高中数学(北师大版)选修4-4 :2.1参数方程的概念含解析

合集下载

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2
2
点的坐标用三角函数表示,利用三角知识加以解决。
x2 y2 1有一内接矩形ABCD, 例3、已知椭圆 100 64
求矩形ABCD的最大面积。
Y y D
解 : 设A 10cos ,8sin
AD 20cos , AB 16sin S 20 16sin cos 160sin 2
x 线AB的方程为 3 y 2
2

2
1
1 2x 3y 6 0
6 13
d
| 6 cos 6 sin 6 | 22 32
2 sin( ) 4
所以当 =

4 这时点P的坐标为( 3 2 2 , 2)
时, d 有最大值, 面积最大
x2 y2 1、动点P(x,y)在曲线 1上变化 ,求2x+3y的最 9 4 大值和最小值
A
B O N
M
设∠XOA=φ
x
例1、如下图,以原点为圆心,分别以a,b(a>b>0) 为半径作两个圆,点B是大圆半径OA与小圆的交点,过 点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M, 求当半径OA绕点O旋转时点M的轨迹参数方程. y 解: 设∠XOA=φ, M(x, y), 则 A A: (acosφ, a sinφ), B B: (bcosφ, bsinφ), M
O
A x
【练习1】把下列普通方程化为参数方程.
2 x y y 2 1 (2) x 1 (1) 4 9 16 x 2 cos x cos (1) (2) y 3sin y 4sin
2
2


把下列参数方程化为普通方程 x 3cos x 8cos (3) (4) y 10sin y 5sin

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2
2
点的坐标用三角函数表示,利用三角知识加以解决。
x2 y2 1有一内接矩形ABCD, 例3、已知椭圆 100 64
求矩形ABCD的最大面积。
Y y D
解 : 设A 10cos ,8sin
AD 20cos , AB 16sin S 20 16sin cos 160sin 2
椭圆的参数方程
例1、如下图,以原点为圆心,分别以a,b(a>b>0) 为半径作两个圆,点B是大圆半径OA与小圆的交点,过 点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M, 求当半径OA绕点O旋转时点M的轨迹参数方程. 分析:点M的横坐标与点A的横坐标相同, 点M的纵坐标与点B的纵坐标相同. y 而A、B的坐标可以通过 引进参数建立联系.
x 线AB的方程为 3 y 2
2

2
1
1 2x 3y 6 0
6 13
d
| 6 cos 6 sin 6 | 22 32
2 sin( ) 4
所以当 =

4 这时点P的坐标为( 3 2 2 , 2)
时, d 有最大值, 面积最大
x2 y2 1、动点P(x,y)在曲线 1上变化 ,求2x+3y的最 9 4 大值和最小值
l:x-y+4=0的距离最小.
y
分析1: P( 8 8y 2 , y), 设
则d | 8 8y 2 y 4 | 2
O x
分析2:设P(2 2 cos, sin ),
则d | 2 2 cos sin 4 | 2
P
分析3:平移直线 l 至首次与椭圆相切,切点即为所求. 小结:借助椭圆的参数方程,可以将椭圆上的任意一

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2.1 椭圆的参数方程 课件 (北师大选修4-4)

l:x-y+4=0的距离最小.
y
分析1: P( 8 8y 2 , y), 设
则d | 8 8y 2 y 4 | 2
O x
分析2:设P(2 2 cos, sin ),
则d | 2 2 cos sin 4 | 2
P
分析3:平移直线 l 至首次与椭圆相切,切点即为所求. 小结:借助椭圆的参数方程,可以将椭圆上的任意一
2
2
y A
B O M N
φ
x
a b x a cos (为参数) 椭圆的参数方程: y b sin
椭圆的参数方程中参数φ的几何意义: 是∠AOX=φ,不是∠MOX=φ.
圆的标准方程: x2+y2=r2
y
P θ
x r cos 圆的参数方程: (为参数) y r sin θ的几何意义是 ∠AOP=θ
x a cos y b sin 是椭圆的参
另外, 称为离心角,规定参数 的取值范围是 [0, 2 )
x a cos , x b cos , 焦点在X 轴 焦点在Y 轴 y b sin . y a sin .
知识归纳 x2 y2 椭圆的标准方程: 2 2 1
(3)
x 9
2
1 (4)
y 25
2
x 64
2

y 100
2
1
x 2cos 练习2:已知椭圆的参数方程为 ( 是 y sin
参数) ,则此椭圆的长轴长为( 4 ),短轴长为
( 2 ),焦点坐标是(( 3 , 0)),离心率是 (
3 2
)。
例2、如图,在椭圆x2+8y2=8上求一点P,使P到直线

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2.1 椭圆的参数方程 课件 (北师大选修4-4)
A
B O N
M
设∠XOA=φ
x
例1、如下图,以原点为圆心,分别以a,b(a>b>0) 为半径作两个圆,点B是大圆半径OA与小圆的交点,过 点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M, 求当半径OA绕点O旋转时点M的轨迹参数方程. y 解: 设∠XOA=φ, M(x, y), 则 A A: (acosφ, a sinφ), B B: (bcosφ, bsinφ), M
A1
B2
A
F1
C
O B1
B
F2
X A2 X
所以, 矩形ABCD最大面积为 160
y x 练习3:已知A,B两点是椭圆 9 4 与坐标轴正半轴的两个交点,在第一象限的椭 圆弧上求一点P,使四边形OAPB的面积最大.
解 : 椭圆参数方程 设点P(3cos ,2sin ) SABC 面积一定, 需求 SABP 最大即可 即求点P到线AB的距离最大值
x a cos O N x 由已知: (为参数) y b sin 即为点M的轨迹参数方程. x2 y2 消去参数得: 2 2 1, 即为点M的轨迹普通方程. a b
1 .参数方程 数方程. 2 .在椭圆的参数方程中,常数a、b分 别是椭圆的长半轴长和短半轴长. a>b
x a cos y b sin 是椭圆的参
另外, 称为离心角,规定参数 的取值范围是 [0, 2 )
x a cos , x b cos , 焦点在X 轴 焦点在Y 轴 y b sin . y a sin .
知识归纳 x2 y2 椭圆的标准方程: 2 2 1
x 线AB的方程为 3 y 2
2

