学内容:1. 平面向量的基本定理;2. 向量的坐标表示;3. 向量的坐标运算。

教学步骤:一、导入(5分钟)1. 通过复习预备知识,引导学生回顾向量的定义及基本性质。

2. 提问:我们已经学习了向量的哪些运算?这些运算有什么应用?二、平面向量的基本定理(10分钟)1. 介绍平面向量的基本定理的内容。

2. 通过示例,解释平面向量的基本定理的应用。

3. 引导学生通过图形直观地理解平面向量的基本定理。

三、向量的坐标表示(10分钟)1. 介绍向量的坐标表示方法。

2. 通过示例,解释如何用坐标表示一个向量。

3. 引导学生通过坐标系直观地理解向量的坐标表示。

四、向量的坐标运算(10分钟)1. 介绍向量的坐标运算规则。

2. 通过示例,解释如何进行向量的坐标运算。

3. 引导学生通过坐标系直观地理解向量的坐标运算。

五、巩固练习(10分钟)1. 提供一些有关平面向量的基本定理及其坐标表示的练习题。

2. 引导学生独立完成练习题,巩固所学知识。

3. 对学生的练习结果进行点评和指导。

教学评价:1. 通过课堂讲解和示例,评价学生对平面向量的基本定理及其坐标表示的理解程度;2. 通过练习题,评价学生对平面向量的坐标运算的掌握程度;3. 通过学生的提问和参与程度,评价学生的学习兴趣和积极性。

教学资源:1. 教学PPT或黑板;2. 练习题。

教学建议:1. 在讲解平面向量的基本定理时,可以通过图形和实际例子来说明定理的意义和应用;2. 在讲解向量的坐标表示时,可以借助坐标系,直观地展示向量的坐标表示方法;3. 在讲解向量的坐标运算时,可以通过示例和练习题,让学生熟练掌握运算规则;4. 在巩固练习环节,可以提供不同难度的练习题,以满足不同学生的学习需求;5. 在教学过程中,鼓励学生提问和参与讨论,以提高学生的学习兴趣和积极性。

平面向量基本定理及坐标表示

平面向量基本定理及坐标表示

平面向量基本定理及坐标表示1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1、λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a 、b 共线⇔x 1y 2-x 2y 1=0.选择题:设e 1,e 2是平面内一组基底,那么( ) A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34解析 两个不共线的非零向量构成一组基底,故选B.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2).已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32b a -32b C .-32a -12b D .-32a +12b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎨⎧-1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧λ=12,μ=-32,∴c =12a -32b .已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) C .1 D .2 解析 ∵a +λb =(1+λ,2),c =(3,4),且(a +λb )∥c ,∴1+λ3=24,∴λ=12已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )解析 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4),∴c =⎝ ⎛⎭⎪⎫-133,-43.已知向量OA→=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23解析 AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2),∵A ,B ,C 三点共线,∴AB →,AC →共线,∴-2×(4-k )=-7×(-2k ),解得k =-23已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为( )解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4),∴与A B →同方向的单位向量为A B →|A B →|=⎝⎛⎭⎪⎫35,-45.已知点A (-1,5)和向量a =(2,3),若AB→=3a ,则点B 的坐标为( )A .(7,4)B .(7,14)C .(5,4)D .(5,14)解析 设点B 的坐标为(x ,y ),则AB →=(x +1,y -5),由AB →=3a ,得⎩⎨⎧ x +1=6,y -5=9,解得⎩⎨⎧x =5,y =14.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,∴m =-6,则“m =-6”是“a∥(a +b )”的充要条件,故选A已知在□ABCD 中,AD→=(2,8),AB →=(-3,4),则AC →=( )A .(-1,-12)B .(-1,12)C .(1,-12)D .(1,12) 解析 ∵四边形ABCD 是平行四边形,∴AC →=AB →+AD →=(-1,12)在△ABC 中,点D 在BC 边上,且CD→=2DB →,CD →=rAB →+sAC →,则r +s 等于( )C .-3D .0解析 ∵CD →=2DB →,∴CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC→=2AE →,则向量EM →=( )AC →+13AB → AC →+16AB → AC →+12AB → AC →+32AB →解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →在△ABC 中,点P 在BC 上,且BP→=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)解析 BC →=3PC →=3(2PQ →-PA →)=6PQ →-3PA →=(6,30)-(12,9)=(-6,21).在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )解析 ∵AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,∴AB →=85AN →-45AM →,∴λ+μ=45.填空题:已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________. 解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).已知向量a =(x,1),b =(2,y ),若a +b =(1,-1),则x +y =________.解析 ∵(x,1)+(2,y )=(1,-1),∴⎩⎨⎧ x +2=1,y +1=-1,解得⎩⎨⎧x =-1,y =-2,∴x +y =-3.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为( ) A .-1 B .-12 D .1解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析 ∵a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,∴u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3).又∵u ∥v ,∴3(2x +1)-4(2-x )=0,即10x =5,解得x =12. 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54在□ABCD 中,AC 为一条对角线,AB→=(2,4),AC →=(1,3),则向量BD →的坐标为__________.解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).已知□ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________ 解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎨⎧ 4=5-x ,1=6-y ,解得⎩⎨⎧x =1,y =5.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为_______ 解析 ∵在梯形ABCD 中,AB ∥CD ,DC =2AB ,∴DC→=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ),AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2), ∴⎩⎨⎧ 4-x =2,2-y =-2,解得⎩⎨⎧x =2,y =4,故点D 的坐标为(2,4).如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 解析:设BP→=kBN →,k ∈R .∵AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →, 且AP →=mAB →+211AC →,∴1-k =m ,k 4=211,解得k =811,m =311.在□ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________(用e 1,e 2表示) 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2如图,已知AB→=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=____________解析 AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值为________.解析 AB →=(a -2,-2),AC →=(-2,b -2),则(a -2)(b -2)-4=0,即ab -2a -2b =0,∴1a +1b =12.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________解析 由题意得AB→=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,∴(-a +2,-2)=λ(b +2,-4),即⎩⎨⎧-a +2=λb +2,-2=-4λ,整理得2a +b =2,∴1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.解析 设C (x ,y ),则AC→=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎨⎧ x -7=21-x ,y -1=24-y ,解得⎩⎨⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________解析 若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.∵AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC→=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1.设0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.解析 ∵a ∥b ,∴sin2θ×1-cos 2θ=0,∴2sin θcos θ-cos 2θ=0, ∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12解答题:已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC→=2AB →,求点C 的坐标. 解析 (1)由已知得AB→=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB→∥AC →,∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC→=2AB →,∴(a -1,b -1)=2(2,-2). ∴⎩⎨⎧ a -1=4,b -1=-4,解得⎩⎨⎧a =5,b =-3.∴点C 的坐标为(5,-3).已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. (1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎨⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, ∴AM→与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.能力提升题组已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于( ) A .-2 B .2 C .-12 解析 由题意得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),∵(m a +n b )∥(a -2b ),∴-(2m -n )-4(3m +2n )=0,∴m n =-12已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn 的值为( )A .2 C .3 D .4 解析 ∵OA →·OB→=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即m n =3如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且B P →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 解析 由题意知O P →=O B →+B P →,又B P →=2P A →,∴O P →=O B →+23B A →=O B →+23(O A →-O B →)=23O A →+13O B →,∴x =23,y =13.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2).由题意得AC →=(x 1+1,y 1-2),AB →=(3,6),DA →=(-1-x 2,2-y 2),BA →=(-3,-6).∵AC →=13AB →,DA →=-13BA →,∴有⎩⎨⎧ x 1+1=1,y 1-2=2和⎩⎨⎧-1-x 2=1,2-y 2=2.解得⎩⎨⎧ x 1=0,y 1=4和⎩⎨⎧x 2=-2,y 2=0.∴点C ,D 的坐标分别为(0,4),(-2,0),从而CD→=(-2,-4).已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________解析 由m a +n b =c ,可得⎩⎨⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为|OP |+1=3+1=4,故(m -3)2+n 2的最大值为42=16.已知△ABC 和点M 满足MA→+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.解析∵MA→+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连接AM 并延长交BC 于D ,则D 为BC 的中点. ∴AM →=23AD →.又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA→+nOB →,则m +n 的取值范围是________ 解析 由题意得,OC→=kOD →(k <0),又|k |=|OC→||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA→+nOB →=kλOA →+k (1-λ)OB →, ∴m =kλ,n =k (1-λ),∴m+n=k,从而m+n∈(-1,0).。

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

( B)
A.-6
B.6
C.9
D.12
2.[必修4·P101·A组T7改编]已知点A(0,1),B(3,2),向量
→ AC
=(-4,-3),则向
量B→C=( A )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
3.[必修4·P96·例2改编]若向量a=(2,1),b=(-1,2),c= 0,52 ,则c可用向量
1.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),( 2 ,0),(0,-2),O
为坐标原点,动点P满足|C→P|=1,则|O→A+O→B+O→P|的最小值是( A )
A. 3-1
B. 11-1
C. 3+1
D. 11+1
2.已知M(3,-2),N(-5,-1),且M→P=12M→N,则P点的坐标为( B )
A.(-8,1)
B.-1,-32
C.1,32
D.(8,-1)
[解析]
设P(x,y),则
→ MP
=(x-3,y+2),而
1 2
→ MN

1 2
(-8,1)=
-4,12
,所以
x-3=-4, y+2=12,
x=-1, 解得y=-32,
所以P-1,-32.
3.已知正△ABC的边长为2
3
,平面ABC内的动点P,M满足|
知识点二 平面向量的坐标表示 在直角坐标系内,分别取与__x_轴__、__y_轴__正__方__向__相__同____的两个单位向量i,j作为基 底,对任一向量a,有唯一一对实数x,y,使得:a=xi+yj,__(_x_,__y_) _叫做向量a的 直角坐标,记作a=(x,y),显然i=__(1_,_0_)___,j=__(_0_,1_)_____,0=__(_0_,0_)___.

