江苏省扬州市2019-2020学年九年级上学期期末考试数学测试试卷

合集下载

2019-2020学年江苏省扬州市九年级(上)期末数学试卷

2019-2020学年江苏省扬州市九年级(上)期末数学试卷

2019-2020学年江苏省扬州市九年级(上)期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共8小题,共24.0分)1.二次函数y=x2+x的图象与y轴的交点坐标是()A. (0,1)B. (0,−1)C. (0,0)D. (−1,0)2.下列方程为一元二次方程的是()=3A. x2−3=x(x+4)B. x2−1xC. x2−10x=5D. 4x+6xy=333.已知⊙O的半径为5,且圆心O到直线l的距离是方程x2−4x−12=0的一个根,则直线l与圆的位置关系是()A. 相交B. 相切C. 相离D. 无法确定4.如图,点A,B,C在⊙O上,已知∠ABC=130°,则∠AOC=()A. 100°B. 110°C. 120°D. 130°5.如图,△ABC中,∠A=45°,I是内心,则∠BIC=()A. 112.5°B. 112°C. 125°D. 55°6.已知关于x的一元二次方程2x2−x+m2−9=0有一个根是0,则m的值为()A. 3B. 3或−3C. −3D. 不等于3的任意实数7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列命题中正确的是()A. a>b>cB. 一次函数y=ax+c的图象不经过第四象限C. m(am+b)+b<a(m是任意实数)D. 3b+2c>08.如图,已知A(3,6)、B(0,n)(0<n≤6),作AC⊥AB,,0),则PM的交x轴于点C,M为BC的中点,若P(32最小值为()A. 3B. 3√178C. 4√55D. 6√55第II卷(非选择题)二、填空题(本大题共10小题,共30.0分)9.已知关于x的方程(a−2)x2−4x−5=0是一元二次方程,那么a的取值范围是______.10.抛物线y=(x−3)2+4的顶点坐标是______.11.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AB=25cm,BC=15cm,则BD的长为______cm.12.如图,△ABC内接于⊙O,BC=a,CA=b,∠A−∠B=90°,则⊙O的半径为______ .13.若抛物线y=ax2+bx+c(a≠0)过两点A(2,6),B(−6,6),则抛物线的对称轴为直线______14.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则△PBD与△PAC的面积比为______.15.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_______.16.若二次函数y=4x2−4ax+(a2−2a+2)在0≤x≤1上的最小值为2,则a=______.17.①方程(x+1)(x−2)=0的根是______;②方程(x+3)2=4的根是______.18.如图,在等边△ABC中,D是BC边上一点,且BD:DC=1:3,把△ABC折叠,使点A落在BC边上的点D处,那么AM:AN的值为________.三、计算题(本大题共1小题,共6.0分)19.如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.四、解答题(本大题共9小题,共60.0分))−1−4cos30°20.计算:√48−|−3|+(1201821.解下列方程:(1)x2−6x−3=0;(2)(x−2)2=2x−4.22.如图,在Rt△ABC中,∠C=90°,△ABC的周长为24,sinB=3,点D为BC的中5点.(1)求BC的长;(2)求∠BAD的正弦值.23.若实数a,b分别满足a2+8a+8=0,b2+8b+8=0且a≠b,求a√ab +b√ba的值.24.为了测量白塔的高度AB,在D处用高为1.5米的测角仪CD,测得塔顶A的仰角为42°,再向白塔方向前进12米,又测得白塔的顶端A的仰角为61°,求白塔的高度AB.(参考数据sin42°≈0.67,tan42°≈0.90,sin61°≈0.87,tan61°≈1.80,结果保留整数)25.2018年9月21日上午九点整,伴随着中国登山协会主席李致新同志的一声令下,“五彩金沙⋅花海毕节”“华龄杯”中国天空跑2018中国贵州金沙国际挑战赛在后山镇壮飞广场拉开帷幕.期间,王老板以2元/kg的价格购进一批橘子,以3元/kg 的价格出售,每天可售出200kg.为了促销,王老板决定降价销售,经调查发现,这批橘子每降价0.1元/kg,每天可多售出40kg.另外,每天的卫生费等固定成本共24元,王老板想每天盈利200元,应将每千克橘子的售价降低多少元?26.如图,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点D,点E是BD⏜上一点,连接DE,AE,CE,已知CE=AC(1)判断直线CE与⊙O的位置关系,并证明;(2)若AB=AC=4,求DE的长.27.如图1,在四边形ABCD中,AC为四边形对角线,在△ACD的CD边上取一点P,连结AP,如果△APC是等腰三角形,且△ABC与△APD相似,则我们称△APC是该四边形CD边上的“等腰邻相似三角形”.(1)如图2,在平行四边形ABCD中,∠B=45°,若△APC是CD边上的“等腰邻相似三角形”,且AP=PC,∠BAC=∠DAP,则∠PCA的度数为______;(2)如图3,在四边形ABCD中,若∠BCA=∠D=3∠CAD,∠BAC=2∠CAD,请在图3中画出一个AD边上的“等腰邻相似三角形APC”,并说明理由;(3)已知Rt△APC,若Rt△APC是某个四边形ABCD的“等腰邻相似三角形”,且AP=PC=1,△ABC与△APC相似,求出对角线BD长度的所有可能值.28.如图,抛物线y=ax2+bx−3与x轴交于A(−2,0),B(6,0)两点,与轴交于点C,顶点为D.(1)求抛物线的解析式;(2)连接BC,CD,BD,求△BCD的面积;(3)点M为x轴上一动点,在抛物线上是否存在一点P,使以A,C,M,P四点构成的四边形为平行四边形?若存在,直接写点P的坐标;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:当x=0时,y=0,则二次函数二次函数y=x2+x的图象与y轴的交点坐标是(0,0),故选:C.令x=0,求出y的值,然后写出与y轴的交点坐标即可.本题考查了二次函数图象上点的坐标特征,熟练掌握函数与坐标轴的交点的求解方法是解题的关键.2.【答案】C【解析】【分析】本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程,根据定义逐项判断即可.【解答】解:A.x2−3=x(x+4)整理得:4x+3=0,不是一元二次方程,故选项错误;=3是分式方程,故选项错误;B.x2−1xC.x2−10x=5是一元二次方程,故选项正确;D.4x+6xy=33含有两个未知数,不是一元二次方程,故选项错误.故选C.3.【答案】C【解析】解:∵x2−4x−12=0,(x+2)(x−6)=0,解得:x1=−2(不合题意舍去),x2=6,∵点O到直线l距离是方程x2−4x−12=0的一个根,即为6,∴点O到直线l的距离d=6,r=5,∴d>r,∴直线l与圆相离.故选C.首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离,从而得出答案.本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.4.【答案】A【解析】【分析】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.在优弧AC上取点D,连接AD,CD,根据圆内接四边形的性质求出∠D的度数,由圆周角定理即可得出结论.【解答】解:在优弧AC上取点D,连接AD,CD,∵四边形ABCD是圆内接四边形,∠ABC=130°,∴∠D=180°−130°=50°.∵∠D与∠AOC是同弧所对的圆周角与圆心角,∴∠AOC=2∠D=100°.故选:A.5.【答案】A【解析】【分析】本题考查的是三角形的内切圆和内心,掌握三角形的内心的概念、三角形内角和定理是解题的关键.∠ABC,根据三角形内角和定理求出∠ABC+∠ACB,根据内心的概念得到∠IBC=12∠ICB=12∠ACB,根据三角形内角和定理计算即可.【解答】解:∵∠A=45°,∴∠ABC+∠ACB=135°,∵点I是内心,∴∠IBC=12∠ABC,∠ICB=12∠ACB,∴∠IBC+∠ICB=67.5°,∴∠BIC=180°−67.5°=112.5°,故选A.6.【答案】B【解析】【分析】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.根据一元二次方程的解的定义把x=0代入原方程得到m2−9=0,然后求出m即可.【解答】解:把x=0代入2x2−x+m2−9=0,得m2−9=0,所以m=3或−3.故选B.7.【答案】D【解析】【分析】此题主要考查了二次函数图象与系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=−1时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于负半轴可得c<0,由x=−1,得出−b2a=−1,故b>0,b=2a,则b>a>c,故此选项错误;B.∵a>0,c<0,∴一次函数y=ax+c的图象经过一、三、四象限,故此选项错误;C.当x=−1时,y最小,即a−b−c最小,故a−b+c≤am2+bm+c,即m(am+b)+ b≥a,故此选项错误;D.由图象可知x=1,a+b+c>0,∵b=2a,∴a=12b,∴12b+b+c>0,∴3b+2c>0,故此选项正确,故选D.8.【答案】D【解析】【分析】本题考查相似三角形的判定和性质、两点间距离公式、二次函数的应用等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会构建二次函数,利用二次函数的性质解决最值问题,属于中考常考题型.作AH⊥y轴于H,CE⊥AH于E.则四边形CEHO是矩形,OH=CE=4,由△AHB∽△CEA,得出比例式,推出AE=2BH,设BH=x,则AE=2x,推出B(0,6−x),C(3+2x,0),由BM=CM,推出M(3+2x2,6−x2),得出PN=ON−OP=x,在Rt△PMN中,由勾股定理得出PM2=PN2+MN2=x2+(6−x2)2=5 4x2−3x+9=54(x−65)2+365,根据二次函数的性质得出PM2最小值为365,即可得出结果.【解答】解:如图,作AH⊥y轴于H,CE⊥AH于E,作MN⊥OC于N.则四边形CEHO是矩形,OH=CE=4,∵∠BAC=∠AHB=∠AEC=90°,∴∠ABH+∠HAB=90°,∠HAB+∠EAC=90°,∴∠ABH=∠EAC,∴△AHB∽△CEA ,∴AH EC=BH AE , ∴36=BH AE ,∴AE =2BH ,设BH =x ,则AE =2x ,∴OC =HE =3+2x ,OB =6−x ,∴B(0,6−x),C(3+2x,0)∵BM =CM ,∴M(3+2x 2,6−x 2),∵P(32,0), ∴PN =ON −OP =3+2x 2−32=x ,∴PM 2=PN 2+MN 2=x 2+(6−x 2)2=54x 2−3x +9=54(x −65)2+365, ∴x =65时,PM 2有最小值,最小值为365,∴PM 的最小值为√365=6√55. 故选:D . 9.【答案】a ≠2【解析】【分析】本题考查的是一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.根据二次项的系数不等于0解答即可.【解答】解:由题意得,a −2≠0,解得a ≠2,故答案为:a ≠2.10.【答案】(3,4)【解析】解:∵抛物线y=(x−3)2+4是顶点式,∴抛物线的顶点坐标是(3,4),故答案为:(3,4).因为顶点式y=a(x−ℎ)2+k,其顶点坐标是(ℎ,k),对照求二次函数y=(x+2)2−1的顶点坐标即可.本题考查了二次函数的性质,注意:顶点式y=a(x−ℎ)2+k,顶点坐标是(ℎ,k),对称轴是x=ℎ.11.【答案】9【解析】解:∠ACB=90°,CD⊥AB,由射影定理得,BC2=BD⋅BA,∴BD=BC2BA =15225=9,故答案为:9.根据射影定理计算即可.本题考查的是射影定理,直角三角形中,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.12.【答案】√a2+b22【解析】【分析】过点B作圆的直径BE交圆于点E,则∠ECB=90°,有∠E+∠EBC=90°,由圆内接四边形的对角互补知,∠E+∠A=180°,又因为∠A−∠ABC=90°,可证∠CBA=∠CBE,弧AC=弧CE,CE=CA=b,由勾股定理可求BE=√a2+b2,即⊙O的半径=√a2+b22.本题重点考查了同弧所对的圆周角相等、圆内接四边形的对角互补、直径所对的圆周角为直角及解直角三角形的知识.【解答】过点B作圆的直径BE交圆于点E,连接CE,∴∠ECB=90°,∴∠E+∠EBC=90°,∴∠E+∠A=180°,∵∠A−∠ABC=90°,∴∠CBA=∠CBE,弧AC=弧CE,CE=CA=b,由勾股定理得,BE=√a2+b2,∴⊙O的半径=√a2+b22.13.【答案】x=−2【解析】解:∵点A(2,6)与点B(−6,6)的纵坐标相等,∴点A、B关于抛物线对称轴对称,∴抛物线的对称轴为直线x=2−62=−2.故答案为:x=−2.由点A、B的纵坐标相等可得出点A、B关于抛物线的对称轴对称,再由点A、B的横坐标即可求出抛物线的对称轴,此题得解.本题考查了二次函数的性质,牢记二次函数的性质是解题的关键.14.【答案】1:9【解析】解:∵BD//AC,BD=1,AC=3,∴△DBP∽△CAP,∴S△PBDS△PAC =(BDAC)2=19,故答案为1:9只要证明△DBP∽△CAP,利用相似三角形的性质即可解决问题;本题考查相似三角形的判定和性质、平行线的性质等知识,解题的关键是熟练掌握相似三角形的性质,属于中考常考题型.15.【答案】40cm【解析】【分析】本题考查了圆锥的计算,解答本题的关键是确定圆锥的底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【解答】解:设这个扇形铁皮的半径为rcm,由题意得:解得r=40cm.故这个扇形铁皮的半径为40cm.故答案为40cm.16.【答案】0或3+√5【解析】解:∵y=4x2−4ax+(a2−2a+2)=4(x−12a)2+(2−2a),∴二次函数图象的顶点坐标为(12a,2−2a).当12a<0,即a<0时,有a2−2a+2=2,解得:a1=0(舍去),a2=2(舍去);当0≤12a≤1,即0≤a≤2时,有2−2a=2,解得:a=0;当12a>1,即a>2时,有4−4a+(a2−2a+2)=2,解得:a3=3−√5(舍去),a4=3+√5.综上所述:a的值为0或3+√5.故答案为:0或3+√5.利用配方法可找出抛物线的顶点坐标,分12a<0、0≤12a≤1及12a>1三种情况考虑,由二次函数的性质结合二次函数在0≤x≤1上的最小值为2,即可得出关于a的一元二次方程(或一元一次方程),解之即可得出结论.本题考查了二次函数的最值,分12a<0、0≤12a≤1及12a>1三种情况找出关于a的方程是解题的关键.17.【答案】−1或2 −1或−5【解析】解:①(x+1)(x−2)=0 x+1=0或x−2=0x1=−1,x2=2②(x+3)2=4x+3=±2x1=−1,x2=−5故本题的答案①x1=−1,x2=2;②x1=−1,x2=−5①方程(x+1)(x−2)=0根据“两式乘积为0,则至少有一个式子的值为0.”求解;②方程(x+3)2=4要利用直接开平方法解方程.本题考查了因式分解法解一元二次方程,将方程等号右边的式子移到等号左边,然后将左边的式子进行因式分解,再利用积为0的特点解出方程的根,两个数相乘得0的情况,要知道0乘以任何数都得0,当两个数相乘得0时,这两个数都有可能等于0,不能漏掉一种情况.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.18.【答案】57【解析】【分析】本题考查了等边三角形的性质、相似三角形的判定和性质以及折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由BD:DC=1:3,可设BD=a,则CD=3a,根据等边三角形的性质和折叠的性质可得:BM+MD+BD=5a,DN+NC+DC=7a,再通过证明△BMD∽△CDN即可求出AM:AN的值.【解答】解:∵BD:DC=1:3,∴设BD=a,则CD=3a,∵△ABC是等边三角形,∴AB=BC=AC=4a,∠ABC=∠ACB=∠BAC=60°,由折叠的性质可知:MN是线段AD的垂直平分线,∴AM=DM,AN=DN,∴BM+MD+BD=5a,DN+NC+DC=7a,∵∠MDN=∠BAC=∠ABC=60°,∴∠NDC+∠MDB=∠BMD+∠MDB=120°,∴∠NDC=∠BMD,∵∠ABC=∠ACB=60°,∴△BMD∽△CDN,∴(BM+MD+BD):(DN+NC+CD)=AM:AN,即AM:AN=5:7,.故答案为5719.【答案】解:作OM⊥AB于M,ON⊥CD于N,连接OA、OC,AB=3,则AM=12∵AB//CD,∴点M、O、N在同一条直线上,在Rt△AOM中,OM=√OA2−AM2=4,∴ON=MN−OM=3,在Rt△CON中,CN=√OC2−ON2=4,∵ON⊥CD,∴CD=2CN=8.【解析】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理求出AM,根据勾股定理求出OM,根据题意求出ON,根据勾股定理、垂径定理计算即可.本题考查的是垂径定理和勾股定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.20.【答案】解:原式=4√3−3+2018−4×√32=4√3−3+2018−2√3=2015+2√3.【解析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.【答案】解:(1)x2−6x−3=0,x2−6x=3,x2−6x+9=3+9,即(x−3)2=12,∴x−3=±2√3,∴x1=3+2√3,x2=2−2√3;(2)(x−2)2=2x−4,(x−2)2−2(x−2)=0,(x−2)(x−2−2)=0,∴x−2=0或x−4=0,∴x1=2,x2=4.【解析】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.(1)利用配方法求解即可;(2)利用因式分解法求解即可.22.【答案】解:(1)∵sinB=35,∴ACAB =35,设AB=5k,AC=3k,则BC=4k,∵△ABC的周长为24,∴3k+4k+5k=24,∴12k=24,∴k=2,∴AB=10,AC=6,BC=8;(2)过点D作DE⊥AB,垂足为E,∵点D为BC的中点,∴BD=CD=12BC=4,∴S△ABD=12S△ABC=12,∴12×10·DE=12,∴DE=125,在Rt△ACD中,AD2=CD2+AC2,∴AD=2√13,∴sin∠BAD=DEAD =1252√13=6√1365.【解析】本题考查了解直角三角形,掌握勾股定理以及三角函数的定义是解题的关键.(1)根据三角函数的定义设AB=5k,AC=3k,则BC=4k,再由三角形的周长得出k的值,即可得出三角形的三边;(2)过点D作DE⊥AB,垂足为E,根据S△ABD=12S△ABC,再由正弦函数的定义得出答案即可.23.【答案】−12√2【解析】【分析】本题考查了一元二次方程的根与系数的关系,以及二次根式等知识,解答本题关键是根据题意,得到a+b=−8,ab=8,再把a√ab +b√ba整理成−√ab⋅(a+b)2−2abab,代入求值即可.【解答】解:根据题意,可知a、b是方程x2+8x+8=0的两个不相等的实数根,则a+b=−8,ab=8,∴a<0,b<0.原式=a√abb2+b√aba2=−ab√ab−ba√ab=−√ab(ab+ba)=−√ab⋅(a+b)2−2abab =−√8×64−168=−12√2.故答案为−12√2.24.【答案】解:设AE=x,在Rt△ACE中,CE=AEtan42∘≈1.1x,在Rt△AFE中,FE=AEtan61∘≈0.55x,由题意得,CF=CE−FE=1.1x−0.55x=12,解得:x=24011,故AB=AE+BE=24011+1.5≈23米.答:这个电视塔的高度AB为23米.【解析】设AE=x,在Rt△ACE中表示出CE,在Rt△AFE中表示出FE,再由DH=CF= 12米,可得出关于x的方程,解出即可得出答案.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形,难度一般.25.【答案】解:设每千克橘子的售价应降低x元,则每天的销售量为(200+400x)千克,根据题意得:(3−2−x)(200+400x)=200+24,整理得:50x2−25x+3=0,解得:x1=0.3,x2=0.2.答:王老板想每天盈利200元,应将每千克橘子的售价降低0.3或0.2元.【解析】设每千克橘子的售价应降低x元,则每天的销售量为(200+400x)千克,根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.26.【答案】解:(1)CE与⊙O相切,理由:连接OE,∵OA=OE,AC=EC,∴∠OAE=∠OEA,∠CAE=∠CEA,∴∠CEA+∠OEA=∠CAE+∠OAE,∴∠CEO=∠CAO,∵∠BAC=90°,∴∠CEO=90°,∴CE是⊙O的切线;(2)连接OC,OB,∵AB=AC=4,∠BAC=90°,∴OA=2,BC=4√2,CE=AC=4,∴OC =√AC 2+OA 2=2√5, ∵AC =CE ,OA =OE ,∴AE ⊥OC ,AF =EF ,∴AO 2=OF ⋅OC ,∴OF =AO 2OC =2√55, ∵OF ⊥AE ,BE ⊥AE ,∴OF//BE ,∵AO =OB ,∴BE =2OF =4√55,∵CE 是⊙O 的切线,∴∠CBE =∠DEC ,∵∠BCE =∠ECD ,∴△CDE∽△CEB ,∴DE BE =CE BC , ∴4√55=4√2, ∴DE =2√105.【解析】本题考查了切线的判定和性质,等腰直角三角形,圆周角定理,正确的作出辅助线是解题的关键.(1)连接OE ,根据等腰三角形的性质得到∠OAE =∠OEA ,∠CAE =∠CEA ,求得∠CEO =∠CAO ,得到∠CEO =90°,于是得到结论;(2)连接OC ,OB ,解直角三角形得到OA =2,BC =4√2,CE =AC =4,根据勾股定理得到OC =√AC 2+OA 2=2√5,根据射影定理得到AO 2=OF ⋅OC ,求得OF =AO 2OC =2√55,得到BE =2OF =4√55,根据相似三角形的性质即可得到结论. 27.【答案】45°【解析】解:(1)如图2中,∵四边形ABCD是平行四边形,∴AB//CD,∠D=∠B=45°∴∠BAC=∠DCA,∵AP=PC,∴∠PCA=∠PAC,∵∠BAC=∠DAP,∴∠DAP=∠CAP=∠PCA,在△ADC中,∠D+∠DCA+∠DAC=180°,∴3∠PCA=135°∴∠PCA=45°.故答案为45°.(2)如图3中,在线段AD上取一点P,使得PC=PA,则△PAC是等腰三角形,∴∠PAC=∠PCA,∴∠DPC=∠PAC+∠PPCA=2∠PAC,∵∠BAC=2∠DCA,∴∠BAC=∠DPC,∵∠BCA=∠D,∴△CBA∽△DCP,∴△PAC是一个AD边上的“等腰邻相似三角形APC”,(3)由题意△APC是等腰直角三角形,∵△APC与△ABC,△ABC与△PCD相似,∴△PDC,△ABC都是等腰直角三角形;如图4中,当点P在线段AD上,∠ABC=90°时,易证∠DAB=90°,AB=AP=PD=1,BD=√12+22=√5.如图5中,当点P在线段AD上,∠BAC=90°时,作BE⊥DA交DA的延长线于E.易知DE=3,EB=1,BD=√12+32=√10.当∠ACB=90°时,四边形ABCD不存在,不符合题意;如图6中,如图7中,BD的长度与图4,图5类似.综上所述,满足条件的BD的长度为√5或√10.(1)根据平行四边形的性质、“等腰邻相似三角形”的定义构建方程即可解决问题;(2)在线段AD上取一点P,使得PC=PA,则△PAC即为所求;(3)分四种情形分别求解即可解决问题;本题考查相似形综合题、相似三角形的判定和性质、等腰直角三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.28.【答案】解:(1)∵抛物线经过A(−2,0),B(6,0)两点,∴{4a−2b−3=036a+6b−3=0,解得{a=14b=−1,∴抛物线解析式为y=14x2−x−3;(2)∵抛物线的对称轴为直线x=−−2+62=2,∴当x=2时,y=1−2−3=−4,,∴D(2,−4),∵抛物线y=14x2−x−3与y轴交于点C,∴C(0,−3),设直线BC的解析式为y=kx+c(k≠0),,∴{6k+c=0c=−3,解得{k=12c=−3,∴直线BC的解析式为y=12x−3,∴当x=2时,y=−2,∴E(2,−2),∴ED=−2−(−4)=2,∴S△BCD=S△CDE+S△BDE=12ED×OB=12×2×6=6;(3)存在.P1(4,−3),P2(2+2√7,3),P3(2−2√7,3).【解析】本题主要考查二次函数的应用,待定系数法确定一次函数关系式及三角形的面积等知识的综合运用.(1)可利用待定系数法将A,B两点代入抛物线解析式即可求解;(2)可根据抛物线的对称性求解抛物线的顶点D的坐标,再利用待定系数法求解直线BC 的解析式,根据x=2可求解E点坐标,即可得ED的长,进而利用S△BCD=S△CDE+S△BDE 可求解;(3)可设P(x,14x2−x−3),注意分类讨论,可分以AM为平行四边形的边即当CP//AM时,1 4x2−x−3=−3可求解P1点坐标(4,−3);以AM为平行四边形的对角线时,14x2−x−3=3,解方程可求解P2,P3点的坐标.。

2019-2020学年江苏省扬州市江都区九年级(上)期末数学试卷

2019-2020学年江苏省扬州市江都区九年级(上)期末数学试卷

2019-2020学年江苏省扬州市江都区九年级(上)期末数学试卷
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.已知α为锐角,且sinα=,则α的度数为()
A.30°B.45°C.60°D.75°
2.已知(a≠0,b≠0),下列变形错误的是()
A .B.3a=4b C .D.4a=3b
3.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()
A .
B .
C .D.1
4.如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A是OA'的中点,△ABC的面积是6,则△A'B'C'的面积为()
A.9B.12C.18D.24
5.若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.3cm B.6cm C.12cm D.24cm
6.如图,CD为⊙O的直径,弦AB⊥CD于点E,DE=2,AB=8,则⊙O的半径为()
A.5B.8C.3D.10
7.已知抛物线y=ax2+2x﹣1与x轴没有交点,那么该抛物线的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,在Rt△ABC中,AC=BC,AB=5,以AB为斜边向上作Rt△ABD,∠ADB=90°.连接CD,若
第1页(共22页)。