2

2017-2018学年高中数学(北师大版)选修4-4 课件:2.1参数方程的概念

2017-2018学年高中数学(北师大版)选修4-4 课件:2.1参数方程的概念

探究一
探究二
思维辨析
求曲线的参数方程 【例1】 如图,△ABP是等腰直角三角形,∠B是直角,腰长为a,顶点 B,A分别在x轴、y轴上滑动,求点P在第一象限的轨迹的参数方程.
分析:解决此类问题关键是参数的选取.本例中由于A,B的滑动 而引起点P的运动,故可取OB的长为参数,或取BP与x轴正向夹角为 参数来求解.
探究一
探究二
思维辨析
反思感悟求曲线的参数方程的步骤 1.画出图形,建立合理的坐标系. 坐标系选取是否合理,对于求参数方程的繁简程度有着决定性的 作用,同时,建立方式不同,所得参数方程的形式也不同. 2.设出点的坐标,并选取合适的参数. 由于参数方程是关于曲线上点的坐标的方程,所以必须设出曲线 上任意一点的坐标.参数的选择要考虑以下两点:一是曲线上每一 点的坐标x,y与参数的关系比较明显,容易列出方程;二是x,y的值可 以由参数唯一确定.例如,在研究运动问题时,通常选时间为参数;在 研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距 离、直线的倾斜角、斜率、截距等也常常被选为参数.
名师点拨对参数方程,应从以下六个方面加以理解 (1)参数方程的形式:方程组中有三个变数,其中x和y表示点的坐 标,第三个变数t叫作参变数,而且x与y分别是t的函数,由于横、纵坐 标都是变数t的函数,因此给出一个t能唯一地求出对应的x,y的值,因 而能得到唯一的点. (2)参数的取值范围:在写曲线的参数方程时,必须指明参数的取 值范围,取值范围不同,所表示的曲线也可能会有所不同,同一曲线 选取的参数不同,曲线的参数方程可以有不同的形式. (3)参数方程与普通方程的统一性:普通方程是相对参数方程而言 的,普通方程反映了坐标变数x与y之间的直接联系,而参数方程是通 过参变数反映坐标变数x与y之间的间接联系;普通方程和参数方程 是同一曲线的两种不同表达形式;参数方程可以与普通方程进行互 化.

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2.1 椭圆的参数方程 课件 (北师大选修4-4)
x 线AB的方程为 3 y 2
221 1 2x 3y 6 0
6 13
d
| 6 cos 6 sin 6 | 22 32
2 sin( ) 4
所以当 =

4 这时点P的坐标为( 3 2 2 , 2)
时, d 有最大值, 面积最大
x2 y2 1、动点P(x,y)在曲线 1上变化 ,求2x+3y的最 9 4 大值和最小值
O
A x
【练习1】把下列普通方程化为参数方程.
2 x y y 2 1 (2) x 1 (1) 4 9 16 x 2 cos x cos (1) (2) y 3sin y 4sin
2
2


把下列参数方程化为普通方程 x 3cos x 8cos (3) (4) y 10sin y 5sin
x a cos y b sin 是椭圆的参
另外, 称为离心角,规定参数 的取值范围是 [0, 2 )
x a cos , x b cos , 焦点在X 轴 焦点在Y 轴 y b sin . y a sin .
知识归纳 x2 y2 椭圆的标准方程: 2 2 1
点的坐标用三角函数表示,利用三角知识加以解决。
x2 y2 1有一内接矩形ABCD, 例3、已知椭圆 100 64
求矩形ABCD的最大面积。
Y y D
解 : 设A 10cos ,8sin
AD 20cos , AB 16sin S 20 16sin cos 160sin 2
椭圆的参数方程
例1、如下图,以原点为圆心,分别以a,b(a>b>0) 为半径作两个圆,点B是大圆半径OA与小圆的交点,过 点A作AN⊥ox,垂足为N,过点B作BM⊥AN,垂足为M, 求当半径OA绕点O旋转时点M的轨迹参数方程. 分析:点M的横坐标与点A的横坐标相同, 点M的纵坐标与点B的纵坐标相同. y 而A、B的坐标可以通过 引进参数建立联系.

2.1 椭圆的参数方程 课件 (北师大选修4-4)

2.1 椭圆的参数方程 课件 (北师大选修4-4)

x a cos y b sin 是椭圆的参
另外, 称为离心角,规定参数 的取值范围是 [0, 2 )
x a cos , x b cos , 焦点在X 轴 焦点在Y 轴 y b sin . y a sin .
知识归纳 x2 y2 椭圆的标准方程: 2 2 1
A1
B2
2 X
所以, 矩形ABCD最大面积为 160
y x 练习3:已知A,B两点是椭圆 9 4 与坐标轴正半轴的两个交点,在第一象限的椭 圆弧上求一点P,使四边形OAPB的面积最大.
解 : 椭圆参数方程 设点P(3cos ,2sin ) SABC 面积一定, 需求 SABP 最大即可 即求点P到线AB的距离最大值
(3)
x 9
2
1 (4)
y 25
2
x 64
2

y 100
2
1
x 2cos 练习2:已知椭圆的参数方程为 ( 是 y sin
参数) ,则此椭圆的长轴长为( 4 ),短轴长为
( 2 ),焦点坐标是(( 3 , 0)),离心率是 (
3 2
)。
例2、如图,在椭圆x2+8y2=8上求一点P,使P到直线
O
A x
【练习1】把下列普通方程化为参数方程.
2 x y y 2 1 (2) x 1 (1) 4 9 16 x 2 cos x cos (1) (2) y 3sin y 4sin
2
2


