初一数学(下)全等三角形(3)ASA、AAS

合集下载

第五讲 ASA全等三角形的判定

第五讲  ASA全等三角形的判定

A B C A ’B ’C ’A BC A ’B ’C ’第四讲 全等三角形的判定(三)(一)知识要点1、三角形全等的判定三、四:ASA 及AAS两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)。

书写格式:、在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧∠=∠=∠=∠''''B B B A AB A A ∴△ABC ≌△A ’B ’C ’(ASA ) 知识延伸:“ASA ”中的“S ”必须是两个“A ”所夹的边。

两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)。

书写格式:在△ABC 和△A ’B ’C ’中,∵⎪⎩⎪⎨⎧=∠=∠∠=∠''''C A AC B B A A ∴△ABC ≌△A ’B ’C ’(AAS ) 知识延伸:“AAS ”可以看成是“ASA ”的推论。

规律方法小结:由“角边角”及“角角边”可知两角及一边对应相等的两个三角形全等。

无论这个一边是“对边”还是“夹边”,只要对应相等即可。

(二)例题讲解:例1.如图所示,D 在AB 上,E 在AC 上,AB=AC, ∠B=∠C. 求证:AD=AE例2.如图,AB ⊥BC, AD ⊥DC, ∠1=∠2. 求证:AB=AD练习:如图所示,点B 、F 、C 、E 在同一条直线上,AB ∥DF ,AC ∥DE ,AC =DE ,FC 与BE 相等吗?请说明理由.A B C D A ’B ’C ’D ’ 例3.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .例4:如图,已知△ABC ≌△A ’B ’C ’,AD ,A ’D ’分别是△ABC 和△A ’B ’C ’的边BC 和B ’C ’上的高。

求证:AD=A ’D ’例5.如图,点E 在AC 上,∠1=∠2,∠3=∠4.试证明BE= DE.(三)练习1.如图,已知AB= DC ,AD =BC ,E ,F 是DB 上的两点,且BE=DF.若∠AEB=100º,∠ADB= 30º.则∠BCF= 。

全等三角形判定(ASA和AAS)

全等三角形判定(ASA和AAS)
∴ ∠B=∠DEF , ∠ACB=∠F
在△ABC和△DEF中
∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能行吗?
× AB=DE可以吗?
B A
C
F
D E
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。
为两角夹边
B
C 图2
在图2中, 边BC是∠A的对 边, 我们称这种位置关系为
两角及其中一角的对边。
二、合作探究
(一)探究一:已知两个角和一条线段,以这 两个角为内角,以这条线段为这两个角的夹边, 画一个三角形.
45°
3 cm
30°
把你画的三角形与小组其他组员画的三角形进
行比较,所有的三角形都全等吗? 都全等
利用“角怎边么角办?定可理以”帮帮可知,带B
A
块去,可以配我到吗?一个与原来全
等的三角形玻璃。
B
考考你
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则 △ABC ≌△DEF的理由是: 角边角(ASA)
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则
△ABC ≌△DEF的理由是: 角角边(AAS)
Q AB AC
AB AD AC AE (等式的性质)
BD CE
3.已知ABC中,BE AD于E,CF AD于F,
且BE CF,那么BD与DC相等吗?
A
证明:Q BE AD,CF AD
BED CFD 90 (垂直的定义)
F
Q 在BDE和CDF中
B
D
C
BED CFD(已证)

三角形全等的判定(ASA,AAS)课件

三角形全等的判定(ASA,AAS)课件
问题:如图有一池塘。要测池塘两端A、B的距离,可 无法直接达到,因此这两点的距离无法直接量出。 你能想出办法来吗? 在平地上取一个可直接到达A和 B的点C, 连结AC并延长至D使CD=CA 连接BC并延长至E使CE=CB A 连接ED,
B
1
那么量出ED的长,就是A、B的 距离.为什么?
C
2
E
D
在△ABC与△ABD中
两角和它们的夹边对应相等两个 简记为 “角边角”或“ASA” 三角形全等.
A
B
D
C
符 号 语 言
E
F
例1 已知∠ABC=∠DCB,∠ACB= ∠DBC, 求证: △ABC≌△DCB. 证明:在△ABC和△DCB中,
∠ABC=∠DCB BC=CB ∠ACB=∠DBC
∴△ABC≌△DCB(ASA )
判定3:两角和它们的夹边对应相等两个三角形全等. 图 19.2.9

② ③ 如果只能拿一块破碎玻璃,你会选择拿 哪一块呢?
已知两个角和一条线段,以这两个角为内角, 以这条线段为这两个角的夹边,画一个三角形.
45°
60°
4 cm
把你画的三角形与其他同学画的三角形进行比 较,所有的三角形都全等吗? 都全等
换两个角和一条线段,试试看,是否有同样 的结论.
三角形全等的判定3
三角形全等的判定3推论:
两个角和其中一个角的对边对应相等的 两个三角形全等. (简记为“角角边”或“AAS” ).
A
D
B
C E
F
三角形全等的判定3
(角边角ASA)
(角角边AAS)
你也试一试:
1. 如图∠1=∠2,∠B=∠D, 求证△ABC≌△ADC .,∠1=∠2, 求证:AB=AD.

全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解

全等三角形判定一(SAS、ASA、AAS)(基础)知识讲解

全等三角形判定一(SAS,ASA ,AAS )(基础)撰稿:常春芳【学习目标】1.理解和掌握全等三角形判定方法1——“边角边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】要点一、全等三角形判定1——“边角边” 1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、全等三角形判定2——“角边角” 全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边” 1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.【思路点拨】由条件AB=AD,AC=AE,需要找夹角∠BAC与∠DAE,夹角可由等量代换证得相等.【答案与解析】证明:∵∠1=∠2∴∠1+∠CAD=∠2+∠CAD,即∠BAC=∠DAE在△ABC和△ADE中AB ADBAC DAEAC AE=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△ADE(SAS)∴BC=DE(全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.【答案】AE=CD,并且AE⊥CD证明:延长AE交CD于F,∵△ABC和△DBE是等腰直角三角形∴AB=BC,BD=BE在△ABE和△CBD中90AB BCABE CBDBE BD=⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,PC⊥AC,PB⊥AB,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型二、全等三角形的判定2——“角边角”【高清课堂:379110 全等三角形判定二,例5】2、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【答案与解析】证明:∵AD∥CB∴∠A=∠C在△ADF与△CBE中A CAD CBD B∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF≌△CBE (ASA)∴AF =CE ,AF+EF=CE+EF故得:AE=CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.【答案】证明:∵AB ∥CD ,∴∠B =∠C.∵AF ∥DE ,,∴∠AFB =∠DEC.又∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE. 在△ABF 和△DCE 中,B C BF CEAFB DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等).类型三、全等三角形的判定3——“角角边”【高清课堂:379110 全等三角形的判定二,例6】3、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中BAC EADB ECB=DE∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC≌△EAD(AAS)∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.【答案】证明:∵AD为△ABC的中线∴BD=CD∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°,在△BED和△CFD中BED CFDBDE CDFBD CD∠=∠⎧⎪∠=∠⎨⎪=⎩(对顶角相等)∴△BED≌△CFD(AAS)∴BE=CF4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【思路点拨】(1)证△ABO≌△CDO,得AO=OC,BO=DO(2)证△AEO≌△CFO或△BEO≌△DFO【答案与解析】证明:∵AB∥DC∴∠A=∠C在△ABO与△CDO中A C(AOB COD∠∠⎧⎪∠∠⎨⎪⎩==对顶角相等)AB=CD∴△ABO≌△CDO(AAS)∴AO=CO ,BO=DO在△AEO和△CFO中A C(AOE COF∠∠⎧⎪⎨⎪∠∠⎩=AO=CO=对顶角相等)∴△AEO≌△CFO(ASA)∴OE=OF.【总结升华】证明线段相等,就是证明它们所在的两个三角形全等.利用平行线找角等是本题的关键.类型四、全等三角形判定的实际应用5、在一次战役中,我军阵地与敌军碉堡隔河相望,为了炸掉敌军的碉堡,要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一名战士想出了这样一个办法:他面向碉堡站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部.然后,他转身向后,保持刚才的姿态,这时视线落在了自己这岸的某一点上.接着,他用步测的办法量出了自己与该点的距离,这个距离就是他与碉堡的距离.这名战士的方法有道理吗?请画图并结合图形说明理由.【答案与解析】设战士的身高为AB,点C是碉堡的底部,点D是被观测到的我军阵地岸上的点,由在观察过程中视线与帽檐的夹角不变,可知∠BAD=∠BAC,∠ABD=∠ABC=90°.在△ABD和△ABC中,ABD ABCAB ABBAD BAC∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD≌△ABC(ASA)∴BD=BC.这名战士的方法有道理.【总结升华】解决本题的关键是结合图形说明那名战士测出的距离就是阵地与碉堡的距离,可以先画出示意图,然后利用全等三角形进行说明.解决本题的关键是建立数学模型,将实际问题转化为数学问题并运用数学知识来分析和解决.。