2019-2020年扬州市邗江区九年级上册期末数学试卷(有答案)【优质版】

2019-2020年扬州市邗江区九年级上册期末数学试卷(有答案)【优质版】

江苏省扬州市邗江区九年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.(3分)下列事件属于随机事件的是()A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是()A.13,11 B.14,11 C.12,11 D.13,163.(3分)方程22﹣5+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB 的位置关系是()A.相切B.相交C.相离D.无法确定5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y26.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是()A.2 B.14 C.6或8 D.2 或147.(3分)小明从二次函数y=a2+b+c的图象(如图)中观察得到了下面五条信息:①abc>0②2a﹣3b=0③b2﹣4ac>0④a+b+c>0⑤4b<c则其中结论正确的个数是()A.2个B.3个 C.4个 D.5个8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个B.3个 C.2个 D.1个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应位置上.)9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为℃(精确到1℃).11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为.12.(3分)一组数据﹣1,﹣2,,1,2的平均数为0,则这组数据的方差为.13.(3分)某种冰箱经两次降价后从原的每台2500元降为每台1600元,求平均每次降价的百分率为.14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为o.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD 的面积为15,那么△ACD的面积为.16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.17.(3分)在平面直角坐标系中,抛物线y=a(﹣2)2﹣经过原点O,与轴的另一个交点为A.将抛物线在轴下方的部分沿轴折叠到轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于轴,当图象G 在直线l上方的部分对应的函数y随增大而增大时,的取值范围是.18.(3分)如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是.三、解答题(本大题共有10题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(8分)解方程:(1)2+2=1;(2)(﹣3)2+2(﹣3)=0.20.(8分)已知关于的方程2+2+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为;(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC 的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.27.(12分)定义:对于给定的两个函数,任取自变量的一个值,当<0时,它们对应的函数值互为相反数;当≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=a﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣2+4﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤≤3时,求函数y=﹣2+4﹣的相关函数的最大值和最小值.28.(12分)如图,已知在平面直角坐标系Oy中,抛物线y=a2+2+c与轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=+b经过C、M两点,且与轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.江苏省扬州市邗江区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.(3分)下列事件属于随机事件的是()A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯【解答】解:A、是必然事件,故A不符合题意;B、是必然事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是随机事件,故D符合题意;故选:D.2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是()A.13,11 B.14,11 C.12,11 D.13,16【解答】解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;极差=19﹣8=11.故选:A.3.(3分)方程22﹣5+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号【解答】解:∵△=(﹣5)2﹣4×2×3=1>0,∴方程22﹣5+3=0有两个不相等的实数根.故选:B.4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB 的位置关系是()A.相切B.相交C.相离D.无法确定【解答】解:过O作OD⊥AB于D,由勾股定理得:AB==13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>,∴⊙O与AB的位置关系是相离,故选:C.5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【解答】解:∵函数的解析式是y=﹣(+1)2+3,如右图,∴对称轴是=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随的增大而减小,于是y1>y2>y3.故选:A.6.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是()A.2 B.14 C.6或8 D.2 或14【解答】解:如图①,当弦AC,BD在⊙O的圆心同侧时,作OE⊥AC垂足为E,交BD于点F,∵OE⊥AC AC∥BD,∴OF⊥BD,∴AE=AC=6,BF=BD=8,在Rt△AOE中OE===8同理可得:OF=6∴EF=OE﹣OF=8﹣6=2;如图②,当弦AC,BD在⊙O的圆心两侧时,同理可得:EF=OE+OF=8+6=14综上所述两弦之间的距离为2或14.故选:D.7.(3分)小明从二次函数y=a2+b+c的图象(如图)中观察得到了下面五条信息:①abc>0②2a﹣3b=0③b2﹣4ac>0④a+b+c>0⑤4b<c则其中结论正确的个数是()A.2个B.3个 C.4个 D.5个【解答】解:①因为函数图象与y轴的交点在y轴的负半轴可知,c<0,由函数图象开口向上可知,a>0,由①知,c<0,由函数的对称轴在的正半轴上可知,=﹣>0,故b<0,故abc>0;故此选项正确;②因为函数的对称轴为=﹣=,故2a=﹣3b,即2a+3b=0;故此选项错误;③因为图象和轴有两个交点,所以b2﹣4ac>0,故此选项正确;④把=1代入y=a2+b+c得:a+b+c<0,故此选项错误;⑤当=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b,而点(2,c﹣4b)在第一象限,∴⑤c﹣4b>0,故此选项正确;其中正确信息的有①③⑤,故选:B.8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB 于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个B.3个 C.2个 D.1个【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,如图3.S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,=S△CFG=;∴S四边形DEGF所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;本题结论正确的有:①③.故选:C.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应位置上.)9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是AB∥DE.(只需写一个条件,不添加辅助线和字母)【解答】解:∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.故答案为AB∥DE.10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为23℃(精确到1℃).【解答】解:根据黄金比的值得:37×0.618≈23℃.故答案为23.11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为6.【解答】解:设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=6.∴此多边形的边数为6.故答案为:6.12.(3分)一组数据﹣1,﹣2,,1,2的平均数为0,则这组数据的方差为2.【解答】解:由平均数的公式得:(﹣1﹣2+1+2+)÷5=0,解得=0;∴方差=[(﹣1﹣0)2+(﹣2﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]÷5=2.故答案为:2.13.(3分)某种冰箱经两次降价后从原的每台2500元降为每台1600元,求平均每次降价的百分率为20%.【解答】解:设降价的百分率为,由题意得2500(1﹣)2=1600,解得1=0.2,2=﹣1.8(舍).所以平均每次降价的百分率为20%.故答案为20%.14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为45或135o.【解答】解:如图所示,∵OC⊥AB,∴C为AB的中点,即AC=BC=AB=,在Rt△AOC中,OA=1,AC=,根据勾股定理得:OC==,即OC=AC,∴△AOC为等腰直角三角形,∴∠AOC=45°,同理∠BOC=45°,∴∠AOB=∠AOC+∠BOC=90°,∵∠AOB与∠ADB都对,∴∠ADB=∠AOB=45°,∵大角∠AOB=270°,∴∠AEB=135°,∴弦AB所对的圆周角为45°或135°.故答案为:45或135.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD 的面积为15,那么△ACD的面积为5.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴===()2=,∴△ACD的面积=5,故答案是:5.16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.【解答】解:连接OB,OC,过点O作OD⊥BC于D,∴BC=2BD,∵⊙O是等边△ABC的外接圆,∴∠BOC=×360°=120°,∵OB=OC,∴∠OBC=∠OCB===30°,∵⊙O的半径为2,∴OB=2,∴BD=OB•cos∠OBD=2×cos30°=2×=,∴BC=2BD=2.∴等边△ABC的边长为2.故答案为:2.17.(3分)在平面直角坐标系中,抛物线y=a(﹣2)2﹣经过原点O,与轴的另一个交点为A.将抛物线在轴下方的部分沿轴折叠到轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于轴,当图象G 在直线l上方的部分对应的函数y随增大而增大时,的取值范围是1<<2或>2+.【解答】解:由题意抛物线:y=(﹣2)2﹣,对称轴是:直线=2,由对称性得:A(4,0),沿轴折叠后所得抛物线为:y=﹣(﹣2)2+;如图③,由题意得:当y=1时,(﹣2)2﹣=1,解得:1=2+,2=2﹣,∴C(2﹣,1),F(2+,1),当y=1时,﹣(﹣2)2+=1,解得:1=3,2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<<2或>2+时,函数y随增大而增大;故答案为1<<2或>2+.18.(3分)如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是.【解答】解:如图,∵△CDB′是由□CDB翻折,∴∠BCD=∠DCB′,∠CBD=∠CDB′,AD=DB=DB′,∴∠DBB′=∠DB′B,∵2∠DCB+2∠CBD+2∠DBB′=180°,∴∠DCB+∠CBD+∠DBB′=90°,∵∠CDA=∠DCB+∠CBD,∠ACD+∠CDA=90°,∴∠ABB′=∠ACE,∵AD=DB=DB′=3,∴∠AB′B=90°,∵∠ACE=∠ABB′,∠CAE=∠BAB′,∴△ACE∽△ABB′,∴∠AEC=∠AB′B=90°,在RT△AEC中,∵AC=4,AD=3,∴CD==5,∵AC•AD=•CD•AE,∴AE==,在RT△ACE中,CE===.故答案为.三、解答题(本大题共有10题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(8分)解方程:(1)2+2=1;(2)(﹣3)2+2(﹣3)=0.【解答】解:(1)方程配方得:2+2+1=2,即(+1)2=2,开方得:+1=±,解得:1=﹣1+,2=﹣1﹣;(2)分解因式得:(﹣3)(﹣3+2)=0,解得:1=3,2=1.20.(8分)已知关于的方程2+2+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.【解答】解:(1)菱形,轴对称图形;平行四边形,不是轴对称图形;线段,轴对称图形;角,轴对称图形,则随机抽取一张卡片图案是轴对称图形的概率是;故答案为:;(2)列表如下:其中A,B,C为中心对称图形,D不为中心对称图形,则P==.22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32,故答案为:50、32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为(2,0);(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.【解答】解:(1)如图;D(2,0)(4分)(2)如图;;作CE⊥轴,垂足为E.∵△AOD≌△DEC,∴∠OAD=∠CDE,又∵∠OAD+∠ADO=90°,∴∠CDE+∠ADO=90°,∴扇形DAC的圆心角为90度;(3)∵弧AC的长度即为圆锥底面圆的周长.l弧=,设圆锥底面圆半径为r,则,∴.24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.【解答】(1)证明:连接OP ,如图∵OD=OP∴∠OPD=∠ODP∵∠APC=∠AOD∴∠APC +∠OPD=∠ODP +∠AOD ,又∵PD ⊥BE∴∠ODP +∠AOD=90°∴∠APC +∠OPD=90°即∠APO=90°∴PO ⊥AP∴AP 是⊙O 的切线(2)解:在Rt △APO 中,∵AP=,PO=4,∴AO=,即,∴∠A=30°,∴∠POA=60°,∴∠OPC=30°在Rt △OPC 中,∵OC=2,OP=4,∴PC=∴又∵PD ⊥BE∴PC=CD∴∠POD=120°,,∴S 阴影=S 扇形OPBD ﹣S △OPD =.25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.【解答】解:(1)设销售价格为元时,当天销售利润为2000元,则(﹣20)•[250﹣10(﹣25)]=2000,整理,得:2﹣70+1200=0,解得:1=30,2=40(舍去),答:该商品销售价是30元/件;(2)设该商品每天的销售利润为y,则y=(﹣20)•[250﹣10(﹣25)]=﹣102﹣700+10000=﹣10(﹣35)2+2250,答:当销售单价为35元/件时,销售利润最大.26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC 的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.【解答】解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===.27.(12分)定义:对于给定的两个函数,任取自变量的一个值,当<0时,它们对应的函数值互为相反数;当≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=a﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣2+4﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤≤3时,求函数y=﹣2+4﹣的相关函数的最大值和最小值.【解答】解:(1)y=a﹣3的相关函数y=,将A(﹣5,8)代入y=﹣a+3得:5a+3=8,解得a=1;(2)二次函数y=﹣2+4﹣的相关函数为y=,①当m<0时,将B(m,)代入y=2﹣4+得m2﹣4m+=,解得:m=2+(舍去),或m=2﹣,当m≥0时,将B(m,)代入y=﹣2+4﹣得:﹣m2+4m﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣;②当﹣3≤<0时,y=2﹣4+,抛物线的对称轴为=2,此时y随的增大而减小,∴此时y的最大值为,当0≤≤3时,函数y=﹣2+4﹣,抛物线的对称轴为=2,当=0有最小值,最小值为﹣,当=2时,有最大值,最大值y=,综上所述,当﹣3≤≤3时,函数y=﹣2+4﹣的相关函数的最大值为,最小值为﹣.28.(12分)如图,已知在平面直角坐标系Oy中,抛物线y=a2+2+c与轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=+b经过C、M两点,且与轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.【解答】解:(1)∵抛物线y=a2+2+c经过点A(﹣1,0)和点C(0,3),∴,∴,∴y=﹣2+2+3=﹣(﹣1)2+4,对称轴为直线=1,顶点M(1,4);(2)如图1,∵点C关于直线l的对称点为N,∴N(2,3),∵直线y=+b经过C、M两点,∴,∴,∴y=+3,∵y=+3与轴交于点D,∴D(﹣3,0),∴AD=2=CN又∵AD∥CN,∴CDAN是平行四边形;(3)设P(1,a),过点P作PH⊥DM于H,连接PA、PB,如图2,则MP=4﹣a,又∠HMP=45°,∴HP=AP=,Rt△APE中,AP2=AE2+PE2,即:,解得:,∴P1(1,﹣4+2),P2(1,﹣4﹣2).。

九年级上册扬州数学期末试卷测试卷(解析版)

九年级上册扬州数学期末试卷测试卷(解析版)

九年级上册扬州数学期末试卷测试卷(解析版)一、选择题1.如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将△ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF=2,则BD的长是()A.2 B.3 C.218D.2472.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.43.方程 x2=4的解是()A.x1=x2=2 B.x1=x2=-2 C.x1=2,x2=-2 D.x1=4,x2=-4 4.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有()A.1个B.2个C.3个D.4个5.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.486.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点M是AB上的一点,点N是CB上的一点,43BMCN,当∠CAN与△CMB中的一个角相等时,则BM的值为()A .3或4B .83或4C .83或6D .4或67.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( )A .80°B .40°C .50°D .20°8.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α9.如图,已知等边△ABC 的边长为4,以AB 为直径的圆交BC 于点F ,CF 为半径作圆,D 是⊙C 上一动点,E 是BD 的中点,当AE 最大时,BD 的长为( )A .3B .5C .4D .6 10.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>11.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A.25°B.40°C.45°D.50°12.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30°B.45°C.60°D.75°二、填空题13.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是______cm.14.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.15.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同).16.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax2+bx+c=0的根为____.17.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.18.某一时刻,一棵树高15m,影长为18m.此时,高为50m的旗杆的影长为_____m.19.如图,△ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为________.20.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.21.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.22.二次函数y =2x 2﹣4x +4的图象如图所示,其对称轴与它的图象交于点P ,点N 是其图象上异于点P 的一点,若PM ⊥y 轴,MN ⊥x 轴,则2MN PM =_____.23.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.24.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题25.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率:(1)两辆车中恰有一辆车向左转;(2)两辆车行驶方向相同.26.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条 平均每条鱼的质量/kg 第1次捕捞20 1.6 第2次捕捞15 2.0 第3次捕捞 15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y (元)与出售该种鱼的质量x (kg )之间的函数关系,并估计自变量x 的取值范围.27.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.28.如图,AB 为O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且2D A ∠=∠.的度数.(1)求D(2)若O的半径为2,求BD的长.29.某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?30.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.31.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.32.如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x=218,即BD=218,故选:C.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.D解析:D【解析】【分析】直接利用平行线分线段成比例定理对各选项进行判断即可.【详解】解:∵a∥b∥c,∴AB DE BC EF=,∵AB=1.5,BC=2,DE=1.8,∴1.5 1.82EF= , ∴EF=2.4故选:D.【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.3.C解析:C【解析】【分析】两边开方得到x=±2.【详解】解:∵x2=4,∴x=±2,∴x1=2,x2=-2.故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax2+c=0(a≠0)的方程可变形为2=cxa-,当a、c异号时,可利用直接开平方法求解.4.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.5.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48 ∴中位数为4646462+=. 故答案为:46.【点睛】 找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.6.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB =,解出k值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10, CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽,∴CN AC AC CB=, ∴3668k =, 32k ∴=, 6BM ∴=.②当CAN MCB ∠=∠时,如图2中,过点M 作MH CB ⊥,可得BMH BAC ∆∆∽,∴BM MH BH BA AC BC ==, ∴41068k MH BH ==, 125MH k ∴=,165BH k =, 1685CH k ∴=-, MCB CAN ∠=∠,90CHM ACN ∠=∠=︒,ACN CHM ∴∆∆∽,∴CN MH AC CH=, ∴123516685k k k =-, 1k ∴=,4∴=.BMBM=或6.综上所述,4故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.7.C解析:C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.8.D解析:D【解析】连接OC,则有∠BOC=2∠A=2α,∵OB=OC,∴∠OBC=∠OCB,∵∠OBC+∠OCB+∠BOC=180°,∴2∠OBC+2α=180°,∴∠OBC=90°-α,故选D.9.B解析:B【解析】【分析】点E在以F为圆心的圆上运到,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得CD⊥BC,根据勾股定理即可求得结论.【详解】解:点D在⊙C上运动时,点E在以F为圆心的圆上运到,要使AE最大,则AE过F,连接CD,∵△ABC 是等边三角形,AB 是直径,∴EF ⊥BC ,∴F 是BC 的中点,∵E 为BD 的中点,∴EF 为△BCD 的中位线,∴CD ∥EF ,∴CD ⊥BC ,BC=4,CD=2,故2216425BC CD +=+=故选:B .【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.10.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.11.B解析:B【解析】【分析】连接OA ,由圆周角定理得,∠AOP =2∠B =50°,根据切线定理可得∠OAP =90°,继而推出∠P =90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.12.A解析:A【解析】【详解】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∠AOB=30°∴∠ADB=12故选A.二、填空题13.6;【解析】解:设圆的半径为x,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l,圆心角度数为n,圆的半径为R).解析:6;【解析】解:设圆的半径为x,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 14.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1 解析:12- 【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x 1+x 2═12b a -=- 故答案为12-. 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 15.3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:12123x x +=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个, 根据题意得:12123x x +=++, 解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 16.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.17.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.18.60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可. 【详解】 解:设旗杆的影长BE 为xm ,如图:∵AB ∥CD∴△ABE ∽△DCE∴AB DC BE CE=, 由题意知AB=50,CD=15,CE=18,即,501518x =, 解得x =60, 经检验,x=60是原方程的解,即高为50m 的旗杆的影长为60m .故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.19.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.20.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.21.(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).解析:(1,2)【解析】解:∵点A的坐标为(2,4),以原点O为位似中心,把这个三角形缩小为原来的12,∴点A′的坐标是(2×12,4×12),即(1,2).故答案为(1,2).22.【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算即可解答本题.【详解】解:∵二次函数y =2x2﹣4x+4=2(x ﹣1)2+2,∴点P 的坐标为(1解析:【解析】【分析】根据题目中的函数解析式可得到点P 的坐标,然后设出点M 、点N 的坐标,然后计算2MN PM 即可解答本题. 【详解】解:∵二次函数y =2x 2﹣4x +4=2(x ﹣1)2+2,∴点P 的坐标为(1,2),设点M 的坐标为(a ,2),则点N 的坐标为(a ,2a 2﹣4a +4), ∴2MN PM =()222442(1)a a a -+--=()22222212422121a a a a a a a a -+-+=-+-+=2, 故答案为:2.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P 左边,设出点M 、点N 的坐标,表达出2MN PM. 23.8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x ﹣3,设y =0,∴0=x2﹣2x ﹣3,解得:x1=3,解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC的面积=12×4×4=8,故答案为8.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.24.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题25.(1)49;(2)13【解析】【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可.【详解】解:列表得:相同有3种情况(1)P(两辆车中恰有一辆车向左转)=49;(2)P(两辆车行驶方向相同)=31 93 =.【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比.26.(1)1.78kg;(2)8900kg;(3)y=14x,0≤x≤8900.【解析】【分析】(1)根据平均数的公式求解即可;(2)根据每条鱼的平均质量×总条数=总质量即可得答案;(3)根据收入=单价×质量,列出函数表达式即可.【详解】(1)样本中平均每条鱼的质量为20 1.615 2.015 1.81.78201515⨯+⨯+⨯=++(kg).(2)∵样本中平均每条鱼的质量为1.78kg,∴估计鱼塘中该种鱼的总质量为1.78×5000=8900(kg).(3)∵每千克的售价为14元,∴所求函数表达式为y=14x,∵该种鱼的总质量约为8900kg,∴估计自变量x的取值范围为0≤x≤8900.【点睛】本题考查一次函数的应用、用样本估计总体,明确题意,写出相应的函数关系式,利用平均数的知识求出每条鱼的质量是解题关键.27.【解析】【分析】过点A作AD⊥BC,垂足为点D,构造直角三角形,利用三角函数值分别求出AD、BD、CD 的值即可求三角形面积.【详解】解:过点A作AD⊥BC,垂足为点D,在Rt △ADB 中,∵sin ADABC AB∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BDABC AB∠=, ∴3cos 843BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=, ∴45CAD ︒∠=, ∴AD =DC =4 ∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.28.(1)45D ∠=︒;(2)222BD =. 【解析】 【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案; (2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可.【详解】解:(1)∵OA=OC , ∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A , ∵∠D=2∠A , ∴∠D=∠COD , ∵PD 切⊙O 于C , ∴∠OCD=90°, ∴∠D=∠COD=45°; (2)∵∠D=∠COD ,O 的半径为2,∴OC=OB=CD=2,在Rt △OCD 中,由勾股定理得:22+22=(2+BD )2, 解得:222BD =.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.29.(1)每件玩具的售价为80元;(2)每件玩具的售价为85元时,每天盈利最多,最多盈利1250元. 【解析】 【分析】(1)根据题意,可以得到关于x 的一元二次方程,从而可以解答本题;(2)根据题意可以得到利润与售价的函数关系式,然后根据二次函数的性质即可解答本题. 【详解】解:(1)设每件玩具的售价为x 元,()()602021001200x x -+-=⎡⎤⎣⎦,解得:190x =,280x =,∵扩大销售,增加盈利,尽快减少库存,∴80x =, 答:每件玩具的售价为80元;(2)设每件玩具的售价为a 元时,利润为w 元,()()()2602021002851250w a a a =-+-=--+⎡⎤⎣⎦,即当85a时,w 有最大值为1250元,答:当每件玩具的售价为85元时,商店每天盈利最多,最多盈利1250元. 【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质解答. 30.(1)14;(2)14. 【解析】 【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解. 【详解】(1)解:一名游客经过此检票口时,选择A 通道通过的概率=14, 故答案为:14; (2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E ,它的发生有4种可能:(A ,A )、(B ,B )、(C ,C )、(D ,D ) ∴P (E )=416=14. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.31.(1)y =x 2+2x ﹣3;(2)存在,点P 坐标为⎝⎭或51522⎛⎫-+- ⎪ ⎪⎝⎭;(3)点N 的坐标为(﹣4,1) 【解析】 【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N . 【详解】(1)当y =0时,x 2﹣(a +1)x +a =0, 解得x 1=1,x 2=a , 当x =0,y =a∴点C 坐标为(0,a ), ∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0), ∴AB =1﹣a ,OC =﹣a , ∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去), ∴a =﹣3, ∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3, ∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,则2323y x y x x =⎧⎨=+-⎩,∴111232x y ⎧+=⎪⎪⎨+⎪=⎪⎩,221232x y ⎧-=⎪⎪⎨-⎪=⎪⎩, ∴点P坐标为1322⎛+⎝⎭; ②当点P 在x 轴下方时,直线OP 的函数表达式为y =﹣3x , 则2323y x y x x =-⎧⎨=+-⎩∴1152y x ⎧-=⎪⎪⎨⎪=⎪⎩,2252y x ⎧-=⎪⎪⎨⎪=⎪⎩ ∴点P坐标为515,22⎛⎫-+- ⎪ ⎪⎝⎭, 综上可得,点P坐标为⎝⎭或⎝⎭;(3)如图,过点A 作AE ⊥BM 于点E ,过点N 作NF ⊥BM 于点F ,设AM 与BN 交于点G ,延长MN 与x 轴交于点H ; ∵AB =4,点M 到x 轴的距离为d ,∴S △AMB =114222AB d d d ⨯⨯⨯== ∵S △MNB =2d , ∴S △AMB =S △MNB , ∴1122BM AE BM NF ⨯=⨯, ∴AE =NF ,∵AE ⊥BM ,NF ⊥BM , ∴四边形AEFN 是矩形, ∴AN ∥BM ,∵∠MAN =∠ANB , ∴GN =GA , ∵AN ∥BM ,∴∠MAN =∠AMB ,∠ANB =∠NBM , ∴∠AMB =∠NBM , ∴GB =GM ,∴GN +GB =GA +GM 即BN =MA ,在△AMB 和△NBM 中AMB NB AM NB MB BM M =⎧=∠∠⎪⎨⎪⎩=∴△AMB ≌△NBM (SAS ), ∴∠ABM =∠NMB , ∵OA =OC =3,∠AOC =90°, ∴∠OAC =∠OCA =45°, 又∵AN ∥BM , ∴∠ABM =∠OAC =45°, ∴∠NMB =45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三点的横坐标相同,且BH=MH,∵M是抛物线上一点,∴可设点M的坐标为(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴点N的横坐标为﹣4,可设直线AC:y=kx﹣3,则0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,当x=﹣4时,y=﹣(﹣4)﹣3=1,∴点N的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.32.(1)证明见解析;(2)证明见解析;(3)2.【解析】【分析】(1)连接CD,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC,根据直径的性质得出∠ABC=90°,根据B是EF的中点得出AB=EF,即∠BAC=∠AFE,则得出三角形相似;(3)根据三角形相似得出AB ACAF EF=,根据AF和CF的长度得出AC的长度,然后根据EF=2AB代入AB ACAF EF=求出AB和EF的长度,最后根据Rt△AEF的勾股定理求出AE的长度.【详解】解:(1)如答图1,连接CD,∵AC 是⊙O 的直径,∴∠ADC=90° ∴∠ADB+∠EDC=90° ∵∠BAC=∠EDC ,∠EAB=∠ADB , ∴∠BAC=∠EAB+∠BAC=90° ∴EA 是⊙O 的切线; (2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90° ∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF ∴∠BAC=∠AFE ∴△EAF ∽△CBA .(3)∵△EAF ∽△CBA ,∴AB ACAF EF= ∵AF=4,CF=2, ∴AC=6,EF=2AB .∴642AB AB=, 解得AB=23 ∴EF=43∴AE=2222-=(43)4=42EF AF -.【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.。

扬州市九年级上学期期末数学试卷 (解析版)

扬州市九年级上学期期末数学试卷 (解析版)