把下列参数方程化为普通方程 x 3cos x 8cos (3) (4) y 10sin y 5sin

北师大版数学高二选修4-4讲义第二讲参数方程1参数方程的概念

北师大版数学高二选修4-4讲义第二讲参数方程1参数方程的概念

【综合评价】参数方程是以参变量为中介来表示曲线上的点的坐标的方程,是曲线在同一坐标系下的又一种表示形式.某些曲线上点的坐标,用普通方程描述它们之间的关系比较困难,甚至不可能,列出的方程既复杂又不易理解,而用参数方程来描述曲线上点的坐标的间接关系比较方便,学习参数方程有助于学生进一步体会数学方法的灵活多变,提高应用意识和实践能力.【学习目标】1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义.并掌握参数方程的概念.2.分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程.3.举例说明某些曲线用参数方程表示比用普通方程表示更方便,更能感受参数方程的优越性.4.借助教具或计算机软件,观察圆在直线上滚动时圆上定点的轨迹(平摆线)、直线在圆上滚动时直线上定点的轨迹(渐开线),了解平摆线和渐开线的生成过程,并能推导出它们的参数方程.5.通过阅读材料,了解其他摆线(变幅平摆线、变幅渐开线、外摆线、内摆线、环摆线)的生成过程;了解摆线在实际中应用的实例(例如,最速降线是平摆线,椭圆是特殊的内摆线——卡丹转盘,圆摆线齿轮与渐开线齿轮,收割机、翻土机等机械装置的摆线原理与设计,星形线与公共汽车门);了解摆线在刻画行星运动轨道中的作用.【学习计划】内容学习重点建议学习时间参数方程的概念参数方程的概念1课时直线和圆锥曲线的参数方程直线的参数,圆的参数方程,椭圆的参数方程,双曲线的参数方程5课时参数方程化成普通方程参数方程和普通方程的互化2课时平摆线和渐开线平摆线、渐开线2课时1.参数方程的概念(1)一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数⎩⎨⎧x=f(t),y=g(t),①并且对于t取的每一个允许值,由方程组①所确定的点P(x,y)都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x,y之间关系的变数t叫作参变数,简称参数.相对于参数方程,我们把直接用坐标(x,y)表示的曲线方程f(x,y)=0叫作曲线的普通方程.(2)在参数方程中,应明确参数t的取值范围.对于参数方程x=f(t),y=g(t)来说,如果t的取值范围不同,它们表示的曲线可能是不相同的.如果不明确写出其取值范围,那么参数的取值范围就理解为x=f(t)和y=g(t)这两个函数的自然定义域的交集.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.(2)在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.【思维导图】【知能要点】 1.参数方程的概念. 2.求曲线的参数方程. 3.参数方程和普通方程的互化.题型一 参数方程及其求法1.曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的联系,而参数方程是通过参数反映坐标变量x 、y 间的间接联系.在具体问题中的参数可能有相应的几何意义,也可能没有什么明显的几何意义.曲线的参数方程常常是方程组的形式,任意给定一个参数的允许取值就可得到曲线上的一个对应点,反过来对于曲线上任一点也必然对应着其中的参数的相应的允许取值.2.求曲线参数方程的主要步骤:第一步,画出轨迹草图,设M (x ,y )是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以利于发现变量之间的关系.第二步,选择适当的参数.参数的选择要考虑以下两点:一是曲线上每一点的坐标x ,y 与参数的关系比较明显,容易列出方程;二是x ,y 的值可以由参数惟一确定.第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略.【例1】 设质点沿以原点为圆心,半径为2的圆作匀角速度运动,角速度为π60rad/s.试以时间t 为参数,建立质点运动轨迹的参数方程. 解 如图所示,运动开始时质点位于点A 处,此时t =0,设动点M (x ,y )对应时刻t ,由图可知⎩⎨⎧x =2cos θ,y =2sin θ,又θ=π60t (t 的单位:S),故参数方程为⎩⎪⎨⎪⎧x =2cos π60t ,y =2sin π60t .【反思感悟】 以时间t 为参数,在图形中分别寻求动点M 的坐标和t 的关系.1.已知定直线l 和线外一定点O ,Q 为直线l 上一动点,△OQP 为正三角形(按逆时针方向转,如图所示),求点P 的轨迹方程. 解 以O 点为原点,过点O 且与l 垂直的直线为x 轴,过点O 与l 平行的直线为y 轴建立直角坐标系.设点O 到直线l 的距离为d (为定值,且d >0), 取∠xOQ =θ为参数, θ∈⎝ ⎛⎭⎪⎫-π2,π2, 设动点P (x ,y ).在Rt △OQN 中, ∵|OQ |=dcos θ,|OP |=|OQ |, ∠xOP =θ+π3, ∴x =|OP |cos ⎝ ⎛⎭⎪⎫π3+θ=d cos θ·cos ⎝ ⎛⎭⎪⎫π3+θ=⎝ ⎛⎭⎪⎫12-32tan θ·d , y =|OP |·sin ⎝ ⎛⎭⎪⎫π3+θ=d cos θ·sin ⎝ ⎛⎭⎪⎫π3+θ=⎝ ⎛⎭⎪⎫32+12tan θ·d . ∴点P 的参数方程为⎩⎪⎨⎪⎧x =⎝ ⎛⎭⎪⎫12-32tan θd ,y =⎝ ⎛⎭⎪⎫32+12tan θd ⎝ ⎛⎭⎪⎫-π2<θ<π2. 题型二 参数方程和普通方程的互化参数方程化为普通方程,消去参数方程中的参数即可,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数.【例2】 已知某条曲线C 的参数方程为⎩⎨⎧x =1+2t y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上. (1)求常数a ;(2)求曲线C 的普通方程.