全等三角形的判定证明题asa-aas-hl

全等三角形的判定证明题asa-aas-hl

全等三角形判定练习(ASA、AAS、HL) 判定定理3、有两角及其夹边对应相等的两个三角形全等(ASA)在△ABC和△DFE中∠A=∠D (已知)AB=DE(已知)∠B=∠E(已知)∴△ABC≌△DEF(ASA)判定定理4、有两角及一角的对边对应相等的两个三角形全等(AAS)在△ABC和△DFE中∠A=∠D ,∠C=∠FAB=DE∴△ABC≌△DFE(AAS)判定定理5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL) 在Rt△ABC和Rt△A′B′C′中AB=AB (直角边)BC = B′C′(斜边)∴Rt△ABC≌Rt△A′B′C′(HL)1 如图,∠E=∠B,∠1=∠2,EC=BC,求证:DE=AB。

2 已知:如图点C是AB的中点,CD∥BE,且∠D=∠E.求证:. CD=BE3 如图,DC=BC,∠B=∠D=90°,求证:AB=AD.ACB ED4 如图,AC⊥OB,BD⊥OA,AC与BD交于E点(1)如果OC=OD,求证:∠A=∠B。

(2)如果∠A=∠B ,OC=OD,求证:AC=BD。

(3)如果AO=BO,OC=OD,求证:∠A=∠B。

OBACDE5 如图.已知AC∥DF,且BE=CF、(1)请你只添加一个条件,使△ABC≌△DEF,你添加的条件是;..(2)添加条件后,证明△ABC≌△DEF.6 如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.请从下列三个条件中选择一个合适....的条件...,添加到已知条件中,使AB∥ED成立,并给出证明.供选择的三个条件(请从其中选择一个):①AB=ED;②BC=EF;③∠ACB=∠DFE.7 如图,∠A=∠D,AB=CD,则△≌△,请证明8如图,O为AC中点,AB∥CD,证明AB=CDDOC BAAB EFC9 在ABC △中,D 是AB 上一点,DF 交AC 于点E ,DE FE =,AE CE =,AB 与CF 有什么位置关系?证明你的结论10 已知:如图∠B=∠E=90°AC=DF FB=EC ,证明:AB=DEAD BCFE11如图,已知AB=AC,AD=AE,BE与CD相交于O,证明:(1)ΔABE≌ΔACD(2)ΔDOB≌ΔEOC (3)ΔDBC≌ΔECB12 正方形ABCD 中, F 分别是AB 和AD 上的点,已知CE ⊥BF ,垂足为M ,证明BE=AFDMFEA。

11.2 三角形全等的条件(三)ASA,AAS

11.2 三角形全等的条件(三)ASA,AAS
初中数学八年级下册 (苏科版)
知识回顾:
全等三角形有哪几种判定方法? 各是什么?
A A′
B
C
B′
C′
继续探讨三角形全等的条件: 两角一边
思考:已知一个三角形的两个角和一条边,那么两个角 与这条边的位置上有几种可能性呢? A A
B
图1
C
B
C
图2
在图1中, 边AB是∠A与∠B 的夹边,我们称这种位置关系 为两角夹边
N N M C
B
E A
C
F
B
M
A
N
C M
F
E
B
A
A
B
C
D
F
E
2、如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
例2.已知:如图, AB=AC、∠D=∠E,AB、
DC相交于点M, AC、BE相交于点N, ∠1=∠2,试说明:AM=AN
A
D
M
1
3
2
E
N C
B
练习:
2已知:如图,△ABC中,∠ABC=450, H是高AD、BE的交点,则BH和AC的大小关 系如何?并说明理由. 猜想:若∠ABC=1350,其它条件不变,则BH 和AC的大小关系发生什么变化?
′ A′ D、B ′E交于点C′
C E ′ C B A ′ D
A
B′
观察:△A′ B′ C′ 与 △ABC 全等吗?为什么? 思考:这两个三角形全等是满足哪三个条件?
结论:两角及夹边对应相等的两个三角形全等(ASA).
三角形全等的判定方法三: 如果两个三角形的两个角及其夹边对应相等, (ASA) 那么这两个三角形全等. A′ A

全等三角形的复习SSSSASASAAAS

全等三角形的复习SSSSASASAAAS

A
解:有三组。
(1)在△ABH和△ACH中 ∵AB=AC,BH=CH,AH=AH ∴△ABH≌△ACH(SSS); (2)在△ABD和△ACD中
∵AB=AC,BD=CD,AD=AD ∴△ABD≌△ACD(SSS);
D B H C
(3)在△DBH和△DCH中
∵BD=CD,BH=CH,DH=DH
∴△DBH≌△DCH(SSS)
基础练习(填空题) 1.如图AC与BD相交于点O, 已知OA=OC,OB=OD, 求证:△AOB≌△COD
A O D C
B
证明:
在△AOB和△COD中 OA=OC ∠ AOB=∠COD(对顶角相等) ______________
OB=OD
∴△AOB≌△COD( SAS )
练习:2.如图,AB=AC,BD=CD,BH=CH,图 中有几组全等的三角形?它们全等的条件是什么?
B D
C
归纳:证明两条线段相等或两个角相等可以通 过证明它们所在的两个三角形全等而得到。
课后 练习
如图,AC=BD,∠1= ∠2 求证:BC=AD (SAS) A
C
D 2 B
1
C 1
变式1: 如图,AC=BD,BC=AD 求证:∠1= ∠2
D 2
(SSS)
A
变式2: 如图,AC=BD, ∠C=∠D 求证: (1)AO=BO,(2)CO=DO,(3)BC=AD C D
练习
已知:如图,AB=CB,∠1=∠2
△ABD 和△CBD 全等吗?
B
A 1
2 C
D
变式1:已知:如图,AB=CB,∠1= ∠2 求证:(1) AD=CD (2)BD 平分∠ ADC
1
2 4 C A

三角形全等的判定(ASA-AAS)3-生产经营管理-经

三角形全等的判定(ASA-AAS)3-生产经营管理-经

三角形全等判定定理的应用
解决几何问题
三角形全等判定定理是解决几何问题的重要工具, 如求角度、线段长度等。
证明几何命题
通过三角形全等判定定理,可以证明一些几何命题 ,如线段的中点性质、角的平分线性质等。
构造辅助线
在解题过程中,有时需要通过构造辅助线来应用三 角形全等判定定理,从而简化问题。
02
生产经营管理
目的经济合理性。
市场分析
市场调研
通过市场调查了解市场需求、竞争状况、消费 者行为等信息。
市场定位
根据市场调研结果,确定产品的目标市场和竞 争优势。
营销策略
制定适合目标市场的营销策略,包括产品定价、促销手段等。
投资风险分析
风险识别
找出项目可能面临的各种风险,如市场风险、技术风险、财务风 险等。
风险评估
通过收集客户反馈和内部质量分析,持续改进产品质 量,提高客户满意度。
03
经济分析
成本效益分析
成本估算
01
对项目所需的各种投入进行准确的估算,包括人力、物力、财
力等方面的投入。
效益预测
02
根据市场需求、产品定位等因素,预测项目的未来收益,包括
销售收入、利润等。
成本效益比
03
将项目的成本与效益进行比较,计算出成本效益比,以评估项
生产计划管理
80%
制定生产计划
根据市场需求、订单和库存情况 ,制定合理的生产计划,确保生 产进度与市场需求相匹配。
100%
安排生产任务
将生产计划细化为具体的生产任 务,分配给各生产线和班组,确 保生产顺利进行。
80%
监控生产进度
实时监控生产进度,及时发现并 解决生产过程中的问题,确保按 时完成生产计划。