扬州市九年级上学期期末数学试卷 (解析版) 一、选择题1.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .12.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 3.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( )A .74B .44C .42D .40 4.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m≥1B .m≤1C .m >1D .m <1 5.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .6.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 7.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°8.已知二次函数y =x 2+mx +n 的图像经过点(―1,―3),则代数式mn +1有( ) A .最小值―3 B .最小值3 C .最大值―3 D .最大值39.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .223310.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数11.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根 12.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A.①②③B.②③④C.①③④D.①②③④13.2的相反数是()A.12-B.12C.2D.2-14.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.4233π-B.8433π-C.8233π-D.843π-15.下列方程中,有两个不相等的实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2+1=0 D.x2+2x+1=0二、填空题16.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.18.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.19.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.20.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________.21.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.22.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______.23.如图,矩形ABCD 中,2AB =,点E 在边CD 上,且BC CE =,AE 的延长线与BC 的延长线相交于点F ,若CF AB =,则tan DAE ∠=______.24.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.25.如图,正方形ABCD 的顶点A 、B 在圆O 上,若23AB =cm ,圆O 的半径为2cm ,则阴影部分的面积是__________2cm .(结果保留根号和π)26.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).27.数据1、2、3、2、4的众数是______.28.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.29.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.(1)解方程:2670x x +-=(2)计算:)04sin 45831tan 30︒--︒ 32.某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,从鱼塘中捕捞了3次,取得的数据如下:数量/条 平均每条鱼的质量/kg 第1次捕捞20 1.6 第2次捕捞15 2.0 第3次捕捞 15 1.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y (元)与出售该种鱼的质量x (kg )之间的函数关系,并估计自变量x 的取值范围.33.解方程(1)(x +1)2﹣25=0(2)x 2﹣4x ﹣2=034.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .35.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a 、b 满足的关系式及c 的值,(2)当x <0时,若y =a 2x +bx +c (a <0)的函数值随x 的增大而增大,求a 的取值范围,(3)如图,当a =−1时,在抛物线上是否存在点P ,使△PAB 的面积为32?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由, 四、压轴题36.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.37.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,).①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.38.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数;(2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.39.在长方形ABCD 中,AB =5cm ,BC =6cm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动.如果P 、Q 分别从A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:______=______,______=______(用含t 的代数式表示);(2)当t 为何值时,PQ 的长度等于5cm ?(3)是否存在t 的值,使得五边形APQCD 的面积等于226cm ?若存在,请求出此时t 的值;若不存在,请说明理由.40.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A C B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A .【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.B解析:B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】 解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1, ∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y 与x 之间的函数解析式是解题的关键.3.C解析:C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.4.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 5.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A .【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.6.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴12ABC AOC4.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.8.A解析:A【解析】【分析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m ,代入mn+1,得mn+1=m 2-4m+1=(m-2)2-3.∴代数式mn +1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.9.C解析:C【解析】【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题.【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,∴易证AE ⊥BC ,∵A 、C 关于BD 对称,∴PA =PC ,∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长.观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE =CE =2,AB =BC =4,∴在Rt △AEB 中,BE =∴PC +PE 的最小值为∴点H 的纵坐标a =∵BC ∥AD , ∴AD PD BE PB= =2,∵BD =∴PD =233⨯=∴点H 的横坐标b =3,∴a +b ==; 故选C .【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.12.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD .90AFP ADB ∠=∠=︒,PAF BAD ∠=∠,APF ABD ∴∆∆∽,∴AP AFAB AD=,AP AD AF AB∴⋅=⋅,CAF BAC∠=∠,90AFC ACB∠=∠=︒,ACF ABC∴∆∆∽,可得2AC AF AB=,ACQ ACB∠=∠,CAQ ABC∠=∠,CAQ CBA∴∆∆∽,可得2AC CQ CB=⋅,AP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.13.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.14.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.15.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2 =6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.19.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.20.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.21.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.22.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 23.【解析】【分析】设BC=EC=a,根据相似三角形得到,求出a 的值,再利用tanA 即可求解.【详解】设BC=EC=a,∵AB∥CD,∴△ABF∽△ECF,∴,即解得a=(-舍去)∴解析:12【解析】【分析】设BC=EC=a,根据相似三角形得到222a a =+,求出a 的值,再利用tan DAE ∠=tanA 即可求解.【详解】设BC=EC=a,∵AB ∥CD ,∴△ABF ∽△ECF , ∴AB EC BF CF =,即222a a =+解得1(-1舍去)∴tan DAE ∠=tanF=2EC a CF =. 【点睛】 此题主要考查相似三角形的判定与性质,解题的关键是熟知矩形的性质及正切的定义. 24.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.25.【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF 为圆的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求解析:412333π-- 【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE ,根据90°的圆周角对应的弦是直径,可得AF 为圆O 的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求出∠AFB 和BF ,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG 、AG 和∠EOF ,最后利用S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF 计算即可.【详解】解:设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE∵四边形ABCD 是正方形∴∠ABF=90°,AD ∥BC ,BC=CD=AD=23AB =∴AF 为圆O 的直径∵23AB =cm ,圆O 的半径为2cm ,∴AF=4cm在Rt △ABF 中sin ∠AFB=3AB AF ,BF=222AF AB -= ∴∠AFB=60°,FC=BC -BF=()232cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt △AOG 中,OG=sin ∠EAF ·3cm ,AG= cos ∠EAF ·AO=1cm根据垂径定理,AE=2AG=2cm∴S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF=()21112022360OE CD FC AD AE OG π•+-•- =()211120223232232322360π•⨯+-⨯=24123cm π⎛⎫- ⎪⎝⎭故答案为:4123π-. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.26.【解析】【分析】如图,过点F 作FH⊥AE 交AE 于H ,过点C 作CM⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差解析:34- 【解析】【分析】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,根据等边三角形的性质可求出AB 的长,根据相似三角形的性质可得△ADE 是等边三角形,可得出AE 的长,根据角的和差关系可得∠EAF=∠BAD=45°,设AH =HF =x ,利用∠EFH 的正确可用x 表示出EH 的长,根据AE=EH+AH 列方程可求出x 的值,根据三角形面积公式即可得答案.【详解】如图,过点F 作FH ⊥AE 交AE 于H ,过点C 作CM ⊥AB 交AB 于M ,∵△ABC CM ⊥AB ,∴12×AB×CM ,∠BCM =30°,BM=12AB ,BC=AB ,∴AB ,∴12AB 解得:AB =2,(负值舍去)∵△ABC ∽△ADE ,△ABC 是等边三角形,∴△ADE 是等边三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF =∠BAD =45°,∵FH ⊥AE ,∴∠AFH =45°,∠EFH =30°,∴AH =HF ,设AH=HF=x,则EH=xtan30°=33x.∵AB=2AD,AD=AE,∴AE=12AB=1,∴x+33x=1,解得x=33 33-=+.∴S△AEF=12×1×33-=334-.故答案为:33 -.【点睛】本题考查了相似三角形的性质,等边三角形的性质,锐角三角函数,根据相似三角形的性质得出△ADE是等边三角形、熟练掌握等边三角形的性质并熟记特殊角的三角函数值是解题关键.27.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.28.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.【点睛】本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.29.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.30.【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD 为直径的圆上.解析:【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+32.∴当x =4时,BD 取得最小值为42.∵A ,B ,C ,D 四点在以BD 为直径的圆上.如图,∴AC 为直径时取得最大值.AC 的最大值为2.故答案为:2. 【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题31.(1)17x =-,21x =;(2)313- 【解析】【分析】(1)利用求根公式法解方程即可 (2)第一、四项利用特殊角的三角函数值计算,第二项化为最简二次根式,第三项利用零指数幂法则计算,【详解】解:(1)()2641764=-⨯⨯-= ∴66468x 342-±-±===-± ∴17x =-,21x =(2)原式233422112=⨯-=【点睛】本题考查的知识点有解一元二次方程和实数的运算,熟记求根公式和特殊角的三角函数值是解此题的关键.32.(1)1.78kg ;(2)8900kg ;(3)y =14x ,0≤x ≤8900.【解析】【分析】(1)根据平均数的公式求解即可;(2)根据每条鱼的平均质量×总条数=总质量即可得答案;(3)根据收入=单价×质量,列出函数表达式即可.。

2019-2020学年扬州市邗江区九年级上册期末数学试卷(有答案)【优质版】

2019-2020学年扬州市邗江区九年级上册期末数学试卷(有答案)【优质版】

2019-2020学年江苏省扬州市邗江区九年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.(3分)下列事件属于随机事件的是()A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是()A.13,11 B.14,11 C.12,11 D.13,163.(3分)方程2x2﹣5x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB的位置关系是()A.相切B.相交C.相离D.无法确定5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y26.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是()A.2 B.14 C.6或8 D.2 或147.(3分)小明从二次函数y=ax2+bx+c的图象(如图)中观察得到了下面五条信息:①abc>0②2a﹣3b=0③b2﹣4ac>0④a+b+c>0⑤4b<c则其中结论正确的个数是()A.2个 B.3个 C.4个 D.5个8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应位置上.)9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为℃(精确到1℃).11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为.12.(3分)一组数据﹣1,﹣2,x,1,2的平均数为0,则这组数据的方差为.13.(3分)某种冰箱经两次降价后从原来的每台2500元降为每台1600元,求平均每次降价的百分率为.14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为o.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为.16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.17.(3分)在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G 在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是.18.(3分)如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC 沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是.三、解答题(本大题共有10题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(8分)解方程:(1)x2+2x=1;(2)(x﹣3)2+2(x﹣3)=0.20.(8分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为;(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.27.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣x2+4x﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣的相关函数的最大值和最小值.28.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.2019-2020学年江苏省扬州市邗江区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.(3分)下列事件属于随机事件的是()A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯【解答】解:A、是必然事件,故A不符合题意;B、是必然事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是随机事件,故D符合题意;故选:D.2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是()A.13,11 B.14,11 C.12,11 D.13,16【解答】解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;极差=19﹣8=11.故选:A.3.(3分)方程2x2﹣5x+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号【解答】解:∵△=(﹣5)2﹣4×2×3=1>0,∴方程2x2﹣5x+3=0有两个不相等的实数根.故选:B.4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB的位置关系是()A.相切B.相交C.相离D.无法确定【解答】解:过O作OD⊥AB于D,由勾股定理得:AB==13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>,∴⊙O与AB的位置关系是相离,故选:C.5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【解答】解:∵函数的解析式是y=﹣(x+1)2+3,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.6.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是()A.2 B.14 C.6或8 D.2 或14【解答】解:如图①,当弦AC,BD在⊙O的圆心同侧时,作OE⊥AC垂足为E,交BD于点F,∵OE⊥AC AC∥BD,∴OF⊥BD,∴AE=AC=6,BF=BD=8,在Rt△AOE中OE===8同理可得:OF=6∴EF=OE﹣OF=8﹣6=2;如图②,当弦AC,BD在⊙O的圆心两侧时,同理可得:EF=OE+OF=8+6=14综上所述两弦之间的距离为2或14.故选:D.7.(3分)小明从二次函数y=ax2+bx+c的图象(如图)中观察得到了下面五条信息:①abc>0②2a﹣3b=0③b2﹣4ac>0④a+b+c>0⑤4b<c则其中结论正确的个数是()A.2个 B.3个 C.4个 D.5个【解答】解:①因为函数图象与y轴的交点在y轴的负半轴可知,c<0,由函数图象开口向上可知,a>0,由①知,c<0,由函数的对称轴在x的正半轴上可知,x=﹣>0,故b<0,故abc>0;故此选项正确;②因为函数的对称轴为x=﹣=,故2a=﹣3b,即2a+3b=0;故此选项错误;③因为图象和x轴有两个交点,所以b2﹣4ac>0,故此选项正确;④把x=1代入y=ax2+bx+c得:a+b+c<0,故此选项错误;⑤当x=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b,而点(2,c﹣4b)在第一象限,∴⑤c﹣4b>0,故此选项正确;其中正确信息的有①③⑤,故选:B.8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=OB,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,如图3.S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,=S▱OABC﹣S△OFC﹣S△CBG﹣S△AFG=8×4﹣8﹣8﹣4=12,∴S△CFG∵DE∥FG,∴△CDE∽△CFG,∴=()2=,∴=,=S△CFG=;∴S四边形DEGF所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;本题结论正确的有:①③.故选:C.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应位置上.)9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是AB∥DE.(只需写一个条件,不添加辅助线和字母)【解答】解:∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.故答案为AB∥DE.10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为23℃(精确到1℃).【解答】解:根据黄金比的值得:37×0.618≈23℃.故答案为23.11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为6.【解答】解:设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=6.∴此多边形的边数为6.故答案为:6.12.(3分)一组数据﹣1,﹣2,x,1,2的平均数为0,则这组数据的方差为2.【解答】解:由平均数的公式得:(﹣1﹣2+1+2+x)÷5=0,解得x=0;∴方差=[(﹣1﹣0)2+(﹣2﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]÷5=2.故答案为:2.13.(3分)某种冰箱经两次降价后从原来的每台2500元降为每台1600元,求平均每次降价的百分率为20%.【解答】解:设降价的百分率为x,由题意得2500(1﹣x)2=1600,解得x1=0.2,x2=﹣1.8(舍).所以平均每次降价的百分率为20%.故答案为20%.14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为45或135o.【解答】解:如图所示,∵OC⊥AB,∴C为AB的中点,即AC=BC=AB=,在Rt△AOC中,OA=1,AC=,根据勾股定理得:OC==,即OC=AC,∴△AOC为等腰直角三角形,∴∠AOC=45°,同理∠BOC=45°,∴∠AOB=∠AOC+∠BOC=90°,∵∠AOB与∠ADB都对,∴∠ADB=∠AOB=45°,∵大角∠AOB=270°,∴∠AEB=135°,∴弦AB所对的圆周角为45°或135°.故答案为:45或135.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为5.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴===()2=,∴△ACD的面积=5,故答案是:5.16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.【解答】解:连接OB,OC,过点O作OD⊥BC于D,∴BC=2BD,∵⊙O是等边△ABC的外接圆,∴∠BOC=×360°=120°,∵OB=OC,∴∠OBC=∠OCB===30°,∵⊙O的半径为2,∴OB=2,∴BD=OB•cos∠OBD=2×cos30°=2×=,∴BC=2BD=2.∴等边△ABC的边长为2.故答案为:2.17.(3分)在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G 在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是1<x<2或x>2+.【解答】解:由题意抛物线:y=(x﹣2)2﹣,对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=﹣(x﹣2)2+;如图③,由题意得:当y=1时,(x﹣2)2﹣=1,解得:x1=2+,x2=2﹣,∴C(2﹣,1),F(2+,1),当y=1时,﹣(x﹣2)2+=1,解得:x1=3,x2=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;故答案为1<x<2或x>2+.18.(3分)如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC 沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是.【解答】解:如图,∵△CDB′是由□CDB翻折,∴∠BCD=∠DCB′,∠CBD=∠CDB′,AD=DB=DB′,∴∠DB B′=∠DB′B,∵2∠DCB+2∠CBD+2∠DBB′=180°,∴∠DCB+∠CBD+∠DBB′=90°,∵∠CDA=∠DCB+∠CBD,∠ACD+∠CDA=90°,∴∠ABB′=∠ACE,∵AD=DB=DB′=3,∴∠AB′B=90°,∵∠ACE=∠ABB′,∠CAE=∠BAB′,∴△ACE∽△ABB′,∴∠AEC=∠AB′B=90°,在RT△AEC中,∵AC=4,AD=3,∴CD==5,∵AC•AD=•CD•AE,∴AE==,在RT△ACE中,CE===.故答案为.三、解答题(本大题共有10题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(8分)解方程:(1)x2+2x=1;(2)(x﹣3)2+2(x﹣3)=0.【解答】解:(1)方程配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)分解因式得:(x﹣3)(x﹣3+2)=0,解得:x1=3,x2=1.20.(8分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.【解答】解:(1)菱形,轴对称图形;平行四边形,不是轴对称图形;线段,轴对称图形;角,轴对称图形,则随机抽取一张卡片图案是轴对称图形的概率是;故答案为:;(2)列表如下:其中A,B,C为中心对称图形,D不为中心对称图形,则P==.22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为50,图①中m的值是32;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32,故答案为:50、32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为(2,0);(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.【解答】解:(1)如图;D(2,0)(4分)(2)如图;;作CE⊥x轴,垂足为E.∵△AOD≌△DEC,∴∠OAD=∠CDE,又∵∠OAD+∠ADO=90°,∴∠CDE+∠ADO=90°,∴扇形DAC的圆心角为90度;(3)∵弧AC的长度即为圆锥底面圆的周长.l弧=,设圆锥底面圆半径为r,则,∴.24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.【解答】(1)证明:连接OP ,如图∵OD=OP∴∠OPD=∠ODP∵∠APC=∠AOD∴∠APC +∠OPD=∠ODP +∠AOD ,又∵PD ⊥BE∴∠ODP +∠AOD=90°∴∠APC +∠OPD=90°即∠APO=90°∴PO ⊥AP∴AP 是⊙O 的切线(2)解:在Rt △APO 中,∵AP=,PO=4,∴AO=,即,∴∠A=30°,∴∠POA=60°,∴∠OPC=30°在Rt △OPC 中,∵OC=2,OP=4,∴PC=∴又∵PD ⊥BE∴PC=CD∴∠POD=120°,,∴S 阴影=S 扇形OPBD ﹣S △OPD =.25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.【解答】解:(1)设销售价格为x元时,当天销售利润为2000元,则(x﹣20)•[250﹣10(x﹣25)]=2000,整理,得:x2﹣70x+1200=0,解得:x1=30,x2=40(舍去),答:该商品销售价是30元/件;(2)设该商品每天的销售利润为y,则y=(x﹣20)•[250﹣10(x﹣25)]=﹣10x2﹣700x+10000=﹣10(x﹣35)2+2250,答:当销售单价为35元/件时,销售利润最大.26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.【解答】解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===.27.(12分)定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它们的相关函数为y=.(1)已知点A (﹣5,8)在一次函数y=ax ﹣3的相关函数的图象上,求a 的值;(2)已知二次函数y=﹣x 2+4x ﹣.①当点B (m ,)在这个函数的相关函数的图象上时,求m 的值;②当﹣3≤x ≤3时,求函数y=﹣x 2+4x ﹣的相关函数的最大值和最小值.【解答】解:(1)y=ax ﹣3的相关函数y=,将A (﹣5,8)代入y=﹣ax +3得:5a +3=8,解得a=1;(2)二次函数y=﹣x 2+4x ﹣的相关函数为y=,①当m <0时,将B (m ,)代入y=x 2﹣4x +得m 2﹣4m +=,解得:m=2+(舍去),或m=2﹣,当m ≥0时,将B (m ,)代入y=﹣x 2+4x ﹣得:﹣m 2+4m ﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣;②当﹣3≤x <0时,y=x 2﹣4x +,抛物线的对称轴为x=2,此时y 随x 的增大而减小,∴此时y 的最大值为,当0≤x ≤3时,函数y=﹣x 2+4x ﹣,抛物线的对称轴为x=2,当x=0有最小值,最小值为﹣,当x=2时,有最大值,最大值y=,综上所述,当﹣3≤x ≤3时,函数y=﹣x 2+4x ﹣的相关函数的最大值为,最小值为﹣.28.(12分)如图,已知在平面直角坐标系xOy 中,抛物线y=ax 2+2x +c 与x 轴交于点A (﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)和点C(0,3),∴,∴,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,对称轴为直线x=1,顶点M(1,4);(2)如图1,∵点C关于直线l的对称点为N,∴N(2,3),∵直线y=kx+b经过C、M两点,∴,∴,∴y=x+3,∵y=x+3与x轴交于点D,∴D(﹣3,0),∴AD=2=CN又∵AD∥CN,∴CDAN是平行四边形;(3)设P(1,a),过点P作PH⊥DM于H,连接PA、PB,如图2,则MP=4﹣a,又∠HMP=45°,∴HP=AP=,Rt△APE中,AP2=AE2+PE2,即:,解得:,∴P1(1,﹣4+2),P2(1,﹣4﹣2).。

2019-2020年扬州市邗江区九年级上册期末数学试卷(有答案)-名校密卷

2019-2020年扬州市邗江区九年级上册期末数学试卷(有答案)-名校密卷

江苏省扬州市邗江区九年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.(3分)下列事件属于随机事件的是()A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10,16,8,17,19,则这组数据的中位数和极差分别是()A.13,11 B.14,11 C.12,11 D.13,163.(3分)方程22﹣5+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB的位置关系是()A.相切B.相交C.相离D.无法确定5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y26.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是()A.2 B.14 C.6或8 D.2 或147.(3分)小明从二次函数y=a2+b+c的图象(如图)中观察得到了下面五条信息:①abc>0②2a﹣3b=0③b2﹣4ac>0④a+b+c>0⑤4b<c则其中结论正确的个数是()A.2个B.3个C.4个D.5个8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应位置上.)9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为℃(精确到1℃).11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为.12.(3分)一组数据﹣1,﹣2,,1,2的平均数为0,则这组数据的方差为.13.(3分)某种冰箱经两次降价后从原的每台2500元降为每台1600元,求平均每次降价的百分率为.14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为o.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为.16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.17.(3分)在平面直角坐标系中,抛物线y=a(﹣2)2﹣经过原点O,与轴的另一个交点为A.将抛物线在轴下方的部分沿轴折叠到轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于轴,当图象G在直线l上方的部分对应的函数y 随增大而增大时,的取值范围是.18.(3分)如图,在△ABC中,∠CAB=90°,AB=6,AC=4,CD是△ABC的中线,将△ABC沿直线CD翻折,点B′是点B的对应点,点E是线段CD上的点,如果∠CAE=∠BAB′,那么CE的长是.三、解答题(本大题共有10题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(8分)解方程:(1)2+2=1;(2)(﹣3)2+2(﹣3)=0.20.(8分)已知关于的方程2+2+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A.菱形,B.平行四边形,C.线段,D.角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为;(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.27.(12分)定义:对于给定的两个函数,任取自变量的一个值,当<0时,它们对应的函数值互为相反数;当≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=a﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣2+4﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤≤3时,求函数y=﹣2+4﹣的相关函数的最大值和最小值.28.(12分)如图,已知在平面直角坐标系Oy中,抛物线y=a2+2+c与轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=+b经过C、M两点,且与轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.江苏省扬州市邗江区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上)1.(3分)下列事件属于随机事件的是()A.任意画一个三角形,其内角和为180°B.太阳从东方升起C.掷一次骰子,向上一面点数是7D.经过有交通信号灯的路口,遇到红灯【解答】解:A、是必然事件,故A不符合题意;B、是必然事件,故B不符合题意;C、是不可能事件,故C不符合题意;D、是随机事件,故D符合题意;故选:D.2.(3分)为了考查某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为16,9,14,11,12,10, 16,8,17,19,则这组数据的中位数和极差分别是()A.13,11 B.14,11 C.12,11 D.13,16【解答】解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;极差=19﹣8=11.故选:A.3.(3分)方程22﹣5+3=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.两根异号【解答】解:∵△=(﹣5)2﹣4×2×3=1>0,∴方程22﹣5+3=0有两个不相等的实数根.故选:B.4.(3分)在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙C的半径为,则⊙C与AB的位置关系是()A.相切B.相交C.相离D.无法确定【解答】解:过O作OD⊥AB于D,由勾股定理得:AB==13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>,∴⊙O与AB的位置关系是相离,故选:C.5.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(+1)2+3上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【解答】解:∵函数的解析式是y=﹣(+1)2+3,如右图,∴对称轴是=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随的增大而减小,于是y1>y2>y3.故选:A.6.(3分)⊙O的半径为10,两平行弦AC,BD的长分别为12,16,则两弦间的距离是()A.2 B.14 C.6或8 D.2 或14【解答】解:如图①,当弦AC,BD在⊙O的圆心同侧时,作OE⊥AC垂足为E,交BD于点F,∵OE⊥AC AC∥BD,∴OF⊥BD,∴AE=AC=6,BF=BD=8,在Rt△AOE中OE===8同理可得:OF=6∴EF=OE﹣OF=8﹣6=2;如图②,当弦AC,BD在⊙O的圆心两侧时,同理可得:EF=OE+OF=8+6=14综上所述两弦之间的距离为2或14.故选:D.7.(3分)小明从二次函数y=a2+b+c的图象(如图)中观察得到了下面五条信息:①abc>0②2a﹣3b=0③b2﹣4ac>0④a+b+c>0⑤4b<c则其中结论正确的个数是()A.2个B.3个C.4个D.5个【解答】解:①因为函数图象与y轴的交点在y轴的负半轴可知,c<0,由函数图象开口向上可知,a>0,由①知,c<0,由函数的对称轴在的正半轴上可知,=﹣>0,故b<0,故abc>0;故此选项正确;②因为函数的对称轴为=﹣=,故2a=﹣3b,即2a+3b=0;故此选项错误;③因为图象和轴有两个交点,所以b2﹣4ac>0,故此选项正确;④把=1代入y=a2+b+c得:a+b+c<0,故此选项错误;⑤当=2时,y=4a+2b+c=2×(﹣3b)+2b+c=c﹣4b,而点(2,c﹣4b)在第一象限,∴⑤c﹣4b>0,故此选项正确;其中正确信息的有①③⑤,故选:B.8.(3分)如图,平面直角坐标系中O是原点,平行四边形ABCO的顶点A、C的坐标分别(8,0)、(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=.正确的个数是()A.4个B.3个C.2个D.1个【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴=,∵D、E为OB的三等分点,∴==2,∴=2,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD ∽△BEG 不成立,所以②结论不正确;③由①知:F 为OA 的中点,同理得;G 是AB 的中点,∴FG 是△OAB 的中位线,∴FG=OB ,FG ∥OB ,∵OB=3DE ,∴FG=DE ,∴=,过C 作CQ ⊥AB 于Q ,如图3.S ▱OABC =OA•OH=AB•CQ,∴4×8=5CQ ,∴CQ=,S △OCF =OF•OH=×4×4=8,S △CGB =BG•CQ=××=8,S △AFG =×4×2=4,∴S △CFG =S ▱OABC ﹣S △OFC ﹣S △CBG ﹣S △AFG =8×4﹣8﹣8﹣4=12,∵DE ∥FG ,∴△CDE ∽△CFG ,∴=()2=,∴=,∴S 四边形DEGF =S △CFG =; 所以③结论正确;④在Rt △OHB 中,由勾股定理得:OB 2=BH 2+OH 2,∴OB==,∴OD=,所以④结论不正确;本题结论正确的有:①③.故选:C.二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应位置上.)9.(3分)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是AB ∥DE .(只需写一个条件,不添加辅助线和字母)【解答】解:∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.故答案为AB∥DE.10.(3分)据有关实验测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适.这个气温约为23 ℃(精确到1℃).【解答】解:根据黄金比的值得:37×0.618≈23℃.故答案为23.11.(3分)如果一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数为 6 .【解答】解:设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×2,解得n=6.∴此多边形的边数为6.故答案为:6.12.(3分)一组数据﹣1,﹣2,,1,2的平均数为0,则这组数据的方差为 2 .【解答】解:由平均数的公式得:(﹣1﹣2+1+2+)÷5=0,解得=0;∴方差=[(﹣1﹣0)2+(﹣2﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]÷5=2.故答案为:2.13.(3分)某种冰箱经两次降价后从原的每台2500元降为每台1600元,求平均每次降价的百分率为20% .【解答】解:设降价的百分率为,由题意得2500(1﹣)2=1600,解得1=0.2,2=﹣1.8(舍).所以平均每次降价的百分率为20%.故答案为20%.14.(3分)已知⊙O半径为1,A、B在⊙O上,且AB=,则AB所对的圆周角为45或135o.【解答】解:如图所示,∵OC⊥AB,∴C为AB的中点,即AC=BC=AB=,在Rt△AOC中,OA=1,AC=,根据勾股定理得:OC==,即OC=AC,∴△AOC为等腰直角三角形,∴∠AOC=45°,同理∠BOC=45°,∴∠AOB=∠AOC+∠BOC=90°,∵∠AOB与∠ADB都对,∴∠ADB=∠AOB=45°,∵大角∠AOB=270°,∴∠AEB=135°,∴弦AB所对的圆周角为45°或135°.故答案为:45或135.15.(3分)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为 5 .【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴===()2=,∴△ACD的面积=5,故答案是:5.16.(3分)若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.【解答】解:连接OB,OC,过点O作OD⊥BC于D,∴BC=2BD,∵⊙O是等边△ABC的外接圆,∴∠BOC=×360°=120°,∵OB=OC,∴∠OBC=∠OCB===30°,∵⊙O的半径为2,∴OB=2,∴BD=OB•cos∠OBD=2×cos30°=2×=,∴BC=2BD=2.∴等边△ABC的边长为2.故答案为:2.17.(3分)在平面直角坐标系中,抛物线y=a(﹣2)2﹣经过原点O,与轴的另一个交点为A.将抛物线在轴下方的部分沿轴折叠到轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,过点B (0,1)作直线l 平行于轴,当图象G 在直线l 上方的部分对应的函数y随增大而增大时,的取值范围是 1<<2或>2+ .【解答】解:由题意抛物线:y=(﹣2)2﹣,对称轴是:直线=2,由对称性得:A (4,0),沿轴折叠后所得抛物线为:y=﹣(﹣2)2+;如图③,由题意得:当y=1时,(﹣2)2﹣=1,解得:1=2+,2=2﹣,∴C (2﹣,1),F (2+,1),当y=1时,﹣(﹣2)2+=1,解得:1=3,2=1,∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<<2或>2+时,函数y 随增大而增大;故答案为1<<2或>2+.18.(3分)如图,在△ABC 中,∠CAB=90°,AB=6,AC=4,CD 是△ABC 的中线,将△ABC 沿直线CD 翻折,点B′是点B 的对应点,点E 是线段CD 上的点,如果∠CAE=∠BAB′,那么CE 的长是 .【解答】解:如图,∵△CDB′是由□CDB翻折,∴∠BCD=∠DCB′,∠CBD=∠CDB′,AD=DB=DB′,∴∠DBB′=∠DB′B,∵2∠DCB+2∠CBD+2∠DBB′=180°,∴∠DCB+∠CBD+∠DBB′=90°,∵∠CDA=∠DCB+∠CBD,∠ACD+∠CDA=90°,∴∠ABB′=∠ACE,∵AD=DB=DB′=3,∴∠AB′B=90°,∵∠ACE=∠ABB′,∠CAE=∠BAB′,∴△ACE∽△ABB′,∴∠AEC=∠AB′B=90°,在RT△AEC中,∵AC=4,AD=3,∴CD==5,∵AC•AD=•CD•AE,∴AE==,在RT△ACE中,CE===.故答案为.三、解答题(本大题共有10题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤.)19.(8分)解方程:(1)2+2=1;(2)(﹣3)2+2(﹣3)=0.【解答】解:(1)方程配方得:2+2+1=2,即(+1)2=2,开方得:+1=±,解得:1=﹣1+,2=﹣1﹣;(2)分解因式得:(﹣3)(﹣3+2)=0,解得:1=3,2=1.20.(8分)已知关于的方程2+2+a ﹣2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.【解答】解:(1)∵b 2﹣4ac=(2)2﹣4×1×(a ﹣2)=12﹣4a >0,解得:a <3.∴a 的取值范围是a <3;(2)设方程的另一根为1,由根与系数的关系得:,解得:,则a 的值是﹣1,该方程的另一根为﹣3.21.(8分)有四张规格、质地相同的卡片,它们背面完全相同,正面图案分别是A .菱形,B .平行四边形,C .线段,D .角,将这四张卡片背面朝上洗匀后(1)随机抽取一张卡片图案是轴对称图形的概率是 ;(2)随机抽取两张卡片(不放回),求两张卡片卡片图案都是中心对称图形的概率,并用树状图或列表法加以说明.【解答】解:(1)菱形,轴对称图形;平行四边形,不是轴对称图形;线段,轴对称图形;角,轴对称图形,则随机抽取一张卡片图案是轴对称图形的概率是;故答案为:;(2)列表如下:其中A,B,C为中心对称图形,D不为中心对称图形,所有等可能的情况有12种,其中都为中心对称图形的有6种,则P==.22.(8分)某市发生地震后,某校学生会向全校1 900名学生发起了捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了统计图,如图①和②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为50 ,图①中m的值是32 ;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【解答】解:(1)根据条形图4+16+12+10+8=50(人),m=100﹣20﹣24﹣16﹣8=32,故答案为:50、32;(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,∴这组数据的平均数为16;(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.23.(10分)如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为(2,0);(2)连接AD、CD,求⊙D的半径及扇形DAC的圆心角度数;(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.【解答】解:(1)如图;D(2,0)(4分)(2)如图;;作CE⊥轴,垂足为E.∵△AOD≌△DEC,∴∠OAD=∠CDE,又∵∠OAD+∠ADO=90°,∴∠CDE+∠ADO=90°,∴扇形DAC的圆心角为90度;=,(3)∵弧AC的长度即为圆锥底面圆的周长.l弧设圆锥底面圆半径为r,则,∴.24.(10分)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(1)求证:AP是⊙O的切线;(2)若⊙O的半径是4,AP=4,求图中阴影部分的面积.【解答】(1)证明:连接OP,如图∵OD=OP∴∠OPD=∠ODP∵∠APC=∠AOD∴∠APC+∠OPD=∠ODP+∠AOD,又∵PD⊥BE∴∠ODP+∠AOD=90°∴∠APC+∠OPD=90°即∠APO=90°∴PO⊥AP∴AP是⊙O的切线(2)解:在Rt△APO中,∵AP=,PO=4,∴AO=,即,∴∠A=30°,∴∠POA=60°,∴∠OPC=30°在Rt △OPC 中,∵OC=2,OP=4,∴PC=∴又∵PD ⊥BE∴PC=CD∴∠POD=120°,,∴S 阴影=S 扇形OPBD ﹣S △OPD =.25.(10分)某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.(1)若某天的销售利润为2000元,为最大限度让利于顾客,则该商品销售价是多少?(2)求销售单价为多少元时,该商品每天的销售利润最大,请说明理由.【解答】解:(1)设销售价格为元时,当天销售利润为2000元,则(﹣20)•[250﹣10(﹣25)]=2000,整理,得:2﹣70+1200=0,解得:1=30,2=40(舍去),答:该商品销售价是30元/件;(2)设该商品每天的销售利润为y ,则y=(﹣20)•[250﹣10(﹣25)]=﹣102﹣700+10000=﹣10(﹣35)2+2250,答:当销售单价为35元/件时,销售利润最大.26.(10分)如图,直角梯形ABCD中,∠B=90°,AD∥BC,BC=2AD,点E为边BC的中点.(1)求证:四边形AECD为平行四边形;(2)在CD边上取一点F,联结AF、AC、EF,设AC与EF交于点G,且∠EAF=∠CAD.求证:△AEC∽△ADF;(3)在(2)的条件下,当∠ECA=45°时.求:FG:EG的比值.【解答】解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===.27.(12分)定义:对于给定的两个函数,任取自变量的一个值,当<0时,它们对应的函数值互为相反数;当≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=﹣1,它们的相关函数为y=.(1)已知点A(﹣5,8)在一次函数y=a﹣3的相关函数的图象上,求a的值;(2)已知二次函数y=﹣2+4﹣.①当点B(m,)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤≤3时,求函数y=﹣2+4﹣的相关函数的最大值和最小值.【解答】解:(1)y=a﹣3的相关函数y=,将A(﹣5,8)代入y=﹣a+3得:5a+3=8,解得a=1;(2)二次函数y=﹣2+4﹣的相关函数为y=,①当m<0时,将B(m,)代入y=2﹣4+得m2﹣4m+=,解得:m=2+(舍去),或m=2﹣,当m≥0时,将B(m,)代入y=﹣2+4﹣得:﹣m2+4m﹣=,解得:m=2+或m=2﹣.综上所述:m=2﹣或m=2+或m=2﹣;②当﹣3≤<0时,y=2﹣4+,抛物线的对称轴为=2,此时y随的增大而减小,∴此时y的最大值为,当0≤≤3时,函数y=﹣2+4﹣,抛物线的对称轴为=2,当=0有最小值,最小值为﹣,当=2时,有最大值,最大值y=,综上所述,当﹣3≤≤3时,函数y=﹣2+4﹣的相关函数的最大值为,最小值为﹣.28.(12分)如图,已知在平面直角坐标系Oy中,抛物线y=a2+2+c与轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=+b经过C、M两点,且与轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.【解答】解:(1)∵抛物线y=a2+2+c经过点A(﹣1,0)和点C(0,3),∴,∴,∴y=﹣2+2+3=﹣(﹣1)2+4,对称轴为直线=1,顶点M(1,4);(2)如图1,∵点C关于直线l的对称点为N,∴N(2,3),∵直线y=+b经过C、M两点,∴,∴,∴y=+3,∵y=+3与轴交于点D,∴D(﹣3,0),∴AD=2=CN又∵AD∥CN,∴CDAN是平行四边形;(3)设P(1,a),过点P作PH⊥DM于H,连接PA、PB,如图2,则MP=4﹣a,又∠HMP=45°,∴HP=AP=,Rt △APE 中,AP 2=AE 2+PE 2,即:,解得:,∴P 1(1,﹣4+2),P 2(1,﹣4﹣2).。