分析 本题主要应根据曲线与方程之间的关系,可知点M (5,4)在该曲线上,则点M 的坐标应适合曲线C 的方程,从而可求得其中的待定系数,进而消去参数得到其普通方程.解 (1)由题意可知有⎩⎨⎧1+2t =5,at 2=4,故⎩⎨⎧t =2,a =1.∴a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎨⎧x =1+2t ,y =t 2.由第一个方程得t =x -12代入第二个方程,得 y =⎝⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求. 【反思感悟】 参数方程化为普通方程时,求参数的表达式应从简单的有唯一结论的式子入手,易于代入消参.2.把下列参数方程化为普通方程.⎩⎨⎧x =3+cos θ,y =2-sin θ,解 由已知得⎩⎨⎧cos θ=x -3,sin θ=2-y .由三角恒等式sin 2θ+cos 2θ=1,可知(x -3)2+(y -2)2=1这就是所求的普通方程.【例3】 选取适当的参数,把普通方程x 216+y 29=1化为参数方程. 解 设x =4cos φ,代入椭圆方程,得16cos 2φ16+y 29=1.∴y 2=9(1-cos 2φ)=9sin 2φ,即y =±3sin φ.由参数φ的任意性可知y =3sin φ.故所求参数方程为⎩⎨⎧x =4cos φ,y =3sin φ(φ为参数).【反思感悟】 选取的参数不同,所得曲线的参数方程不同,注意普通方程和参数方程的等价性.3.选取适当参数,把直线方程y =2x +3化为参数方程.解 选t =x ,则y =2t +3,由此得直线的参数方程⎩⎨⎧x =t ,y =2t +3(t ∈R ).也可选t =x+1,则y =2t +1,参数方程为⎩⎨⎧x =t -1,y =2t +1.1.已知曲线C 的参数方程是:⎩⎨⎧x =3t ,y =2t 2+1(t 为参数).(1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值.解 (1)把点M 1的坐标(0,1)代入方程组,得:⎩⎨⎧0=3t ,1=2t 2+1 解得:t =0.∴点M 1在曲线C 上.同理,可知点M 2不在曲线C 上. (2)∵点M 3(6,a )在曲线C 上,∴⎩⎨⎧6=3t ,a =2t 2+1,解得:t =2,a =9.∴a =9. 2.将下列曲线的参数方程化为普通方程,并指明曲线的类型. (1)⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数,a 、b 为常数,且a >b >0);(2)⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ (φ为参数,a 、b 为正常数); (3)⎩⎨⎧x =2pt 2,y =2pt (t 为参数,p 为正常数).解 (1)由cos 2θ+sin 2θ=1,得x 2a 2+y 2b 2=1 (a >b >0),它表示的曲线是椭圆.(2)由已知1cos φ=x a ,tan φ=yb ,由1cos 2φ=1+tan 2φ,有x 2a 2-y 2b 2=1,它表示的曲线是双曲线. (3)由已知t =y 2p ,代入x =2pt 2得y 24p 2·2p =x , 即y 2=2px 它表示的曲线是抛物线.3.两曲线的参数方程为⎩⎨⎧x =3cos θ,y =4sin θ (θ为参数)和⎩⎨⎧x =-3t 2,y =-4t 2(t 为参数),求它们的交点坐标.解 将两曲线的参数方程化为普通方程, 得x 29+y 216=1,y =43x (x ≤0).联立解得它们的交点坐标为⎝ ⎛⎭⎪⎫-322,-22. 4.△ABC 是圆x 2+y 2=r 2的内接三角形,已知A (r ,0)为定点,∠BAC =60°,求△ABC 的重心G 的轨迹方程.解 因为∠BAC =60°,所以∠BOC =120°,于是可设B (r cos θ,r sin θ),C (r cos(θ+120°),r sin(θ+120°)),重心坐标为(x ,y ), 则⎩⎪⎨⎪⎧x =r +r cos θ+r cos (θ+120°)3,y =r sin θ+r sin (θ+120°)3,消去θ得(3x -r )2+(3y )2=r 2,所以△ABC 重心G 的轨迹方程为⎝ ⎛⎭⎪⎫x -r 32+y 2=r29 (0≤x ≤r 2).[P 28思考交流]把引例中求出的铅球运动轨迹的参数方程消去参数t 后,再将所得方程与原方程进行比较,体会参数方程的作用.答⎩⎨⎧x =v 0t cos α,y =h +v 0t sin α-12gt2其中v 0、α,h 和g 都是常数.这里的g 是重力加速度.h 是运动员出手时铅球的高度.消去参数t 整理得:y =-g2v 20cos 2αx 2+x ·tan x +h .参数方程的作用:当参数t 每取一个允许值,就可以相应地确定一个x 值和一个y 值.这样铅球的位置就相应的确定了.这样建立的t 与x ,y 之间的关系不仅方便,而且清晰地反映了变数的实际意义.如x =v 0t cos α反映了铅球飞行的水平距离. y =h +v 0t sin α-12gt 2反映了铅球的高度与飞行时间的关系.总之它是物理学中弹道曲线的方程. 【规律方法总结】1.求轨迹的参数方程,可以通过对具体问题的分析,选择恰当的参数,建立参数方程.2.曲线的参数方程和普通方程可以互化,两种方程具有等价性.3.曲线上点的坐标如果需要单独表示,使用参数方程比较方便.一、选择题1.下列各点在方程⎩⎨⎧x =sin θ,y =cos 2θ(θ是参数)所表示曲线上的点是( )A.(2,-7)B.⎝ ⎛⎭⎪⎫13,23 C.⎝ ⎛⎭⎪⎫12,12 D.(1,0)解析 由已知可得⎩⎪⎨⎪⎧x =sin θ,y =1-2sin 2θ,将选项代入上式即可.∴x =12时,y =12.故应选C. 答案 C2.将参数方程⎩⎨⎧x =2+sin 2 θ,y =sin 2 θ(θ为参数)化为普通方程为( )A.y =x -2B.y =x +2C.y =x -2 (2≤x ≤3)D.y =x +2 (0≤y ≤1)解析 将参数方程中的θ消去,得y =x -2.又x ∈[2,3],故选C. 