三角形全等的判定三AAS、ASA(分层作业)(原卷版)

三角形全等的判定三AAS、ASA(分层作业)(原卷版)

12.2.3 三角形全等的判定㈢AAS、ASA夯实基础篇一、单选题:1.花花不慎将一块三角形的玻璃打碎成了如图所示的四块(图中所标①、②、③、④),若要配一块与原来大小一样的三角形玻璃,应该带()A.第①块B.第②块C.第③块D.第④块2.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到MBC≌ABC,所以测得MB的长就是A,B两点间的距离,这里判定MBC≌ABC的理由是()A.SAS B.AAA C.SSS D.ASA3.如图,AC=DF,∠1=∠2,如果根据“AAS”判定△ABC≌△DEF,那么需要补充的条件是()A.∠A=∠D B.AB=DE C.BF=CE D.∠B=∠E4.如图,在△AB C中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm5.如图,在 ABC ∆ 和 DEC ∆ 中,已知 AB DE = ,还需添加两个条件才能使 ABC DEC ∆≅∆ ,添加的一组条件不正确的是 ()A .BC DC = , A D ∠=∠B .BC EC = , AC DC = C .B E ∠=∠ , BCE ACD ∠=∠D .BC EC = , BE ∠=∠6.如图,点B ,C ,E 在同一直线上,且 AC CE = , 90B D ∠=∠=︒ , AC CD ⊥ ,下列结论不一定成立的是( )A .2A ∠=∠B .90A E ∠+∠=︒C .BC DE =D .BCD ACE ∠=∠二、填空题: 7.如图,ABC 与 DCB 中,已知, A D ∠=∠ ,请你添加一个条件(不添加字母和辅助线),使 ABC DCB ≌ ,你添加的条件是 .8.如图,已知BD =CE ,∠B =∠C ,若AB =8,AD =3,则DC = .9.如图,已知AB ∥CF ,E 为DF 的中点,若AB =11 cm ,CF =5 cm ,则BD = cm.10.如图,在△AB C中,AD⊥BC,BE⊥AC,垂足分别为点D,E,AD与BE相交于点F,若BF=AC,则∠ABC=°.11.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.12.如图正方形网格,点A、B、C、D均落在格点上,则∠BAC+∠ACD=度。

三角形(全等SSS,SAS,AAS,ASA)练习

三角形(全等SSS,SAS,AAS,ASA)练习

A B C D A BC D 三角形全等的判定练习一、三角形的全等性质:1.如图:△ABC ≌△A’B’C’,则有:AB= ,BC= ,CA = ,∠A = ,∠B = ,∠C = , 2.如图:△ADF ≌△CBE ,问AD 会平行CB 吗?AE 会等于CF 吗? 解:∵△ADF ≌△CBE ( )∴∠A= ( ) ∴AD ∥BC ( ) ∵△ADF ≌△CBE ( ) ∴AF= ( ) ∴AF-EF= 即AE =3.如图:△ADB ≌△ADC ,问AD 会垂直CB 吗? 解:∵△ADB ≌△ADC ∴ = ∵ + =1800∴ =900∴AD ⊥CB 4.如图:△ABC ≌△ADE ,问∠BAD=∠CAE 吗? 5.如图:△ADF ≌△CBE ,问AD 会平行CB 吗?AE 会等于CF 吗? 二、“SSS ” 判定的应用:1.完成下面的推理:如图, (1)在△ABC 与△A’B’C’中,⎪⎩⎪⎨⎧===,''____,____,''C A AC B A AB ∴△ABC ≌△A’B’C’(SSS ). 2.如图,AB=CD ,AD=BC ,问:△ADC 与△CBA 全等吗?AD 会平行CB 吗? 解:在△ADC 与△CBA 中 ⎪⎩⎪⎨⎧===,____,____,AC AC AD ∴△ADC ≌△CBA ( )∴∠ =∠ ( )∴AD ∥BC ( )3.如图,C 是BD 和EF 的中点,且BE=DF 说明 △BEC ≌△DFC 。

4.如图,在△ADF 与△BCE 中,AD=BC ,DF=BE , AE=CF ,说明①△ADF ≌△CBE ,②AD ∥BC 。

5.如图,在△ABC 中,AB=AC ,CD 是△ABC 的中线,说明①△ABD ≌△A CD 。

②AD ⊥CB 。

6.如图,△ABD 和△ABC ,AC=AD ,BC =BD , 那么△ABD 和△ABC 全等吗?7.如图,AC=DF , AE=BD ,BC=EF ,那么∠A 与∠D 的大小关系如何?为什么?8..已知,如图AB=AC ,AD=AE ,BE=CD ,说明①△ABD ≌△A CE ,②∠BAE=∠CADAB C A'B'C' E C D F B A B C D E 12A B C A'B'C'A D EFB C F EB C A D A D CB AD E F B C A B C D三、“ASA ”、“AAS ”的应用: 1.在△ABC 与△A’B’C’中,⎪⎩⎪⎨⎧==∠=∠=____),_______(___,',''或B B B A AB ∴△ABC ≌△A’B’C’(AAS ).1.如图,BE ∥DF ,且BE=DF 说明 △BEC ≌△DFC 。

全等三角形的判定3(ASA和AAS)

全等三角形的判定3(ASA和AAS)

O 已知) 已知 ∠C= ∠B (已知) ) ∴△ADC≌△AEB(ASA) ≌ ( B 全等三角形的对应边相等) ∴AD=AE (全等三角形的对应边相等) 已知) 已知 又∵AB=AC (已知) 等式性质1) 等式性质 ∴BD=CE (等式性质 )
C
探究: 探究:在△ABC与△DEF中, ABC与 DEF中 ∠A=∠D ∠B=∠E,BC=EF, ∠ ∠ △ABC与△DEF全等吗?能利 与 全等吗? 全等吗 用角边角证明你的结论吗? 用角边角证明你的结论吗?
边角边公理内容: 2. 边角边公理内容: _________________________________________ 有两边和它们的夹角对应相等的两个三角
形全等 _________________
__________________________ 简称“边角边” 简称“边角边”或“SAS”
∠A= ∠B OA=OB ∠1= ∠2 A
1
O
2
B D
(已知) 已知) 已知 ∴ △AOC≌△BOD ≌ (已证) 已证) 已证
(ASA)
(对顶角相等) 对顶角相等) 对顶角相等
例2: 已知:点D在AB上,点E在AC上,BE : 已知: 在 上 在 上 相交于点O,AB=AC, ∠B= ∠C 和CD相交于点 相交于点 BD=CE吗?A 吗 求证: 求证:AD=AE. 证明: 证明:在△ADC和△AEB中 和 中 ∠A= ∠A (公共角) 公共角) 公共角 已知) 已知 AC=AB (已知) D E
变式1 已知如图, 变式1:已知如图, ∠ 1= ∠ 2, ∠ ABD= ∠ABC 求证: 求证:AD=AC. 变式2:已知如图, A 变式2 已知如图, ∠ 1= ∠ 2, ∠ 3= ∠4 求证:AD=AC. 求证:

有复习资料-直角三角形全等判定(基础)知识讲解

有复习资料-直角三角形全等判定(基础)知识讲解

直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定——“HL”1、已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=CD:(2)AD∥BC.【思路点拨】先由“HL”证Rt△ABD≌Rt△CDB,再由内错角相等证两直线平行.【答案及解析】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°在Rt△ABD 和Rt△CDB中,∴Rt△ABD≌Rt△CDB(HL)∴AB=CD(全等三角形对应边相等)(2)由∠ADB=∠CBD∴AD∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.【答案】证明:∵AE⊥AB,BC⊥AB,∴∠DAE=∠CBA=90°在Rt△DAE 及Rt△CBA中,∴Rt△DAE≌Rt△CBA (HL)∴∠E=∠CAB∵∠CAB+∠EAF=90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED⊥AC.2、判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和斜边对应相等;()(3)两直角边对应相等;()(4)一条直角边和斜边对应相等.()【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()【答案】(1)√;(2)×;在△ABC和△DBC中,AB=DB,AE和DF是其中一边上的高,AE=DF(3)×. 在△ABC和△ABD中,AB=AB,AD=AC,AE为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案及解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 及Rt △BCD 中,∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形 在Rt △ABD 和Rt △BAC 中AB BABD AC=⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案及解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 及△CBE 中,∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参及,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等2.如图,AB=AC,AD⊥ BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3 B.4 C.5 D.63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt△ABC及Rt△'''A B C中, ∠C =∠'C= 90, A=∠'B, AB =''A B, 那么下列结论中正确的是( )A. AC =''B C D. ∠A C B.BC =''B C C. AC =''A =∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形()A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE 的依据是“______”.8. 已知,如图,∠A=∠D=90°,BE=CF,AC=DE,则△ABC ≌_______.9. 如图,BA∥DC,∠A=90°,AB=CE,BC=ED,则AC=_________.10. 如图,已知AB⊥BD于B,ED⊥BD于D,EC⊥AC,AC=EC,若DE=2,AB=4,则DB=______.11.有两个长度相同的滑梯,即BC=EF,左边滑梯的高度AC及右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B 点及O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上及AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢?请你说出理由.13.【解析】解:在Rt △AOB 及Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等)∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得: ∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 及Rt △EDF 中 B EDF BC DFC F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠2.证明:∵AE⊥EC,AF⊥BF,∴△AEC、△AFB为直角三角形在Rt△AEC及Rt△AFB中∴Rt△AEC≌Rt△AFB(HL)∴∠EAC=∠FAB∴∠EAC-∠BAC=∠FAB-∠BAC,即∠1=∠2.【答案及解析】一、选择题1. 【答案】C;【解析】等腰直角三角形确定了两个锐角是45°,可由AAS定理证明全等.2. 【答案】D;【解析】△ABD≌△ACD;△ABF≌△ACF;△ABE≌△ACE;△EBF ≌△ECF;△EBD≌△ECD;△FBD≌△FCD.3. 【答案】D;4. 【答案】C;【解析】注意看清对应顶点,A对应'B,B对应'A.5. 【答案】C;【解析】等底等高的两个三角形面积相等.6. 【答案】C;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL;8. 【答案】△DFE9. 【答案】CD;【解析】通过HL证Rt△ABC≌Rt△CDE.10.【答案】6;【解析】DB=DC+CB=AB+ED=4+2=6;11.【答案】90°;【解析】通过HL证Rt△ABC≌Rt△DEF,∠BCA=∠DFE. 12.【答案】45°;【解析】证△ADC及△BDF全等,AD=BD,△ABD为等腰直角三角形.。

全等三角形的判定-(ASA,AAS)03

全等三角形的判定-(ASA,AAS)03

全等三角形的判定-(ASA,AAS)学生/课程初二-数学年级学科数学授课教师日期时段核心内容利用ASA,AAS判定两个三角形的全等课型教学目标 1.利用尺规作图画一个三角形,使得它和已知三角形的两个角相等,以及两个角的夹边也相等.2.通过对所画三角形和已知三角形进行对比,发现这两个三角形全等,引导学生自己总结出ASA.3.通过对ASA的研究,进一步引导学生能推导出AAS,并会利用ASA,AAS来判定两个三角形的全等。

重、难点在复杂图形中,寻找全等条件。

A.全等三角形是指形状相同的两个三角形 B.全等三角形是指面积相等的两个三角形C.全等三角形的周长和面积分别相等 D.所有等边三角形都是全等三角形A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF 课首沟通请老师根据学生的具体情况自行填写知识导图课首小测1. [单选题] 下列说法正确的是( )2. [单选题] 如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( ).A. 20° B. 30° C. 35° D.40°3. 如图,将两根钢条,的中点O连在一起,使,可以绕着点O自由转动,就做成了一个测量工件,由三角形全等得出的长等于内槽宽AB;那么判定△OAB≌△的依据是_________.4. 如图,△ABC中,点A的坐标为(0,1),点C 的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是________________.5. [单选题] 如图,△ABC≌△A’B’C’, ∠BCB’=30°,则∠ACA’的度数为( )6. 已知:如图,点B,C,E,F在同一条直线上,AB=DF,BE=FC,AC=DE.求证:△ABC≌△DFE.7. 已知:如图,CA=CD,E为AB上一点,且CE=CB,∠DCA=∠ECB.求证:AB=DE.导学一 : 全等三角形的判定——ASA知识点讲解 1:利用ASA判定三角形全等例 1. 如图,D点在AB上,E点在AC上,AB=AC,∠B=∠C,求证:AD=AE.例 2. 如图,点B,F,C,E在一条直线上,FB=CE,AB∥DE,AC∥DF,求证:AB=DE,AC=DF.我爱展示1. 已知:如图,AB=AD,∠B=∠D,∠BAD=∠CAE,.求证:BC=DE. 导学二 : 全等三角形的判定——AAS知识点讲解 1:利用AAS判定三角形全等例 1. 如图,∠DCE=90o,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B,求证:AD+AB=BE.例 2. 如图, OC平分∠AOB,点P是OC上一点,PD⊥OA,PE⊥OB,求证:PD=PE我爱展示1. 已知:如图,AB∥DC,BE=DF,过点O作EF交AB,DC于E,F,求证:OE=OF.A.SSS B.ASA C.AAS D.SASA.SSS B.SASC.AAS D.ASA导学三 : 综合应用例 1. 已知:如图,BD、CE是△ABC的高,D、E为垂足,在BD上截取BF,使BF=AC,在CE的延长线取一点G,使CG=AB.求证:AF=AG;AG⊥AF.我爱展示1. 已知:如图,△ABC中,AD⊥BC于点D,AD=DC,∠FCD=∠BAD,点F在AD上,BF的延长线交AC于点E.(1)求证:△ABD≌△CFD;(2)求证:BE⊥AC;(3)设CE的长为m,用含m的代数式表示AC+BF。

全等三角形的判定3--角边角和角角边(ASA AAS)定理

全等三角形的判定3--角边角和角角边(ASA  AAS)定理
E C C′ D
A
B
A′
B′
通过实验你发现了什么结论?
角边角定理 如果两个三角形的两个角及其夹边分别对应相等, 那么这两个三角形全等. (ASA) A′ A
B′
B
C
C′
在△ABC和△ A'B'C'中 ∠A= ∠A' AB= A'B' ∠B= ∠B' ∴ △ABC≌△ A'B'C'

(ASA)
(2) (1)
怎么办?可以 帮帮我吗?
A
D
C
E
B
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB,∠A/ =∠A,∠B/ =∠B 把画好的△A/B/C/剪下,放到 △ABC上,它们全等吗?
作法: 1、作A/B/=AB; 2、在 A/B/的同旁作∠DA/ B/ =∠A ,
∠EB/A/ =∠B, A/ D与B/E交于点C/。
C′
B
C

B′
在△ABC和△ A'B'C'中

∠A= ∠A' ∠B= ∠B' BC= B'C' ∴ △ABC≌△ A'B'C'
(AAS)
两角和它们的夹边对应相等的两个三角 形全等,简写成“角边角”或“ASA”。
(ASA)
(AAS)
两角和其中一角的对边对应相等的两个 三角形全等,简写成“角角边”或“AAS”
利用“角边角”可知,带第(2)块去, 可以配到一个与原来全等的三角 形玻璃。
在△ABC和△DEF中,∠A=∠D,∠B=∠E , BC=EF,△ABC与△DEF全等吗?能利用角边 角条件证明你的结论吗?