第2讲-平面向量基本定理及向量的坐标表示

第2讲-平面向量基本定理及向量的坐标表示

平面向量基本定理及其坐标表示学习目标1、掌握平面向量的基本定理2、掌握平面向量的坐标表示及相关运算3、掌握向量平行、垂直的坐标法定义及三点共线的基本性质4、掌握函数图像平移中的按向量平移1.向量的坐标表示我们知道:两个向量如果长度相等,方向相同,则可将他们视为同一个向量。

因此,对于平面上任意一个向量a ,我们过坐标原点O 作一个向量OA ,使得OA a =,此时,如果A 点的坐标为(,)x y ,我们就记(,)a x y =,这就是向量a 的坐标表示。

显然(1) 如(,)a x y =,则22||a x y =+(2) 如1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--2.基于坐标表示的向量之运算规则。

如1122(,),(,)a x y b x y ==,则(1)1212(,)a b x x y y ±=±± (2)11(,)a x y λλλ=3.向量的共线与垂直设1122(,),(,)a x y b x y ==为两个非零向量,则(1)//a b 12210x y x y ⇔-=; (2)a b ⊥12120x x y y ⇔+=;证明:(1)//a b ⇔存在实数λ,使得a b λ=,即1122(,)(,)x y x y λ=,也即1212,x x y y λλ==,故122122220x y x y x y x y λλ-=-=(2)不妨设,OA a OB b ==,即1122(,),(,)A x y B x y ,不妨设120x x ≠a b ⊥12121212110OA OB y y OA OB k k x x y y x x ⇔⊥⇔=-⇔⨯=-⇔+=; 120x x =时的特殊情况留给读者自己证明。

4.平面向量基本定理如果12,e e 是同一平面内的两个不共线向量,那么对于该平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+,向量12,e e 叫表示这一平面内所有向量的一组基底.5.基于坐标表示的向量的内积设1122(,),(,)a x y b x y ==,则:1212a b x x y y ⋅=+读者可利用向量余弦定理自行证明:这里定义的内积跟前面定义的内积||||cos a b a b α⋅=⋅(其中α为,a b 的夹角)是一致的。

高考数学第一轮复习 第四篇 第2讲 平面向量基本定理及坐标表示课件 理 新人教A版

高考数学第一轮复习 第四篇 第2讲 平面向量基本定理及坐标表示课件 理 新人教A版
3.平面向量(xiàngliàng)共线的坐 标表示
设 a=(x1,y1),b=(x2,y2),其中 a≠b 则 a∥b⇔ _x_1_y_2-__x_2_y_1=__0___.
第三页,共18页。
1.对平面向量基本(jīběn)定理的理 解
(1)平面内的任何两个向量都可以作为一组基底.( ) (2)若 a,b 不共线,且 λ1a+μ1b=λ2a+μ2b,则 λ1=λ2,μ1=μ2.( ) (3)(2013·广东卷改编)已知 a 是已知的平面向量且 a≠0.关于向量 a
1234 A.5 B.5 C.5 D.5
解析 因为A→B=A→N+N→B =A→N+C→N (x=jiīě)A→N+(C→A+A→N)=2A→N+C→M+M→A
=所2A以→NA→-B=14A→85BA→-NA-→M45A,→M, 所以 λ+μ=45. 答案 D
第十页,共18页。
平面(píngmiàn)向量的

坐标运算

【例 2】已知 A(-2,4),B(3,-1),C(-3,-4),设A→B=a,
B→C=b, C→A=c,且C→M=3c, C→N=-2b.
(1)求 3a+b-3c;(2)求满足 a=mb+nc 的实数 m,n;
(3)求 M,N 的坐标及向量M→N的坐标.
解析 由已知得 a=(5,-5), b=(-6,-3), c=(1,8)

【例 3】平面内给定三个向量 a=(3,2),
审题路线
b=(-1,2),c=(4,1).
(1)若(a+kc)∥(2b-a),求实数 k;
(1)分别求出(a+kc)
(2)若 d 满足(d-c)∥(a+b),且|d-c|= 5, 与(2b-a)的坐标
求 d 的坐标.