江苏省扬州市江都区2019-2020学年九年级上学期期末数学试题(word无答案)

江苏省扬州市江都区2019-2020学年九年级上学期期末数学试题(word无答案)

江苏省扬州市江都区2019-2020学年九年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 已知,则的度数是()A.30°B.45°C.60°D.90°(★) 2 . 已知(,),下列变形错误的是()A.B.C.D.(★) 3 . 某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A.B.C.D.1(★) 4 . 如图,与是以坐标原点为位似中心的位似图形,若点是的中点,的面积是6,则的面积为()A.9B.12C.18D.24(★) 5 . 若将半径为的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.B.C.D.(★) 6 . 如图,为的直径,弦于点,,,则的半径为()A.5B.8C.3D.10(★) 7 . 已知抛物线与轴没有交点,那么该抛物线的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限(★) 8 . 如图,在中,,,以为斜边向上作,.连接,若,则的长度为()A.或B.3或4C.或D.2或4二、填空题(★) 9 . 抛物线的顶点坐标为______.(★) 10 . 的半径为4,圆心到直线的距离为2,则直线与的位置关系是______. (★) 11 . 某同学想要计算一组数据105,103,94,92,109,85的方差,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为,则______ (填“>”、“=”或“<”).(★) 12 . 已知线段,点是线段的黄金分割点(),那么线段______.(结果保留根号)(★) 13 . 如图,四边形是半圆的内接四边形,是直径,.若,则的度数为______.(★★) 14 . 如图,某数学兴趣小组将边长为4的正方形铁丝框 ABCD变形为以 A为圆心, AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形 DAB的面积为__________ .(★★) 15 . 若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______ .(★★) 16 . 飞机着陆后滑行的距离(单位:)关于滑行的时间(单位:)的函数解析式是,飞机着陆后滑行______ 才能停下来.(★) 17 . 将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______ .(★★) 18 . 如图,四边形的两条对角线、相交所成的锐角为,当时,四边形的面积的最大值是______.三、解答题(★) 19 . (1)解方程:(2)计算:(★) 20 . 已知:已知关于的方程(1)求证:不论为何值,方程总有两个不相等的实数根.(2)若该方程的一个根为1,求的值及方程的另一个根.(★) 21 . 下表是某地连续5天的天气情况(单位:):日期1月1日1月2日1月3日1月4日1月5日最高气温57684最低气温-20-213(1)1月1日当天的日温差为______(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.(★) 22 . 某校九年级(2)班、、、四位同学参加了校篮球队选拔.(1)若从这四人中随杋选取一人,恰好选中参加校篮球队的概率是______;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中、两位同学参加校篮球队的概率.(★★) 23 . 如图,在中,是高.矩形的顶点、分别在边、上,在边上,,,.求矩形的面积.(★★) 24 . 某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?(★) 25 . 如图,,以为直径作,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)若,,求的半径.(★★★★) 26 . 在平面直角坐标系中,已知抛物线.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与轴相交于、两点(在左侧),与轴相交于点,连接.若点是直线上方抛物线上的一点,求的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点,使是以为直角边的直角三角形?若存在,直接写出所有符合条件的点的坐标;若不存在,说明理由.(★★) 27 . 如图,在矩形纸片中,已知,,点在边上移动,连接,将多边形沿折叠,得到多边形,点、的对应点分别为点,.(1)连接.则______,______°;(2)当恰好经过点时,求线段的长;(3)在点从点移动到点的过程中,求点移动的路径长.(★★★★) 28 . 已知二次函数(、为常数)的图像经过点和点.(1)求、的值;(2)如图1,点在抛物线上,点是轴上的一个动点,过点平行于轴的直线平分,求点的坐标;(3)如图2,在(2)的条件下,点是抛物线上的一动点,以为圆心、为半径的圆与轴相交于、两点,若的面积为,请直接写出点的坐标.。

2019-2020学年江苏省扬州市仪征市九年级(上)期末数学试卷

2019-2020学年江苏省扬州市仪征市九年级(上)期末数学试卷

2019-2020学年江苏省扬州市仪征市九年级(上)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1. 一组数据3,1,4,2,−1,则这组数据的极差是()A.5B.4C.3D.22. 方程(x−1)2=1的根为()A.0B.2C.0或2D.1或−13. 从一副完整的扑克牌中任意抽取1张,下列事件与抽到“K”的概率相同的是()A.抽到“大王”B.抽到“2”C.抽到“小王”D.抽到“红桃”4. 如图,DE是△ABC的中位线,则△ADE与△ABC的面积的比是()A.1:2B.1:3C.1:4D.1:95. 把函数y=x2−2x+3的图象绕原点旋转180∘得到新函数的图象,则新函数的表达式是()A.y=x2+2x+3B.y=−x2+2x−3C.y=−x2−2x+3D.y=−x2−2x−36. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,同时与他邻近的一棵树的影长为6米,则这棵树的高为()A.3.2米B.4.8米C.5.2米D.5.6米7. 如图,在⊙O中,分别将AB̂、CD̂沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是()A.8 B.16 √3 C.32 D.32√38. 若a,b(a<b)是方程(x−m)(n−x)=2(m<n)的两根,则实数a,b,m,n的大小关系是()A.m<a<b<nB.a<m<b<nC.a<m<n<bD.a<b<m<n二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)若关于x的一元二次方程x2−2x+m=0有两个相等的实数根,则实数m的值为________.某车间生产的零件不合格的概率为11000.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说,________天会查出1个次品.一组数据:−1,3,2,x,5,它有唯一的众数是3,则这组数据的中位数是________.若圆锥的底面半径为3cm,母线长为4cm,则圆锥的侧面积为12πcm2.(结果保留π)已知方程x2−mx+n=0有一个根是1,则m−n=________.已知四条线段a,2,6,a+1成比例,则a的值为________.如图,PA、PB分别切⊙O于点A、B,若∠P=70∘,则∠C的大小为________(度).如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有________个.如图,AD 是△ABC 的中线,点E 在AC 延长线上,BE 交AD 的延长线于点F ,若AC =2CE,则ADDF =________.记函数y =x 2−6x −5a +3(−2≤x ≤6)的图象为图形M ,函数y =−x +4的图象为图形N ,若M 与N 没有公共点,则a 的取值范围是________a >135或a <−2920 . 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、解题过程或演算步骤)解方程: (1)3x 2−x =3;(2)(x −2)2−x +2=0.某食品商店将甲、乙、丙3种糖果的质量按5:4:1配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/kg 、20元/kg 、27元/kg .若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.从甲、乙、丙、丁4名同学中随机抽取同学参加学校的座谈会. (1)抽取一名同学,恰好是甲的概率为________;(2)抽取两名同学,求甲在其中的概率.某公司2019年10月份营业额为64万元,12月份营业额达到100万元,求该公司11、12两个月营业额的月平均增长率.已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如表:(1)求该二次函数的表达式;(2)当y >5时,x 的取值范围是________.如图,在正方形ABCD 中,E 为边AD 上的点,点F 在边CD 上,且CF =3FD ,∠BEF =90∘(1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求BG 的长如图,矩形ABCD 中,AB =2BC ,以AB 为直径作⊙O .(1)证明:CD 是⊙O 的切线;(2)若BC =3,连接BD ,求阴影部分的面积.(结果保留π)某超市销售一种饮料,每瓶进价为9元,当每瓶售价为10元时,日均销售量为560瓶.经市场调查表明,每瓶售价每增加0.5元,日均销售量减少40瓶.(1)当每瓶售价为11元时,日均销售量为________瓶;(2)当每瓶售价为多少元时,所得日均总利润为1200元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?如图,在平面直角坐标系xOy中,A(0, 8),B(6, 0),C(0, 3),点D从点A运动到点B停止,连接CD,以CD长为直径作⊙P.(1)若△ACD∽△AOB,求⊙P的半径;(2)当⊙P与AB相切时,求△POB的面积;(3)连接AP、BP,在整个运动过程中,△PAB的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形ABCD中,若∠A=∠C,∠B≠∠D,则称四边形ABCD为准平行四边形.(1)如图①,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60∘,延长BP到Q,使AQ=AP.求证:四边形AQBC是准平行四边形;(2)如图②,准平行四边形ABCD内接于⊙O,AB≠AD,BC=DC,若⊙O的半径为5,AB=6,求AC的长;(3)如图③,在Rt△ABC中,∠C=90∘,∠A=30∘,BC=2,若四边形ABCD是准平行四边形,且∠BCD≠∠BAD,请直接写出BD长的最大值.参考答案与试题解析2019-2020学年江苏省扬州市仪征市九年级(上)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.【答案】A【考点】极差【解析】极差是指一组数据中最大数据与最小数据的差,由此计算即可.【解答】这组数据的极差=4−(−1)=5.2.【答案】C【考点】解一元二次方程-直接开平方法【解析】根据一元二次方程的解法即可求出答案.【解答】∵(x−1)2=1,∴x−1=±1,∴x=2或x=0;3.【答案】B【考点】概率公式【解析】利用概率公式分别求出抽到“A”的概率以及四个选项中每个事件的概率,再比较即可.【解答】从一副完整的扑克牌中任意抽取1张,抽到“A”的概率为454=127,A、从一副完整的扑克牌中任意抽取1张,抽到“大王”的概率为154;B、从一副完整的扑克牌中任意抽取1张,抽到“2”的概率为454=127;C、从一副完整的扑克牌中任意抽取1张,抽到“小王”的概率为154;D、从一副完整的扑克牌中任意抽取1张,抽到“红桃”的概率为1354.4. 【答案】C【考点】相似三角形的性质与判定三角形中位线定理【解析】根据三角形中位线定理得到DE // BC,DE=12BC,得到△ADE∽△ACB,根据相似三角形的性质计算即可.【解答】∵DE是△ABC的中位线,∴DE // BC,DE=12BC,∴△ADE∽△ACB,且相似比为1:2,∴△ADE与△ACB的面积的比是1:4,5.【答案】D【考点】二次函数图象与几何变换【解析】求出原抛物线的顶点坐标以及绕原点旋转180∘后的抛物线的顶点坐标,再根据旋转后抛物线开口方向向下,利用顶点式解析式写出即可.【解答】∵抛物线y=x2−2x+3=(x−1)2+2的顶点坐标为(1, 2),∴绕原点旋转180∘后的抛物线的顶点坐标为(−1, −2),∴所得到的图象的解析式为y=−(x+1)2−2,即y=−x2−2x−3.6.【答案】B【考点】相似三角形的应用【解析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】据相同时刻的物高与影长成比例,设这棵树的高度为xm,则可列比例为,1.62=x6,解得,x=4.8.7.【答案】B【考点】勾股定理垂径定理翻折变换(折叠问题)【解析】过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,根据平行线的性质得到EF⊥CD,根据折叠的性质得到OH=12OA,推出△AOD是等边三角形,得到D,O,B三点共线,且BD为⊙O的直径,求得∠DAB=90∘,同理,∠ABC=∠ADC=90∘,得到四边形ABCD是矩形,于是得到结论.【解答】过O作OH⊥AB交⊙O于E,反向延长EO交CD于G,交⊙O于F,连接OA,OB,OD,∵AB // CD,∴EF⊥CD,∵分别将AB̂、CD̂沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=12OA,∴∠HAO=30∘,∴∠AOH=60∘,同理∠DOG=60∘,∴∠AOD=60∘,∴△AOD是等边三角形,∵OA=OB,∴∠ABO=∠BAO=30∘,∴∠AOB=120∘,∴∠AOD+∠AOB=180∘,∴D,O,B三点共线,且BD为⊙O的直径,∴∠DAB=90∘,同理,∠ABC=∠ADC=90∘,∴四边形ABCD是矩形,∴AD=AO=4,AB=√3AD=4√3,∴四边形ABCD的面积是16√3,8.【答案】A【考点】实数大小比较根与系数的关系【解析】把a,b(a<b)是方程(x−m)(n−x)=2(m<n)的两根看作抛物线y=(x−m)(x−n)与直线y=−2的交点的横坐标,然后画出导致的函数图象,从而得到实数a,b,m,n的大小关系.【解答】方程变形为(x−m)(x−n)=−2,把a,b(a<b)是方程(x−m)(n−x)=2(m<n)的两根看作抛物线y=(x−m)(x−n)与直线y=−2的交点的横坐标,而抛物线y=(x−m)(x−n)与x轴的交点的横坐标分别为m、n,如图,所以m<a<b<n.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)【答案】1【考点】根的判别式【解析】由于关于x的一元二次方程x2−2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】∵关于x的一元二次方程x2−2x+m=0有两个相等的实数根,∴△=0,∴(−2)2−4m=0,∴m=1,【答案】100【考点】概率的意义【解析】根据题意首先得出抽取1000个零件需要100天,进而得出答案.【解答】∵某车间生产的零件不合格的概率为11000,每天从他们生产的零件中任取10个做试验,∴抽取1000个零件需要100天,则100天会查出1个次品.【答案】3【考点】中位数众数【解析】此题暂无解析【解答】解:∵一组数据:−1,3,2,x,5,它有唯一的众数是3,∴x=3,∴此组数据为−1,2,3,3,5,∴这组数据的中位数为3,故答案为:3.【答案】12π【考点】圆锥的计算【解析】圆锥的侧面积=底面周长×母线长÷2.【解答】底面圆的半径为3,则底面周长=6π,侧面面积=12×6π×4=12πcm2.【答案】1【考点】一元二次方程的解【解析】方程的根即方程的解,就是能使方程左右两边相等的未知数的值,把x=−1代入已知方程,即可得到一个关于m、n的方程,从而求得答案.【解答】∵关于x的方程x2−mx+n=0有一个根是1,∴x=1满足该方程,∴1−m+n=0,即,解得,m−n=1;【答案】3【考点】比例线段【解析】由四条线段a,2,6,a+1成比例,根据成比例线段的定义解答即可.【解答】∵四条线段a,2,6,a+1成比例,∴a2=6a+1,解得:a1=3,a2=−4(舍去),所以a=3,【答案】55【考点】圆周角定理切线的性质【解析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360∘,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA,PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90∘,∴∠AOB=360∘−∠PAO−∠P−∠PBO=360∘−90∘−70∘−90∘=110∘,∴∠C=12∠AOB=55∘.故答案为:55.【答案】4【考点】圆的有关概念【解析】过点P最长的弦是12,根据已知条件,△OAB的面积为18,可以求出AB<12,根据三角形面积可得OC=3√2,从而可知OP的长有两个整数:5,6,且OP=6是P在A或B点时,每一个值都有两个点P,所以一共有4个.【解答】过O作OC⊥AB于C,则AC=BC,设OC=x,AC=y,∵AB是⊙O的一条弦,⊙O的半径为6,∴AB≤12,∵△OAB的面积为18,∴{x2+y2=3612⋅2y⋅x=18,则y=18x,∴x2+(18x)2=36,解得x=3√2或−3√2(舍),∴OC=3√2>4,∴4<OP≤6,∵点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.【答案】5【考点】平行线分线段成比例【解析】根据平行线分线段成比例定理、三角形的中位线定理进行解答.【解答】如图,过点DG作DG // AE,交BE于点G;∵ AD 是△ABC 的中线, ∴ DG =12CE , ∵ AC =2CE , DG =16CE , ∴ FDAF =16, DFAD =15, 即AD DF =5,【答案】 a >135或a <−2920 【考点】一次函数图象上点的坐标特点 一次函数的图象二次函数图象上点的坐标特征 二次函数图象与系数的关系 一次函数的性质【解析】根据函数y =x 2−6x −5a +3(−2≤x ≤6)的图象为图形M ,函数y =−x +4的图象为图形N ,M 与N 没有公共点,可得△小于0,另外当−2≤x ≤6时,抛物线位于直线下方,从而列出不等式即可求出a 的取值范围. 【解答】∵ 函数y =x 2−6x −5a +3(−2≤x ≤6)的图象为图形M , 函数y =−x +4的图象为图形N ,若M 与N 没有公共点, ∴ ①△<0,∴ x 2−6x −5a +3=−x +4 ∴ x 2−5x −5a −1=0 △=25+20a +4=20a +29 ∴ 20a +29<0解得a <−2920;②当x =−2时,代入函数y =−x +4,得y =6,代入函数y =x 2−6x −5a +3,得y =−5a +19, 当−2≤x ≤6时,−5a +19<6,解得a >135;③当x =6时,代入函数y =−x +4,得y =−2, 代入函数y =x 2−6x −5a +3,得y =−5a +3, 当−2≤x ≤6时,−5a +3<−2,解得a >15. 所以综上a >135.则a 的取值范围是a >135或a <−2920.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、解题过程或演算步骤)【答案】原方程可化为3x 2−x −3=0, ∵ a =3,b =−1,c =−3,∴ b 2−4ac =(−1)2−4×3×(−3)=1+36=37>0, ∴ x =1±√372×3, 得x 1=1+√376,x 2=1−√376;∵ (x −2)(x −3)=0,∴ x −2=0或x −3=0, ∴ x 1=2,x 2=3.【考点】解一元二次方程-公式法 【解析】(1)利用公式法求解可得; (2)利用因式分解法求解可得. 【解答】原方程可化为3x 2−x −3=0, ∵ a =3,b =−1,c =−3,∴ b 2−4ac =(−1)2−4×3×(−3)=1+36=37>0, ∴ x =1±√372×3, 得x 1=1+√376,x 2=1−√376;∵ (x −2)(x −3)=0, ∴ x −2=0或x −3=0, ∴ x 1=2,x 2=3.【答案】该什锦糖果合理的单价为18.7元/kg 【考点】 加权平均数 【解析】根据加权平均数的概念进行解答即可. 【解答】这样定价不合理,理由如下:加权平均数:x ¯=16×510+20×410+27×110 =18.7(元/kg ). 算术平均数=16+20+273=21(元/kg ),21>18.7,∴将这种什锦糖果的单价定为这三种糖果单价的算术平均数不合理,【答案】14随机抽取2名学生,可能出现的结果有6种,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它们出现的可能性相等.恰好抽取2名甲在其中的结果有3种,即甲乙、甲丙、甲丁,故抽取两名同学,甲在其中的概率为36=12.【考点】列表法与树状图法【解析】(1)由从甲、乙、丙、丁4名同学中抽取同学参加学校的座谈会,直接利用概率公式求解即可求得答案;(2)利用列举法可得抽取2名,可得:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁共6种等可能的结果,甲在其中的有3种情况,然后利用概率公式求解即可求得答案.【解答】随机抽取1名学生,可能出现的结果有4种,即甲、乙、丙、丁,并且它们出现的可能性相等.恰好抽取1名恰好是甲的结果有1种,所以抽取一名同学,恰好是甲的概率为14,故答案为:14.随机抽取2名学生,可能出现的结果有6种,即甲乙、甲丙、甲丁、乙丙、乙丁、丙丁,并且它们出现的可能性相等.恰好抽取2名甲在其中的结果有3种,即甲乙、甲丙、甲丁,故抽取两名同学,甲在其中的概率为36=12.【答案】该公司11、12两个月营业额的月平均增长率为25%【考点】一元二次方程的应用【解析】设平均每月的增长率为x,根据10月份的营业额为60万元,12月份的营业额为100万元,分别表示出11、12月的营业额,即可列出方程求解.【解答】设该公司11、12两个月营业额的月平均增长率为x,依题意,得:64(1+x)2=100,解得:x=0.25=25%,或x=−2.25(不合题意,舍去).【答案】由表格可知,抛物线经过(1, 2)、(3, 2),∴对称轴为直线x=1+32=2,∴抛物线的顶点为(2, 1),设函数为y=a(x−2)2+1.∵函数的图象经过点(0, 5),∴5=a×(−2)2+1.解得a=1.∴该二次函数的表达式为y=(x−2)2+1(或y=x2−4x+5);x<0或x>4【考点】二次函数的性质二次函数图象上点的坐标特征待定系数法求二次函数解析式【解析】(1)根据表格中的数据可以求得二次函数的解析式;(2)观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=4时,y=5,然后写出y>5时,x的取值范围即可.【解答】由表格可知,抛物线经过(1, 2)、(3, 2),∴对称轴为直线x=1+32=2,∴抛物线的顶点为(2, 1),设函数为y=a(x−2)2+1.∵函数的图象经过点(0, 5),∴5=a×(−2)2+1.解得a=1.∴该二次函数的表达式为y=(x−2)2+1(或y=x2−4x+5);由所给数据可知当x=2时,y有最小值1,∴二次函数的对称轴为x=2.∴x=4时,y=5,∴当y>5时,对应的x的范围为x<0或x>4,故答案为x<0或x>4.【答案】证明:∵四边形ABCD为正方形,∴∠A=∠D=90∘,AB=BC=CD=AD,AD // BC,∵∠BEF=90∘,∵∠ABE+∠EBA=∠DEF+∠EBA=90∘,∴∠ABE=∠DEF,∴△ABE∽△DEF;∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3,∵△ABE∽△DEF,∴AEDF=ABDE,即4−DE1=4DE,解得:DE=2,∵AD // BC,∴△EDF∽△GCF,∴DECG=DFCF,即2CG=13,∴CG=6,∴BG=BC+CG=4+6=10.【考点】正方形的性质相似三角形的性质与判定【解析】(1)由正方形的性质得出∠A=∠D=90∘,AB=BC=CD=AD,AD // BC,证出∠ABE=∠DEF,即可得出△ABE∽△DEF;(2)求出DF=1,CF=3,由相似三角形的性质得出AEDF =ABDE,解得DE=2,证明△EDF∽△GCF,得出DECG=DFCF,求出CG=6,即可得出答案.【解答】证明:∵四边形ABCD为正方形,∴∠A=∠D=90∘,AB=BC=CD=AD,AD // BC,∵∠BEF=90∘,∵∠ABE+∠EBA=∠DEF+∠EBA=90∘,∴∠ABE=∠DEF,∴△ABE∽△DEF;∵AB=BC=CD=AD=4,CF=3FD,∴DF=1,CF=3,∵△ABE∽△DEF,∴AEDF =ABDE,即4−DE1=4DE,解得:DE=2,∵AD // BC,∴△EDF∽△GCF,∴DECG =DFCF,即2CG=13,∴CG=6,∴BG=BC+CG=4+6=10.【答案】过点O作OE⊥CD于E,∵四边形ABCD是矩形,∴∠A=∠ADC=∠OED=90∘,∴四边形ADEO是矩形,∴AD=OE,∵AB=2BC,∴AB=2AD=2OE,∴AO=OE,∴CD是⊙O的切线;∵四边形ADEO是矩形,∴∠AOE=∠BOE=90∘,∴阴影部分的面积=S扇形BOE =90⋅π×32360=94π.【考点】切线的判定与性质扇形面积的计算圆周角定理矩形的性质【解析】(1)过点O作OE⊥CD于E,根据矩形的性质和判定定理以及切线的判定定理即可得到结论;(2)根据矩形的性质和扇形的面积公式即可得到结论.【解答】过点O作OE⊥CD于E,∵四边形ABCD是矩形,∴∠A=∠ADC=∠OED=90∘,∴四边形ADEO是矩形,∴AD=OE,∵AB=2BC,∴AB=2AD=2OE,∴AO=OE,∴CD是⊙O的切线;∵四边形ADEO是矩形,∴∠AOE=∠BOE=90∘,∴阴影部分的面积=S扇形BOE=90⋅π×32360=94π.【答案】480当每瓶售价为12元或14元时,所得日均总利润为1200元;当每瓶售价为13元时,所得日均总利润最大,最大日均总利润为1280元【考点】一元二次方程的应用二次函数的应用【解析】(1)根据日均销售量为560−40×11−100.5计算可得;(2)根据“总利润=每瓶利润×日均销售量”列方程求解可得;(3)根据(2)中相等关系列出函数解析式,将其配方成顶点式,利用二次函数的性质解答即可.【解答】当每瓶的售价为11元时,日均销售量为560−40×11−100.5=480瓶,故答案为:480;设每瓶的售价为x元,根据题意可得:(x−9)(560−40×x−100.5)=1200,整理,得:x2−26x+168=0,解得:x1=12、x2=14,答:当每瓶售价为12元或14元时,所得日均总利润为1200元;设日均利润为y,则y=(x−9)(560−40×x−100.5)=−80x2+2080x−12240=−80(x−13)2+1280,当x=13时,y取得最大值,最大值为1280,答:当每瓶售价为13元时,所得日均总利润最大,最大日均总利润为1280元.【答案】如图1,∵A(0, 8),B(6, 0),C(0, 3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴ACAO =CDOB ,∴58=CD6∴CD的=154,∴⊙P的半径为158;在Rt△AOB中,OA=8,OB=6,∴AB=√OA2+OB2=√82+62=10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90∘,∠CAD=∠BAO,∴△ACD∽△ABO,∴ACAB=ADAO=CDOB,即510=AD8=CD6,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=12CD=32,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90∘,∠PCE=∠ACD,∴△CPE∽△CAD,∴CPAC=CECD,即325=CE3,∴CE=910,∴OE=CE+OC=910+3=3910,∴△POB的面积=12×OB×OE=12×6×3910=11710;①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=12CD=32,∴△PAB的面积=12×AB×PD=12×10×32=152.②如图4,若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90∘,由(2)可得CF=3,过点P作PG⊥AB于点G,则DG=12DF,则PG为△DCF的中位线,PG=12CF=32,∴△PAB的面积=12×AB×PG=12×10×32=152.综上所述,在整个运动过程中,△PAB的面积是定值,定值为152.【考点】圆与圆的综合与创新圆与相似的综合圆与函数的综合【解析】(1)由条件可得出ACAO =CDOB,可求出CD的长,则⊙P的半径可求出;(2)证明△ACD∽△ABO,可得比线线段ACAB =ADAO=CDOB,求出CD,AD的长,过点P作PE⊥AO于点E,证明△CPE∽△CAD,由比例线段可求出点P的坐标,可求出△POB的面积;(3)①若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD⊥AB,PD=12CD=32,则△PAB的面积可求出.②若⊙P与AB有两个交点,设另一个交点为F,连接CF,可得∠CFD=90∘,可求出CF=3,过点P作PG⊥AB于点G,可得DG=12DF,则PG为△DCF的中位线,PG=12CF=32,则△PAB的面积可求出.【解答】如图1,∵A(0, 8),B(6, 0),C(0, 3),∴OA=8,OB=6,OC=3,∴AC=5,∵△ACD∽△AOB,∴ACAO=CDOB,∴58=CD6∴CD的=154,∴⊙P的半径为158;在Rt△AOB中,OA=8,OB=6,∴AB=√OA2+OB2=√82+62=10,如图2,当⊙P与AB相切时,CD⊥AB,∴∠ADC=∠AOB=90∘,∠CAD=∠BAO,∴△ACD∽△ABO,∴ACAB=ADAO=CDOB,即510=AD8=CD6,∴AD=4,CD=3,∵CD为⊙P的直径,∴CP=12CD=32,过点P作PE⊥AO于点E,∵∠PEC=∠ADC=90∘,∠PCE=∠ACD,∴△CPE∽△CAD,∴CPAC=CECD,即325=CE3,∴CE=910,∴OE=CE+OC=910+3=3910,∴△POB的面积=12×OB×OE=12×6×3910=11710;①如图3,若⊙P与AB只有一个交点,则⊙P与AB相切,由(2)可知PD ⊥AB ,PD =12CD =32, ∴△PAB的面积=12×AB×PD =12×10×32=152.②如图4,若⊙P 与AB 有两个交点,设另一个交点为F ,连接CF ,可得∠CFD =90∘,由(2)可得CF =3,过点P 作PG ⊥AB 于点G ,则DG =12DF , 则PG 为△DCF 的中位线,PG =12CF =32, ∴ △PAB 的面积=12×AB ×PG =12×10×32=152.综上所述,在整个运动过程中,△PAB 的面积是定值,定值为152.【答案】∵ ∠APC =∠CPB =60∘,∴ ∠APQ =60∘,且AQ =AP , ∴ △APQ 是等边三角形, ∴ ∠Q =60∘=∠QAP ,∵ 四边形APBC 是圆内接四边形, ∴ ∠QPA =∠ACB =60∘,∵ ∠Q +∠ACB +∠QAC +∠QBC =360∘,∴ ∠QAC +∠QBC =240∘,且∠QAC =∠QAP +∠BAC +∠PAB =120∘+∠PAB >120∘, ∴ ∠QBC <120∘,∴ ∠QAC ≠∠QBC ,且∠QPA =∠ACB =60∘=∠Q , ∴ 四边形AQBC 是准平行四边形; 如图②,连接BD ,∵ AB ≠AD ,BC =DC ,∴ ∠ABD ≠∠ADB ,∠CBD =∠CDB , ∴ ∠ABC ≠∠ADC ,∵ 四边形ABCD 是准平行四边形, ∴ ∠BAD =∠BCD ,∵ 四边形ABCD 是圆内接四边形,∴ ∠BAD +∠BCD =180∘,∠ABC +∠ADC =180∘, ∴ ∠BAD =∠BCD =90∘, ∴ BD 是直径, ∴ BD =10,∴ AD =√BD 2−AB 2=√100−36=8, 将△ABC 绕点C 顺时针旋转90∘得到△CDH ,∴ AB =DH =6,AC =CH ,∠ACH =90∘,∠ABC =∠CDH , ∵ ∠ABC +∠ADC =180∘, ∴ ∠ADC +∠CDH =180∘, ∴ 点A ,点D ,点H 三点共线, ∴ AH =AD +DH =14, ∵ AC 2+CH 2=AH 2, ∴ 2AC 2=196 ∴ AC =7√2;如图③,作△ACD 的外接圆⊙O ,过点O 作OE ⊥AC 于E ,OF ⊥BC 于F ,∵ ∠C =90∘,∠A =30∘,BC =2,∴∠ABC=∠ADC=60∘,∴∠AOC=120∘,且OE⊥AC,OA=OC,∴∠ACO=∠CAO=30∘,CE=AE=√3,∴OE=1,CO=2OE=2,∵OE⊥AC,OF⊥BC,∠ECF=90∘,∴四边形CFOE是矩形,∴CE=OF=√3,OE=CF=1,∴BF=BC+CF=3,∴BO=√BF2+OF2=√9+3=2√3,∵当点D在BO的延长线时,BD的长有最大值,∴BD长的最大值=BO+OD=2√3+2.【考点】圆与函数的综合圆与圆的综合与创新圆与相似的综合【解析】(1)可证△APQ是等边三角形,可得∠Q=60∘=∠QAP,由圆的内接四边形的性质可得∠QPA=∠ACB=60∘=∠Q,由四边形内角和定理可证∠QAC≠∠QBC,可得结论;(2)如图②,连接BD,由准平行四边形定义可求∠BAD=∠BCD=90∘,可得BD是直径,由勾股定理可求AD=8,将△ABC绕点C顺时针旋转90∘得到△CDH,可得AB=DH=6,AC=CH,∠ACH=90∘,∠ABC=∠CDH,由勾股定理可求AC的长;(3)如图③,作△ACD的外接圆⊙O,过点O作OE⊥AC于E,OF⊥BC于F,由准平行四边形定义可求∠ABC=∠ADC=60∘,可得∠AOC=120∘,由等腰三角形的性质和直角三角形的性质,可求OE=1,CO=2OE=2,由勾股定理可求OB,由当点D在BO的延长线时,BD的长有最大值,即可求解.【解答】∵∠APC=∠CPB=60∘,∴∠APQ=60∘,且AQ=AP,∴△APQ是等边三角形,∴∠Q=60∘=∠QAP,∵四边形APBC是圆内接四边形,∴∠QPA=∠ACB=60∘,∵∠Q+∠ACB+∠QAC+∠QBC=360∘,∴∠QAC+∠QBC=240∘,且∠QAC=∠QAP+∠BAC+∠PAB=120∘+∠PAB>120∘,∴∠QBC<120∘,∴∠QAC≠∠QBC,且∠QPA=∠ACB=60∘=∠Q,∴四边形AQBC是准平行四边形;如图②,连接BD,∵AB≠AD,BC=DC,∴∠ABD≠∠ADB,∠CBD=∠CDB,∴∠ABC≠∠ADC,∵四边形ABCD是准平行四边形,∴∠BAD=∠BCD,∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180∘,∠ABC+∠ADC=180∘,∴∠BAD=∠BCD=90∘,∴BD是直径,∴BD=10,∴AD=√BD2−AB2=√100−36=8,将△ABC绕点C顺时针旋转90∘得到△CDH,∴AB=DH=6,AC=CH,∠ACH=90∘,∠ABC=∠CDH,∵∠ABC+∠ADC=180∘,∴∠ADC+∠CDH=180∘,∴点A,点D,点H三点共线,∴AH=AD+DH=14,∵AC2+CH2=AH2,∴2AC2=196∴AC=7√2;如图③,作△ACD的外接圆⊙O,过点O作OE⊥AC于E,OF⊥BC于F,∵∠C=90∘,∠A=30∘,BC=2,∴∠ABC=∠ADC=60∘,∴∠AOC=120∘,且OE⊥AC,OA=OC,∴∠ACO=∠CAO=30∘,CE=AE=√3,∴OE=1,CO=2OE=2,∵OE⊥AC,OF⊥BC,∠ECF=90∘,∴四边形CFOE是矩形,∴CE=OF=√3,OE=CF=1,∴BF=BC+CF=3,∴BO=√BF2+OF2=√9+3=2√3,∵当点D在BO的延长线时,BD的长有最大值,∴BD长的最大值=BO+OD=2√3+2.。