12.2 第3课时 三角形全等的判定(ASA,AAS)

12.2 第3课时 三角形全等的判定(ASA,AAS)
图 12-2-29
分层作 业
1.[2018·成都]如图 12-2-30,已知∠ABC=∠DCB,添加以下条件,不能判定
△ABC≌△DCB 的是( C )
A.∠A=∠D
B.∠ACB=∠DBC
C.AC=DB
D.AB=DC
图 12-2-30
2.如图 12-2-31,点 D,E 分别在线段 AB,AC 上,AE=AD,不添加新的线 段和字母,要使△ABE≌△ACD,需添加的一个条件是 ∠ADC=∠AEB或 ∠CEB=∠BDC或∠C=∠B或AB=AC或B(D只=写C一E个条件即可).
线上,可以说明△EDC≌△ABC,从而可得 ED=AB,因此测得 ED 的长就是 AB
的长,判定△EDC≌△ABC 最恰当的理由是( B )
A.边角边
B.角边角
C.边边边
D.边边角
图 12-2-28
4.[2017·黔东南州]如图 12-2-29,点 B,F,C,E 在同一条直线上,已知 FB =CE,AC∥DF,请你添加一个适当的条件:(答案不唯一)如AC=FD或∠B,= 使得△ABC≌△DEF.
5.[2018·昆明]如图 12-2-34,在△ABC 和△ADE 中,AB=AD,∠B=∠D, ∠1=∠2.
求证:BC=DE.
图 12-2-34
证明:∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC, 即∠BAC=∠DAE. 在△ABC 和△ADE 中,
∠ABB==A∠DD,, ∠BAC=∠DAE,
求证:BC=AE.
图 12-2-25
证明:∵DE∥AB,∴∠CAB=∠EDA. 在△ABC 和△DAE 中,
∠CAB=∠EDA, AB=DA, ∠B=∠DAE,
∴△ABC≌△DAE(ASA), ∴BC=AE.

北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含答案)

北师大版初北师大版七年级(下)数学第四章三角形教案:全等三角形的判定讲义(含答案)