平面向量的基本定理及坐标表示重难点解析版

平面向量的基本定理及坐标表示重难点解析版

突破6.3 平面向量的基本定理及坐标表示一、学情分析二、学法指导与考点梳理知识点一 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 平面向量的坐标运算运算 坐标表示和(差) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2) 数乘 已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数 任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1)设a =(x 1,y 1),b =(x 2,y 2),其中b≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.,(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.三、重难点题型突破重难点题型突破1 平面向量的实际背景与概念(一) 平面向量的基本定理与坐标表示 知识点1 平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.例1.(1).(2019·江西高一期末)设12,e e 是平面内的一组基底,则下面四组向量中,能作为基底的是( ) A .21e e -与12e e - B .1223e e +与1246e e -- C .12e e +与12e e - D .121128e e -+与1214e e - 【答案】C 【解析】由12,e e 是平面内的一组基底,所以1e 和2e 不共线,对应选项A :21e e -()12e e =--,所以这2个向量共线,不能作为基底; 对应选项B :1223e e +()121462e e =---,所以这2个向量共线,不能作为基底; 对应选项D :121128e e -+121124e e ⎛⎫=-- ⎪⎝⎭,所以这2个向量共线,不能作为基底;对应选项C :12e e +与12e e -不共线,能作为基底. 故选:C .(2).(2022·内蒙古·阿拉善盟第一中学高一期末)如图,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE =( )A .21318BA BC -+B .21318BA BC +C .41318BA BC +D .21318BA BC -【答案】B 【解析】 【分析】利用平面向量的加法和减法以及平面向量的基本定理求解. 【详解】由题可得:FE FC CE =+ 1232BC CD =+ ()1223BC CB BA AD =+++ 121233BC BC BA BC ⎛⎫=+-++ ⎪⎝⎭21318BA BC =+. 故选:B .【变式训练1-1】、(2021·全国·高一课时练习)若{}12e e ,是平面内的一个基底,则下列四组向量能作为平面向量的基底的是( ) A .12e e -,21e e - B .12e e -,12e e + C .212e e -,212e e -+ D .122e e +,124e 2e +【答案】B 【解析】 【分析】不共线的向量能作为基底,逐一判断选项即可. 【详解】不共线的向量能作为基底,因为()1221e e e e -=--,所以向量12e e -,21e e -共线,故排除A ;假设1212(e e e e λ-=+),解得=1=1λλ⎧⎨-⎩,无解,所以向量12e e -,12e e +不共线,故B 正确;因为()212122e e e e =-+--,所以212e e -,212e e +-共线,故排除C ; 因为()121212422e e e e =++,所以122e e +,1224e e +共线,故排除D , 故选:B【变式训练1-2】、(2022·江西上饶·一模(理))如图,在ABM 中,3BM CM =,27AN AM =,若AN AB AC λμ=+,则λμ+=( )A .17-B .17C .27-D .27【答案】D 【解析】 【分析】由向量的线性运算把AN 用,AB AC 表示出来后可得结论. 【详解】 ()22227777AN AM AB BM AB BM ==+=+ 2232313()7727777AB BC AB BA AC AB AC =+⨯=++=-+, 所以13,77λμ=-=,132777λμ+=-+=,故选:D(二) 平面向量的坐标运算知识点2 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2). (2)若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). (3)若a =(x ,y ),λ∈R ,则λa =(λx ,λy ). (4)a ·b =x 1x 2+y 1y 2.(5)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2.例2.(1).(2021·安徽·泾县中学高三阶段练习(文))已知平面向量()()2,3,24,5a a b =--=,则a b =___________.【答案】3 【解析】 【分析】设(),=b x y ,利用()24,5-=a b ,求得b ,再利用数量积公式可得多大啊. 【详解】设(),=b x y ,由已知得224325x y --=⎧⎨-=⎩,解得31x y =-⎧⎨=-⎩,即()3,1b =--,所以()()2,33,1633⋅=-⋅--=-=a b . 故答案为:3.(2).(2022·全国·高一专题练习)已知A (1,2),B (3,-1),C (3,4),则AB AC ⋅等于( ) A .11 B .5 C .-1 D .-2【答案】D 【解析】 【分析】直接利用向量数量积的坐标运算即可解决 【详解】∵()2,3AB =-,()2,2AC = ∴()22322AC AB ⋅=⨯+-⨯=- 故选: D .(3).(2022·山东济南·二模)若平面向量a 与b 同向,(2,1)a =,||25b =,则b =( ) A .(4,2)B .(2,4)C .(6,3)D .(4,2)或(2,4)【答案】A 【解析】 【分析】根据题意,设()0b a λλ→→=>,进而根据||25b →=b →. 【详解】因为,a b →→同向,所以设()0b a λλ→→=>,则22||215252b λλλ→=+==,于是,()4,2b →=. 故选:A.【变式训练2-1】、(2022·全国·高三专题练习)已知向量()()2,6,1,a b λ==-,若//a b ,则a b λ+=______. 【答案】(5,15) 【解析】 【分析】由向量平行得3λ=-,再进行向量的坐标运算即可得答案. 【详解】解:因为()()2,6,1,a b λ==-,//a b , 所以62λ-=,解得3λ=-, 所以()()()2,631,35,15a b λ+=---=. 故答案为:()5,15【变式训练2-2】、(2022·青海西宁·高一期末)设()3,1OM =,()5,1ON =--,则MN =( ). A .()8,2-- B .()8,2C .()8,2-D .()2,2-【答案】A 【解析】 【分析】由向量坐标的减法运算可得答案. 【详解】因为()3,1OM =,()5,1ON =--,所以()()()5,13,18,2=-=---=--MN ON OM . 故选:A.(三) 平面向量的数量积 知识点3.平面向量数量积1.平面向量数量积的有关概念(1)向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫作向量a 与b 的夹角.(2)数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:0·a =0.(3)数量积的几何意义:数量积a ·b 等于a 的模|a |与b 在a 的方向上的投影|b |cos θ的乘积. 2.平面向量数量积的性质设a ,b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 (1)e·a =a·e =|a|cos θ.(2)当a 与b 同向时,a·b =|a||b|;当a 与b 反向时,a·b =-|a||b|. 特别地,a·a =|a|2或|a|=a ·a . (3)cos θ=a·b |a||b|. (4)|a·b|≤|a||b|.3.平面向量数量积的坐标表示设a =(x 1,y 1),b =(x 2,y 2),a ,b 的夹角为θ,则 (1)a ·b =x 1x 2+y 1y 2.(2)|a |=x 21+y 21.若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 1-x 2)2+(y 1-y 2)2. (3)cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. (4)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.例3.(1).(2022·陕西·高三期末(文))已知向量(1,7a =-,3b =,36a b ⋅=,则a 与b 的夹角为( ) A .6πB .4π C .3π D .23π 【答案】A 【解析】 【分析】先计算向量a 的模,再根据向量数量积的定义,将36a b ⋅=展开,即可求得答案.因为(1,7a =-,所以22||1(7)22a =+-= 又因为36a b ⋅=,设a 与b 的夹角为θ ,[0,]θπ∈ , 所以||||cos 36a b θ=,即23cos 36θ⨯=, 解得3cos θ=,故6πθ= ,故选:A.(2).(2021·重庆一中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =--,则下列命题中正确的有( ) A .a b > B .2a b +=C .a b ⊥D .4cos ,5a b =-【答案】BD 【解析】 【分析】由向量的定义判断A ,由模的坐标表示求出模判断B ,根据垂直的坐标表示判断C ,由数量积求得向量的夹角余弦判断D . 【详解】对于A ,由于向量不能比较大小,故A 错误; 对于B ,∵()1,1a b =-+,∴()22112a b +=-+=B 正确;对于C ,∵()()122140a b ⋅=⨯-+⨯-=-≠,∴a b ⊥不成立,故C 错误; 对于D ,∵(12214cos ,555a b a b a b⨯-+⨯-⋅===-⨯,故D 正确.故选:BD .【变式训练3-1】.(2021·河北·武安市第一中学高一阶段练习)(多选题)向量(cos ,sin )a θθ=,(3,1)b =,则2a b -的值可以是( ) A .2 B .22C .4D .2【答案】ABC 【解析】 【分析】利用公式表达出2a b -,利用三角函数恒等变换,求出2a b -的范围,进而求出结果.())()22cos ,2sin 3,12cos 3,2sin 1a b θθθθ-=-=-,所以()()22π22cos 32sin 1843cos 4sin 88sin 3a b θθθθθ⎛⎫-=-+----+ ⎪⎝⎭因为[]πsin 1,13θ⎛⎫+∈- ⎪⎝⎭,所以[]π88sin 0,163θ⎛⎫-+∈ ⎪⎝⎭,[]20,4a b -∈,显然ABC 均满足题意.故选:ABC【变式训练3-2】.(2022·山东济南·高三期末)(多选题)已知平面向量()1,0a =,()1,23b =,则下列说法正确的是( ) A .16a b +=B .()2a b a +⋅=C .向量a b +与a 的夹角为30°D .向量a b +在a 上的投影向量为2a【答案】BD 【解析】 【分析】根据向量坐标得线性运算和模的坐标表示即可判断A ; 根据向量数量积的坐标表示即可判断B ; 根据()cos ,a b a a b aa b a+⋅+=+即可判断C ; 根据投影向量的定义即可判断D. 【详解】解:(2,23a b +=,则4124a b +=+,故A 错误;()2a b a +⋅=,故B 正确;()1cos ,2a b a a b aa b a+⋅+==+,又0,180a b a ︒≤+≤︒,所以向量a b +与a 的夹角为60°,故C 错误;向量a b +在a 上的投影向量为()2a b a a a a+⋅=,故D 正确. 故选:BD.(四) 平面向量的应用(平行与垂直)知识点1 平面向量的平行与垂直若a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a±b =(x 1±x 2,y 1±y 2).(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2-x 2y 1=0.a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.