【35套试卷合集】江苏省扬州市名校2019-2020学年数学九上期末模拟试卷含答案

【35套试卷合集】江苏省扬州市名校2019-2020学年数学九上期末模拟试卷含答案

2019-2020学年九上数学期末模拟试卷含答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠07.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.8.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC=.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为米.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:.16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①;②.三、解答题(本题共68分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:3tan30°﹣cos245°+﹣2sin60°.18.(5分)用配方法求二次函数y=x2﹣10x+3的顶点坐标.19.(5分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.20.(5分)小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果;(2)这个游戏公平吗?请说明理由.21.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)22.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是.23.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.24.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.25.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F 是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.26.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P关于直线y=t的对称点为点Q,若点Q 落在△OBC的内部,求t的取值范围.27.(7分)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)28.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若PQ为某个等腰三角形的腰,且该等腰三角形的底边与x轴平行,则称该等腰三角形为点P,Q的“相关等腰三角形”.下图为点P,Q的“相关等腰三角形”的示意图.(1)已知点A的坐标为(0,1),点B的坐标为,则点A,B的“相关等腰三角形”的顶角为°;(2)若点C的坐标为,点D在直线y=4上,且C,D的“相关等腰三角形”为等边三角形,求直线CD的表达式;(3)⊙O的半径为,点N在双曲线y=﹣上.若在⊙O上存在一点M,使得点M、N的“相关等腰三角形”为直角三角形,直接写出点N的横坐标x N的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如果3x=4y(y≠0),那么下列比例式中正确的是()A.B.C.D.【分析】根据比例的性质,可得答案.【解答】解:A、由比例的性质,得4x=3y与3x=4y不一致,故A不符合题意;B、由比例的性质,得xy=12与3x=4y不一致,故B不符合题意;C、由比例的性质,得4x=3y与3x=4y不一致,故C不符合题意;D、由比例的性质,得3x=4y与3x=4y一致,故D符合题意;故选:D.【点评】本题考查了比例的性质,利用比例的性质是解题关键.2.在Rt△ABC中,∠C=90°,,AC=2,则tanA的值为()A.B.2 C.D.【分析】本题需先根据已知条件,得出BC的长,再根据正切公式即可求出答案.【解答】解:∵∠C=90°,AB=,AC=2,∴BC=1,∴tanA==.故选:A.【点评】本题主要考查了锐角三角函数的定义,在解题时要根据在直角三角形中,正切等于对边比邻边这个公式计算是本题的关键.3.如图,AB是⊙O的直径,点C、D在⊙O上.若∠ACD=25°,则∠BOD的度数为()A.100°B.120°C.130°D.150°【分析】根据圆周角定理求出∠AOD即可解决问题.【解答】解:∵∠AOD=2∠ACD,∠ACD=25°,∴∠AOD=50°,∴∠BOD=180°﹣∠AOD=180°﹣50°=130°,故选:C.【点评】本题考查圆周角定理,邻补角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.如图,在⊙O中,弦AB垂直平分半径OC.若⊙O的半径为4,则弦AB的长为()A.B.C.D.【分析】连接OA,由AB垂直平分OC,求出OD的长,再利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用垂径定理求出AD的长,即可确定出AB的长.【解答】解:连接OA,由AB垂直平分OC,得到OD=OC=2,∵OC⊥AB,∴D为AB的中点,则AB=2AD=2=2=4.故选:B.【点评】此题考查了垂径定理,以及勾股定理,根据题意作出辅助线,构造出直角三角形是解本题的关键.5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.【分析】由a>0,b<0,c<0,推出﹣>0,可知抛物线的图象开口向上,对称轴在y轴的右边,交y 轴于负半轴,由此即可判断.【解答】解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.【点评】本题考查二次函数的图象,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.若二次函数y=x2+2x+m的图象与坐标轴有3个交点,则m的取值范围是()A.m>1 B.m<1 C.m>1且m≠0 D.m<1且m≠0【分析】由抛物线与坐标轴有三个交点可得出:方程x2+2x+m=0有两个不相等的实数根,且m≠0,利用根的判别式△>0可求出m的取值范围,此题得解.【解答】解:∵二次函数y=x2+2x+m的图象与坐标轴有3个交点,∴方程x2+2x+m=0有两个不相等的实数根,且m≠0,∴△=22﹣4m>0,∴m<1.∴m<1且m≠0.故选:D.【点评】本题考查了抛物线与x轴的交点以及根的判别式,利用根的判别式△>0找出关于m的一元一次不等式是解题的关键.7.如图,将函数的图象沿y轴向上平移得到新函数图象,其中原函数图象上的两点A(1,m)、B(4,n)平移后对应新函数图象上的点分别为点A′、B′.若阴影部分的面积为6,则新函数的表达式为()A.B.C.D.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为6(图中的阴影部分),得出AA′=2,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=2,∴A(1,1),B(4,2),过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,1), ∴AC=4﹣1=3,∵曲线段AB 扫过的面积为6(图中的阴影部分), ∴AC•AA′=3AA′=6, ∴AA′=2,即将函数y=(x ﹣2)2+1的图象沿y 轴向上平移2个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x ﹣2)2+3. 故选:B .【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题关键.8.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【分析】当点N 在AD 上时,可得前半段函数图象为开口向上的抛物线的一部分;当点N 在DC 上时,MN 长度不变,可得后半段函数图象为一条线段.【解答】解:设∠A=α,点M 运动的速度为a ,则AM=at , 当点N 在AD 上时,MN=tanα×AM=tanα•at ,此时S=×at ×tanα•at=tanα×a 2t 2,∴前半段函数图象为开口向上的抛物线的一部分, 当点N 在DC 上时,MN 长度不变,此时S=×at ×MN=a ×MN ×t , ∴后半段函数图象为一条线段, 故选:C .【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.二、填空题(本题共16分,每小题2分)9.如果两个相似三角形的周长比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答.【解答】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,所以这两个相似三角形的面积比为4:9;故答案为:4:9.【点评】本题考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.10.如图,在△ABC中,点D、E分别在边AB、AC上.若∠ADE=∠C,AB=6,AC=4,AD=2,则EC=1.【分析】只要证明△ADE∽△ACB,推出=,求出AE即可解决问题;【解答】解;∵∠A=∠A,∠ADE=∠C,∴△ADE∽△ACB,∴=,∴=,∴AE=3,∴EC=AC﹣AE=4﹣3=1,故答案为1.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.11.如图,扇形的圆心角∠AOB=60°,半径为3cm.若点C、D是的三等分点,则图中所有阴影部分的面积之和是cm2.【分析】由题意可知C、D是弧AB的三等分点,通过平移可把阴影部分都集中到一个小扇形中,可发现阴影部分正好是扇形AOB的,先求出扇形AOB的面积再求阴影部分的面积或者直接求圆心角是20度,半径是3的扇形的面积皆可.【解答】解:S扇形OAB=,S阴影=S扇形OAB=×π=π.故答案为:【点评】此题考查扇形的面积问题,通过平移的知识把小块的阴影部分集中成一个规则的图形﹣﹣扇形,再求算扇形的面积即可.利用平移或割补把不规则图形变成规则图形求面积是常用的方法.12.“平改坡”是指在建筑结构许可条件下,将多层住宅的平屋顶改建成坡屋顶,并对外立面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为.如图是某小区对楼顶进行“平改坡”改造的示意图.根据图中的数据,如果要使坡面BC的坡度达到1:1.2,那么立柱AC的长为 2.5米.【分析】由坡度的概念得出=,根据AB=3可得AC的长度.【解答】解:根据题意知=,∵AB=3,∴=,解得:AC=2.5,故答案为:2.5.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是熟练掌握坡度的定义.13.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A和点B.当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5.【分析】根据一次函数与反比例函数交点纵坐标,结合图象确定出所求x的范围即可.【解答】解:根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,故答案为:﹣2<x<﹣0.5【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,弄清数形结合思想是解本题的关键.14.如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于5.【分析】连接CD,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD,求出圆的半径的长,再利用勾股定理列式进行计算即可得解.【解答】解:如图,∵∠C=90°,点D为AB的中点,∴AB=2CD=10,∴CD=5,∴BC=CD=5,在Rt△ABC中,AC===5.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,求出圆的半径的长是解题的关键.15.如图,在平面直角坐标系xOy中,△ABC经过若干次图形的变化(平移、轴对称、旋转)得到△DEF,写出一种由△ABC得到△DEF的过程:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【分析】根据对应点C与点F的位置,结合两三角形在格结构中的位置解答.【解答】解:△ABC向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°即可得到△DEF,所以,过程为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.故答案为:向右平移4个单位,沿对称轴BC翻折,再绕点C逆时针旋转90°.【点评】本题考查了几何变换的类型,平移、旋转,准确识图是解题的关键.16.石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则.请回答,成立的理由是:①平行线分线段成比例定理;②等底共高.【分析】根据平行线分线段成比例定理和等底共高求解可得.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知,故答案为:①平行线分线段成比例定理;②等底共高.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握平行线分线段成比例定理和等底共高的两三角形面积关系.三、解答题(本题共68分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:3tan30°﹣cos245°+﹣2sin60°.【分析】根据特殊角三角函数值,可得答案.【解答】解:原式=3×﹣()2+﹣2×=﹣+2﹣=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.18.(5分)用配方法求二次函数y=x2﹣10x+3的顶点坐标.【分析】把解析式化为顶点式即可.【解答】解:∵y=x2﹣10x+3=(x﹣5)2﹣22,∴二次函数的顶点坐标为(5,﹣22).【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.19.(5分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.若a=2,sin,求b和c.【分析】先根据sinA=知c==6,再根据勾股定理求解可得.【解答】解:如图,∵a=2,sin,∴c===6,则b===4.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握正弦函数的定义及勾股定理.20.(5分)小红和小丁玩纸牌游戏:如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张.比较两人抽出的牌面上的数字,数字大者获胜.(1)请用树状图或列表法表示出两人抽牌可能出现的所有结果;(2)这个游戏公平吗?请说明理由.【分析】(1)根据题意画出树状图,即可解决问题;(2)根据树状图,利用概率公式即可求得小红获胜的概率,由概率相等,即可判定这个游戏公平;【解答】解:(1)树状图如右:则小红获胜的概率:=,小丁获胜的概率:=,所以这个游戏比较公平.【点评】本题考查的是用列表法与树状图法求事件的概率,解题的关键是学会正确画出树状图,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比..21.(5分)如图,小明想测量山的高度.他在点B处仰望山顶A,测得仰角∠ABN=30°,再向山的方向(水平方向)行进100m至索道口点C处,在点C处仰望山顶A,测得仰角∠ACN=45°.求这座山的高度.(结果精确到0.1m,小明的身高忽略不计)(参考数据:≈1.41,≈1.73)【分析】作AH⊥BN于H,设AH=xm,根据正切的概念表示出CH、BH,根据题意列出方程,解方程即可.【解答】解:如图,作AH⊥BN于H,设AH=xm,∵∠ACN=45°,∴CH=AH=xm,∵tanB=,∴BH=x,则BH﹣CH=BC,即x﹣x=100,解得x=50(+1).答:这座山的高度为50(+1)m;【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,正确作出辅助线、熟记锐角三角函数的概念是解题的关键.22.(5分)在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A(2,0),与反比例函数y=的图象交于点B(3,n).(1)求一次函数与反比例函数的表达式;(2)若点P为x轴上的点,且△PAB的面积是2,则点P的坐标是(﹣2,0)或(6,0).【分析】(1)利用待定系数法即可解决问题;(2)利用三角形的面积公式求出PA的长即可解决问题;【解答】解:(1)∵一次函数y=x+b的图象与x轴交于点A(2,0),∴2+b=0,∴b=﹣2,∴y=x﹣2,当x=3时,y=1,∴B(3,1),代入y=中,得到k=3,∴反比例函数的解析式为y=.(2)∵△PAB的面积是2,∴•PA•1=2,∴PA=4,∴P(﹣2,0)或(6,0).【点评】本题考查一次函数的性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(5分)如图,四边形ABCD是平行四边形,CE⊥AD于点E,DF⊥BA交BA的延长线于点F.(1)求证:△ADF∽△DCE;(2)当AF=2,AD=6,且点E恰为AD中点时,求AB的长.【分析】(1)由平行四边形的性质知CD∥AB,即∠DAF=∠CDE,再由CE⊥AD、DF⊥BA知∠AFD=∠DEC=90°,据此可得;(2)根据△ADF∽△DCE知=,据此求得DC=9,再根据平行四边形的性质可得答案.【解答】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠DAF=∠CDE,又∵CE⊥AD、DF⊥BA,∴∠AFD=∠DEC=90°,∴△ADF∽△DCE;(2)∵AD=6、且E为AD的中点,∴DE=3,∵△ADF∽△DCE,∴=,即=,解得:DC=9,∵四边形ABCD是平行四边形,∴AB=CD=9.【点评】本题主要考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定和性质及平行四边形的性质.24.(5分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).(1)求二次函数图象的对称轴;(2)当﹣4≤x≤1时,求y的取值范围.【分析】(1)根据抛物线的对称性和待定系数法求解即可;(2)根据二次函数的性质可得.【解答】解:(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函数y=x2﹣2mx+5m的对称轴是x=﹣,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴当x=﹣1时,y取得最小值﹣6,由表可知当x=﹣4时y=3,当x=﹣1时y=﹣6,∴当﹣4≤x≤1时,﹣6≤y≤3.【点评】本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.25.(6分)如图,AC是⊙O的直径,点D是⊙O 上一点,⊙O的切线CB与AD的延长线交于点B,点F 是直径AC上一点,连接DF并延长交⊙O于点E,连接AE.(1)求证:∠ABC=∠AED;(2)连接BF,若AD=,AF=6,tan∠AED=,求BF的长.【分析】(1)直接利用圆周角定理以及切线的性质定理得出∠ACD=∠ABC,进而得出答案;(2)首先得出DC的长,即可得出FC的长,再利用已知得出BC的长,结合勾股定理求出答案.【解答】(1)证明:连接DC,∵AC是⊙O的直径,∴∠BDC=90°,∴∠ABC+∠BCD=90°,∵⊙O的切线CB与AD的延长线交于点B,∴∠BCA=90°,∴∠ACD+∠BCD=90°,∴∠ACD=∠ABC,∴∠ABC=∠AED;(2)解:连接BF,∵在Rt△ADC中,AD=,tan∠AED=,∴tan∠ACD==,∴DC=AD=,∴AC==8,∵AF=6,∴CF=AC﹣AF=8﹣6=2,∵∠ABC=∠AED,∴tan∠ABC==,∴=,解得:BD=,故BC=6,则BF==2.【点评】此题主要考查了切线的性质与判定以及勾股定理等知识,正确得出∠ACD=∠ABC是解题关键.26.(7分)在平面直角坐标系xOy中,抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3).(1)求抛物线的表达式;(2)抛物线与x轴的正半轴交于点C,连接BC.设抛物线的顶点P关于直线y=t的对称点为点Q,若点Q 落在△OBC的内部,求t的取值范围.【分析】(1)利用待定系数法即可解决问题;(2)分别求出点Q落在直线BC和x轴上时的t的值即可判断;【解答】解:(1)∵抛物线y=﹣x2+mx+n经过点A(﹣1,0)和B(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图,易知抛物线的顶点坐标为(1,4).观察图象可知当点P关于直线y=t的对称点为点Q中直线BC上时,t=3,当点P关于直线y=t的对称点为点Q在x轴上时,t=2,∴满足条件的t的值为2<t<3.【点评】本题考查二次函数的性质、待定系数法、轴对称等知识,解题的关键是熟练掌握基本知识,学会寻找特殊点解决问题,属于中考常考题型.27.(7分)在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.(1)当点P在线段AC上时,如图1.①依题意补全图1;②若EQ=BP,则∠PBE的度数为45°,并证明;(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)【分析】(1)①作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP;②依据题意得到DP=EP,再根据四边形内角和求得∠BPE=90°,根据BP=EP,即可得到∠PBE=45°;(2)连接PD,PE,依据△CPD≌△CPB,可得DP=BP,∠1=∠2,根据DP=EP,可得∠3=∠1,进而得到∠PEB=45°,∠3=∠4=22.5°,△BCE中,已知∠4=22.5°,BC=1,可求BE长.【解答】解:(1)①作图如下:②如图,连接PD,PE,易证△CPD≌△CPB,∴DP=BP,∠CDP=∠CBP,∵P、Q关于直线CD对称,∴EQ=EP,∵EQ=BP,∴DP=EP,∴∠CDP=∠DEP,∵∠CEP+∠DEP=180°,∴∠CEP+∠CBP=180°,∵∠BCD=90°,∴∠BPE=90°,∵BP=EP,∴∠PBE=45°,故答案为:45°;(2)思路:如图,连接PD,PE,易证△CPD≌△CPB,∴DP=BP,∠1=∠2,∵P、Q关于直线CD对称,∴EQ=EP,∠3=∠4,∵EQ=BP,∴DP=EP,∴∠3=∠1,∴∠3=∠2,∴∠5=∠BCE=90°,∵BP=EP,∴∠PEB=45°,∴∠3=∠4=22.5°,在△BCE中,已知∠4=22.5°,BC=1,可求BE长.【点评】此题是四边形综合题,主要考查了正方形的性质、轴对称的性质、全等三角形的判定与性质等知识的综合运用,解决本题的关键是熟记全等三角形的性质定理和判定定理.28.(8分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若PQ为某个等腰三角形的腰,且该等腰三角形的底边与x轴平行,则称该等腰三角形为点P,Q的“相关等腰三角形”.下图为点P,Q的“相关等腰三角形”的示意图.(1)已知点A的坐标为(0,1),点B的坐标为,则点A,B的“相关等腰三角形”的顶角为120°;(2)若点C的坐标为,点D在直线y=4上,且C,D的“相关等腰三角形”为等边三角形,求直线CD的表达式;(3)⊙O的半径为,点N在双曲线y=﹣上.若在⊙O上存在一点M,使得点M、N的“相关等腰三角形”为直角三角形,直接写出点N的横坐标x N的取值范围.【分析】(1)画出图形求出∠BAO的度数即可解决问题;(2)利用等边三角形的性质求出点D坐标即可解决问题;(3)因为点M、N的“相关等腰三角形”为直角三角形,推出直线MN与x轴的夹角为45°,可以假设直线MN的解析式为y=﹣x+b,当直线与⊙O相切于点M时,求出直线MN的解析式,利用方程组求出点N 的坐标,观察图象即可解决问题.【解答】解:(1)如图1中,∵A的坐标为(0,1),点B的坐标为,∴点A,B的“相关等腰三角形”△ABC的当C(,0)或(﹣2,1),∵tan∠BAO==,∴∠BAO=∠CAO=60°,∴∠BAC=∠ABC′=120°,故答案为120.(2)如图2中,设直线y=4交y轴于F(0,4),∵C(0,),∴CF=3,∵且C,D的“相关等腰三角形”为等边三角形,∴∠CDF=∠CD′F=60°,∴DF=FD′=3•tan30°=3,∴D(3,4),D′(﹣3,4),∴直线CD的解析式为y=x+,或y=﹣x+.(3)如图3中,∵点M、N的“相关等腰三角形”为直角三角形,∴直线MN与x轴的夹角为45°,可以假设直线MN的解析式为y=﹣x+b,当直线与⊙O相切于点M时,易知b=±2,∴直线MN的解析式为y=﹣x+2或y=﹣x﹣2,由,解得或,∴N(﹣1,3),N′(3,1),由解得或,∴N1(﹣3,1),N2(1,﹣3),观察图象可知满足条件的点N的横坐标的取值范围为:﹣3≤x N≤﹣1或1≤x N≤3.【点评】本题考查反比例函数综合题、一次函数的应用、等边三角形的性质、等腰直角三角形的性质、“相关等腰三角形”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.2019-2020学年九上数学期末模拟试卷含答案本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