三角形全等的判定1、掌握直角三角形全等的判定方法:“斜边、直角边”;2、判断能证明三角形全等的条件;3、判断三角形全等能推出的结论;4、探索全等三角形判定的综合问题.1.斜边、直角边定理(HL )文字描述:_______和一条______分别相等的两个直角三角形全等. 符号语言:在Rt △ABC 与Rt △DEF 中, ∠ABC=∠DEF=90°,AB DE BC EFAC DF==⎧⎨=⎩或 ∴Rt △ABC ≌Rt △DEF (HL ). 图示:2.探究三角形全等的思路 (1)已知两边→⎧⎪→⎨⎪→⎩找夹角找直角找另一边(2)已知一边一角→→⎧⎪→⎧⎪⎨⎪→→⎨⎪⎪⎪→⎩⎩一边为角的对边找另一角找夹角的另一边一边为角的一边找夹角的另一角找边的对角(3)已知两角→⎧⎨→⎩找夹边找其中一边的对边3.什么是开放题所谓开放题,即为答案不唯一的问题,其主要特征是答案的多样性和多层次性.由于这类题综合性强、解题方法灵活多变,结果往往具有开放性,因而需观察、实验、猜测、分析和推理,同时运用树形结合、分类讨论等数学思想. 4. 开放题问题类型及解题策略 (1)条件开放与探索型问题.从结论出发,执果索因,逆向推理,逐步探求结论成立的条件或把可能产生结论的条件一一列出,逐个分析.(2)结论开放与探索型问题.从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想类比、猜测等,从而获得所求的结论.(3)条件、结论开放与探索型问题.此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性. 参考答案:1、斜边 直角边 2、(1)SAS HL SSS (2)AAS SAS ASA AAS (3)ASA AAS1.利用HL 证全等【例1】如图,已知∠A=∠D=90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB=CD ,BE=CF .求证:Rt △ABF ≌Rt △DCE .【解析】由于△ABF 与△DCE 是直角三角形,根据直角三角形全等的判定的方法即可证明.证明:∵BE=CF ,∴BE+EF=CF+EF ,即BF=CE. ∵∠A=∠D=90°,∴△ABF 与△DCE 都为直角三角形, 在Rt △ABF 和Rt △DCE 中,BF CE AB CD ⎧⎨⎩==, ∴Rt △ABF ≌Rt △DCE (HL ).点评:此题考查了直角三角形全等的判定,解题关键是由BE=CF 通过等量代换得到BF=CE . 总结:1.判定直角三角形全等共有五种方法:“SSS ”“ASA ”“AAS ”和“HL ”;一般先考虑利用“HL ”定理,再考虑利用一般三角形全等的判定方法;2.“HL ”定理是直角三角形所特有的判定方法,对于一般的三角形不成立;3.判定两个直角三角形全等时,这两个直角三角形已有“两个直角相等”的条件,只需再找两个条件,但所找条件中必须有一组边对应相等.练1.如图,要用“HL”判定Rt △ABC 和Rt △A′B′C′全等的条件是( )A .AC=A′C′,BC=B′C′B .∠A=∠A′,AB=A′B′C .AC=A′C′,AB=A′B′D .∠B=∠B′,BC=B′C′ 【解析】根据直角三角形全等的判定方法(HL )即可直接得出答案.∵在Rt △ABC 和Rt △A′B′C′中,如果AC=A′C′,AB=A′B′,那么BC 一定等于B′C′, Rt △ABC 和Rt △A′B′C′一定全等, 故选C .点评:此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基础题. 练2.如图,已知AB ⊥CD ,垂足为B ,BC=BE ,若直接应用“HL”判定△ABC ≌△DBE ,则需要添加的一个条件是_______________.【解析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.AC=DE ,理由是:∵AB ⊥DC , ∴∠ABC=∠DBE=90°, 在Rt △ABC 和Rt △DBE 中,AC DEBE BC=⎧⎨=⎩, ∴Rt △ABC ≌Rt △DBE (HL ). 故答案为:AC=DE .点评:本题考查了全等三角形的判定定理,主要考查学生的推理能力,注意:判定两直角三角形全等的方法有SAS ,ASA ,AAS ,SSS ,HL . 2.利用HL 证全等,再证边角相等【例2】如图,AB ⊥BC ,AD ⊥DC ,AB=AD .求证:CB=CD .【解析】根据已知条件,利用“HL ”判定Rt △ABC ≌Rt △ADC ,根据全等三角形的对应边相等即可得到CB=CD .证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B=∠D=90°.在Rt △ABC 和Rt △ADC 中,AB ADAC AC=⎧⎨=⎩ ∴Rt △ABC ≌Rt △ADC . ∴CB=CD .点评:此题主要考查学生对全等三角形的判定方法“HL ”的理解及运用,常用的判定方法有“SAS ”“ASA ”“AAS ”“SSS ”.总结:证明角或线段相等可以从证明角或线段所在的三角形全等入手. 在寻求全等条件时,要注意结合图形,挖掘图中存在的对顶角、公共角、公共边、平行线的同位角、内错角等相等关系. 练3.如图,MN ∥PQ ,AB ⊥PQ ,点A 、D 、B 、C 分别在直线MN 与PQ 上,点E 在AB 上,AD+BC=7,AD=EB ,DE=EC ,则AB=_____________.【解析】可判定△ADE ≌△BCE ,从而得出AE=BC ,则AB=AD+BC .∵MN ∥PQ ,AB ⊥PQ , ∴AB ⊥MN ,∴∠DAE=∠EBC=90°, 在Rt △ADE 和Rt △BCE 中,DE ECAD BE=⎧⎨=⎩, ∴△ADE ≌△BEC (HL ), ∴AE=BC , ∵AD+BC=7,∴AB=AE+BE=AD+BC=7. 故答案为7.点评:本题考查了直角三角形全等的判定和性质以及平行线的性质是基础知识比较简单. 练4.已知如图,∠A=90°,∠D=90°,且AE=DE ,求证:∠ACB=∠DBC .【解析】由图片和已知,可得△ABE ≌△DCE ,则BE=CE ,然后再证明Rt △ABE ≌Rt △DCE ,即可得证.证明:∵∠A=∠D=90°,AE=DE (已知),∠AEB=∠DEC (对顶角相等), ∴△ABE ≌△DCE (ASA ), ∴AB=DC ,在Rt △ABE 和Rt △DCE 中,AB DCBC CB=⎧⎨=⎩, ∴Rt △ABE ≌Rt △DCE , ∴∠ACB=∠DBC .点评:本题主要考查全等三角形全等的判定,注意需证明两次全等. 3.利用HL 解决实际问题【例3】如图,A 、B 、C 、D 是四个村庄,B 、D 、C 三村在一条东西走向公路的沿线上,且D 村到B 村、C 村的距离相等;村庄A 与C ,A 与D 间也有公路相连,且公路 AD 是南北走向;只有村庄A 、B 之间由于间隔了一个小湖,所以无直接相连的公路.现决定在湖面上造一座斜拉桥,测得AC=3千米,AE=1.2千米,BF=0.7千米.试求建造的斜拉桥至少有多少千米.【解析】根据BD=CD ,∠BDA=∠CDA=90°,AD=AD ,得出Rt △ADB ≌Rt △ADC ,进而得出AB=AC=3,即可得出斜拉桥长度.由题意,知BD=CD ,∠BDA=∠CDA=90°,AD=AD , 则Rt △ADB ≌Rt △ADC (SAS ), 所以AB=AC=3千米,故斜拉桥至少有3-1.2-0.7=1.1(千米).点评:此题主要考查了直角三角形全等的判定以及性质,根据已知得出Rt △ADB ≌Rt △ADC 是解决问题的关键.总结:对于实际问题,要善于转化为数学问题,充分运用题目条件、图形条件,寻找三角形全等的条件,从而证明三角形全等,然后利用全等三角形的性质求对应边长或对应角的大小.练5.如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,则两个木桩离旗杆底部的距离BD 与CD 的距离间的关系是( )A .BD >CDB .BD <CDC .BD=CD D .不能确定【解析】根据“两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上”可以判断AB=AC ,又AD=AD ,AD ⊥BC ,所以Rt △ABD ≌Rt △ACD ,所以BD=CD .∵AD ⊥BC ,∴∠ADB=∠ADC=90°, 由AB=AC ,AD=AD , ∴Rt △ABD ≌Rt △ACD (HL ), ∴BD=CD . 故选C .点评:本题考查了全等三角形的判定及性质的应用;充分运用题目条件,图形条件,寻找三角形全等的条件.本题关键是证明Rt △ABD ≌Rt △ACD . 4.全等三角形——补充条件型问题【例1】如图,点C ,F 在线段BE 上,BF=EC ,∠1=∠2,请你添加一个条件,使△ABC ≌△DEF ,并加以证明.(不再添加辅助线和字母)【解析】由已知先推出BC=EF ,添加条件AC=DF ,根据“SAS”可推出两三角形全等.解:AC=DF . 证明:∵BF=EC ,∴BF ﹣CF=EC ﹣CF , 即BC=EF.在△ABC 和△DEF 中12AC DFBC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (SAS ).总结:因为全等三角形的判定定理有“SAS”“ASA”“AAS”“SSS”,所以此类问题答案是不唯一的. 对于条件添加型的题目,要根据已知条件并结合图形及判定方法来添加一个条件.练6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【解析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.练7.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD与CE交于点F,请你添加一个适当的条件,使△ADB≌△CEB.【解析】要使△ADB≌△CEB,已知∠B为公共角,∠BEC=∠BDA,具备了两组角对应相等,故添加AB=BC或BE=BD或EC=AD后可分别根据AAS、ASA、AAS能判定△ADB≌△CEB.解:AB=BC,AD⊥BC,CE⊥AB,B=∠B∴△ADB≌△CEB(AAS).答案:AB=BC.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.点评:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.添加条件时,要首选明显的、简单的,由易到难.5.全等三角形——结论探索型问题【例5】如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【解析】(1)根据题目所给条件可分析出△ABE ≌△CDF ,△AFD ≌△CEB ;(2)根据AB ∥CD 可得∠1=∠2,根据AF=CE 可得AE=FC ,然后再证明△ABE ≌△CDF即可.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB ; (2)∵AB ∥CD ,∴∠1=∠2, ∵AF=CE , ∴AF+EF=CE+EF , 即AE=FC.在△ABE 和△CDF 中,12AEB CDF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (AAS ).总结:判定两个三角形全等的一般方法有:“SSS”“SAS”“ASA”“AAS”和“HL”.注意:“AAA”“SSA”不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.练8.如图,△ABC 中,AD ⊥BC ,AB=AC ,AE=AF ,则图中全等三角形的对数有( )A .5对B .6对C .7对D .8对【解析】三角形全等条件中必须是三个元素,并且一定有一组对应边相等.做题时要从已知条件开始,结合判定方法对选项逐一验证.解:∵△ABC 中,AD ⊥BC ,AB=AC ,∴BD=CD , ∴△ABD ≌△ACD , ∴∠BAD=∠CAD , 又AE=AF ,AO=AO ,∴△AOE ≌△AOF , EO=FO ,进一步证明可得△BOD ≌△COD ,△BOE ≌△COF ,△AOB ≌△AOC ,△ABF ≌△ACE ,△BCE ≌△CBF ,共7对.故选:C .点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理. 6.全等三角形——条件和结论全开放型问题【例6】有下列四个判断:①AD=BF ;②AE=BC ;③∠EFA=∠CDB ;④AE ∥BC .请你以其中三个作为题设,余下一个作为结论,写出一个真命题并加以证明.已知: 求证: 证明:【解析】由已知AD=BF ,证出AF=BD ,再由平行线AE ∥BC 得出∠A=∠B ,证明△AEF ≌△BCD ,即可得出∠EFA=∠CDB .