判断三点是否共线,先求每两点对应的向量,然后再按两向量共线进行判定.(2)如果a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.例4.(1)、(2021·安徽·六安一中高三阶段练习(文))已知()1,2a m =+-,()2,3b m =+,若a b ⊥,则m =______. 【答案】1或4- 【解析】 【分析】根据向量垂直得到等量关系,求出结果. 【详解】由题意得:()()1260m m ++-=,解得:1m =或4-,经检验,均符合要求. 故答案为:1或4-(2)、(2022·陕西宝鸡·一模(理))已知平面向量()1,a m =-,()2,3b m =-,若a b ∥,则m =___________. 【答案】3- 【解析】 【分析】由a b ∥,列方程求解即可 【详解】因为平面向量()1,a m =-,()2,3b m =-,且a b ∥, 所以23m m =-,得3m =-, 故答案为:3-(3)、(2022·辽宁·高一期末)已知向量()1,a m =-,()2,4b =,若a 与b 共线,则m =( ) A .1-B .1C .2-D .2【答案】C 【解析】 【分析】根据平面向量共线坐标表示可得答案. 【详解】由题意得24m =-,即2m =-. 故选:C【变式训练4-1】、(2022·广东湛江·高二期末)已知向量()2,3a =-,()1,2b =-,且()a kb a +⊥,则k =___________.【答案】138【解析】 【分析】求出向量a kb +的坐标,利用平面向量垂直的坐标表示可得出关于实数k 的等式,即可解得k 的值. 【详解】由题意可得()2,32a kb k k +=--+,因为()a kb a +⊥,所以()()()223320a kb a k k +=---+=⋅,即1380k -=,解得138k =. 故答案为:138. 【变式训练4-2】.(2022·全国·高三专题练习)已知向量()12a =,,()22b =-,,()1c λ=,.若()//2c a b +,则λ=________. 【答案】12 【解析】 【分析】由两向量共线的坐标关系计算即可. 【详解】由题可得()24,2a b +=, ()//2c a b +,又()1,c λ=, 4λ20∴-=,1λ2∴=.故答案为:12.【变式训练4-3】.(2022·辽宁葫芦岛·高一期末)已知向量()1,1a =,()2,1b =-,若()a b λ+∥()2a b -,则实数λ=( ) A .12B .12-C .2D .-2【答案】B 【解析】 【分析】由平面向量线性运算的坐标表示出a b λ+,2a b -,再由平面向量共线的坐标表示即可得解. 【详解】由已知得()2,1a b =++-λλλ,()23,3a b -=-, 又因为()a b λ+∥()2a b -,所以有()()3231+=--λλ,解得12λ=-.故选:B例5.(2022·重庆八中高一期末)已知3a =,4b =. (1)若a 与b 的夹角为60︒,求()2a b a +⋅;(2)若a 与b 不共线,当k 为何值时,向量a kb +与a kb -互相垂直? 【答案】(1)21 (2)34k =±【解析】 【分析】(1)结合向量数量积运算与运算律计算求解即可; (2)根据()()0a kb a kb +-=解方程即可得答案. (1)解: ()21229234212a b a a b a +⋅=+⋅=+⨯⨯⨯= (2)解:∵向量a kb +与a kb -互相垂直,∴()()0a kb a kb +-=,整理得2220a k b -=,又3a =,4b =,∴29160k -=,解得34k =±.∴当34k =±时,向量a kb +与a kb -互相垂直.【变式训练5-1】.(2022·全国·高三专题练习)已知向量(cos ,sin ),(3,3),[0,π].a x x b x ==-∈ (1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,解不等式()3f x ≥【答案】(1)3π(2)[0,]6π 【解析】 【分析】(1)根据向量垂直的坐标运算,数量积为零得到关于x 的方程,即可得答案. (2)先根据数量积的坐标运算得到()f x a b =⋅的表达式,确定π31cos()62x -+,再解不等式,结合6x π+的范围,求得结果. (1)因为(cos ,sin )a x x =,(3,3b =-,a b ⊥, 所以3cos 30x x =, 所以tan 3x =因为[0,]x π∈,所以3x π=.(2)()(π()cos ,sin 3,33cos 323)6f x a b x x x x x =⋅=⋅-==+.因为[]0,πx ∈,所以ππ7π[,]666x +∈,从而π31cos()62x -+. 由()3f x ≥1cos()62x π+≥,所以1π3cos()262x +,所以663x πππ≤+≤,即06x π≤≤,故不等式()3f x ≥[0,]6π.四、课堂定时训练(45分钟)1.(2021·全国·高一课时练习)设12e e ,是不共线的两个向量,则下列四组向量不能构成基底的是( ) A .1e 与12e e + B .12e 2e -与21e 2e - C .12e 2e -与214e 2e - D .12e e +与12e e -【答案】C 【解析】 【分析】在同一平面内,只要两个向量不共线,就可以作为这个平面的一组基底,逐项判断即可. 【详解】对于A 选项:设121e e e =λ+,12e e ,是不共线的两个向量,1=1=0λ⎧∴⎨⎩,无解,1e ∴与12e e +不共线,1e ∴与12e e +可以构成一组基底;对于B 选项:设()1221=e 2e 2e e λ--,12e e ,是不共线的两个向量,1=22=λλ-⎧∴⎨-⎩,无解,12e 2e ∴-与21e 2e -不共线,12e 2e ∴-与21e 2e -可以构成一组基底;对于C 选项:设()1221=e 24e 2e e λ--,12e e ,是不共线的两个向量,1=21=2=42λλλ-⎧∴∴-⎨-⎩,,()21212e 2e 1=4e 2e ∴---,12e 2e ∴-与214e 2e -共线,12e 2e ∴-与214e 2e -不能构成一组基底; 对于D 选项:设()1212=e e e e λ-+,12e e ,是不共线的两个向量,1=1=λλ⎧∴⎨-⎩,无解, 12e e +∴与12e e -不共线,12e e +∴与12e e -可以构成一组基底; 故选:C2.(2022·全国·高一专题练习)已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A 2B 2C 22D .0【答案】C 【解析】 【分析】应用向量平行的坐标表示列方程求参数值即可. 【详解】由//a b 知:1×2-m 2=0,即2m 2-故选:C.3.(2022·江西·高三期末(文))已知平面向量()1,3a =,()2,1b =-,若()a ab λ⊥+,则实数λ的值为( ) A .10 B .8C .5D .3【答案】A 【解析】 【分析】由()a ab λ⊥+,得()0a a b λ⋅+=,将坐标代入化简计算可得答案 【详解】因为()1,3a =,()2,1b =-, 所以()12,3a b λλλ+=+-. 因为()a ab λ⊥+,所以()12330λλ++-=,解得10λ=. 故选:A.4.(2021·辽宁·沈阳二中高三阶段练习)(多选题)已知平面向量()1,2a =,()2,1b =-,()2,c t =,下列说法正确的是( ) A .若()a b +//c ,则6t = B .若()a b +⊥c ,则23t =C .若1t =,则4cos ,5a c <>=D .若向量a 与向量c 夹角为锐角,则1t >- 【答案】BC 【解析】 【分析】若()()1122,,,a x y b x y ==,根据a ∥b 时1221x y x y =判断A 选项是否正确;根据a b ⊥时12120x x y y +=判断B 选项是否正确;根据121222221122cos ,x a b a b a bx y x y <>==++判断C 选项是否正确;根据向量a 与向量c 夹角为锐角时0a c >,且向量a 与向量c 不平行,判断C 选项是否正确. 【详解】()1,2a =,()2,1b =-,()=1,3a b ∴+-,()2,c t ==22a c t ∴+若()a b +//c ,()2,c t =123t ∴-⨯=⨯6t ∴=-,故A 不正确;若()a b +⊥c ,()2,c t =123=0t ∴-⨯+⨯23t ∴=,故B 正确; 若1t =,则()2,1c =,=22=4a c t +,=5a ,5c =44cos ,555a c a c a c∴<>==⨯,故C 正确; 若向量a 与向量c 夹角为锐角, 则0a c >()1,2a =(),2,c t ==1220a c t ∴⨯+⨯>1t∴>-若向量a 与向量c 平行,则1=22t ⨯⨯,=4t ,故向量a 与向量c 夹角为锐角时1t >-且4t ≠.故D 不正确; 故选:BC5.(2021·广东·仲元中学高一期末)(多选题)已知向量()2,1a =,()3,1b =-,则( ) A .a 与a b -25B .()//a b a +C .向量a 在向量b 10D .若525,5c ⎛= ⎝⎭,则a c ⊥【答案】ACD 【解析】 【分析】对于A :由已知得()50a b -=,,根据向量夹角的计算公式计算可判断; 对于B :由已知得()+a b a ⊥,由此可判断;对于C :由已知得向量a 在向量b 上的投影,从而可判断; 对于D :由5252+105a c ⎛⋅=⨯⨯= ⎝⎭,可判断. 【详解】解:对于A :因为向量()2,1a =,()3,1b =-,所以()50a b -=,,所以a 与a b -的夹角余弦值为2225215+⨯,故A 正确; 对于B :因为()+12a b =-,,所以()+12+120a b a ⋅=-⨯⨯=,所以()+a b a ⊥,故B 不正确; 对于C :向量a 在向量b 上的投影为(()2223+11101031a b b⨯-⨯===-+⋅,所以向量a 在向量b 上的投影向量10C 正确;对于D :因为525,55c ⎛⎫=- ⎪ ⎪⎝⎭,所以5252+1055a c ⎛⎫⋅=⨯⨯-= ⎪ ⎪⎝⎭,所以a c ⊥,故D 正确, 故选:ACD.6.(2022·安徽亳州·高三期末(理))如图,在平面四边形ACDE 中,点B 在边AC 上,ABE △是等腰直角三角形,四边形BCDE 是边长为1的正方形,则AD CE ⋅=___________.【答案】-1 【解析】 【分析】以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系,用坐标法求解. 【详解】如图示,以B 为原点,BC BE 、分别为x 、y 轴正方向建立直角坐标系.则()1,0A -、()1,0C 、()1,1D 、()0,1E ,所以()21AD =,,()11CE =-,, 所以211AD CE ⋅=-+=-. 故答案为:-17.(2021·江西·赣州市赣县第三中学高三期中(文))已知向量()2,1a =-,10a b ⋅=,52a b +=,则b =___________.【答案】5 【解析】 【分析】由已知,利用向量数量积的运算律有22250a b a b ++⋅=,结合向量模的坐标计算求||a ,进而求b . 【详解】∵52a b +=,则250a b +=,即22250a b a b ++⋅=, ∴252050b ++=,可得5b =. 故答案为:58.(2022·全国·高三专题练习)已知平面向量(),0,0αβαβ≠≠,β与αβ-的夹角为23π,且()0t t t αββ-=>,则t 的最小值是____________.【答案】233- 【解析】 【分析】作半径为2的圆O ,圆O 上取三点,,A B C ,(3,1)C --,(3,1)B -,A 在,B C 两点的优弧上,3BAC π∠=,这样CB α=,CA β=,满足β与αβ-的夹角为23π,然后把模式平方求得t ,可得最小值. 【详解】如图,设圆O 半径为2,,,A B C 在圆O ,设(3,1)C --,(3,1)B -,3BAC π∠=,CB α=,CA β=,设(2cos ,2sin )A θθ,7(,)66ππθ∈-,(23,0)α=,(2cos 3,2sin 1)βθθ=++,由t t αββ-=得222()t t αββ-=,因为0t >,所以21233233243(2cos 3)2cos 323t ααβθθ===≥=-⋅+++,cos 1θ=时等号成立.故答案为:233-.【点睛】本题考查由模求平面向量的数量积,解题关键是用图形表示出向量α,β,确定点,,A B C 的关系,引入坐标后用坐标表示向量的数量积,从而得出最值.。