江苏省扬州市第一学期九年级数学期末试卷(含解析)

江苏省扬州市第一学期九年级数学期末试卷(含解析)

江苏省扬州市第一学期九年级数学期末试卷(含解析)一、选择题1.若将二次函数2y x 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得图象对应函数的表达式为( )A .2(2)2y x =++B .2(2)2y x =--C .2(2)2y x =+-D .2(2)2y x =-+2.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴 D .圆的对称中心是它的圆心 3.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高4.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .6 5.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .26.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 7.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-18.如图,点A 、B 、C 都在⊙O 上,若∠ABC =60°,则∠AOC 的度数是( )A .100°B .110°C .120°D .130°9.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个10.二次函数y =()21x ++2的顶点是( ) A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2)11.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOB =40°,弦BC 的长等于半径,则∠ADC的度数等于( )A .50°B .49°C .48°D .47°12.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似13.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( ) A .点M 在⊙C 上B .点M 在⊙C 内C .点M 在⊙C 外D .点M 不在⊙C 内14.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③ 15.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题16.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .17.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.18.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .19.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .20.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;21.已知关于x 的一元二次方程x 2+mx+n=0的两个实数根分别为x 1=-1,x 2=2 ,则二次函数y=x 2+mx+n 中,当y <0时,x 的取值范围是________;22.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.23.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .24.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.25.方程22x x =的根是________.26.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.27.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.28.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).29.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.30.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题31.二次函数y =ax 2+bx +c 中的x ,y 满足下表x … -1 0 1 3 … y…31…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质: (1) ; (2) ; (3) .32.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E . (1)求∠DAC 的度数; (2)若AC =6,求BE 的长.33.如图1,在平面直角坐标系中,已知抛物线25y ax bx =++与x 轴交于()10A -,,()B 5,0两点,与y 轴交于点C .(1)求抛物线的函数表达式;(2)若点P 是位于直线BC 上方抛物线上的一个动点,求△BPC 面积的最大值; (3)若点D 是y 轴上的一点,且以B,C,D 为顶点的三角形与ABC 相似,求点D 的坐标;(4)若点E 为抛物线的顶点,点F (3,a )是该抛物线上的一点,在x 轴、y 轴上分别找点M 、N ,使四边形EFMN 的周长最小,求出点M 、N 的坐标.34.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒).①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.35.如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD ADA B B D A D ==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.四、压轴题36.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数; (2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由. ②若线段AD EC =,求ab的值. 37.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长. 38.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l 于点F.(1)①依题意补全图形. ②求证:∠OFC=∠ODC . (2)连接FB ,若B 是OA 的中点,O 的半径是4,求FB 的长.39.已知抛物线y =﹣14x 2+bx +c 经过点A (4,3),顶点为B ,对称轴是直线x =2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标; (ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由.40.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据抛物线的平移规律:上加下减,左加右减解答即可. 【详解】 解:将2yx 的图象先向左平移2个单位长度,再向下平移2个单位长度,则所得二次函数的表达式为:2(2)2y x =+-. 故选:C. 【点睛】本题考查了抛物线的平移,属于基本知识题型,熟练掌握抛物线的平移规律是解题的关键.2.C解析:C 【解析】 【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大3.A解析:A【解析】【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.4.C解析:C【解析】【分析】如图,作直径BD,连接CD,根据圆周角定理得到∠D=∠BAC=30°,∠BCD=90°,根据直角三角形的性质解答.【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.5.C解析:C 【解析】 【分析】根据根与系数的关系即可求出αβ+的值. 【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C . 【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=ba-是解决此题的关键. 6.D解析:D 【解析】 【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围. 【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x =∵15x << ∴54t -<≤ 故答案为D . 【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.7.C解析:C 【解析】 【分析】根据因式分解法,可得答案.【详解】解:2x x=,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.8.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC和∠AOC所对的弧为AC,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 10.C解析:C【解析】【分析】因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21x++2的顶点坐标.【详解】解:∵二次函数y=()21x++2是顶点式,∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.11.A解析:A【解析】【分析】连接OC,根据等边三角形的性质得到∠BOC=60°,得到∠AOC=100°,根据圆周角定理解答.【详解】连接OC,由题意得,OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=40°,∴∠AOC=100°,由圆周角定理得,∠ADC=∠AOC=50°,故选:A.【点睛】本题考查的是圆周角定理,等边三角形的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.13.A解析:A【解析】【分析】根据题意可求得CM的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得2268 ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1,∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左侧;当a 与b 异号时(即ab <0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△=b 2-4ac 决定:△>0时,抛物线与x 轴有2个交点;△= 0时,抛物线与x 轴有1个交点;△<0时,抛物线与x 轴没有交点. 15.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y =(x ﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A .【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h )2+k ,顶点坐标为(h ,k ),对称轴为直线x=h ,难度不大.二、填空题16.6;【解析】解:设圆的半径为x ,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l=(弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 17.y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解析:y=x2+2【解析】分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为y=x2+2.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD,∴AB BD EC CD=,即BD EC ABCD⨯=,解得:AB=1205060⨯=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.19.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 20.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】22=+﹣,=--h t t t1266(1)6∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.21.-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围. 【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),解析:-1<x<2【解析】【分析】根据方程的解确定抛物线与x轴的交点坐标,即可确定y<0时,x的取值范围.【详解】由题意得:二次函数y=x2+mx+n与x轴的交点坐标为(-1,0),(2,0),>,开口向上,∵a=10∴y<0时,x的取值范围是-1<x<2.【点睛】此题考查二次函数与一元二次方程的关系,函数图象与x轴的交点横坐标即为一元二次方程的解,掌握两者的关系是解此题的关键.22.【解析】【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,【解析】【分析】在OA上取'C使'OC OC=,得'OPC OQC≅,则CQ=C'P,根据点到直线的距离垂线段最短可知当'PC⊥AB时,CP最小,由相似求出C'P的最小值即可.【详解】解:如图,在OA上取'C使'OC OC=,∵90AOC POQ∠=∠=︒,∴'POC QOC∠=∠,在△'POC和△QOC中,''OP OQPOC QOCOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△'POC≌△QOC(SAS),∴'PC QC=∴当'PC最小时,QC最小,过'C点作''C P⊥AB,∵直线l:28y x=+与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵'4OC OC OB===,∴22228445AB OA OB++=''4AC OA OC=-=.∵'''OB C Psin BAOAB AC∠==,''445C P=,∴4''55C P=∴线段CQ455455【点睛】本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.23.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=.147考点:概率公式.24.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n 个数字的个数为:1+2+3+…+n =(1)2n n +, ∵当n =63时,前63行共有63642⨯=2016个数字,2020﹣2016=4, ∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.25.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.26.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 27.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2). 解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 28.【解析】【分析】根据勾股定理求得OB ,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S =lr ,求得答案即可.【详解】解:∵AO =8米,AB =10米,∴OB =6米,∴圆锥的解析:60【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.29.【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相解析:67【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP =∠ACQ ,且AC =BC ,CQ =PC ,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°= ∴BF =4,∴BD ,∵△CPQ 是等边三角形,∴S △CPQ =4CP 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD=, ∴6BP =,∴BP ,∴AQ =BP =7, ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD =, ∴6AE =,∴AE ,∴QE =AQ−AE =7.. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键.30.2+【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点解析:【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=352AB,BC=352AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC x,则CD=AB﹣AD﹣BC=x﹣x=1,解得:x=故答案为:【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.三、解答题31.(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x<1时,y随x的增大而增大【解析】【分析】根据表格中数据,可得抛物线与x轴交点坐标,与y轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.【详解】解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3∴该函数三条不同的性质为:(1)抛物线与x轴交于点(-1,0)和(3,0);与y轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x <1时,y 随x 的增大而增大【点睛】本题考查二次函数性质,数形结合思想解题是本题的解题关键.32.(1)30°;(2)33【解析】【分析】(1)由题意证明△CDE ≌△COE ,从而得到△OCD 是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得DE=3,然后根据题意求得OD=2DE=23,直径BD=2OD=43,从而使问题得解.【详解】 解:连接OA,OC∵弦AC 垂直平分OD∴DE=OE ,∠DEC=∠OEC=90°又∵CE=CE∴△CDE ≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD 是等边三角形∴∠DOC=60°∴∠DAC =30°(2)∵弦AC 垂直平分OD∴AE=12AC=3 又∵由(1)可知,在Rt △DAE 中,∠DAC =30°∴tan 30DE AE =,即33DE =∴3∵弦AC 垂直平分OD∴OD=2DE=23 ∴直径BD=2OD=43∴BE=BD-DE=43-3=33【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.33.(1)245y x x =-++;(2)△BPC 面积的最大值为1258 ;(3)D 的坐标为(0,-1)或(0,-103);(4)M (1117,0),N (0,115) 【解析】【分析】(1)抛物线的表达式为:y=a (x+1)(x-5)=a (x 2-4x-5),即-5a=5,解得:a=-1,即可求解; (2)利用S △BPC =12×PH×OB=52(-x 2+4x+5+x-5)=12(x-52)2+1258,即可求解; (3)B 、C 、D 为顶点的三角形与△ABC 相似有两种情况,分别求解即可; (4)作点E 关于y 轴的对称点E′(-2,9),作点F (2,9)关于x 轴的对称点F′(3,-8),连接E′、F′分别交x 、y 轴于点M 、N ,此时,四边形EFMN 的周长最小,即可求解.【详解】解:(1)把()1,0A -,()5,0B 分别代入25y ax bx =++得:0=502555a b a b -+⎧⎨=++⎩ ∴14a b =-⎧⎨=⎩∴抛物线的表达式为:245y x x =-++.(2)如图,过点P 作PH ⊥OB 交BC 于点H令x =0,得y =5∴C (0,5),而B (5,0)∴设直线BC 的表达式为:y kx b =+∴505b k b =⎧⎨=+⎩∴15k b =-⎧⎨=⎩∴5y x =-+设245P m,m m -++(),则5H m,m -+()∴224555PH m m m m m =-+++-=-+ ∴21552PBC Sm m =⨯⨯-+() ∴255125228PBC S m =--+() ∴△BPC 面积的最大值为1258. (3)如图,∵ C (0,5),B (5,0)∴OC =OB ,∴∠OBC =∠OCB =45°∴AB =6,BC =52要使△BCD 与△ABC 相似则有AB BC BC CD =或AB CD BC BC= ①当AB BC BC CD =时 5252CD= ∴253CD =则10 3OD=∴D(0,103-)② 当AB CDBC BC=时,CD=AB=6,∴D(0,-1)即:D的坐标为(0,-1)或(0,-103)(4)∵245y x x=-++229y x+=--()∵E为抛物线的顶点,∴E(2,9)如图,作点E关于y轴的对称点E'(﹣2,9),∵F(3,a)在抛物线上,∴F(3,8),∴作点F关于x轴的对称点F'(3,-8),则直线E' F'与x轴、y轴的交点即为点M、N 设直线E' F'的解析式为:y mx n=+则9283m nm n=-+⎧⎨-=+⎩∴175115mn⎧=-⎪⎪⎨⎪=⎪⎩。

2019届江苏省扬州市九年级上学期期末数学试卷【含答案及解析】

2019届江苏省扬州市九年级上学期期末数学试卷【含答案及解析】

2019届江苏省扬州市九年级上学期期末数学试卷【含答案及解析】2019届江苏省扬州市九年级上学期期末数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________⼀、选择题1. ⼀元⼆次⽅程x2=2x的解是()A.x=2 B.x1=0,x2=2 C.x1=0,x2=﹣2 D.此⽅程⽆解2. 下列关于x的⽅程有实数根的是()A.x2﹣x+1=0 B.x2+x+1=0 C.x2﹣x﹣1=0 D.(x﹣1)2+1=03. 已知抛物线y=(m+1)x2+2的顶点是此抛物线的最⾼点,那么m的取值范围是()A.m≠0 B.m≠﹣1 C.m>﹣1 D.m<﹣14. 如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为()A.40° B.50° C.80° D.100°5. 如图,点A、B、C、D、E、F、G、H、K都是7×8⽅格纸中的格点,为使△DEM∽△ABC,则点M应是F、G、H、K四点中的()A.F B.G C.H D.K6. 如果给定数组中每⼀个数都加上同⼀个⾮零常数,则数据的()A.平均数不变,⽅差不变B.平均数改变,⽅差改变C.平均数改变,⽅差不变D.平均数不变,⽅差改变7. 如图,⼀个半径为r(r<1)的圆形纸⽚在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸⽚不能接触到的部分的⾯积是()A.πr2 B. C.r2 D.r28. 如图,点C是以点O为圆⼼,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的⾯积为y,则下列图象中,能表⽰y与x的函数关系的图象⼤致是()A. B. C. D.⼆、填空题9. 如果⼆次函数y=(m﹣1)x2+5x+m2﹣1的图象经过原点,那么m= .10. 为解决群众看病难的问题,⼀种药品连续两次降价,每盒价格由原来的60元降⾄48.6元.若平均每次降价的百分率是x,则关于x的⽅程是.11. ⼩明推铅球,铅球⾏进⾼度y(m)与⽔平距离x(m)之间的关系为y=﹣+3,则⼩明推铅球的成绩是 m.12. 某⼗字路⼝的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13. 在⼆次函数y=﹣x2+bx+c中,函数y与⾃变量x的部分对应值如下表:14. x﹣3﹣2﹣1123456y﹣14﹣7﹣22mn﹣7﹣14﹣23td15. 已知线段a=2cm,b=8cm,那么线段a和b的⽐例中项为 cm.16. 如图,AB是⊙O的直径,C是⊙O上的⼀点,OD⊥BC于点D,AC=6,则OD的长为.17. 如图,如果△ABC与△DEF都是正⽅形⽹格中的格点三⾓形(顶点在格点上),那么S△DEF:S△ABC的值为.18. 如图,在平⾯直⾓坐标系xOy中,点O是边长为2的正⽅形ABCD的中⼼.抛物线与正⽅形ABCD有公共点,则c的取值范围为.19. 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=,D是线段BC上的⼀个动点,以AD为直径画⊙O分别交AB、AC于E、F,连接EF,则线段EF长度的最⼩值为.三、解答题20. (1)解⽅程:x(x﹣3)﹣4(3﹣x)=0;(2)利⽤配⽅法求抛物线y=﹣x2+4x﹣3的对称轴和顶点坐标.21. 在“爱满扬州”慈善⼀⽇捐活动中,学校团总⽀为了了解本校学⽣的捐款情况,随机抽取了50名学⽣的捐款数进⾏了统计,并绘制成统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)求这50名同学捐款的平均数;(3)该校共有600名学⽣参与捐款,请估计该校学⽣的捐款总数.22. 现有⼩莉,⼩罗,⼩强三个⾃愿献⾎者,两⼈⾎型为O型,⼀⼈⾎型为A型.若在三⼈中随意挑选⼀⼈献⾎,两年以后⼜从此三⼈中随意挑选⼀⼈献⾎,试求两次所抽⾎的⾎型均为O型的概率.(要求:⽤列表或画树状图的⽅法解答)23. 在⼀幅长8分⽶,宽6分⽶的矩形风景画(如图①)的四周镶宽度相同的⾦⾊纸边,制成⼀幅矩形挂图(如图②).如果要使整个挂图的⾯积是80平⽅分⽶,求⾦⾊纸边的宽.24. 如图,已知△ABC中,CE⊥AB于E,BF⊥AC于F,在不添加字母的情况下,找出图中所有的相似三⾓形,并证明其中⼀组.25. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.26. 某公司为⼀种新型电⼦产品在该城市的特约经销商,已知每件产品的进价为40元,该公司每年销售这种产品的其他开⽀(不含进货价)总计100万元,在销售过程中得知,年销售量y(万件)与销售单价x(元)之间存在如表所⽰的函数关系,并且发现y是x 的⼀次函数.27. 销售单价x(元)50607080销售数量y(万件)5.554.54td28. 定义符号min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.如:min{1,﹣2}=﹣2,min{﹣1,2}=﹣1.(1)求min{x2﹣1,﹣2};(2)已知min{x2﹣2x+k,﹣3}=﹣3,求实数k的取值范围;(3)已知当﹣2≤x≤3时,min{x2﹣2x﹣15,m(x+1)}=x2﹣2x﹣15.直接写出实数m的取值范围.29. 如图,在△ABC中,点D为BC边的中点,以点D为顶点的∠EDF的两边分别与边AB,AC交于点E,F,且∠EDF与∠A互补.(1)如图1,若AB=AC,且∠A=90°,则线段DE与DF有何数量关系?请直接写出结论;(2)如图2,若AB=AC,那么(1)中的结论是否还成⽴?若成⽴,请给出证明;若不成⽴,请说明理由;(3)如图3,若AB:AC=m:n,探索线段DE与DF的数量关系,并证明你的结论.30. 如图,在平⾯直⾓坐标系中,顶点为(4,1)的抛物线交y轴于点A,交x轴于B,C 两点(点B在点C的左侧),已知C点坐标为(6,0).(1)求此抛物线的解析式;(2)已知点P是抛物线上的⼀个动点,且位于A,C两点之间.问:当点P运动到什么位置时,△PAC的⾯积最⼤?求出△PAC的最⼤⾯积;(3)连接AB,过点B作AB的垂线交抛物线于点D,以点C为圆⼼的圆与抛物线的对称轴l相切,先补全图形,再判断直线BD与⊙C 的位置关系并加以证明.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】。

扬州市2020版九年级上学期期末数学试卷(I)卷

扬州市2020版九年级上学期期末数学试卷(I)卷

扬州市2020版九年级上学期期末数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、精心选一选 (共10题;共20分)1. (2分) (2017九上·河东期末) 用配方法解下列方程时,配方正确的是()A . 方程x2﹣6x﹣5=0,可化为(x﹣3)2=4B . 方程y2﹣2y﹣2015=0,可化为(y﹣1)2=2015C . 方程a2+8a+9=0,可化为(a+4)2=25D . 方程2x2﹣6x﹣7=0,可化为2. (2分)下列五幅图是世博会吉祥物照片,质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则抽到2010年上海世博会吉祥物照片的概率是()A .B .C .D .3. (2分)(2017·胶州模拟) 如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,作DE∥AB 交⊙O于E,连接AE,若∠C=40°,则∠E等于()A . 40°B . 50°C . 20°D . 25°4. (2分) (2019九上·龙泉驿月考) 已知点、B(-1,y2)、C(3,y3)都在反比例函数的图象上,则y1、y2、y3的大小关系是()A . y1<y2<y3B . y3<y2<y1C . y3<y1<y2D . y2<y1<y35. (2分) (2020九上·北仑期末) 如图,△ABC中∠A=60°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的三角形与△ABC不相似的是()A .B .C .D .6. (2分) (2018九上·北京期末) 如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD 的长为()A .B .C .D .7. (2分)(2011·嘉兴) 两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是()A . 两个外离的圆B . 两个外切的圆C . 两个相交的圆D . 两个内切的圆8. (2分)关于抛物线y=(x﹣2)2+1,下列说法正确的是()A . 开口向上,顶点坐标(﹣2,1)B . 开口向下,对称轴是直线x=2C . 开口向下,顶点坐标(2,1)D . 当x>2时,函数值y随x值的增大而增大9. (2分)如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A . 110°B . 80°C . 90°D . 100°10. (2分) (2017九上·红山期末) 如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1 ,正八边形外侧八个扇形(有阴影部分)面积之和为S2 ,则 =()A .B .C .D . 1二、细心填一填 (共8题;共8分)11. (1分)(2016·新疆) 某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果重量的月平均增长率为x,根据题意可列方程为________.12. (1分)在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有________ 个.13. (1分)如图是一个用来盛爆米花的圆锥形纸杯,纸杯开口圆的直径EF长为6 cm,母线OE(OF)长为9cm.在母线OF上的点A处有一块爆米花残渣,且FA = 3cm.在母线OE上的点B处有一只蚂蚁,且EB = 1cm.这只蚂蚁从点B处沿圆锥表面爬行到A点,则爬行的最短距离为________cm.14. (1分)如图,DC∥AB,OA=2OC,则△OCD与△OAB的位似比是________15. (1分)如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,且AC=CD,∠ACD=120°,CD是⊙O的切线:若⊙O的半径为2,则图中阴影部分的面积为________.16. (1分) (2016九上·苍南月考) 已知抛物线开口向下,那么a的取值范围是________.17. (1分) (2019九上·揭西期末) 双曲线、在第一象限的图象如图,过y1上的任意一点A,作轴的平行线交y2于B,交y轴于C,若,则 ________.18. (1分)(2020·泰安) 如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.,斜坡长,斜坡的坡比为12∶5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿至少向右移________ 时,才能确保山体不滑坡.(取)三、解答题 (共6题;共40分)19. (10分) (2019九上·赣榆期末) 在一个不透明的袋子中,装有除颜色外都完全相同的4个红球和若干个黄球.(1)如果从袋中任意摸出一个球是红球的概率为,那么袋中有黄球多少个?(2)在(1)的条件下如果从袋中摸出一个球记下颜色后放回,再摸出一个球,用列表或画树状图的方法求出两次摸出不同颜色球的概率.20. (5分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE CD,垂足为E,DA平分BDE.(1)求证:AE是⊙O的切线;(2)若DBC=,DE=1cm,求BD的长.21. (5分) (2017九上·鄞州月考) 如图所示,点D在△ABC的AB边上,AD=1,BD=2,AC= .求证:△ACD∽△ABC.22. (5分)(2018·龙港模拟) 如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,中柱CD =1米,∠A=27°,求跨度AB的长(精确到0.01米).23. (5分) (2016九上·海淀期中) 表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣10123…﹣y…m ﹣1﹣2﹣12…(1)二次函数图象的开口向________,顶点坐标是________,m的值为________;(2)当x>0时,y的取值范围是________;(3)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是________.24. (10分)(2017·莱西模拟) 为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.参考答案一、精心选一选 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、细心填一填 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共40分)19-1、19-2、20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、。

扬州市九年级上学期期末数学试卷 (解析版)

扬州市九年级上学期期末数学试卷 (解析版)