解:已知:AD=BF ,AE=BC ,AE ∥BC ; 求证:∠EFA=∠CDB ; 证明:∵AD=BF ,∴AD+DF=BF+DF , 即AF=BD. ∵AE ∥BC , ∴∠A=∠B , 在△AEF 和△BCD 中,AE BC A B AF BD =⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△BCD (SAS ), ∴∠EFA=∠CDB .点评:本题考查了全等三角形的判定与性质以及命题与定理;熟练掌握全等三角形的判定方法是解题的关键.总结:条件和结论全开放的三角形全等问题,进一步加强了对SSS 、SAS 、ASA 、AAS 、HL 的考查.要熟练掌握全等三角形的证明思路:练9.如图,AC 交BD 于点O ,有如下三个关系式:①OA=OC ,②OB=OD ,③AB ∥DC .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果⊗、⊗,那么⊗)(2)选择(1)中你写出的—个命题,说明它正确的理由.【解析】(1)如果①、②,那么③,或如果①、③,那么②,如果②、③,那么①;(2)下面选择“如果①、②,那么③”加以证明. 证明:在△AOB 和△COD 中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD , ∴∠A=∠C , ∴AB ∥DC .练10.在△ABC 和△DEF 中,AB=DE ,∠A=∠D ,若证△ABC ≌△DEF ,还需补充一个条件,错误的补充方法是( )A .∠B=∠EB .∠C=∠FC .BC=EFD .AC=DF【解析】根据已知及全等三角形的判定方法对各个选项进行分析,从而得到答案.解:A 、正确,符合判定ASA ;B 、正确,符合判定AAS ;C 、不正确,满足SSA 没有与之对应的判定方法,不能判定全等;D 、正确,符合判定SAS . 故选:C .点评:此题主要考查学生对全等三角形的判定方法的理解及运用,常用的判定方法有AAS ,SAS ,SSS ,HL 等.练11.如图,已知等边△ABC ,AB=2,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DE ⊥BC 于E ,FG ⊥BC 于G ,DF 交BC 于点P ,则下列结论:①BE=CG ;②△EDP ≌△GFP ;③∠EDP=60°;④EP=1中,一定正确的是( )A .①③B .②④C .①②③D .①②④【解析】由等边三角形的性质可以得出△DEB ≌△FGC ,就可以得出BE=CG ,DE=FG ,就可以得出△DEP ≌△FGP ,得出∠EDP=∠GFP ,EP=PG ,得出PC+BE=PE ,就可以得出PE=1,从而得出结论.解:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠B=∠ACB=60°.∵∠ACB=∠GCF ,∵DE ⊥BC ,FG ⊥BC ,∴∠DEB=∠FGC=∠DEP=90°.在△DEB 和△FGC 中,DEB FGC GCF A BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△FGC (AAS ),∴BE=CG ,DE=FG ,故①正确;在△DEP 和△FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEP ≌△FGP (AAS ),故②正确;∴PE=PG ∠EDP=∠GFP≠60°,故③错误;∵PG=PC+CG ,∴PE=PC+BE .∵PE+PC+BE=2,∴PE=1.故④正确.正确的有①②④,故选:D .点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.练12.如图,EA⊥AB,BC⊥AB EA=AB=2BC,D为AB中点,有以下结论:(1)DE=AC(2)DE⊥AC(3)∠CAB=30°(4)∠EAF=∠ADE,其中结论正确的是()A.(1),(3)B.(2),(3)C.(3),(4)D.(1),(2),(4)【解析】本题条件较为充分,EA⊥AB,BC⊥AB,EA=AB=2BC,D为AB中点可得两直角三角形全等,然后利用三角形的性质问题可解决.做题时,要结合已知条件与全等的判定方法对选项逐一验证.解:∵EA⊥AB,BC⊥AB,∴∠EAB=∠ABC=90°Rt△EAD与Rt△ABC∵D为AB中点,∴AB=2AD又EA=AB=2BC∴AD=BC∴Rt△EAD≌Rt△ABC∴DE=AC,∠C=∠ADE,∠E=∠FAD又∠EAF+∠DAF=90°∴∠EAF+∠E=90°∴∠EFA=180°﹣90°=90°,即DE⊥AC,∠EAF+∠DAF=90°,∠C+∠DAF=90°∴∠C=∠EAF,∠C=∠ADE∴∠EAF=∠ADE故选:D.点评:本题考查了全等三角形的判定与性质;全等三角形问题要认真观察已知与图形,仔细寻找全等条件证出全等,再利用全等的性质解决问题.1.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等2.如图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()A.HL B.AAS C.SSS D.ASA3.已知:如图所示,△ABC与△ABD中,∠C=∠D=90°,要使△ABC≌△ABD(HL)成立,还需要加的条件是()A.∠BAC=∠BAD B.BC=BD或AC=ADC.∠ABC=∠ABD D.AB为公共边4.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.60°D.75°5.如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙6.如图,在△ABC中,AB=AC,AE=AF,AD⊥BC于点D,且点E、F在BC上,则图中全等的直角三角形共有()A.1对B.2对C.3对D.4对7.已知:如图,△ABC中,AB=AC,点D为BC的中点,连接AD.(1)请你写出两个正确结论:①__________;②__________;(2)当∠B=60°时,还可以得出哪些正确结论?(只需写出一个)(3)请在图中过点D作于DM⊥AB于M,DN⊥AC于N.求证:△DBM≌△DCN.1.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件_____________.2.如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2=_____________度.3.如图所示,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,滑梯BC与地面夹角∠ABC=35°,则滑梯EF与地面夹角∠DFE的度数是_______________.4.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.5.如图,这是建筑物上的人字架,已知:AB=AC,AD⊥BC,则BD与CD相等吗?为什么?6.请从以下三个等式中,选出一个等式天在横线上,并加以证明.等式:AB=CD,∠A=∠C,∠AEB=∠CFD,已知:AB∥CD,BE=DF,_______求证:△ABE≌△CDF.证明:参考答案:当堂检测1.【解析】A 、两条直角边对应相等,可利用全等三角形的判定定理SAS 来判定两直角三角形全等,故本选项正确;B 、两个锐角对应相等,再由两个直角三角形的两个直角相等,AAA 没有边的参与,所以不能判定两个直角三角形全等;故本选项错误;C 、一条直角边和它所对的锐角对应相等,可利用全等三角形的判定定理ASA 来判定两个直角三角形全等;故本选项正确;D 、一个锐角和锐角所对的直角边对应相等,可以利用全等三角形的判定定理ASA 或AAS 来判定两个直角三角形全等;故本选项正确;故选B .2.【解析】∵OE ⊥AB ,OF ⊥AC ,∴∠AEO=∠AFO=90°,又∵OE=OF ,AO 为公共边,∴△AEO ≌△AFO .故选A .3.【解析】需要添加的条件为BC=BD 或AC=AD ,理由为:若添加的条件为BC=BD ,在Rt △ABC 与Rt △ABD 中,∵BC BD AB AB =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ABD (HL );若添加的条件为AC=AD ,在Rt △ABC 与Rt △ABD 中,∵AC AD AB AB =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ABD (HL ).故选B .4.【解析】∵∠B=∠D=90°,在Rt △ABC 和Rt △ADC 中,BC CD AC AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ADC (HL ),∴∠2=∠ACB=90°﹣∠1=50°.故选B .5.【解析】根据全等三角形的判定定理(SAS ,ASA ,AAS ,SSS )逐个判断即可.解:已知图1的△ABC 中,∠B=50°,BC=a ,AB=c ,AC=b ,∠C=58°,∠A=72°,图2中,甲:只有一个角和∠B 相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC 不全等;乙:符合SAS 定理,能推出两三角形全等;丙:符合AAS 定理,能推出两三角形全等;故选:C .点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .6.【解析】如图,运用等腰三角形的性质证明BD=CD ,DE=DF ;证明△ABD ≌△ACD ,△AED ≌△AFD ,即可解决问题.解:如图,∵AB=AC ,AE=AF ,AD ⊥BC ,∴BD=CD ,DE=DF ;在△ABD 与△ACD 中,AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD (SAS ),同理可证△AED ≌△AFD ;故选:B .点评:该题主要考查了全等三角形的判定问题、等腰三角形的性质及其应用问题;灵活运用全等三角形的判定问题、等腰三角形的性质是解题的关键.7.【解析】(1)根据中点的性质及全等三角形的判定,写出两个结论即可;(2)根据等边三角形的判定定理可得△ABC 是等边三角形;(3)先证明△ABD ≌△ACD ,再证明△DBM ≌△DCN .解:(1)①BD=CD ;②△ABD ≌△ACD ;(2)∵AB=AC ,∠B=60°,∴△ABC 是等边三角形.(3)在Rt △ABD 和Rt △ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD ,∴∠ABD=∠ACD ,在Rt △DBM 和Rt △DCN 中,MBD NCD B CBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DBM ≌△DCN .点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .家庭作业1.【解析】还需添加条件AB=AC ,∵AD ⊥BC 于D ,∴∠ADB=∠ADC=90°,在Rt △ABD 和Rt △ACD 中,AD AD AB AC=⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACD (HL ),故答案为:AB=AC .2.【解析】在直角△ABC 与直角△ADC 中,BC=DC ,AC=AC ,∴△ABC ≌△ADC ,∴∠2=∠ACB ,在△ABC 中,∠ACB=180°﹣∠B ﹣∠1=50°,∴∠2=50°.故填50°3.【解析】在Rt △ABC 和Rt △DEF 中,BC EF AC DF=⎧⎨=⎩, ∴Rt △ABC ≌Rt △DEF (HL ),∴∠DEF=∠ABC=35°,∴∠DFE=90°﹣35°=55°.故答案为:55°.4.【解析】(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC .又∵∠DBC=∠ECA=90°,且BC=CA ,在△DBC 和△ECA 中,∵90D AEC DBC ECA BC AC ∠=∠⎧⎪∠==⎨⎪=⎩,∴△DBC ≌△ECA (AAS ).∴AE=CD .(2)解:由(1)得AE=CD ,AC=BC ,在Rt △CDB 和Rt △AEC 中,AE CD AC BC =⎧⎨=⎩, ∴Rt △CDB ≌Rt △AEC (HL ),∴BD=CE ,∵AE 是BC 边上的中线,∴BD=EC= BC= AC ,且AC=12cm .∴BD=6cm .5.【解析】BD=CD ,理由:∵AD ⊥BC ,∴∠ADB=∠ADC=90°(垂直定义),在Rt △ABD 与Rt △ACD 中, AB AC AD AD =⎧⎨=⎩, ∴Rt △ABD ≌Rt △ACD (HL ),∴BD=CD (全等三角形的对应边相等).6.【解析】先加上条件,再证明,根据所加的条件,利用证明:∵AB ∥CD ,∴∠B=∠D ,在△ABE 和△CDF 中,AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF .点评:本题是一道开放性的题目,考查了全等三角形的判定,是基础知识比较简单.。