答案 C3.曲线(x -1)2+y 2=4上的点可以表示为( ) A.(-1+cos θ,sin θ) B.(1+sin θ,cos θ) C.(-1+2cos θ,2sin θ)D.(1+2cos θ,2sin θ)解析 可设⎩⎪⎨⎪⎧x -1=2cos θ,y =2sin θ,∴⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ,∴曲线x 的点可表示为(1+2cos θ,2sin θ). 答案 D4.直线l 的参数方程为⎩⎨⎧x =a +t ,y =b +t (t 为参数),l 上的点P 1对应的参数是t 1,则点P 1与P (a ,b )之间的距离为( ) A.|t 1| B.2|t 1| C.2|t 1|D.22|t 1|解析 点P 1对应的点的坐标为(a +t 1,b +t 1), ∴|PP 1|=(a +t 1-a )2+(b +t 1-b )2=2t 21=2|t 1|.答案 C5.参数方程⎩⎪⎨⎪⎧x =t 2+2t +3y =t 2+2t +2表示的曲线是( )A.双曲线x 2-y 2=1B.双曲线x 2-y 2=1的右支C.双曲线x 2-y 2=1,但x ≥0,y ≥0D.以上结论都不对解析 平方相减得x 2-y 2=1,但x ≥2,y ≥1. 答案 D 二、填空题6.已知曲线⎩⎨⎧x =2sin θ+1,y =sin θ+3(θ为参数,0≤θ<2π).下列各点A (1,3),B (2,2),C (-3,5),其中在曲线上的点是________.解析 曲线方程可化为x -2y +5=0,将A ,B ,C 三点坐标代入曲线的参数方程可知只有A 符合. 答案 A7.物体从高处以初速度v 0(m/s)沿水平方向抛出,以抛出点为原点,水平直线为x 轴,物体所经路线的参数方程为________.解析 设物体抛出的时刻为0 s ,在时刻t s 时其坐标为M (x ,y ),由于物体作平抛运动,依题意,得⎩⎨⎧x =v 0t ,y =-12gt 2,这就是物体所经路线的参数方程. 答案 ⎩⎪⎨⎪⎧x =v 0t ,y =-12gt 2(t 为参数)8.以过点A (0,4)的直线的斜率k 为参数,将方程4x 2+y 2=16化成参数方程是__________.解析 设直线为y =kx +4,代入4x 2+y 2=16化简即可.答案⎩⎪⎨⎪⎧x =-8k 4+k 2,y =16-4k 24+k 29.将参数方程⎩⎨⎧x =sin θ+cos θy =sin θcos θ化成普通方程为__________. 解析 应用三角变形消去θ,同时注意到|x |≤ 2.答案 x 2=1+2y (|x |≤2)三、解答题10.已知曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ,如果曲线C 与直线x +y +a =0有公共点,求实数a 的取值范围.解 ∵⎩⎨⎧x =cos θ,y =-1+sin θ,∴x 2+(y +1)2=1.圆与直线有公共点,d =|0-1+a |2≤1, 解得1-2≤a ≤1+ 2.11.已知圆的极坐标方程为ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0. (1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.解 (1)由ρ2-42ρcos ⎝ ⎛⎭⎪⎫θ-π4+6=0得ρ2-4ρcos θ-4ρsin θ+6=0, 即x 2+y 2-4x -4y +6=0为所求,由圆的标准方程(x -2)2+(y -2)2=2,令x -2=2cos α,y -2=2sin α,得圆的参数方程为⎩⎨⎧x =2+2cos α,y =2+2sin α(α为参数). (2)由上述可知x +y =4+2(cos α+sin α)=4+2sin(α+π4),故x +y 的最大值为6,最小值为2.12.如图所示,OA 是圆C 的直径,且OA =2a ,射线OB 与圆交于Q 点,和经过A 点的切线交于B 点,已知动点P 满足PQ ⊥OA 于D ,PB ∥OA ,试求点P 的轨迹方程. 解 设点P 坐标为(x ,y ), 则B (2a ,y ),D (x ,0).在Rt △OAB 中,tan θ=AB OA ,∴AB =OA ·tan θ,即y =2a ·tan θ.在Rt △OAQ 中,cos θ=OQ OA ,∴OQ =OA ·cos θ,在Rt △OQD 中,cos θ=OD OQ ,∴OD =OQ ·cos θ,∴OD =OA ·cos 2θ,即x =2a · cos 2θ.即有⎩⎨⎧x =2a cos 2θ,y =2a tan θθ∈⎝ ⎛⎭⎪⎫-π2,π2,化为普通方程为:xy 2+4a 2x =8a 3. 13.在长为a 的线段AB 上有一个动点E ,在AB 的同侧以AE 和EB 为斜边,分别作等腰直角三角形AEC 和EBD ,点P 是CD 的定比分点,且CP ∶PD =2∶1,求点P 的轨迹.解 建立如图所示坐标系(设C ,D 在x 轴上方).设E (t ,0)(t 为参数,t ∈[0,a ]),B (a ,0),则点C 的坐标为⎝ ⎛⎭⎪⎫t 2,t 2,点D 的坐标为⎝ ⎛⎭⎪⎫a +t 2,a -t 2. ∵CP ∶PD =2∶1,即λ=2.由定比分点公式,有⎩⎪⎨⎪⎧x =t 2+2·12(a +t )1+2=16(2a +3t ),y =t 2+2·12(a -t )1+2=16(2a -t )t ∈[0,a ],这就是点P 运动轨迹的参数方程.习题2-1 (第28页)1.解 以摩托车起飞点为原点,水平向前方向为x 轴正方向建立平面直角坐标系,则摩托车飞行轨迹的参数方程为⎩⎪⎨⎪⎧x =19t cos 12°,y =19t sin 12°-12gt 2(g 为重力加速度,时间t 为参数) 2.物体受三个力的作用;地球对物体的引力(重力)mg ;向上的支撑力F 1=mg cos θ;摩擦力F 2=mg sin θ.3.解 以炮弹的出发点为原点,水平向前方向为x 轴正方向建立平面直角坐标系,则炮弹的弹道轨迹的参数方程为⎩⎪⎨⎪⎧x =v 0t cos α,y =v 0t sin α-12gt 2(g 为重力加速度,时间t 为参数).。