平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示

平面向量的基本定理及坐标表示题型一:平面向量基本定理及其理解【方法梳理】同一平面内任一向量都可以表示为两个不共线向量的线性组合.只要选定一个平面内的两个不共线的向量,那么这个平面内的任何向量都可以用这两个向量表示出来.它体现了事物间的相互转化,也为今后的解题提供了一种方法.在向量运算及利用向量证明有关问题都有广泛的应用. 【知识链接】1.平面向量基本定理:若1e ,2e是共面 的两个向量,a 是该平面内任意向量,则 ,使a = .把 的向量1e ,2e叫做表示这一平面所有向量的一组基底.(不共线)2.平面向量基本定理的理解:设a ,1e ,2e 共面,1e ,2e是基底,1122a λe λe =+ ,则:①向量的分解与合成:若1122a λe λe =+ ,则在1e ,2e相同或相反方向上把a 分解成两个向量11λe 与22λe 的和,反之,若1122λe λe a += ,则把两个向量11λe 与22λe合成为向量a .②表达式的唯一性:1122a λe λe =+唯一12,λλ⇔唯一.③向量的正交分解:当12e e ⊥时,就说1122a λe λe =+ 为对向量a 的正交分解.④向量a的坐标:(详见向量的坐标表示部分)【巩固与应用】 1.判断:(1)设a ,1e ,2e 共面,若1122a λe λe =+ ,则把1e ,2e叫做该平面内所有向量的基底. (2)已知1e ,2e 是平面的一组基底,如果向量a ,1e ,2e 共面,则有且只有一对实数12,λλ,使1122a λe λe =+ .反之,如果有且只有一对实数12,λλ,使1122a λe λe =+ ,则a ,1e ,2e 共面.2.证明定理中表达式1122a λe λe =+的唯一性.证明:只需证明实数对12(,)λλ唯一.假设存在另一对实数//12,λλ,且/11λλ≠,/22λλ≠,使//1122a λe λe =+ .由1122a λe λe =+ 得//11221122λe λe λe λe +=+,即//111222()()0λλe λλe -+-= .由于1e ,2e 不共线,则//11220λλλλ-=-=,这与假 设矛盾,故假设不成立,从而证明实数对12(,)λλ唯一.3.如果1e ,2e是平面α内所有向量的一组基底,那么,下列命题正确的是( ) A .若实数12,λλ使11220λe λe +=,则120λλ==B .空间任意向量a 都可以表示为1122a λe λe =+,其中12,R λλ∈C .1122λe λe +不一定在平面α内,其中12,R λλ∈D .对于平面α内任一向量a ,使1122a λe λe =+的实数12,λλ有无数对4.下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底; ②一个平面内只有无数多对不共线向量可作为表示该平面所有向量的基底; ③零向量不可作为基底中的向量.其中正确的说法是( )A .①②B .②③C .①③D .①②③5.已知1e ,2e是表示平面所有向量的一组基底,那么下列四组向量中不能作为一组基底的是( )A .1e 和12e e +B .122e e - 和212e e -C .122e e - 和2142e e -D .12e e + 和12e e -题型二:待定系数法求向量表达式(Ⅱ)—用基底向量表示未知向量【方法梳理】1.用平面内的一组基底向量表示平面内的任何一个向量,这是用向量解题的基本功. 2.此类题涉及以下内容:三种线性运算及几何意义;共线向量、平面向量基本定理;有关相似形、比例线段等平面几何知识;方程思想与待定系数法等数学思想和思想方法. 【巩固与应用】例1.在△ABC 中,14OC OA = ,12OD OB =,AD 与BC 交于点M ,设OA a = ,OB b = ,以a 、b 为基底表示OM .解:令OM ma nb =+(,R)m n ∈,则AM OM OA =- (1)m a nb =-+ ,AD OD OA =- 1122b a a b =-=-+.因为,,,A M D 三点共线,所以1(1)(1)2m n -⋅=-⋅(或1112m n -=-),即21m n +=. 同理CM OM OC =- 1()4m a nb =-+, CB OB OC =- 1144b a a b =-=-+. 因为,,C M B ,所以11()144m n -⋅=-⋅(或14114m n -=-),即41m n +=. 由21,41,m n m n +=⎧⎨+=⎩解得1,73.7m n ⎧=⎪⎨=⎪⎩所以1377OM a b =+ .1.在△ABC 中,12BD DC = ,3AE ED =,若AB a = ,AC b = ,则BE =( )A .1133a b +B .1124a b -+C .1124a b +D .1133a b -+2.3.在△ABC 中,13AD AB =,14AE AC =,BE 与CD 交于点P ,且A B a = ,AC b = ,用,a b 表示AP题型:向量的坐标表示(Ⅰ)【方法梳理】向量的坐标表示是向量的另一种表示形式,向量的坐标建立了向量与实数的联系,使向量运算数量化、代数化,使向量运算变得异常简明. 【知识链接】1.向量坐标定义:设i 、j 分别是x 、y 轴上的单位方向向量,a是坐标平面内任意向量,根据平面向量基本定理,存在唯一有序实数对(,)x y ,使a xi y j =+,把数对(,)x y 叫做向量a 的直角坐标,记作(,)a x y =.注:(,)a xi y j a x y =+⇔=.2.坐标运算:(1)设11(,)a x y = ,22(,)b x y =,则a b +=,a b -= ,λa = .(2)①设11(,)A x y ,22(,)B x y ,则AB =.②设(,)a x y =是坐标平面内任意向量,若OA a = ,则点A 的坐标为 .即:以原点为起点的向量的坐标与其终点的坐标 .结果:(,)x y 、相同③向量的坐标与点的坐标有所不同,相等向量的坐标是 的,但它们的起点、终点的坐标 . 结果:不同,可以不同,④两个一一对应关系:向量的坐标、原点为起点的向量、原点为起点的向量终点坐标之间存在一一对应关系.3.平面向量共线的坐标表示设11(,)a x y = ,22(,)b x y =,则//a b ⇔ . 结果:12210x y x y -= 【巩固与应用】例2.已知(2,4)A -,(3,1)B -,(3,4)C --,且3CM C A =,2CN CB = ,试求点,M N 和向量MN的坐标.解:由(2,4)A -,(3,1)B -,(3,4)C --,得 (1,8)CA = , (6,3)CB =.故3(3,24)CM CA == ,2(12,6)CN CB ==.令(,)M x y ,则(3,4)(3,24)CM x y =++= ,故33,424,x y +=⎧⎨+=⎩解得0,20.x y =⎧⎨=⎩故所求(0,20)M ,(9,2)N ,(9,18)MN =-.1.若向量(3,2)a = ,(0,1)b =-,则向量2b a - 的坐标是( )A .(3,4)-B .(3,4)-C .(3,4)D .(3,4)--2.若向量(1,1)a = ,(1,1)b =- ,则1322a b -=( )A .(2,1)--B .(2,1)-C .(1,0)-D .(1,2)-3.在平行四边形ABCD 中,AC 、BD 为对角线,若(1,3)AC =- ,(1,1)BD =,则AB =( )A .(0,1)B .(0,1)-C .(1,1)-D .(1,1)-6.已知(2,4)AB =-,则下列说法正确的是( )A .点A 的坐标是(2,4)-B .点A 为坐标原点时,点B 坐标为(2,4)-C .点B 的坐标是(2,4)-D .点B 为坐标原点时,点A 坐标为(2,4)-7.已知(2,3)A ,(1,5)B -,且3AC AB =,则点C 的坐标为( )A .(7,9)-B .(5,8)-C .(5,7)-D .(7,7)-8.已知(1,3)A -,(3,4)a =,且2AB a = ,则点B 的坐标为 .9.设四边形ABCD 的四个顶点分别为(4,8)A ,15(1,)2B -,(2,1)C --,3(,7)4D -,求AC 和BD 交点M 的坐标.例.已知平面内三个向量:(3,2)a =,(1,2)b =-,(4,1)c =. (1)求满足a mb nc =+的实数,m n ;(2)若()//(2)a kc b a +-,求实数k .结果:(1)58,99m n ==(2)1613k =- 1.已知平面向量(1,2)a = ,(2,)b m =-,且//a b ,则23a b += ( )A .(2,4)--B .(3,6)--C .(4,8)--D .(5,10)--2.已知(3,1)a =- ,(1,2)b =- ,若(2)//()a b a kb -++,则实数k =A .17-B .12-C .1918D .533.若向量(1,2)a = ,(,1)b x =,且2a b + 与2a b - 共线,则x = .4.已知(1,1)a =- ,(1,3)b =- ,(3,5)c =,且c ma nb =+ ,则m n += .。