全等三角形证明判定方法分类总结-精品.pdf

全等三角形证明判定方法分类总结-精品.pdf

ABDC全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形.2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等(2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于”如DEF ABC 与全等,记作ABC ≌DEF(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”.【典型例题】例1.如图,ABC ≌ADC ,点B 与点D 是对应点,26BAC ,且20B,1ABCS,求A C D D C A D ,,的度数及ACD 的面积.例2.如图,ABC ≌DEF ,cm CE cm BC A 5,9,50,求E D F的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CADBAE 例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ≌DEF(2)AB//DE ,BC//EFADAB E CD ABCDFE例5.如图,在,90C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE;(2)BD 平分ABC【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是()A、①④ B、①② C、②③ D、③④2.如图,ABD ≌CDB ,且AB 和CD 是对应边,下面四个结论中不正确的是()A 、CDB ABD 和的面积相等B 、CDB ABD 和的周长相等C 、CBDCABDAD 、AD//BC 且AD=BC 3.如图,ABC ≌BAD ,A 和 B 以及C 和D 分别是对应点,如果35,60ABDC ,则BAD 的度数为()A 、85B 、35C 、60 D、804.如图,ABC ≌DEF ,AD=8,BE=2,则AE 等于()A、6 B、5 C、4 D、35.如图,要使ACD ≌BCE ,则下列条件能满足的是()A、AC=BC ,AD=CE ,BD=BE B 、AD=BD ,AC=CE ,BE=BD C、DC=EC ,AC=BC ,BE=AD D 、AD=BE ,AC=DC ,BC=EC6.如图,ABE ≌DCF ,点A 和点D 、点E 和点F 分别是对应点,则AB= ,A,AE= ,CE=,AB// ,若BC AE,则DF 与BC 的关系是.7.如图,ABC ≌AED ,若BACC EAB B 则,45,30,40,D,DAC.8.如图,若AB=AC ,BE=CD ,AE=AD ,则A B E ACD ,所以AEB,BAE,BAD.9.如图,ABC ≌DEF ,90C,则下列说法错误的是()A 、互余与F C B 、互补与F C C 、互余与E A D 互余与D B A EBCDABDC ABCD 第3题图BACEFD第4题图第5题图ABCDEAC EBFD第6题图BACD E第7题图第8题图ABDE CEFDBCA第9题题图10.如图,ACF ≌DBE ,cm CD cm AD ACF E 5.2,9,110,30,求D 的度数及BC 的长.11.如图,在ABD ABC 与中,AC=BD ,AD=BC ,求证:ABC ≌ABD全等三角形(一)作业1.如图,ABC ≌CDA ,AC=7cm ,AB=5cm.,则AD 的长是()A、7cm B 、5cm C、8cm D、无法确定2.如图,ABC ≌DCE ,62,48E A,点B 、C 、E 在同一直线上,则ACD 的度数为()A、48 B 、38 C 、110 D 、623.如图,ABC ≌DEF ,AF=2cm,CF=5cm ,则AD=.4.如图,ABE ≌ACD ,25,100B A ,求BDC 的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CD6.如图,已知AB=EF ,BC=DE ,AD=CF ,求证:①ABC ≌FED②AB//EF7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAEBAD ABCDFEADCBABCD EABCDEFBACEFDABECD全等三角形(二)【知识要点】定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”,几何表示如图,在ABC 和DEF 中,ABC EFBCE B DE AB ≌)(SAS DEF 【典型例题】【例1】已知:如图,AB=AC ,AD=AE ,求证:BE=CD.【例2】如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.【例4】如图,B ,C ,D 在同一条直线上,△ABC ,△ADE 是等边三角形,求证:①CE=AC+DC ;②∠ECD=60°.【例5】如图,已知△ABC 、△BDE 均为等边三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形(三)ASA
【知识要点】
ASA
如图,在ABC
∆与DEF ∆中
E
B DE AB D A ∠=∠=∠
=∠ ∴)(ASA DEF ABC ∆≅∆
ASA
公理推论(AAS 公理):有两角和其中一角的对边对应相等的两个三角形全
等.
【典型例题】
【例1
】下列条件不可推得ABC ∆和'
'
'
C B A ∆全等的条件是( ) A 、 AB=A 'B '
,'
A A ∠=∠,
'
C C ∠=∠
B 、 AB= A 'B '
,AC=A 'C '
,BC='B C '
C 、 AB= A 'B '
,AC=A 'C '
,'
B B ∠=∠ D 、 AB= A 'B '
,'
A A ∠=∠,'
B B ∠=∠


2






DE AB DE AB D A //,,=∠=∠,求证:BC=EF
【例3】如图,AB=AC ,C B ∠=∠,求证:AD=AE
【例4】已知如图,43,21∠=∠∠=∠,点P 在AB 上,可以得出PC=PD 吗?试
证明之.
【例5】如图,321∠=∠=∠,AC=AE ,求证:DE=BC
A
D A B
【例6】如图,21,∠=∠∠=∠D A ,AC ,BD 相交于O , 求证:①AB=CD ②OA=OD
【巩固练习】
1.如图,AB//CD ,AF//DE ,BE=CF ,求证:AB=CD
2.如图,AD//BC ,O 为AC 中点,过点O 的直线分别交AD ,BC 于点M ,N ,求证:AM=CN
3.求证:两个全等三角形ABC 与A 'B 'C '
的角平分线AD 、A 'D '
相等
4.如图,AB ,CD 相交于O ,E ,F 分别在AD ,BC 上,若FOB EOD ∆≅∆,求证:
COF AOE ∆≅∆
5.如图,AB//CD ,AD//BC ,求证:AB=CD
6.已知,如图AB=DB ,21,∠=∠∠=∠E C ,求证:AC=DE
A
D
'
B D
'
C '
C
B
A
B D
全等三角形(三)作业
1.已知,如图,CD AF D A =∠=∠∠=∠,21,,求证:AB=DE
2.如图,已知CAD BAE ADE AED ∠=∠∠=∠,,求证:BE=CD
3.已知如图,AB=AD ,CAE BAD D B ∠=∠∠=∠,,求证:AC=AE
4.已知如图,在ABC ∆中,AD 平分BC AD BAC ⊥∠,,求证:ABD ACD ∆≅∆
5.已知如图,cm AC ABD DCA DBC ACB 10,,=∠=∠∠=∠,求BD 的长(要求写出完整的过程)
6、如图ABC △中,∠B =∠C ,D ,E ,F 分别在AB,BC,AC 上,且BD=CE,∠DEF=∠B 求证:ED=EF
C
E
A A D C
B
F
7、 (1)如图1,以ABC
△的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,试判断△ABC与△AEG面积之间的关系,并说明理由.
(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米?
8、已知:如图 , AD为CE的垂直平分线 , EF∥BC.求证:△EDN≌△CDN≌△EMN.
9、已知:如图 , AB=AC , AD=AE , 求证:△OBD≌△OCE 10、已知:如图 , AB=CD , AD=BC ,O为BD中点 , 过O作直线分别与DA、BC 的延长线交于E、F.求证:OE=OF
11、如图在△ABC和△DBC中 , ∠1=∠2 , ∠3=∠4 , P是BC上任意一点.求证:PA=PD.
12、已知:如图 , 四边形 ABCD中 , AD∥BC , F是AB的中点 , DF交CB延长线于E , CE=CD.
求证:∠ADE=∠EDC.
13、已知:如图 , OA=OE , OB=OF , 直线FA与BE
交于C , AB和EF交于O ,求证:∠1=∠2.
F
B
D
(图1)。

相关文档
最新文档