高中数学(北师大版)选修4-4 :2.2.1直线的参数方程含解析

高中数学(北师大版)选修4-4 :2.2.1直线的参数方程含解析

§2 直线和圆锥曲线的参数方程2.1 直线的参数方程课后篇巩固探究A组1.曲线(t为参数)与坐标轴的交点是( )A. B.C.(0,-4),(8,0)D.,(8,0)2.过点(1,1),倾斜角为135°的直线截圆x2+y2=4所得的弦长为( )A. B. C.2 D.(t为参数),代入圆的方程得t2+2=4,解得=-,t2=,t1-t2|=|-|=2.故所求弦长为|t3.直线2x-y+1=0的参数方程为( )A.(t为参数)B.(t为参数)C.(t为参数)D.(t为参数)2,设直线的倾斜角为α,则tan α=2,sinα=,cos α=,所以直线的参数方程是(t为参数).4.已知P1,P2是直线(t为参数)上的两点,它们所对应的参数分别为t1,t2,则线段P1P2的中点到点P(1,-2)的距离是( )A. B.C. D.t的几何意义可知,P1P2的中点对应的参数为,点P对应的参数为t=0,故P1P2的中点到点P的距离为.5.直线(t为参数)过定点.(t为参数)得-(y+1)a+(4x-12)=0.若-(y+1)a+(4x-12)=0对于任意a都成立,则x=3,y=-1.6.直线l:(t为参数)上的点P(-4,1-)到直线l与x轴交点间的距离是.l:(t为参数)中,令y=0,得t=-1.故直线l与x轴的交点为Q(-1-,0).故|PQ|===2-2.-27.直线过点A(1,3),且与向量(2,-4)共线.(1)写出该直线的参数方程;(2)求点P(-2,-1)到此直线的距离.由题意知直线的点斜式方程为y-3=-(x-1).设y-3=-(x-1)=t,则(t为参数).所以该直线的参数方程为(t为参数).(2)(方法一)如图所示,在直线上任取一点M(x,y),则|PM|2=(x+2)2+(y+1)2=+(3+t+1)2=t2+5t+25=(t+2)2+20.当t=-2时,|PM|2取最小值,此时|PM|等于点P与直线的距离,则|PM|==2.(方法二)由点P向直线作垂线,垂足记为P0,如上图所示,它对应参数t=-2,代入直线的参数方程,可得点P0的坐标为P0(2,1),显然有|PP 0|==2.8.已知两点A(2,1),B(-1,2)和直线l:x+2y-5=0.求过点A,B的直线的参数方程,并求它与直线l的交点的坐标.AB上动点P(x,y),选取参数λ=,则直线AB的参数方程为(λ为参数). ①把①代入x+2y-5=0得λ=-.把λ=-代入①得即交点坐标为(5,0).9.导学号73144026已知直线(t为参数)与抛物线y2=4x交于两个不同的点P,Q,且A(2,4).(1)求AP+AQ的值;(2)求PQ的长.-1,故直线的倾斜角为135°,故(t'为参数),代入y2=4x,+t'2=-12,t'1t'2=16.得t'2+12t'+16=0,故有t'|+|t'2|=|t'1+t'2|=12.(1)AP+AQ=|t'(2)PQ=|t'1-t'2|==4.B组1.已知直线(t为参数)与椭圆x2+2y2=8交于A,B两点,则|AB|等于( )A.2B.C.2D.x2+2y2=8,得3t2-6t+1=0,解得t1=1+,t2=1-,得A,B.故|AB|=.2.直线(t为参数)上与点P(-2,3)之间的距离等于的点的坐标是( )A.(-4,5)B.(-3,4)C.(-3,4)或(-1,2)D.(-4,5)或(0,1)Q与点P之间的距离等于,Q(x 0,y0),则(t为参数).由|PQ|=,得(-2-t+2)2+(3+t-3)2=2,即t2=,得t=±.当t=时,Q(-3,4);当t=-时,Q(-1,2).3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)之间的距离为,若该直线的参数方程改写成(t'为参数),则点P对应的t'值。