第2节 平面向量基本定理及坐标表示

第2节 平面向量基本定理及坐标表示

第2节 平面向量基本定理及坐标表示知识梳理1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →| 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.1.平面内不共线向量都可以作为基底,反之亦然.2.若a 与b 不共线,λa +μb =0,则λ=μ=0.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) (4)平面向量不论经过怎样的平移变换之后其坐标不变.( ) 答案 (1)× (2)√ (3)× (4)√ 解析 (1)共线向量不可以作为基底. (3)若b =(0,0),则x 1x 2=y 1y 2无意义.2.若P 1(1,3),P 2(4,0),且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( ) A.(2,2)B.(3,-1)C.(2,2)或(3,-1)D.(2,2)或(3,1)答案 A解析 由题意得P 1P →=13P 1P 2→且P 1P 2→=(3,-3), 设P (x ,y ),则(x -1,y -3)=(1,-1), 所以x =2,y =2,则点P (2,2).3.已知向量a =(-1,3),b =(2,1),则3a -2b =( ) A.(-7,7) B.(-3,-2) C.(6,2)D.(4,-3)答案 A解析 3a -2b =(-3,9)-(4,2)=(-7,7).4.(2020·长沙调研)已知向量a =(m ,1),b =(3,m -2),则m =3是a ∥b 的( ) A.充分不必要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充要条件 答案 A解析 ∵a =(m ,1),b =(3,m -2),若a ∥b ,则m (m -2)-3=0, 得m =3或m =-1,所以“m =3”是“a ∥b ”的充分不必要条件.5.(2020·合肥质检)设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( ) A.⎝ ⎛⎭⎪⎫-65,85 B.(-6,8)C.⎝ ⎛⎭⎪⎫65,-85 D.(6,-8)答案 D解析 因为向量b 与a 方向相反,则可设b =λa =(-3λ,4λ),λ<0,则|b |=9λ2+16λ2=5|λ|=10,∴λ=-2,b =(6,-8).6.(2021·济南模拟)如图,在平行四边形ABCD 中,F 是BC 的中点,CE →=-2DE →,若EF→=xAB →+yAD →,则x +y =( )A.1B.6C.16D.13答案 C解析 因为四边形ABCD 是平行四边形, 所以AB→=DC →,AD →=BC →,因为CE→=-2DE →,所以ED →=-13DC →=-13AB →, 连接AF ,在△AEF 中,所以EF→=EA →+AF →=ED →-AD →+AB →+BF →=-13AB →-AD →+AB →+12BC →=23AB →-12AD →, 又因为EF→=xAB →+yAD →,所以x =23,y =-12,故x +y =16.考点一 平面向量的坐标运算1.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A.⎝ ⎛⎭⎪⎫2,72 B.⎝ ⎛⎭⎪⎫2,-12 C.(3,2)D.(1,3)答案 A解析 设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,所以⎩⎨⎧4=2x ,3=2(y -2),解得⎩⎪⎨⎪⎧x =2,y =72,故选A.2.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=( )A.1B.2C.3D.4答案 D解析 以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO→=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3), ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 则⎩⎨⎧-λ+6μ=-1,λ+2μ=-3,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,∴λμ=-2-12=4.3.(2020·西安调研)在平面直角坐标系中,O 为坐标原点,OA→=⎝ ⎛⎭⎪⎫32,12,若OA →绕点O 逆时针旋转60°得到向量OB →,则OB →=( )A.(0,1)B.(1,0)C.⎝ ⎛⎭⎪⎫32,-12D.⎝ ⎛⎭⎪⎫12,-32答案 A解析 ∵OA→=⎝ ⎛⎭⎪⎫32,12,∴OA →与x 轴的夹角为30°, 依题意,向量OB →与x 轴的夹角为90°, 则点B 在y 轴正半轴上,且|OB →|=|OA →|=1,∴点B (0,1),则OB→=(0,1).4.(2021·重庆检测)如图,原点O 是△ABC 内一点,顶点A 在x 轴上,∠AOB =150°,∠BOC =90°,|OA →|=2,|OB →|=1,|OC →|=3,若OC→=λOA →+μOB →,则μλ=( )A.-33B.33C.-3D.3答案 D解析 由三角函数定义,易知A (2,0),B ⎝ ⎛⎭⎪⎫-32,12,C (3cos 240°,3sin 240°),即C ⎝ ⎛⎭⎪⎫-32,-332, 因为OC→=λOA →+μOB →,所以⎝ ⎛⎭⎪⎫-32,-332=λ(2,0)+μ⎝ ⎛⎭⎪⎫-32,12, 所以⎩⎪⎨⎪⎧2λ-32μ=-32,12μ=-332,解得⎩⎨⎧λ=-3,μ=-3 3.所以μλ= 3.感悟升华 1.向量的坐标表示把点与数联系起来,实际上是向量的代数表示,即引入平面向量的坐标可以使向量运算代数化,成为数与形结合的载体,可以使很多几何问题的解答转化为我们熟知的数量运算.2.向量的坐标运算主要是利用向量的加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用. 考点二 平面向量基本定理及其应用【例1】如图所示,已知在△OCB 中,A 是CB 的中点,D 是将OB →分成2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB→=b . (1)用a 和b 表示向量OC →,DC →;(2)若OE→=λOA →,求实数λ的值. 解 (1)依题意,A 是BC 的中点,∴2OA→=OB →+OC →,即OC →=2OA →-OB →=2a -b . DC→=OC →-OD →=OC →-23OB → =2a -b -23b =2a -53b . (2)设OE→=λOA →(0<λ<1), 则CE→=OE →-OC →=λa -(2a -b )=(λ-2)a +b . ∵CE→与DC →共线, ∴存在实数k ,使CE→=kDC →, (λ-2)a +b =k ⎝ ⎛⎭⎪⎫2a -53b ,解得λ=45.感悟升华 1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【训练1】 (1)在△ABC 中,M ,N 分别是边AB ,AC 的中点,点O 是线段MN 上异于端点的一点,且满足λOA →+3OB →+4OC →=0(λ≠0),则λ=________.(2)(多选题)(2021·威海调研)设a 是已知的平面向量且a ≠0,关于向量a 的分解,有如下四个命题(向量b ,c 和a 在同一平面内且两两不共线),则真命题是( ) A.给定向量b ,总存在向量c ,使a =b +cB.给定向量b 和c ,总存在实数λ和μ,使a =λb +μcC.给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μcD.给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc 答案 (1)7 (2)AB解析 (1)法一 由已知得OA →=-3λOB →-4λOC →,① 由M ,O ,N 三点共线,知∃t ∈R ,使OM →=tON →,故2OM →=2tON →,故OA →+OB →=t (OA →+OC →), 整理得OA→=1t -1OB →+t 1-tOC →,② 对比①②两式的系数,得⎩⎪⎨⎪⎧-3λ=1t -1,-4λ=t 1-t ,解得⎩⎪⎨⎪⎧t =-43,λ=7. 法二 因为M 是AB 的中点,所以OM→=12(OA →+OB →),于是OB→=2OM →-OA →,同理OC →=2ON →-OA →, 将两式代入λOA→+3OB →+4OC →=0,整理得(λ-7)OA→+6OM →+8ON →=0,因为M ,O ,N 三点共线,故∃p ∈R ,使得OM →=pON →,于是(λ-7)OA→+(6p +8)ON →=0,显然OA→,ON →不共线,故λ-7=6p +8=0,故λ=7. (2)∵向量b ,c 和a 在同一平面内且两两不共线,∴b ≠0,c ≠0, 给定向量a 和b ,只需求得其向量差a -b ,即为所求的向量c ,故总存在向量c ,使a =b +c ,故A 正确;当向量b ,c 和a 在同一平面内且两两不共线时,向量b ,c 可作基底, 由平面向量基本定理可知结论成立,故B 正确; 取a =(4,4),μ=2,b =(1,0),无论λ取何值,向量λb 都平行于x 轴,而向量μc 的模恒等于2, 要使a =λb +μc 成立,根据平行四边形法则,向量μc 的纵坐标一定为4, 故找不到这样的单位向量c 使等式成立,故C 错误;因为λ和μ为正数,所以λb 和μc 代表与原向量同向的且有固定长度的向量, 这就使得向量a 不一定能用两个单位向量的组合表示出来, 故不一定能使a =λb +μc 成立,故D 错误.故选AB. 考点三 平面向量共线的坐标表示角度1 利用向量共线求向量或点的坐标【例2】已知点A (4,0),B (4,4),C (2,6),O 为坐标原点,则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3), 所以点P 的坐标为(3,3).法二 设点P (x ,y ),则OP→=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP→=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).角度2 利用向量共线求参数【例3】 (1)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.(2)(2021·福州联考)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,且a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( ) A.8B.9C.6D.4答案 (1)12 (2)A解析 (1)由题意得2a +b =(4,2),因为c =(1,λ),且c ∥(2a +b ),所以4λ-2=0,即λ=12.(2)由题意知AB→=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).因为A ,B ,C 三点共线,设AB →=λAC →,则(a -1,1)=λ(-b -1,2).∴⎩⎨⎧a -1=λ(-b -1),1=2λ,得2a +b =1. 又a >0,b >0,则1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=2+2+b a +4ab ≥4+2b a ·4ab =8,当且仅当b a =4ab ,即a =14,b =12时,等号成立. ∴1a +2b 的最小值为8.