扬州市九年级上学期期末数学试卷 (解析版)一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=02.sin 30°的值为( ) A .3B .32C .12D .223.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76° 4.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( ) A .k >-1 B .k≥-1 C .k <-1 D .k≤-1 5.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .27-1 6.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( ) A .(0,﹣1) B .(﹣2,﹣1) C .(2,﹣1) D .(0,1)7.方程(1)(2)0x x --=的解是( )A .1x =B .2x =C .1x =或2x =D .1x =-或2x =-8.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS 3 ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④9.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10 B .10,9 C .8,9 D .9,10 10.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2 B .2 C .-1 D .1 11.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .18012.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差 B .众数 C .平均数 D .中位数 13.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5)14.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠DB .∠C =∠EC .AD ABAE AC= D .AC BCAE DE= 15.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离 B .相切 C .相交 D .无法判断二、填空题16.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.17.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.18.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)19.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;20.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.21.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.22.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.23.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.24.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.25.二次函数2y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空)26.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).27.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).28.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.29.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm . 30.已知234x y z x z y+===,则_______ 三、解答题31.如图1,AB 、CD 是圆O 的两条弦,交点为P .连接AD 、BC .OM ⊥ AD ,ON ⊥BC ,垂足分别为M 、N.连接PM 、PN.图1 图2 (1)求证:△ADP ∽△CBP ;(2)当AB ⊥CD 时,探究∠PMO 与∠PNO 的数量关系,并说明理由; (3)当AB ⊥CD 时,如图2,AD=8,BC=6, ∠MON=120°,求四边形PMON 的面积. 32.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ;(3)△A 2B 2C 2的面积是 平方单位.33.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF 交BD 于点G ,连接BE 交于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.34.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B3为半径画⊙B,若直线3与⊙B的“最美三3B的横坐标Bx的取值范围.cm,那么这个三角形的35.如果一个直角三角形的两条直角边的长相差2cm,面积是242两条直角边分别是多少?四、压轴题36.在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形,,都是点A,B,C的外延矩形,矩形是点A,B,C的最佳外延矩形.(1)如图1,已知A(-2,0),B(4,3),C(0,).①若,则点A,B,C的最佳外延矩形的面积为;②若点A,B,C的最佳外延矩形的面积为24,则的值为;(2)如图2,已知点M(6,0),N(0,8).P(,)是抛物线上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标的取值范围;(3)如图3,已知点D(1,1).E(,)是函数的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.37.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).38.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线在....).时,求t的取值范围.(直接写出答案即可)....x.轴上方的部分围成的图形中............(.包括边界39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.3.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.4.C解析:C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.5.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2210AC AB BC=+= ,∵=++ABC AOC BOC AOB S S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71- .故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.6.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C .【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.7.C解析:C【解析】【分析】方程左边已经是两个一次因式之积,故可化为两个一次方程,解这两个一元一次方程即得答案.【详解】解:∵(1)(2)0x x --=,∴x -1=0或x -2=0,解得:1x =或2x =.故选:C.【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式解方程的方法是关键.8.C解析:C【解析】【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.设AB CD acm ==,BC AD bcm ==, 由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46a b =⎧⎨=⎩,所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =,5 2.5k ∴=, 2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.9.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D .考点:众数;中位数.10.D解析:D【解析】【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x 2+bx-6=0得4+2b-6=0,解得b=1.故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π, ∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】 此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.12.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 14.D解析:D【解析】【分析】先求出∠DAE =∠BAC ,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE =∠2+∠BAE ,∴∠DAE =∠BAC ,A 、添加∠B =∠D 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;B 、添加∠C =∠E 可利用两角法:有两组角对应相等的两个三角形相似可得△ABC ∽△ADE ,故此选项不合题意;C 、添加AD AB AE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D 、添加AC BC AE DE =不能证明△ABC ∽△ADE ,故此选项符合题意; 故选:D .【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.15.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l 和⊙O 相交,则d <r ;②直线l 和⊙O 相切,则d=r ;③直线l 和⊙O 相离,则d >r (d 为直线与圆的距离,r 为圆的半径).因此,∵⊙O 的半径为6,圆心O 到直线l 的距离为5,∴6>5,即:d <r .∴直线l 与⊙O 的位置关系是相交.故选C .二、填空题16.相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的解析:相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的距离为2,∵4>2,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d <r ,则直线与圆相交;若d>r ,则直线与圆相离;若d=r ,则直线与圆相切.17.x1=-12,x2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程的解是,(a ,m ,b 均为常数,a≠0),∴方程变形为,即解析:x 1=-12,x 2=8【解析】【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=8,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=8.故答案为x 1=-12,x 2=8.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算.18.()【解析】设它的宽为xcm .由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm .由题意得:20x =. ∴10x = .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之,近似值约为0.618. 19.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.20.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 21.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的解析:410 3【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,242xx=-,解得:x=4 3∴22410AD DF+=410.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,22.16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠C解析:16【解析】【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,==,DE AB220解得OA=16.故答案为16.23.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 24.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设AC =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得BD ==,因为BC =,所以BC x =+=x 2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.25.>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数的图像开口方向向上,所以有>0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次解析:>【解析】【分析】根据题意直接利用二次函数的图象与a 的关系即可得出答案.【详解】解:因为二次函数2y ax bx c =++的图像开口方向向上,所以有a >0.故填>.【点睛】本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0. 26.【解析】【分析】根据勾股定理求得OB ,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S =lr ,求得答案即可.【详解】解:∵AO=8米,AB =10米,∴OB=6米,∴圆锥的解析:60π【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.27.乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2 >S 乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【解析:乙【解析】【分析】根据方差越小数据越稳定即可求解.【详解】解:因为甲、乙两同学近期6次数学单元测试成绩的平均分相同且S甲2>S乙2,所以乙的成绩数学测试成绩较稳定.故答案为:乙.【点睛】本题考查方差的性质,方差越小数据越稳定.28.【解析】【分析】△ABF和△ABE等高,先判断出,进而算出,△ABF和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD∥BC,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高, ∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF ,∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.29.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.30.2【解析】【分析】设,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z.三、解答题31.(1)证明见解析;(2)∠PMO=∠PNO ,理由见解析;(3)S 平行四边形PMON 【解析】【分析】(1)利用同弧所对的圆周角相等即可证明相似,(2)由OM ⊥ AD ,ON ⊥BC 得到M 、N 为AB 、CD 的中点,再由直角三角形斜边中线等于斜边一半即可解题,(3)由三角形中位线性质得∠QBC=90°,进而证明∠QCB=∠PBD,得到四边形MONP 为平行四边形即可解题.【详解】(1)因为同弧所对的圆周角相等,所以∠A=∠C, ∠D=∠B,所以△ADP ∽△CBP .(2)∠PMO=∠PNO因为OM ⊥ AD ,ON ⊥BC ,所以点M 、N 为AB 、CD 的中点,又AB ⊥CD ,所以PM=12AD,PN=12BC , 所以,∠A=∠APM ,∠C=∠CPN ,所以∠AMP=∠CNP ,得到∠PMO 与∠PNO.(3)连接CO 并延长交圆O 于点Q ,连接BD.。

江苏省扬州市邗江区2019-2020学年九年级上学期期末数学试题

江苏省扬州市邗江区2019-2020学年九年级上学期期末数学试题

江苏省扬州市邗江区2019-2020学年九年级上学期期末数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是()A.B.C.D.2. 用配方法解方程,变形后的结果正确的是( ) A.B.C.D.3. 如图,的直径垂直于弦,垂足是点,,,则的长为( )A.B.C.6 D.124. 把函数的图象,经过怎样的平移变换以后,可以得到函数的图象()A.向左平移个单位,再向下平移个单位B.向左平移个单位,再向上平移个单位C.向右平移个单位,再向上平移个单位D.向右平移个单位,再向下平移个单位5. 学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹92 80 90若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.896. 如图,BC是的直径,A,D是上的两点,连接AB,AD,BD,若,则的度数是()A.B.C.D.7. 某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8. 如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2二、填空题9. 甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)10. 如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.11. 如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=_____.12. 已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值x …﹣1 0 1 2 …y …0 3 4 3 …13. 一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为,则m=__.14. 某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.15. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径,扇形的圆心角,则该圆锥的母线长为___.16. 在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.17. 像=x这样的方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x1=3时,=3满足题意;当x2=﹣1时,=﹣1不符合题意;所以原方程的解是x=3.运用以上经验,则方程x+=1的解为_____.18. 如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY 上移动,其中AB=10,那么点O到顶点A的距离的最大值为_____.三、解答题19. 解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=020. 关于x的方程有实数根,且m为正整数,求m的值及此时方程的根.21. 为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 9 9 97 91 88 90 97 95 90 95 88 (1)根据上述数据,将下列表格补充完整.成绩/88 89 90 91 95 96 97 98 99 分学生2 13 2 1 2 1 人数平均数众数中位数93 91得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.22. 中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.23. 如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O于点A.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.24. 2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?25. 如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.26. 超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?27. 如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.28. 如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).。

2019-2020学年江苏省扬州市江都区九年级(上)期末数学试卷

2019-2020学年江苏省扬州市江都区九年级(上)期末数学试卷

2019-2020学年江苏省扬州市江都区九年级(上)期末数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)已知α为锐角,且sinα=32,则α的度数为( )A.30°B.45°C.60°D.75°2.(3分)已知a3=b4(a≠0,b≠0),下列变形错误的是( )A.ab=34B.3a=4b C.ba=43D.4a=3b3.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A.13B.512C.12D.14.(3分)如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A是OA'的中点,△ABC的面积是6,则△A'B'C'的面积为( )A.9B.12C.18D.245.(3分)若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( )A.3cm B.6cm C.12cm D.24cm6.(3分)如图,CD为⊙O的直径,弦AB⊥CD于点E,DE=2,AB=8,则⊙O的半径为( )A.5B.8C.3D.107.(3分)已知抛物线y=ax2+2x﹣1与x轴没有交点,那么该抛物线的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在Rt△ABC中,AC=BC,AB=52,以AB为斜边向上作Rt△ABD,∠ADB =90°.连接CD,若CD=7,则AD的长度为( )A.32或42B.3或4C.22或42D.2或4二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)抛物线y=x2+8x+6的顶点坐标为 .10.(3分)⊙O的半径为4,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是 .11.(3分)某同学想要计算一组数据105,103,94,92,109,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,﹣6,﹣8,9,﹣15,记这组新数据的方差为S12,则S02 S12(填“>”、“=”或“<”).12.(3分)已知线段AB=4厘米,点P是线段AB的黄金分割点(AP>BP),那么线段AP = 厘米.(结果保留根号)13.(3分)如图,四边形ABCD是半圆的内接四边形,AB是直径,CD=CB.若∠C=100°,则∠ABC的度数为 .14.(3分)如图,将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为 .15.(3分)已知三角形的三边长度分别为5,12,13,则它的内切圆的半径r= .16.(3分)飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是s=60t﹣1.5t2.飞机着陆后滑行 米飞机才能停下来.17.(3分)将边长分别为2cm,3cm,4cm的三个正方形按如图所示的方式排列,则图中阴影部分的面积为 cm2.18.(3分)如图,四边形的两条对角线AC、BD相交所成的锐角为60°,当AC+BD=8时,四边形ABCD的面积的最大值是 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)解方程:x2+6x﹣7=0(2)计算:4sin45°―8+(3―1)0﹣tan30°20.已知关于x的方程x2+mx+m﹣2=0.(1)求证:不论m取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求该方程的另一根.21.下表是某地连续5天的天气情况(单位:℃):日期1月1日1月2日1月3日1月4日1月5日最高气温57684最低气温﹣20﹣213(1)1月1日当天的日温差为 ℃;(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.22.某校九年级(2)班A、B、C、D四位同学参加了校篮球队选拔.(1)若从这四人中随机选取一人,恰好选中B参加校篮球队的概率是 ;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B、C两位同学参加校篮球队的概率.23.如图,在△ABC中,AD是高.矩形EFGH的顶点E、H分别在边AB、AC上,FG在边BC上,BC=6,AD=4,EF=23EH.求矩形EFGH的面积.24.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?25.如图,AB=BC,以BC为直径作⊙O,AC交⊙O于点E,过点E作EG⊥AB于点F,交CB的延长线于点G.(1)求证:EG是⊙O的切线;(2)若GF=23,GB=4,求⊙O的半径.26.在平面直角坐标系中,已知抛物线y=﹣x2+4x.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线y=﹣x2+4x的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x轴相交于A、B两点(A 在B左侧),与y轴相交于点C,连接BC.若点P是直线BC上方抛物线上的一点,求△PBC的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q,使△QBC是以BC为直角边的直角三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,说明理由.27.如图,在矩形纸片ABCD中,已知AB=2,BC=6,点E在边CD上移动,连接AE,将多边形ABCE沿AE折叠,得到多边形AB'C'E,点B、C的对应点分别为点B',C'.(1)连接AC.则AC= ,∠DAC= °;(2)当B'C'恰好经过点D时,求线段CE的长;(3)在点E从点C移动到点D的过程中,求点C'移动的路径长.28.已知二次函数y=18x2+bx+c(b、c为常数)的图象经过点(0,﹣1)和点A(4,1).(1)求b、c的值;(2)如图1,点C(10,m)在抛物线上,点M是y轴上的一个动点,过点M平行于x 轴的直线l平分∠AMC,求点M的坐标;(3)如图2,在(2)的条件下,点P是抛物线上的一动点,以P为圆心、PM为半径的圆与x轴相交于E、F两点,若△PEF的面积为26,请直接写出点P的坐标.2019-2020学年江苏省扬州市江都区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)已知α为锐角,且sinα=32,则α的度数为( )A.30°B.45°C.60°D.75°【考点】特殊角的三角函数值.【答案】C【分析】根据sin60°=32解答即可.【解答】解:∵α为锐角,sinα=32,sin60°=32,∴α=60°.故选:C.2.(3分)已知a3=b4(a≠0,b≠0),下列变形错误的是( )A.ab=34B.3a=4b C.ba=43D.4a=3b【考点】等式的性质.【答案】B【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由a3=b4得,4a=3b,A、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;B、由等式性质不可以得到3a=4b,原变形错误,故这个选项符合题意;C、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;D、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;故选:B.3.(3分)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A.13B.512C.12D.1【考点】概率公式.【答案】C【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,依此列式计算即可求解.【解答】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到红灯的概率是P=3030+25+5=12.故选:C.4.(3分)如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A是OA'的中点,△ABC的面积是6,则△A'B'C'的面积为( )A.9B.12C.18D.24【考点】坐标与图形性质;位似变换.【答案】D【分析】根据位似变换的性质得出△ABC与△A′B′C′相似比为1:2,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点A 是OA'的中点,∴△ABC∽△A′B′C′,且相似比为1:2,∵△ABC的面积为6,∴△A′B′C′的面积为24,故选:D.5.(3分)若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( )A.3cm B.6cm C.12cm D.24cm【考点】圆锥的计算.【答案】C【分析】易得圆锥的母线长为12cm,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【解答】解:圆锥的侧面展开图的弧长为2π×24÷2=24π(cm),∴圆锥的底面半径为24π÷2π=12(cm),故选:C.6.(3分)如图,CD为⊙O的直径,弦AB⊥CD于点E,DE=2,AB=8,则⊙O的半径为( )A.5B.8C.3D.10【考点】勾股定理;垂径定理.【答案】A【分析】连接OA,由垂径定理得出AE=BE=4,设OA=r,知OE=r﹣2,根据OA2=AE2+OE2得到关于r的方程,解之可得答案.【解答】解:如图,连接OA,∵AB⊥CD,AB=8,∴AE=BE=4,设OA=r,∵DE=2,∴OE=r﹣2,由OA2=AE2+OE2得r2=(r﹣2)2+42,解得r=5,即⊙O的半径为5,故选:A.7.(3分)已知抛物线y=ax2+2x﹣1与x轴没有交点,那么该抛物线的顶点所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】二次函数的性质;抛物线与x轴的交点.【答案】D【分析】利用判别式的意义得到a≠0且△=22﹣4a(﹣1)<0,解得a<﹣1,再根据二次函数的性质得到抛物线的对称轴再y轴的右侧,而抛物线的开口向下,从而可判断该抛物线的顶点所在的象限.【解答】解:∵抛物线y=ax2+2x﹣1与x轴没有交点,∴a≠0且△=22﹣4a(﹣1)<0,解得a<﹣1,∵抛物线的对称轴为直线x=―22a=―1a>0,而抛物线的开口向下,∴该抛物线的顶点所在的象限是第四象限.故选:D.8.(3分)如图,在Rt△ABC中,AC=BC,AB=52,以AB为斜边向上作Rt△ABD,∠ADB =90°.连接CD,若CD=7,则AD的长度为( )A.32或42B.3或4C.22或42D.2或4【考点】全等三角形的判定与性质;等腰直角三角形.【答案】A【分析】如图1,延长DB至点E,使BE=AD,作CF⊥DE于点F,证明△CAD≌△CBE,可得CD=CE=7,∠ACD=∠BCE,得出△DCE为等腰直角三角形,求出DE=7 2,求出BF的长,则求出BE,可求出AD的长,若AD>BD时,如图2,同理可求出AD 的长.【解答】解:当AD<BD时,如图1,延长DB至点E,使BE=AD,作CF⊥DE于点F,∵Rt△ABC中,AC=BC,AB=52,∴AC=BC=5,∵∠ACB=∠ADB=90°,∴∠CAD+∠DBC=180°,∴∠CAD=∠CBE,在△CAD和△CBE中,{CA=CB∠CAD=∠CBEAD=BE,∴△CAD≌△CBE(SAS),∴CD=CE=7,∠ACD=∠BCE,∴∠DCE=∠ACB=90°,∴△DCE为等腰直角三角形,∴DE=72,∵CF⊥DE,∴DF=EF=CF=72 2,∵BC=5,∴BF=BC2―DF2=52―(722)2=22,∴BE=EF﹣BF=722―22=32,∴AD=BE=32,若AD>BD时,如图2,同理AD=BE=EF+BF=42.∴AD=32或42.故选:A.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)抛物线y=x2+8x+6的顶点坐标为 (﹣4,﹣10) .【考点】二次函数的性质.【答案】见试题解答内容【分析】先将题目的函数解析式化为顶点式,即可得到该抛物线的顶点坐标,本题得以解决.【解答】解:∵抛物线y=x2+8x+6=(x+4)2﹣10,∴该抛物线的顶点坐标为(﹣4,﹣10),故答案为:(﹣4,﹣10).10.(3分)⊙O的半径为4,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是 相交 .【考点】直线与圆的位置关系.【答案】见试题解答内容【分析】根据圆心O到直线l的距离小于半径即可判定直线l与⊙O的位置关系为相交.【解答】解:∵圆心O到直线l的距离是2,小于⊙O的半径为4,∴直线l与⊙O相交.故答案为:相交.11.(3分)某同学想要计算一组数据105,103,94,92,109,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,﹣6,﹣8,9,﹣15,记这组新数据的方差为S12,则S02 = S12(填“>”、“=”或“<”).【考点】算术平均数;方差.【答案】见试题解答内容【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【解答】解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,则S12=S02.故答案为:=.12.(3分)已知线段AB=4厘米,点P是线段AB的黄金分割点(AP>BP),那么线段AP = (25―2) 厘米.(结果保留根号)【考点】黄金分割.【答案】见试题解答内容【分析】根据黄金比值为5―12计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=5―12AB=25―2,故答案为:(25―2).13.(3分)如图,四边形ABCD是半圆的内接四边形,AB是直径,CD=CB.若∠C=100°,则∠ABC的度数为 50° .【考点】多边形;圆心角、弧、弦的关系;圆周角定理;圆内接四边形的性质.【答案】见试题解答内容【分析】连接AC,根据圆内接四边形的性质求出∠CAB=40°,根据圆周角定理得到∠ACB=90°,根据直角三角形的性质计算,得到答案.【解答】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠BCD=80°,∵CD=CB,∴∠DAC=∠CAB=40°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣40°=50°,故答案为:50°.14.(3分)如图,将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为 16 .【考点】正方形的性质;扇形面积的计算.【答案】见试题解答内容【分析】利用图形的周长不变得到DCB的长度为8,然后根据扇形的面积公式求解.【解答】解:∵边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形,∴DCB的长度为8,∴所得的扇形ABD的面积=12×4×8=16.故答案为:16.15.(3分)已知三角形的三边长度分别为5,12,13,则它的内切圆的半径r= 2 .【考点】勾股定理的逆定理;三角形的内切圆与内心.【答案】见试题解答内容【分析】根据勾股定理的逆定理推出∠C=90°,连接OE、OQ,根据圆O是三角形ABC 的内切圆,得到AE=AF,BQ=BF,∠OEC=∠OQC=90°,OE=OQ,推出正方形OECQ,设OE=CE=CQ=OQ=a,得到方程12﹣a+5﹣a=13,求出方程的解即可.【解答】解:∵AC2+BC2=25+144=169,AB2=169,∴AC2+BC2=AB2,∴∠C=90°,△ABC的内切圆与AC交于点E,与CB交于点Q,连接OE、OQ,∵圆O是三角形ABC的内切圆,∴AE=AF,BQ=BF,∠OEC=∠OQC=∠C=90°,OE=OQ,∴四边形OECQ是正方形,∴设OE=CE=CQ=OQ=a,∵AF+BF=13,∴12﹣a+5﹣a=13,∴a=2.故答案为:2.16.(3分)飞机着陆后滑行的距离s(单位:m)与滑行的时间t(单位:s)的函数关系式是s=60t﹣1.5t2.飞机着陆后滑行 600 米飞机才能停下来.【考点】二次函数的应用.【答案】见试题解答内容【分析】根据题意可以将s=60t﹣1.5t2化为顶点式,飞机滑行的最远距离也就是s取得的最大值,本题得以解决.【解答】解:s=60t﹣1.5t2=﹣1.5(t2﹣40t)=﹣1.5(t﹣20)2+600,∴当t=20时,s取得最大值,此时,s=600,即飞机着陆后滑行600米飞机才能停下来.故答案为:600.17.(3分)将边长分别为2cm,3cm,4cm的三个正方形按如图所示的方式排列,则图中阴影部分的面积为 133 cm2.【考点】相似三角形的判定与性质.【答案】见试题解答内容【分析】由题意得到三角形ABG与三角形ADE相似,三角形ACF与三角形ADE相似,由相似得比例求出GB与FC的长,由正方形面积减去直角梯形面积求出阴影部分面积即可.【解答】解:由题意得:△ABG∽△ADE,△ACF∽△ADE,∴BGED=ABAD,FCED=ACAD,∵AB=2cm,BC=3cm,CD=DE=4cm,∴GB=89(cm),FC=209(cm),∴S阴影=9―12×(89+209)×3=133(cm2)故答案为13 318.(3分)如图,四边形的两条对角线AC、BD相交所成的锐角为60°,当AC+BD=8时,四边形ABCD的面积的最大值是 43 .【考点】二次函数的最值;三角形的面积.【答案】见试题解答内容【分析】根据四边形面积公式,S=12AC×BD×sin60°,根据sin60°=32得出S=12x(8﹣x)×32,再利用二次函数最值求出即可.【解答】解:∵AC与BD所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD的面积S=12AC×BD×sin60°,设AC=x,则BD=8﹣x,所以S=12x(8﹣x)×32=―34(x﹣4)2+43,所以当x=4,S有最大值43.故答案为:43.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)解方程:x2+6x﹣7=0(2)计算:4sin45°―8+(3―1)0﹣tan30°【考点】实数的运算;零指数幂;解一元二次方程﹣因式分解法;特殊角的三角函数值.【答案】见试题解答内容【分析】(1)根据因式分解法即可求出答案.(2)根据锐角三角函数的定义以及零指数幂的定义即可求出答案.【解答】解:(1)∵x2+6x﹣7=0,∴(x+7)(x﹣1)=0,∴x1=﹣7,x2=1(2)原式=4×22―22+1―33=1―3320.已知关于x的方程x2+mx+m﹣2=0.(1)求证:不论m取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求该方程的另一根.【考点】根的判别式;根与系数的关系.【答案】见试题解答内容【分析】(1)由方程的各系数结合根的判别式可得出△=(m﹣2)2+4>0,由此即可证出结论;(2)将x=1代入原方程,得出关于m的一元一次方程,解方程求出m的值,将其代入原方程得出关于x的一元二次方程,结合根与系数的关系找出x1+x2=―ba=―12,由此即可得出方程的另一根.【解答】(1)证明:∵在关于x的方程x2+mx+m﹣2=0中:△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.(2)解:将x1=1代入方程x2+mx+m﹣2=0中得:1+m+m﹣2=0,解得:m=1 2.∴原方程为x2+12x―32=0,∴x1+x2=―ba=―12,∵x1=1,∴x2=―3 2.故若该方程的一个根为1,该方程的另一根为―3 2.21.下表是某地连续5天的天气情况(单位:℃):日期1月1日1月2日1月3日1月4日1月5日最高气温57684最低气温﹣20﹣213(1)1月1日当天的日温差为 7 ℃;(2)利用方差判断该地这5天的日最高气温波动大还是日最低气温波动大.【考点】方差.【答案】见试题解答内容【分析】(1)根据温差的公式求解即可;(2)根据方差的公式求解即可.【解答】解:(1)5﹣(﹣2)=7(℃).故1月1日当天的日温差为7℃;故答案为:7.(2)s日最高气温2=2,s日最低气温2=3.6,∴s日最高气温2<s日最低气温2,∴日最低气温波动大.22.某校九年级(2)班A、B、C、D四位同学参加了校篮球队选拔.(1)若从这四人中随机选取一人,恰好选中B参加校篮球队的概率是 14 ;(2)若从这四人中随机选取两人,请用列表或画树状图的方法求恰好选中B、C两位同学参加校篮球队的概率.【考点】概率公式;列表法与树状图法.【答案】见试题解答内容【分析】(1)直接根据概率公式即可得出答案;(2)根据题意列出图表得出所有等情况数和选中B、C两位同学参加校篮球队的情况数,再根据概率公式即可得出答案.【解答】解:(1)∵九年级(2)班A、B、C、D四位同学参加了校篮球队选拔,∴从这四人中随机选取一人,恰好选中B参加校篮球队的概率是1 4;故答案为:1 4;(2)列表格:A B C DA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共有12种等情况数,其中恰好选中B、C两位同学参加校篮球队的有2种,则P(B、C两位同学参加篮球队)=212=16.23.如图,在△ABC中,AD是高.矩形EFGH的顶点E、H分别在边AB、AC上,FG在边BC上,BC=6,AD=4,EF=23EH.求矩形EFGH的面积.【考点】矩形的性质;相似三角形的判定与性质.【答案】见试题解答内容【分析】设EF=2x,则EH=3x,利用相似三角形的性质解决问题即可.【解答】解:∵四边形EFGH是矩形∴EH∥FG∴△AEH∽△ABC∴AQAD=EHBC设EF=2x,则EH=3x∴4―2x4=3x6解得:x=1.所以EF=2,EH=3.∴S四边形EFGH=EF•EH=2×3=6.24.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?【考点】一元二次方程的应用.【答案】见试题解答内容【分析】设每件商品应降价x元时,该商店销售利润为1200元,根据题意列出方程即可求出答案.【解答】解:设每件商品应降价x元时,该商店销售利润为1200元.根据题意,得(70﹣30﹣x)(20+2x)=1200整理得:x2﹣30x+200=0,解这个方程得:x1=10,x2=20.所以,70﹣x=60或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.25.如图,AB=BC,以BC为直径作⊙O,AC交⊙O于点E,过点E作EG⊥AB于点F,交CB的延长线于点G.(1)求证:EG是⊙O的切线;(2)若GF=23,GB=4,求⊙O的半径.【考点】勾股定理;垂径定理;圆周角定理;切线的判定与性质.【答案】见试题解答内容【分析】(1)连接OE.根据等腰三角形的性质和平行线的性质即可得到结论;(2)根据勾股定理和相似三角形的判定和性质定理即可得到结论.【解答】解:(1)连接OE.∵AB=BC,∴∠A=∠C;∵OE=OC,∴∠OEC=∠C,∴∠A=∠OEC,∴OE∥AB,∵BA⊥GE,∴OE⊥EG,且OE为半径;∴EG是⊙O的切线;(2)∵BF⊥GE,∴∠BFG=90°,∵GF=23,GB=4,∴BF=BG2―GF2=2,∵BF∥OE,∴△BGF∽△OGE,∴BFOE=BGOG,∴2OE=44+OE,∴OE=4,即⊙O的半径为4.26.在平面直角坐标系中,已知抛物线y=﹣x2+4x.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线y=﹣x2+4x的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x轴相交于A、B两点(A 在B左侧),与y轴相交于点C,连接BC.若点P是直线BC上方抛物线上的一点,求△PBC的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q,使△QBC是以BC为直角边的直角三角形?若存在,直接写出所有符合条件的点Q的坐标;若不存在,说明理由.【考点】二次函数综合题.【答案】见试题解答内容【分析】(1)由“方点”的定义可列出关于x的方程﹣x2+4x=x,解方程即可;(2)如图1,过P点作y轴的平行线交BC于点D,求出向左平移1个单位长度后抛物线的表达式,写出点A,B,C的坐标,求出直线BC的解析式,设P(m,﹣m2+2m+3),则D(m,﹣m+3),求出PD的长度,并表示出△PBC的面积,由二次函数的图象及性质可求出其最大值;(3)先求出∠CBO=45°,然后分两种情况讨论:①当点B为直角顶点时,如图2,过点B作直线BC的垂线,交y轴于点M,交抛物线于点Q,求出直线BM的解析式,求出其与抛物线的交点即可;②当点C为直角顶点时,如图2,过点C作直线BC的垂线,交抛物线于点Q,求出直线CQ的解析式,求出其与抛物线的交点即可.【解答】解:(1)由题意得:x=y,∴﹣x2+4x=x,解得,x1=0,x2=3,∴抛物线的方点坐标是(0,0),(3,3);(2)如图1,过P点作y轴的平行线交BC于点D,∵y=﹣x2+4x=﹣(x﹣2)2+4,∴向左平移1个单位长度后抛物线的表达式为y=﹣(x﹣1)2+4=﹣x2+2x+3,在y=﹣x2+2x+3中,当x=0时,y=3;当y=0时,x1=﹣1,x2=3,∴C(0,3),A(﹣1,0),B(3,0),设直线BC的解析式为y=kx+3,将点B(3,0)代入,得,k=﹣1,∴直线BC的解析式为y=﹣x+3,设P(m,﹣m2+2m+3),则D(m,﹣m+3),∴PD=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3),∴S△PBC=12(―m2+3m)×3=―32(m―32)2+278(0<m<3),∴当m=32时,△PBC的面积最大,最大值为278;(3)存在,理由如下:∵C(0,3),B(3,0),∴OB=OC=3,∴△OBC为等腰直角三角形,∴∠CBO=45°,①当点B为直角顶点时,如图2,过点B作直线BC的垂线,交y轴于点M,交抛物线于点Q,则∠OBM=45°,∴△OBM为等腰直角三角形,∴OB=OM=3,∴M(0,﹣3),设直线BM的解析式为y=kx﹣3,将点B(3,0)代入,得,k=1,∴直线BM的解析式为y=x﹣3,联立,得{y=―x2+2x+3y=x―3,解得,x1=﹣2,x2=3(舍弃),∴Q1(﹣2,﹣5);②当点C为直角顶点时,如图2,过点C作直线BC的垂线,交抛物线于点Q,则QC∥BM,则直线QC的解析式为y=x+3,联立,得{y=―x2+2x+3y=x+3,解得,x1=0,x2=1,∴Q2(1,4),综上所述,点Q的坐标为(﹣2,﹣5)或(1,4).27.如图,在矩形纸片ABCD中,已知AB=2,BC=6,点E在边CD上移动,连接AE,将多边形ABCE沿AE折叠,得到多边形AB'C'E,点B、C的对应点分别为点B',C'.(1)连接AC.则AC= 22 ,∠DAC= 30 °;(2)当B'C'恰好经过点D时,求线段CE的长;(3)在点E从点C移动到点D的过程中,求点C'移动的路径长.【考点】四边形综合题.【答案】见试题解答内容【分析】(1)利用勾股定理求出AC,用锐角三角函数求出角DAC,即可得出结论;(2)如图1中,设CE=EC′=x,则DE=2―x,由△ADB′′∽△DEC,可得AD DE=DB′EC′,列出方程即可解决问题;(3)如备用图中,点C的运动路径的长为CC′的长,求出圆心角、半径即可解决问题.【解答】解:(1)如图1,连接AC,∵四边形ABCD是矩形,∴AD=BC=6,CD=AB=2,∠ADC=90°,在Rt△ADC中,根据勾股定理得,AC=AD2+CD2=22,tan∠DAC=CDAD=26=33,∴∠DAC=30°,故答案为:22,30(2)设CE=EC′=x,则DE=2―x,∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°,∴∠B′AD=∠EDC′,∵∠B′=∠C′=90°,AB′=AB=2,AD=6,∴DB′=AD2―AB′2=2,∴△ADB′∽△DEC′,∴ADDE=DB′EC′,∴62―x=2x,∴x=2(3―2).∴CE=2(3―2);(3)如备用图中,点C的运动路径的长为CC′的长,由(1)知,∠DAC=30°,AC=22,∵∠C′AD=∠DAC=30°,∴∠CAC′=60°,∴CC′的长=60π⋅22180=223π28.已知二次函数y=18x2+bx+c(b、c为常数)的图象经过点(0,﹣1)和点A(4,1).(1)求b、c的值;(2)如图1,点C(10,m)在抛物线上,点M是y轴上的一个动点,过点M平行于x 轴的直线l平分∠AMC,求点M的坐标;(3)如图2,在(2)的条件下,点P是抛物线上的一动点,以P为圆心、PM为半径的圆与x轴相交于E、F两点,若△PEF的面积为26,请直接写出点P的坐标.【考点】二次函数综合题.【答案】见试题解答内容【分析】(1)把A(4,1)和(0,﹣1)代入y=18x2+bx+c,即可求解;(2)证明△CMD∽△AME,则CDAE=MDME∴232―nn―1=104,即可求解;(3)设点P(m,n),n=18m2﹣2,则m2=8n+8…①,点E(a,0),则点F(2m﹣a,0);S=12×EF×n=26,解得:a=m―26n⋯②;PM=PE,即m2+(n﹣4)2=(m﹣a)2+n2,化简得:a(a﹣2m)=16﹣8n,将②代入上式得:﹣(m+26n)(m―26n)=16﹣8n,即可求解.【解答】解:(1)把A(4,1)和(0,﹣1)代入y=18x2+bx+c得,b=0,c=﹣1;(2)C(10,232),设M(0,n).过点C作CD⊥l,过点A作AE⊥l.则△CMD∽△AME,∴CDAE=MDME∴232―nn―1=104,解得:n=4,∴M(0,4);(3)设点P(m,n),n=18m2﹣1,则m2=8n+8…①,点E(a,0),则点F(2m﹣a,0);S=12×EF×n=26,解得:a=m―26n⋯②;PM=PE,即m2+(n﹣4)2=(m﹣a)2+n2,化简得:a(a﹣2m)=16﹣8n,将②代入上式得:﹣(m+26n)(m―26n)=16﹣8n,即m2―24n2=8n﹣16,将①代入上式并解得:24n2=24,解得:n=±1,则m=4或﹣4或0,故:P(4,1)或(﹣4,1)或(0,﹣1).。