高中数学选修4-4-参数方程

高中数学选修4-4-参数方程

参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。

高中数学 参数方程的概念参数方程的概念教案 北师大版选修4-

高中数学 参数方程的概念参数方程的概念教案 北师大版选修4-

参数方程的概念教学目标:(1)通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。

(2)分析曲线的几何性质,选择适当的参数写出它的参数方程。

(3)能掌握消去参数的一些常用技巧:代人消参法、三角消参等;重点难点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义教学过程:1.问题提出:已知圆C 的方程为1)2(22=+-y x ,过点P 1(1,0) 作圆C 的任意弦,交圆C 于另一点P 2,求P 1P 2的中点M 的轨迹方程.书中列举了六种解法,其中解法六运用了什么方法求得M 点的轨迹方程?此种方法是如何设置参数的,其几何意义是什么?设M(y x ,) ,由⎪⎪⎩⎪⎪⎨⎧+=++=222112k ky k k x ,消去k,得41)23(22=+-y x ,因M 与P 1不重合,所以M 点的轨迹方程为41)23(22=+-y x (1≠x ) 解法六的关键是没有直接寻求中点M 的轨迹方程0),(=y x F ,而是通过引入第三个变量k (直线的斜率),间接地求出了x 与y 的关系式,从而求得M 点的轨迹方程.实际上方程⎪⎪⎩⎪⎪⎨⎧+=++=222112k ky k k x (1)和41)23(22=+-y x (1≠x )(2)都表示同一个曲线,都是M 点的轨迹方程.这两个方程是曲线方程的两种形式.方程组(1)是曲线的参数方程,变数k 是参数,方程(2)是曲线的普通方程.(2)、抽象概括:参数方程的概念。

1、 曲线的参数方程在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,⎩⎨⎧==)()(t g y t f x (1)并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程.联系x 、y 之间关系的变数叫做参变数,简称参数.2、 求曲线的参数方程求曲线参数方程一般程序:(1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标;(2) 选参:选择合适的参数;(3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系式,并由此分别解出用参数表示的x 、y 的表达式.(4) 结论:用参数方程的形式表示曲线的方程3、 曲线的普通方程相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程.4、 参数方程的几个基本问题(1) 消去参数,把参数方程化为普通方程.(2) 由普通方程化为参数方程.(3) 利用参数求点的轨迹方程.(4) 常见曲线的参数方程.3、曲线的普通方程与曲线的参数方程的区别与联系曲线的普通方程),(y x F =0是相对参数方程而言,它反映了坐标变量x 与y 之间的直接联系;而参数方程⎩⎨⎧==)()(t g y t f x , t D ∈是通过参数t 反映坐标变量x 与y 之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的.参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式.说明:(1)一般来说,参数的变化范围是有限制的。

《 参数方程的概念》 (北师大版 选修4-4)

《 参数方程的概念》   (北师大版  选修4-4)
是否存在即可,若存在,说明点在曲线上,否则不在曲线上.
[解] (1)把点 M1 的坐标(0,1)代入方程组,得:01==32tt2,+1. 解得:t=0.∴点 M1 在曲线 C 上. 同理:可知点 M2 不在曲线 C 上. (2)∵点 M3(6,a)在曲线 C 上,∴6a==32tt,2+1. 解得:t=2,a=9. ∴a=9.
易错点
探究 1 下面将参数方程xy==1-t+21,t (t 为参数),化成普通方程的过程是否 正确?为什么?
解:由 x= t+1,得 t=x-1, 代入 y=1-2 t,得 y=-2x+3. 这是一条过点(0,3),且斜率为-2 的直线.
【提示】 解析过程不正确,因为没有考虑 x 是有范围的,即 x= t+1≥1.
哪些具体的方法?
典例精讲
类型一 参数方程表示的曲线上的点 例 1.已知曲线 C 的参数方程是xy==23tt2,+1 (t 为参数). (1)判断点 M1(0,1),M2(5,4)与曲线 C 的位置关系; (2)已知点 M3(6,a)在曲线 C 上,求 a 的值. [思路点拨] 由参数方程的概念,只需判断对应于点的参数
当堂检测
5.指出下列参数方程表示什么曲线.
x=3cos θ, (1)y=3sin θ
(0≤θ≤π);(2)xy==32scions
t, t
(π≤t≤2π).
【解】
(1)由yx==33scions
θ, θ,
得 x2+y2=9.又∵0≤θ≤π.
∴-3≤x≤3,0≤y≤3.
【答案】 以(2,0)和(0,1)为端点的线段
当堂检测
1.曲线(x-1)2+y2=4 上的点可以表示为 ( )
A.(-1+cos θ,sin θ)

高中数学 北师大选修4-4 2.1参数方程的概念和圆的参数方程

高中数学 北师大选修4-4 2.1参数方程的概念和圆的参数方程

1、相对于参数方程而言,直接给出点的坐标间关系的方程 叫做普通方程;
2、参数是联系变数x,y的桥梁,可以是一个有物理意义或几 何意义的变数,也可以是没有明显实际意义的变数.
例题分析
例1、 已知曲线 C 的参数方程是
x y
3t, 2t 2
(t为参数) 1.
(1)判断点M1(0,1),M2(5,4)与曲线
所以
(a,b)
r P1(x1, y1)
参数方程与普通方程的互化
x2+y2=r2
x r cos y r sin
注:1、参数方程的特点是没有直接体现曲线上点的 横、纵坐标之间的关系,而是分别体现了点的横、纵 坐标与参数之间的关系.
2、参数方程的应用往往是在x与y直接关系很难 或不可能体现时,通过参数建立间接的联系.
由中点公式得:点M的轨迹方程为
x =6+2cosθ y =2sinθ
∴点M的轨迹是以(6,0)为圆心、2为半径的圆.
例2. 如图,已知点P是圆x2+y2=16上的一个动点,点A是x
轴上的定点,坐标为(12,0).当点P在圆上运动时,线段PA
中点M的轨迹是什么?
解:设M的坐标为(x,y),
y P M
(0 θ
2π )
⑴如果圆上点P所对应的参数θ 5π 则点P的坐标是 _______
3
2
如果圆上点Q所对应的坐标是
5 2
,
5
3 2
,
则点Q对应
的参数 等于_______
2、填空题 :
(1)参数方程
x
y
2 cosθ 2 sinθ
表示圆心为(2,-2)
半径为 1 的圆,化为标准方程为