感悟升华 1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0; (2)若a ∥b (b ≠0),则a =λb .2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【训练2】 (1)(2020·太原联考)已知向量e 1=(1,1),e 2=(0,1),若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ=________.(2)(2021·安徽江南十校调研)在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上,且|OC →|=310,则向量OC →的坐标为________.答案 (1)-32 (2)(-3,9)解析 (1)由题意知a =e 1+λe 2=(1,1+λ), b =-(2e 1-3e 2)=(-2,1).由于a ∥b ,所以1×1+2(1+λ)=0,解得λ=-32. (2)因为点C 在∠AOB 的平分线上,所以存在λ∈(0,+∞),使得OC →=λ⎝ ⎛⎭⎪⎪⎫OA →|OA →|+OB →|OB →|. ∴OC→=λ(0,1)+λ⎝ ⎛⎭⎪⎫-35,45=⎝ ⎛⎭⎪⎫-35λ,95λ, 又|OC→|=310,所以⎝ ⎛⎭⎪⎫-35λ2+⎝ ⎛⎭⎪⎫95λ2=(310)2,解得λ=5.故向量OC→=(-3,9).A 级 基础巩固一、选择题1.设A (0,1),B (1,3),C (-1,5),D (0,-1),则AB →+AC →等于( )A.-2AD →B.2AD→ C.-3AD →D.3AD→ 答案 C解析 由题意得AB →=(1,2),AC →=(-1,4),AD →=(0,-2),所以AB →+AC →=(0,6)=-3(0,-2)=-3AD→.2.已知向量a =(2,1),b =(3,4),c =(1,m ),若实数λ满足a +b =λc ,则λ+m 等于( ) A.5 B.6C.7D.8答案 B解析 由平面向量的坐标运算法则可得a +b =(5,5), λc =(λ,λm ),据此有⎩⎨⎧λ=5,λm =5,解得λ=5,m =1,∴λ+m =6.3.(2020·郑州质检)已知向量AB →=(1,4),BC →=(m ,-1),若AB →∥AC →,则实数m的值为( ) A.14 B.-4C.4D.-14答案 D解析 ∵向量AB →=(1,4),BC →=(m ,-1), ∴AC→=AB →+BC →=(1+m ,3), 又AB →∥AC →,所以1×3-4(1+m )=0,解得m =-14. 4.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为第一象限内一点,且∠AOC =π4,且|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( ) A.22 B.2C.2D.42答案 A解析 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.5.(2021·济南调研)在△ABC 中,AN→=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB→+25AC →,则实数m 的值为( ) A.-4 B.-1C.1D.4答案 B解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB→+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎨⎧n =2,m =-1.6.(2021·东北师大附中等五校联考)已知向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),α∈⎝ ⎛⎭⎪⎫π2,π,且a ∥b ,则sin ⎝ ⎛⎭⎪⎫α-π2=( )A.-13B.13C.223D.-223答案 C解析 向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),且a ∥b ,则13=tan α·cos α=sin α, 又α∈⎝ ⎛⎭⎪⎫π2,π,知cos α=-223,所以sin ⎝ ⎛⎭⎪⎫α-π2=-cos α=223.7.(2020·西安质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD→=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C.3D.23答案 A解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m >0).AD→=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m , 所以λμ=233.8.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(a ,b ),n =(cos B ,cos A ),则“m ∥n ”是“△ABC 是等腰三角形”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析 由m ∥n 得b cos B -a cos A =0,即sin B cos B =sin A cos A ,可得sin 2B =sin 2A ,因为角A ,B ,C 分别是△ABC 的内角,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,可得△ABC 是等腰三角形或直角三角形. 因此,由“m ∥n ”不能推出“△ABC 是等腰三角形”.因为由“△ABC 是等腰三角形”不能推出“A =B ”,所以由“△ABC 是等腰三角形”也不能推出“m ∥n ”.故“m ∥n ”是“△ABC 是等腰三角形”的既不充分也不必要条件. 二、填空题9.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=32|BP |,则点P 的坐标为________. 答案 (8,-15)解析 设P (x ,y ),由点P 在线段AB 的延长线上, 则AP→=32BP →,得(x -2,y -3)=32(x -4,y +3), 即⎩⎪⎨⎪⎧x -2=32(x -4),y -3=32(y +3).解得⎩⎨⎧x =8,y =-15.所以点P 的坐标为(8,-15).10.(2021·武汉联考)已知非零向量a =(2x ,y ),b =(1,-2),且a ∥b ,则x y =________. 答案 -14解析 因为a =(2x ,y ),b =(1,-2),且a ∥b ,所以2x ·(-2)-y ·1=0,所以xy =-14.11.已知矩形ABCD 的两条对角线交于点O ,点E 为线段AO 的中点,若DE →=mAB →+nAD→,则m +n 的值为________.答案 -12解析 如图所示,因为点E 为线段AO 的中点, 所以DE→=12(DA →+DO →)=12DA →+14DB → =-12AD →+14AB →-14AD →=14AB →-34AD →. 又DE→=mAB →+nAD →, 所以m =14,n =-34,故m +n =-12.12.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________. 答案 k ≠1解析 若点A ,B ,C 能构成三角形, 则向量AB→,AC →不共线.∵AB→=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1.B 级 能力提升13.(多选题)(2021·济南调研)已知向量e 1,e 2是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当OP →=x e 1+y e 2时,则称有序实数对(x ,y )为点P 的广义坐标.若平面α内的点A ,B 的广义坐标分别为(x 1,y 1),(x 2,y 2),则下列命题正确的是( )A.线段AB 的中点的广义坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22B.A ,B 两点间的距离为(x 1-x 2)2+(y 1-y 2)2C.向量OA →平行于向量OB →的充要条件是x 1y 2=x 2y 1D.向量OA →垂直于向量OB →的充要条件是x 1y 2+x 2y 1=0 答案 AC解析 设线段AB 的中点为M ,则OM →=12(OA →+OB →)=12(x 1+x 2)e 1+12(y 1+y 2)e 2,所以点M 的广义坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,知A 正确;由于该坐标系不一定是平面直角坐标系,因此B 错误;由向量平行得OA →=λOB →,即(x 1,y 1)=λ(x 2,y 2),所以x 1y 2=x 2y 1,得C 正确;OA →与OB →垂直,则OA →·OB →=0,所以x 1x 2e 21+(x 1y 2+x 2y 1)e 1·e 2+y 1y 2e 22=0,即x 1y 2+x 2y 1=0不是OA→与OB →垂直的充要条件,因此D 不正确.故选AC. 14.(多选题)(2021·日照调研)如图1,“六芒星”由两个全等的正三角形组成,中心重合于点O 且三组对边分别平行,点A ,B 是“六芒星”(如图2)的两个顶点,动点P 在“六芒星”上(包含内部以及边界),若OP →=xOA →+yOB →,则x +y 的取值可能是( )A.-6B.1C.5D.9答案 BC解析 设OA →=a ,OB →=b ,求x +y 的范围,只需考虑图中6个向量的情况即可,讨论如下:(1)若P 在A 点,∵OA→=a ,∴(x ,y )=(1,0);(2)若P 在B 点,∵OB→=b ,∴(x ,y )=(0,1); (3)若P 在C 点,∵OC→=OA →+AC →=2b +a ,∴(x ,y )=(1,2);(4)若P 在D 点,∵OD →=OA →+AE →+ED →=a +b +(2b +a )=2a +3b ,∴(x ,y )=(2,3);(5)若P 在E 点,∵OE→=OA →+AE →=a +b ,∴(x ,y )=(1,1);(6)若P 在F 点,∵OF →=OA →+AF →=a +3b ,∴(x ,y )=(1,3).∴x +y 的最大值为2+3=5.根据对称性,可知x +y 的最小值为-5. 故选BC.15.已知点P 为四边形ABCD 所在平面内一点,且满足AB →+2CD →=0,AP →+BP →+4DP →=0,AP →=λAB →+μBC →(λ,μ∈R ),则λμ=________. 答案 13解析 如图,取AB 的中点O ,连接DO . 由AB→+2CD →=0,知AB ∥CD ,AB =2CD , 所以CD 綉OB ,所以四边形OBCD 为平行四边形. 又由AP→+BP →+4DP →=0,得-2PO →+4DP →=0, 即PO →=2DP →,所以D ,P ,O 三点共线,且P 为OD 上靠近D 的三等分点, 所以AP→=AO →+OP →=12AB →+23OD →=12AB →+23BC →, 所以λ=12,μ=23,所以λμ=13.16.在△ABC 中,点D ,E 是线段BC 上的两个动点,且AD →+AE →=xAB →+yAC →,则xy 的最大值为________. 答案 1解析 设DE 的中点为M ,连接AM (如图). 则AD→+AE →=2AM →=xAB →+yAC →, 所以AM→=x 2AB →+y 2AC →, 又B ,C ,M 三点共线, 所以x +y =2,且x >0,y >0,又x +y ≥2xy ,当且仅当x =y =1时,取等号,∴xy≤1,即xy的最大值为1.。