扬州市九年级上数学期末试卷

扬州市九年级上数学期末试卷

扬州市九年级上数学期末试卷一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0) B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)2.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切C .相交D .无法判断3.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20204.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2B .15πcm 2C .152πcm 2 D .10πcm 25.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;6.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .5π B .58πC .54πD .5π 7.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .408.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( )A .12 B .13C .14 D .159.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .1210.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定11.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1212.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 13.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40B .60C .80D .10014.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似 D .所有矩形都相似15.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题16.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 17.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.18.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)19.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.20.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .21.如图,O 的直径AB 与弦CD 相交于点53E AB AC ==,,,则tan ADC ∠=______.22.抛物线()2322y x =+-的顶点坐标是______.23.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______. 24.将抛物线 y =(x+2)2-5向右平移2个单位所得抛物线解析式为_____.25.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)26.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.27.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 28.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.29.如图,在⊙O 中,分别将弧AB 、弧CD 沿两条互相平行的弦AB 、CD 折叠,折叠后的弧均过圆心,若⊙O 的半径为4,则四边形ABCD 的面积是__________________.30.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.三、解答题31.如图,AB 是⊙O 的弦,AB =4,点P 在AmB 上运动(点P 不与点A 、B 重合),且∠APB =30°,设图中阴影部分的面积为y . (1)⊙O 的半径为 ;(2)若点P 到直线AB 的距离为x ,求y 关于x 的函数表达式,并直接写出自变量x 的取值范围.32.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.33.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.()1求一次函数y kx b =+的表达式;()2若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?34.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a 、b 满足的关系式及c 的值,(2)当x <0时,若y =a 2x +bx +c (a <0)的函数值随x 的增大而增大,求a 的取值范围,(3)如图,当a =−1时,在抛物线上是否存在点P ,使△PAB 的面积为32?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由, 35.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.四、压轴题36.如图,已知在矩形ABCD 中,AB =2,BC =23.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ =3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.37.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________38.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.39.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.40.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ; (1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】 【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标. 【详解】解:∵y =x 2﹣6x =x 2﹣6x +9﹣9=(x ﹣3)2﹣9, ∴二次函数y =x 2﹣6x 图象的顶点坐标为(3,﹣9). 故选:C . 【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.A解析:A 【解析】 【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断. 【详解】解:∵圆心O 到直线l 的距离d=6,⊙O 的半径R=4, ∴d>R , ∴直线和圆相离. 故选:A . 【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..3.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.4.B解析:B 【解析】试题解析:∵底面半径为3cm , ∴底面周长6πcm ∴圆锥的侧面积是12×6π×5=15π(cm 2), 故选B .5.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:AB=22222133AC BC ++== , 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC ==,= ,所以只有选项C 正确; 故选:C . 【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.6.B解析:B 【解析】 【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解. 【详解】连接AC ,则r=AC=22251=+ 扇形的圆心角度数为∠BAD=45°, ∴扇形AEF 的面积=()2455360π⨯⨯=58π故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.7.C解析:C 【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数.8.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.9.C解析:C 【解析】 【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论. 【详解】解:连接OB ,OC , ∵∠BAC =30°, ∴∠BOC =60°. ∵OB =OC ,BC =8, ∴△OBC 是等边三角形, ∴OB =BC =8. 故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.10.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.11.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以232CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6, ∴22632CE === ∴262CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.12.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.14.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A 、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B 、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C 、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D 、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A .【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.15.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA∠=∠+∠ADC ADO∴∠=∠=27故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题16.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.x a考点:根的判别式.17.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.19.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率).20.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 21.【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC,即可由tan∠ADC=tan∠ABC=求得所求的值了.详解:∵AB 是 解析:34【解析】分析:由已知条件易得△ACB 中,∠ACB=90°,AC=3,AB=5,由此可得BC=4,结合∠ADC=∠ABC ,即可由tan ∠ADC=tan ∠ABC=AC BC 求得所求的值了. 详解:∵AB 是O 的直径,∴∠ACB=90°,又∵AC=3,AB=5,∴4=,∴tan ∠ABC=34AC BC =, 又∵∠ADC=∠ABC , ∴tan ∠ADC=34. 故答案为:34. 点睛:熟记“圆的相关性质和正切函数的定义”解得本题的关键.22.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .23.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m是关于x的方程x2-2x-3=0的解,∴m2-2m-3=0,∴m2-2m=3,∴4m-2m2+2= -2(m2-2m)+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.24.y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5解析:y=x2−5【解析】【分析】根据平移规律“左加右减”解答.【详解】按照“左加右减,上加下减”的规律可知:y=(x+2)2−5向右平移2个单位,得:y=(x+2−2)2−5,即y=x2−5.故答案是:y=x2−5.【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.25.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.26.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.27.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.28.﹣1<x <3【解析】【分析】先求出函数与x 轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x =1,而抛物线与x 轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<3时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<3.故答案为﹣1<x<3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点.29.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD , ∴Rt △OHB ≌Rt △OGD , ∴HB=GD ,同理,可得AH=CG= HB=GD ∴AB=CD 又∵AB ∥CD∴四边形ABCD 是平行四边形, 在Rt △OHA 中,由勾股定理得:==∴AB=∴四边形ABCD 的面积=AB ×GH=故答案为:. 【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.30.2+ 【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =AB ,BC =AB ,再根据CD =AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点解析:【解析】 【分析】设线段AB =x ,根据黄金分割点的定义可知AD =352AB ,BC =352AB ,再根据CD=AB ﹣AD ﹣BC 可列关于x 的方程,解方程即可 【详解】∵线段AB =x ,点C 、D 是AB 黄金分割点,∴较小线段AD =BC x ,则CD =AB ﹣AD ﹣BC =x ﹣2×32x =1,解得:x =故答案为:本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的352倍.三、解答题31.(1)4;(2)y=2x+83π-43 (0<x≤23+4)【解析】【分析】(1)根据圆周角定理得到△AOB是等边三角形,求出⊙O的半径;(2)过点O作OH⊥AB,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB,∴△AOB是等边三角形,∴⊙O的半径是4;(2)解:过点O作OH⊥AB,垂足为H则∠OHA=∠OHB=90°∵∠APB=30°∴∠AOB=2∠APB=60°∵OA=OB,OH⊥AB∴AH=BH=12AB=2在Rt△AHO中,∠AHO=90°,AO=4,AH=2∴OH22AO AH3∴y=16×16 π-123+12×4×x=2x+83π-3<34).本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键. 32.(1)174m >-;(2)4m =- 【解析】 【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解. 【详解】(1)∵方程有两个不相等的实数根, ∴()()22=2144=417m m m ∆+--+>0解得:174m >- ∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++=解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线 ∴122 1 0x x m +=-->,即12m <- ∴4m =- 【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.33.(1)120y x =-+;(2)销售单价定为87元时,商场可获得最大利润,最大利润是891元. 【解析】 【分析】(1)根据题意将(65,55),(75,45)代入解二元一次方程组即可;(2)表示出利润解析式,化成顶点式讨论即可解题. 【详解】解:()1根据题意得65557545k b k b +=⎧⎨+=⎩, 解得1120k b =-⎧⎨=⎩. 所求一次函数的表达式为y x 120=-+. (2)()()w x 60x 120=--+2x 180x 7200=-+-2(x 90)900=--+,∵抛物线的开口向下,∴当x 90<时,w 随x 的增大而增大, 又因为获利不得高于45%,60 1.4587⨯=, 所以60x 87≤≤,∴当x 87=时,2w (8790)900891=--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. 【点睛】本题考查了二次函数的实际应用,中等难度,表示出二次函数的解析式是解题关键.34.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P 的坐标为:(32-+,. 【解析】 【分析】(1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而b=3a+1,即:3102a a+-≥,即可求解; (3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,由S △PAB =32,则P Q y y -=1,即可求解.【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=3-, 故点A 、B 的坐标分别为(-3,0)、(0,3),则c=3, 则函数表达式为:y=ax 2+bx+3,将点A 坐标代入上式并整理得:b=3a+1;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大, 则函数对称轴02bx a=-≥, ∵31b a =+, ∴3102a a+-≥, 解得:13a ≥-,∴a 的取值范围为:103a -≤<; (3)当a=1-时,b=3a+1=2-二次函数表达式为:223y x x =--+,过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,∵OA=OB ,∴∠BAO=∠PQH=45°, S △PAB =12×AB ×PH=12×32PQ 2=32, 则PQ=P Q y y -=1,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离, 则直线m 与抛物线两个交点,分别与点AB 组成的三角形的面积也为32, ∴1P Q y y -=,设点P (x ,-x 2-2x+3),则点Q (x ,x+3), 即:-x 2-2x+3-x-3=±1, 解得:35x -±=3132x -=; ∴点P 35-+55+35--55-313-+,1132+)或(3132--,1132-).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系. 35.(1)①P 与直线相切.理由见解析;②()1,1P 或()5,3P -;(2)9131,4⎛⎫+- ⎪⎝⎭或9131,4⎛⎫-+- ⎪⎝⎭.【解析】 【分析】(1)①作直线l 的垂线,利用两点之间的距离公式及二次函数图象上点的特征证明线段相等即可;②利用两点之间的距离公式及二次函数图象上点的特征构建方程即可求得答案. (2)利用两点之间的距离公式分别求得各线段的长,根据“和谐点”的定义及二次函数图象上点的特征构建方程即可求得答案. 【详解】 (1)①P 与直线相切.如图,过P 作PQ ⊥直线l ,垂足为Q ,设()P m n ,.则()2221PB m n =-+,()222PQ n =-21(1)14n m =--+,即:()2144m n -=-()()2222221442PB m n n n n PQ ∴=-+=-+=-=PB PQ ∴=P ∴与直线l 相切.②当P 与y 轴相切时PD PB PQ ==∴()222m n =- ,2m n ∴=-,即:2n m =±代入()2144m n -=-化简得:2650m m -+=或2250m m ++=. 解得:11m =,25m =.()1,1P ∴或()5,3P -.(2)已知1P 、3P 的横坐标分别是2,6,代入二次函数的解析式得:1324P ⎛⎫⎪⎝⎭,,32164P ⎛⎫- ⎪⎝⎭,, 设()2P mn ,, ∵点B 的坐标为()10,,()2144m n -=-∴154BP ==,3294BP ==,22BP n ===-,依题意得:12323BP BP BP BP ++=,即2132BP BP BP =+,5292244n -=+,即:1724n -=, ∴254n =(不合题意,舍去)或94n =-, 把94n =-,代入()2144m n -=-得: ()2113m -=直接开平方解得:11m =,21m =,∴()13,T P P 的坐标为:91,4⎫-⎪⎭或91,4⎛⎫- ⎪⎝⎭【点睛】本题主要考查了两点之间的距离公式二次函数的性质,利用两点之间的距离公式及二次函数图象上点的特征构建方程是解题的关键.四、压轴题36.(12)BE .【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT 33 7∴BE=2BT 63 7(2)设菱形BPDQ的边长为x,则AQ=3x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(3x)2=x2,解得x 43 3.∵四边形BPDQ为菱形,∴43 3,又CP=BC-BP=233,即DP=2CP, ∴∠DPC=60°,∴∠BPD=120°, ∴连接PQ,易得△BPQ 为等边三角形, ∴PQ=BP,∴点Q 也在圆P 上,圆P 经过点B,D,Q,如图.∴点E 、Q 重合, ∴BE 433∴菱形与圆重叠部分面积即为菱形的面积,∴S 菱形833. 【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识. 37.(1)()221y x =--;(2)1023n <<;(3)552M x << 【解析】 【分析】(1)由题意可得对称轴方程,有二次函数对称性,由A 点坐标可求B 点坐标,代入解析式可得;(2)根据函数图像平移可得新抛物线解析式,画出图像可得交点P ,由题意可得ACB BCP ∠>∠,过点C 作//l x 轴.作PD l ⊥,可得ACO PCD ∠=∠,设()2,43P t t t -+,由13tan ACD tan PCD ∠=∠=可得关于t 的方程,解得t, 再将P 代入2C 解析式中得n 的值,根据Q,P 在第一象限内得n 的取值范围;(3) 当MCB ∠为直角时,可求直线CB 的解析式为:y=-x+3,直线CM 的解析式为:y=x+3,运用直线与曲线联立,可求CM 与抛物线的交点M 横坐标为:x=5;当MCB ∠为锐角且3tan MCB ∠=时,过点M 作MN CB ⊥于N,则3MNCN=,设M 点坐标为()2,43t tt -+,直线CB 解析式为y=-x+3,可求直线MN 解析式为:253y x t t =+-+,将。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年第一学期期末测试试卷九年级数学(满分150 分,考试时间 120分钟)说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.2.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答,非选择题在指定位置用0.5毫米的黑色笔作答.在试卷或草稿纸上答题无效.3.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为A .1B .-1C .1或-1D .122.将方程2x 8x 90++=配方后,原方程可变形为A.2(x 4)7+=B. 2(x 4)25+=C. 2(x 4)9+=-D. 2(x 8)7+= 3.二次函数y =x 2-2x +3的图像的顶点坐标是 A .(1,2)B .(1,6)C .(-1,6)D .(-1,2)4.如图,在Rt △ABC 中,∠C =90°,已知sin A =34,则cos B 的值为A .74B .34C .35D .455.已知⊙O 的半径为2,直线l 上有一点P 满足PO =2,则直线l 与⊙O 的位置关系是 A .相切 B .相离 C .相离或相切 D .相切或相交6.如图,已知AB 是圆O 的直径,∠BAC =32°,D 为弧AC 的中点,那么∠DAC 的度数是 A .25° B .29° C .30° D .32°BC A(第4题)(第6题)AOBD7.已知二次函数y =ax 2+bx +c 中,自变量x 与函数y 之间的部分对应值如下表:在该函数的图象上有A (x 1,y 1)和B (x 2,y 2)两点,且-1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是A .y 1≥y 2B .y 1>y 2C .y 1≤y 2D .y 1<y 28.如图1, 在ABC △ 中,AB AC =,120BAC ∠=︒.点O 是BC 的中点,点D 沿B →A →C 方向从B 运动到C .设点D 经过的路径长为x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的大致图象如图2所示,则这条线段可能是图1中的A .BDB .ADC .OD D .CD二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 9.如果3cos 2A =,那么锐角A 的度数为 °.10.一元二次方程x 2-2x +m =0总有实数根,则m 应满足的条件是 .11.某果园2014年水果产量为100吨,2016年水果产量为144吨,则该果园水果产量的年平均增长率为 . 12.将二次函数22y x =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 . 13.已知在ABC △中,AB= AC =5,BC =6,则tan B 的值为 .14.如图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,若∠BAD =105°,则∠DCE 的度数是 °. 15.如图,已知矩形纸片ABCD 中,AB =1,剪去正方形ABEF ,得到的矩形ECDF 与矩形ABCD 相似,则AD 的长为 .16.如图,AB 是⊙O 的直径,弦CD AB ⊥于点E ,3023CDB CD ∠==,,则阴影部分的面积为 .(结x … 0 1 2 3 …y … -1 2 3 2 …(第8题图1) (第8题图2)yOy Ox BAx Oy ODCBA果保留π)17.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x 尺,则可列方程为 .18.关于x 的方程0)(2=++b m x a 的解是1x =2,2x =1-(a 、b 、m 为常数,≠a 0),则方程0)2(2=+++b m x a 的解是 .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1)22sin 60cos 60︒+︒; (2)24cos 45tan 60(1)︒+︒-.20.(本题满分8分)解方程:(1)0)3(4)3(=---x x x ; (2)248960x x +-=.21.(本题满分8分)化简并求值:2(1)(1)(1)m m m +++-,其中m 是方程210x x +-= 的一个根.22.(本题满分8分)如图是一块矩形铁皮,将四个角各剪去一个边长为2米的正方形后,剩下的部分做成一个容积为90立方米的无盖长方体箱子,已知长方体箱子底面的长比宽多4米,求矩形铁皮的面积.23.(本题满分10分)某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB ⊥BC , EF ∥BC ,∠AEF =143°,AB =AE =1.2米,那么适合该地下车库的车辆限高标志牌为多少米?(结果精确到0.1.参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)FA24.(本题满分10分)如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点.,分别画出图①和图②中∠P的平分线;(1)操作:请你只用无刻度的直尺........(2)说理:结合图②,说明你这样画的理由.25.(本题满分10分)某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元,其每天的销售量就减少20件.(1)当售价定为12元时,每天可售出件;(2)要使每天利润达到640元,则每件售价应定为多少元?(3)当每件售价定为多少元时,每天获得最大利润?并求出最大利润.26.(本题满分10分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;AB=+,23BC=,求⊙O的半径.(2)若43A27.(本题满分12分)【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sin α=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB =90°,作CD ⊥AB 于D .设∠BAC =α,则sin α=BCAB =13,可设BC =x ,则AB =3x ,……. 【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程) (2)如图2,已知点M ,N ,P 为⊙O 上的三点,且∠P =β,sin β=35,求sin2β的值.ON MP图2OBCAD图128.(本题满分12分)如图,抛物线322++-=x x y 与x 轴交于A 、B 两点,与y 轴交于C 点,对称轴与抛物线相交于点M ,与x 轴相交于点N .点P 是线段MN 上的一动点,过点P 作CP PE ⊥交x 轴于点E .(1)直接写出抛物线的顶点M 的坐标是 ; (2)当点E 与点O (原点)重合时,求点P 的坐标; (3)点P 从M 运动到N 的过程中,求动点E 运动的路径长.-y y备用图第一学期期末考试初三数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 选项BAABDBDC二、填空题(本大题共有10小题,每小题3分,共30分)9.30 10.1m ≤ 11.20% 12.22(1)2y x =-+ 13.4314.105 15.152+ 16.23π 17.222(4)(2)x x x -+-= 18.120,3x x ==- 三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤) 19.(1)解:原式=223122+()()……………………………2分 =1. ……………………………4分 (2)解:原式=4´22+3-22-1……………………………4分 = 3-1.(结果错误扣1分) ……………………………4分 20.(1)解:(3)(4)0x x -+= …………………………………………2分123,4x x ∴==- …………………………………4分(2)解:2(2)900x += …………………………………………2分1228,32x x ∴==- …………………………………4分21. 解:解:∵m 是方程210x x +-=的一个根,∴21m m +=. ……………2分∴22211m m m =+++-原式222m m =+ ……………6分2=. …………………………………………8分22.解:设长方体箱子的底面宽为x 米. ……………………………1分 根据题意,可得2x (x +4)=90, ……………………………………………………………4分 解得 x 1=5,x 2=-9(舍去). …………………………………………………………6分 矩形铁皮的面积为(5+4)×(9+4)=117. …………………………………………7分 答:矩形铁皮的面积为117平方米. …………………………………………8分HG E BCAF23.解:过点E 作EG ⊥BC 于点G ,AH ⊥EG 于点H . ……………………………… 2分∵EF ∥BC ,∴∠GEF =∠BGE =90°∵∠AEF =143°,∴∠AEH =53°.∴∠EAH =37°. ……………………………………4分 在△EAH 中,AE =1.2,∠AHE =90° ∴sin ∠EAH = sin 37° ∴0.6EHAE≈ ∴EH =1.2×0.6=0.72. …………………………………………6分∵AB ⊥BC ,∴四边形ABGH 为矩形.∵GH=AB =1.2 …………………………………………8分 ∴EG=EH+HG =1.2+0.72=1.92≈1.9答:适合该地下车库的车辆限高标志牌为1.9米 …………………………………10分 24.(1)每个图形3分(图略) …………………………………6分 (2)证得弧等 …………………………………8分证得角等 …………………………………10分25.(1) 160 …………………………………………2分 (2) 设每件售价定为x 元,则640)]10(20200)[8(=---x x …………………………………………4分 解之,x=16 或 x=12答:要使每天利润达到640元,则每件售价应定为16或12元 …………………6分 (3)设售价为x 元,每天的利润为y 元,则=y 720)14(20)]10(20200)[8(2+--=---x x x …………………8分当x=14时,y 有最大值,为720答:当每件售价定为14元时,每天获得最大利润,为720元 …………………10分 26.(1)证明:连接OA . …………………………………1分∵∠B =60°,∴∠AOC =2∠B =120°. 又∵OA =OC ,∴∠OAC =∠OCA =30°. 又∵AP =AC ,∴∠P =∠ACP =30°.PO DCBAEQRO NMP图2∴∠OAP =∠AOC ﹣∠P =90°.∴OA ⊥PA . …………………………4分 又∵点A 在⊙O 上,∴PA 是⊙O 的切线. …………………………5分(2)解:过点C 作CE ⊥AB 于点E . …………………………………6分 在Rt△BCE 中,∠B =60°,BC =, ∴12BE BC ==,CE =3. ………………………………7分∵4AB =+,∴4AE AB BE =-=.∴在Rt△ACE 中,5AC ==. ………………………………9分∴AP =AC =5.∴在Rt△PAO 中,OA =∴⊙O . ………………………………………………………10分27.解:(1)求出CD =. ………………………………………………………2分求出sin2α=CD OC. ………………………………………………………5分(2)如图,连接NO ,并延长交⊙O 于点Q ,连接MQ ,MO ,过点M 作MR NO ⊥于点R .……………………………6分在⊙O 中,∠NMQ =90°.∵ ∠Q=∠P =β,∴∠MON=2∠Q=2β.……………………7分 在Rt △QMN 中,∵ sin β=35MN NQ =, ∴设MN =3k ,则NQ =5k ,易得OM=21NQ=52k . (9)分∴MQ 4k =. ∵Δ1122NMQ S MN MQ NQ MR =⋅=⋅,∴345k k k MR ⋅=⋅.∴MR=125k . ………………………………………………………………………11分 在Rt △MRO 中,sin2β=sin ∠MON =122455252kMRk OM ==.…………………………12分 28.(1)(1,4) ………………………………………………………………2分 (2)过点C 作CF ⊥MN ,垂足为F先证△ENP ∽△PFC , ……………………………………………4分 ∴CFPFPN EN =当点E 与O 重合时,EN=1, 设PF=m 则131mm -=………………………………………………………………6分 解之,352m ±=∴点P 的坐标为35(1,)2+或 35(1,)2- …………………………………………7分 (3)当点P 与M 重合时,如图。

相关文档
最新文档