2019-2020学年北师大版高中数学选修4-4同步配套课件:2.1参数方程的概念

2019-2020学年北师大版高中数学选修4-4同步配套课件:2.1参数方程的概念

标为(2cos θ+6,2sin θ).
所以点 M 的轨迹的参数方程为
������ ������
= =
62s+in2������cos������,(������为参数).
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三
即取值范围是[11-2 3, 11 + 2 3].
反思利用参数方程求最值,可以把问题直接转化成三角函数问题, 从而简化整个运算过程.
题型一 题型二 题型三
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
【变式训练3】 若x,y满足(x-1)2+(y+2)2=4,求S=2x+y的最值. 解:由(x-1)2+(y+2)2=4知,它表示以(1,-2)为圆心,2为半径的圆. 设x=1+2cos θ,y=-2+2sin θ, 则S=2x+y=2+4cos θ-2+2sin θ =4cos θ+2sin θ=2 5sin (θ+φ),其中 tan φ=2. 由-2 5≤S≤2 5, 得S 的最大值为 2 5, 最小值为-2 5.
目标导航
Z D 知识梳理 HISHISHULI
典例透析
IANLITOUXI
S随堂演练 UITANGYANLIAN
12345
1 若曲线
������ ������
= =
1+ 2������
������2,(������为参数)经过点(2,

选修4-4 2.1.1 参数方程的概念

选修4-4 2.1.1 参数方程的概念
选修4-4 坐标系与参数方程 第二讲 参数方程 一 曲线的参数方程 1.参数方程的概念
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时时机呢?
投放点
提示: 即求飞行员在离救援点的水平距离 多远时,开始投放物资?
1. 参数方程
参数是联系变数x,y的桥梁,可以是一个与物理意义 或几何意义的变数,也可以是没有明显实际意义的变数. 练习:指出下列参数方程中的参数
x t 1, x sin cos , (1) (2) y 1 2 t; y 1 sin 2 . x r cos t x r cos (4) (3) y r sin t y r sin
例题讲解
x 3t 已知曲线 C 的参数方程是 ( t 为参数) 2 y 2t 1
(1) 判断点M1 (0,1),M 2 (5, 4)与曲线C的位置关系;
(2) 已知点M 3 (6, a)在曲线C上,求 a的值.
o
可以使其准确落在指定位置.
所以,飞行员在离救援点的水平距离约为1010m时投放物资,
x 代入x 100t, 得 x 1010m.
一、方程组有3个变量,其中的x,y表示点的坐标, 变量t叫做参变量,而且x,y分别是t的函数。
二、由物理知识可知,物体的位置由时间t唯一 决定,从数学角度看,这就是点M的坐标x,y由t唯 一确定,这样当t在允许值范围内连续变化 时,x,y的值也随之连续地变化,于是就可以连续 地描绘出点的轨迹。 三、平抛物体运动轨迹上的点与满足方程组的 有序实数对(x,y)之间有一一对应关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章DIERZHANG参数方程
§1 参数方程的概念
课后篇巩固探究
A组
1.参数方程(t为参数)的曲线与坐标轴的交点坐标为( )
A.(1,0),(0,-2)
B.(0,1),(-1,0)
C.(0,-1),(1,0)
D.(0,3),(-3,0)
x=t-1=0时,t=1,y=t+2=3;当y=t+2=0时,t=-2,x=t-1=-3.曲线与坐标轴
的交点坐标为(0,3),(-3,0).
2.下列各点在方程(θ为参数)所表示的曲线上的是( )
A.(2,-7)
B.
C. D.(1,0)
x=sin θ∈[-1,1],y=cos 2θ∈[-1,1],故排除A.
由y=cos 2θ=1-2sin2θ=1-2x2,验证知C项正确.
3.若t>0,则下列参数方程的曲线不过第二象限的是( )
A. B.
C. D.
(t>0),得该参数方程表示射线,且只在第一象限内,其余方程的曲线都过第二象限.
4.已知点O为原点,当θ=-时,参数方程(θ为参数)上的点为A,则直线OA的倾斜角为( )
A. B.
C. D.
θ=-时,参数方程(θ为参数)上的点A的坐标为, =tan α==-,0≤α<π,
k
故直线OA的倾斜角α=.
5.在方程(θ为参数)所表示的曲线上的一点的坐标是( )
A.(1,)
B.(2,)
C. D.
x=sin 2θ∈[-1,1],
y=sin θ+cos θ=sin∈[-],故排除A,B,C.
令y=sin θ+cos θ=,
两边平方得1+2sin θcos θ=,
故x=sin 2θ=-.
6.若点(-3,-3)在参数方程(θ为参数)的曲线上,则θ= .
(-3,-3)的坐标代入参数方程(θ为参数),

解得θ=+2kπ,k∈Z.
+2kπ,k∈Z
7.已知曲线C的参数方程为(t为参数),判断点A(3,0),B(-2,2)是否在曲线C上?若在曲线上,求出点A,B对应的参数的值.
A(3,0)的坐标代入
得解得t=2,
所以点A(3,0)在曲线C上,对应参数t=2.
将点B(-2,2)的坐标代入。

相关文档
最新文档