新课程2021高考数学一轮复习第四章平面向量与复数第2讲平面向量基本定理及坐标表示课件

新课程2021高考数学一轮复习第四章平面向量与复数第2讲平面向量基本定理及坐标表示课件

平面向量坐标运算的技巧 (1)向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有 向线段两端点的坐标,则应先求向量的坐标. (2)解题过程中要注意方程思想的运用及正确使用运算法则.
1.(2019·厦门外国语学校模拟)已知点 A(-1,1),B(0,2),若向量A→C=(-
2,3),则向量B→C=( )
答案 B
解析 对于 A,e1∥e2,不能作为基底;对于 B,-1×7-2×5≠0,所 以 e1 与 e2 不共线,可以作为基底;对于 C,e2=2e1,所以 e1∥e2,不能作为 基底;对于 D,e1=4e2,所以 e1∥e2,不能作为基底.
(3)如图,正方形 ABCD 中,E 为 DC 的中点,若A→E=λA→B+μA→C,则 λ
121A→C,则实数
m
3 的值为____1_1___.
解析 设B→P=λB→N, ∵P 是 BN 上的一点,A→N=13N→C, 则A→P=A→B+B→P=A→B+λB→N =A→B+λ(A→N-A→B)=(1-λ)A→B+λA→N =(1-λ)A→B+4λA→C=mA→B+121A→C. ∴m=1-λ,4λ=121,解得 λ=181,m=131.
2.平面向量的坐标运算
□ 设 a=(x1,y1),b=(x2,y2),则 a+b= 01 (x1+x2,y1+y2) ,a-b=
□ □ 02 (x1-x2,y1-y2) ,λa= 03 (λx1,λy1)
,|a|= x21+y21,|a+b|=
x2+x12+y2+y12.
3.平面向量共线的坐标表示
a∥b,0<α<π2,
则 α=____6____.
解析 因为 a∥b,所以 sin2α=cosα,即 cosα(2sinα-1)=0,又 0<α<π2, 所以 cosα>0,所以 sinα=12,解得 α=π6.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点二 平面向量的坐标运算
1. (2014· 高考湖南卷)在平面直角坐标系中, O 为原点, A(-1,0), B(0, 3), → |=1,则|OA → +OB → +OD → |的取值范围是( C(3,0),动点 D 满足|CD A.[4,6] C.[2 3,2 7] B.[ 19-1, 19+1] D.[ 7-1, 7+1] )
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点二 平面向量的坐标运算
____________________{突破点}______________________ 理清点的坐标与向量坐标的区别与联系 → = (x , 在平面坐标系中,先确定点的坐标,如 A(x1,y1),B(x2,y2),则OA 1 → =(x ,y ),而AB → =(x -x ,y -y ). y1),OB 2 2 2 1 2 1
首页
上页 下页
尾页
教材梳理 基础自测
二、平面向量的坐标运算
2.平面向量共线的坐标表示 设 a=(x1,y1),b=(x1,y2),其中 b≠0.a∥b⇔ x1y2-x2y1=0 .
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
教材梳理 基础自测
二、平面向量的坐标运算
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
教材梳理 基础自测
一、平面向量基本定理
[ 自测 1]
→ 用 AB → , AC → 表示为 在△ ABC 中, D 为 BC 的中点,则 AD
__________.
1 → → 2(AB+AC)
教材梳理 基础自测 考点突破 题型透析
首页
上页 下页
尾页
考点突破 题型透析
考点一 平面向量基本定理及应用
→ =EC → +CF → ,因为点 E 为 DC 的中点,所以EC → =1 选 D.在△CEF 中,有EF 2 → .因为点 F 为 BC 的一个三等分点, → =2CB → .所以EF → =1DC → +2CB → DC 所以CF 3 2 3 1→ 2 → 1→ 2 → =2AB +3DA=2AB-3AD.
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点二 平面向量的坐标运算
选 D.设出点 D 的坐标,利用向量的坐标运算公式及向量模的运算公式求 解. → |=1,C(3,0),得(x-3)2+y2=1. 设 D(x,y),则由|CD → +OB → +OD → =(x-1,y+ 3), 又∵OA → +OB → +OD → |= x-12+y+ 32. ∴|OA → +OB → +OD → |的几何意义是点 P(1,- 3)与圆(x-3)2+y2=1 上点之 ∴|OA → +OB → +OD → |的最大值是 1+ 7, 间的距离. 由|PC|= 7知, |OA 最小值是 7 -1.
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页

→ =AE → +EM →. 选 B.由题意知AM → =γEC → ,∴AM → =AE → +γEC →, ∵E、M、C 三点共线,∴存在实数 γ,使得EM → =EB → +BC →, 而EC
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点一 平面向量基本定理及应用
→ =EB → ,CF → =2 FB → ,连 3.(2015· 哈尔滨模拟)在平行四边形 ABCD 中,AE → =λ AB → +μ AD →, 接 CE、 DF 相交于点 M, 若AM 则实数 λ 与 μ 的乘积为( 1 A.4 3 C.4 3 B.8 4 D.3 )
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点一 平面向量基本定理及应用
____________________{突破点}______________________ 抓住平面图形的特征和向量的线性运算 在平面图形中的一组基底即该图形中不平行的两条边所在的向量,其它 边表示的向量用该组基底表示是唯一确定的,实际就是用该组基底进行 向量的线性运算.
1 1 → → → ∴AM=2+2γ AB+γAD.①
→ =AD → +DM →. 在△ADM 中,AM
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点一 平面向量基本定理及应用
→ → ∵D、M、F 三点共线,∴存在实数 ω,使得DM=ωDF, → → → → → → → 2→ ∴AM=AD+ωDF,而DF=DC+CF=AB+ DA, 3 2 → → → ∴AM=ωAB+1-3ω AD.②
→ -1a. AP 2 → +PR → +RQ → =0,所以1AP → +AP → -b+1AP → -1a=0,解得AP → =2a+4 因为QP 2 4 2 7 7 b.
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点一 平面向量基本定理及应用
根据题意暗示结果能得到定值, 因此, 可以令三角形为等腰直角三角形(如 → +2BP → +2CP →= 图), 则根据重心坐标公式得重心 G 的坐标为(1,1), 根据PA 0,可设 P(x,y),则有 2(x-3,y)+2(x,y-3)=(4x-6,4y-6)=(x,y), →| |AP 所以 x=2,y=2,所以 P(2,2),所以 =2. → |AG|

1+1γ=ω, 2 2 由①②可知 2 γ=1- ω, 3
→ 3→ 1 → ∴AM= AB+ AD, 4 2 3 1 3 ∴λ= ,μ= ,∴λ· μ= . 4 2 8
教材梳理 基础自测 考点突破 题型透析
γ=1, 2 解得 3 ω= , 4
素能提升 应考展示 课时训练 规范解答
A
)
B.(-4,-6) D.(2,2)
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
教材梳理 基础自测
二、平面向量的坐标运算
[自测 5] 已知 a=(4,5),b=(8,y)且 a∥b,则 y 等于( A.5 32 C. 5 B B.10 D.15
)
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
教材梳理 基础自测
一、平面向量基本定理
[自测 2] 在平行四边形 ABCD 中,E 和 F 分别是边 CD 和 BC 的中点, → =λ AE → +μ AF → ,其中 λ,μ∈R,则 λ+μ=__________. 若AC
4 3
教材梳理 基础自测 考点突破 题型透析
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点一 平面向量基本定理及应用
方法二:采用方程思想.其一般步骤为:第一步,把待求向量看作未知 量;第二步,根据两个三点共线列出相应的方程;第三步,用解方程的 方法求解待求向量.
教材梳理 基础自测 考点突破 题型透析
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
教材梳理 基础自测
二、平面向量的坐标运算
→ [自测 6] 已知 A(2,0),a=(x+3,x-3y-5),若 a=OA,O 为原点,则 x=________,y=________.
-1 -2
教材梳理 基础自测 考点突破 题型透析
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点一 平面向量基本定理及应用
→ =a,AC → =b,AP (2015· 山东高考信息优化卷)如图,在△ABC 中,设AB → =( 的中点为 Q,BQ 的中点为 R,CR 的中点恰为 P,则AP 1 1 A.2a+2b 2 4 C.7a+7b 1 2 B.3a+3b 4 2 D.7a+7b )
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
考点突破 题型透析
考点二 平面向量的坐标运算
2. (2015· 成都调研)设点 G 为△ABC 的重心, 若△ABC 所在平面内一点 P, →| | AP → +2BP → +2CP → =0,则 满足PA 的值等于________. → |AG|
[自测 3] 若 a=(3,2),b=(0,-1),则 2b-a 的坐标是( A.(3,-4) C.(3,4) B.(-3,4) D.(-3,-4)
)
D
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
教材梳理 基础自测
二、平面向量的坐标运算
→ =(1,2),BC → =(3,4),则AC → =( [自测 4] 若向量AB A.(4,6) C.(-2,-2)
相关文档
最新文档