年高考第一轮复习数学新编等比数列
2023版高考数学一轮总复习:等比数列及其前n项和课件文
.
• 考向扫描
• 考向1 • 等比数列的判定与证明
• 1. 典例 [2019全国卷Ⅱ]已知数列{an}和{bn}满足
a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.
• (1)证明:{an+bn}是等比数列,{an-bn}是等差数列.
• 3.等比数列的通项公式及其变形
n-1
a
=
a
·
q
• 通项公式: n 1
,其中a1是首项,q是公比.
• 通项公式的变形:an=am·qn-m.
• 考点1 • 等比数列
• 4.等比数列与指数函数的关系
•
1 n
当q>0且q≠1时,an= ·q 可以看成函数y=cqx,其表示一个不为0的常数
与指数函数的乘积.因此等比数列{an}各项所对应的点都在函数y=cqx的
• (2)求{an}和{bn}的通项公式.
• 考向1 • 等比数列的判定与证明
• 考向1 • 等比数列的判定与证明
• 方法技巧
等比数列的判定与证明常用的方法
定义法
等比中项法
通项
若数列{an}的通项公式可写成an=c·qn-1(c,q均为非零常数),
公式法
则{an}是等比数列
前n项和
若数列{an}的前n项和Sn=k·qn-k(k为非零常数,q≠0且q≠1),
数列.
等比
注意 当q=-1且k为偶数时,Sk,S2k-Sk, S3k-S2k,…不是等比数列
.
•
2 3
(3)若a1·a2·…·an=Tn,则Tn, , ,…成等比数列.
高考数学第一轮复习:《等比数列》
高考数学第一轮复习:《等比数列》最新考纲1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.【教材导读】1.如何推导等比数列的通项公式?采用什么方法?提示:可采用累积法推导.2.b2=ac是a,b,c成等比数列的什么条件?提示:必要而不充分条件,因为b2=ac时,不一定有a,b,c成等比数列(如a=0,b=0,c=1),而a,b,c成等比数列,则必有b2=ac.3.如何推导等比数列的前n项和公式?采用了什么方法?提示:可用错位相减法推导.1.等比数列的相关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q≠0)表示.符号表示为a na n-1=q(n≥2),q为常数.(2)等比中项:如果三个数a,G,b成等比数列,则G叫做a和b的等比中项,那么Ga=bG,即G2=ab.2.等比数列的通项公式(1)设等比数列{a n}的首项为a1,公比为q,q≠0,则它的通项公式a n=a1q n-1.(2)通项公式的推广a n=a m·q n-m.3.等比数列的前n 项和公式S n =⎩⎨⎧na 1, q =1,a 1(1-q n )1-q =a 1-a n q1-q , q ≠1.4.等比数列的常见性质(1)在等比数列{a n }中,若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(2)若数列{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 仍然是等比数列.(3)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n ,当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.5.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 6.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.1.等比数列x,3x +3,6x +6,…的第四项等于( ) (A)-24 (B)0 (C)12(D)24A 解析:由等比数列的性质和定义进行解题,由等比中项性质得(3x +3)2=x ·(6x +6),因x +1≠0,得x =-3.所以a 4=(6x +6)·3x +3x =18·(x +1)2x =-24.故选A.2.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A)1盏(B)3盏(C)5盏(D)9盏B解析:每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7=381,公比q=2,依题意,得a1(1-27)1-2=381,解得a1=3,选择B.3.已知a1,a2,…,a n,…为各项均大于零的等比数列,公比q≠1,则()(A)a1+a8>a4+a5(B)a1+a8<a4+a5(C)a1+a8=a4+a5(D)a1+a8与a4+a5的大小关系不能由已知条件确定A解析:(a1+a8)-(a4+a5)=a1(1+q7)-a1(q3+q4)=a1(1+q7-q3-q4)=a1(1-q3)(1-q4).q=a na n-1>0且q≠1,当q>1时,q3>1,q4>1,1-q3<0,1-q4<0;当0<q<1时,q3<1,q4<1,1-q3>0,1-q4>0.总之a1(1-q3)(1-q4)>0.∴a1+a8>a4+a5.4.若正项等比数列{a n}满足a n+2=a n+1+2a n,则其公比为()(A)12(B)2或-1(C)2 (D)-1C解析:根据题意,设等比数列{a n}的公比为q,若a n+2=a n+1+2a n,则有a n q2=a n q+2a n,即q2-q-2=0,解可得q=2或-1,由数列{a n}为正项等比数列,可得q=2,故选C.5.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 为________. 解析:若q =1,则S n =na 1,∴{S n }是等差数列; 若q ≠1,则当{S n }是等差数列时,一定有2S 2=S 1+S 3, ∴2·a 1(1-q 2)1-q =a 1+a 1(1-q 3)1-q ,即q 3-2q 2+q =0,故q (q -1)2=0, ∴q =0或q =1,而q ≠0,q ≠1,∴此时不成立. 答案:1考点一 等比数列的基本运算(1)在等比数列{a n }中,若公比q =4,且前3项之和等于21,则该数列的通项公式a n =________.(2)等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) (A)31 (B)36 (C)42(D)48解析:(1)解法一 由题意知a 1+4a 1+16a 1=21, 解得a 1=1,所以等比数列{a n }的通项公式为a n =a 1q n -1=4n -1.解法二 由题意可设等比数列{a n }的前3项分别为x 4,x,4x ,则x4+x +4x =21,解得x =4,所以等比数列{a n }的通项公式为a n =a 2q n -2=4×4n -2=4n -1.(2)a 3a 5=a 2a 6=64,因为a 3+a 5=20,所以a 3和a 5为方程x 2-20x +64=0的两根,因为a n >0,q >1,所以a 3<a 5,所以a 5=16,a 3=4,所以q =a 5a 3=164=2,所以a 1=a 3q 2=44=1,所以S 5=1-q 51-q=31.【反思归纳】 等比数列基本运算的方法策略(1)将条件用a 1,q 表示,在表示S n 时要注意判断q 是否为1; (2)解方程(组)求出a 1,q ,消元时要注意两式相除和整体代入; (3)利用a 1,q 研究结论.【即时训练】 (1)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N ).(2)若S n 为数列{a n }的前n 项和,且S n =2a n -2,则S 8等于( ) (A)255 (B)256 (C)510(D)511解析:(1)很明显等比数列的公比q ≠1,则由题意可得:S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=89,解得:q =12,则:a n +1a n -a n -1=a n -1q 2a n -1q -a n -1=q 2q -1=1412-1=-12.(2)当n =1时,a 1=2a 1-2,据此可得:a 1=2, 当n ≥2时:S n =2a n -2,S n -1=2a n -1-2, 两式作差可得:a n =2a n -2a n -1,则:a n =2a n -1, 据此可得数列{a n }是首项为2,公比为2的等比数列, 其前8项和为:S 8=2×(1-28)1-2=29-2=510-2=510.故选C.答案:(1)-12 (2)C考点二 等比数列的判定与证明已知数列{a n }的前n 项和为S n ,且对任意的n ∈N *有a n +S n =n . (1)设b n =a n -1,求证:数列{b n }是等比数列; (2)设c 1=a 1且c n =a n -a n -1(n ≥2),求{c n }的通项公式.(1)证明:由a 1+S 1=1及a 1=S 1得a 1=12. 又由a n +S n =n 及a n +1+S n +1=n +1得 a n +1-a n +a n +1=1,∴2a n +1=a n +1. ∴2(a n +1-1)=a n -1,即2b n +1=b n .∴数列{b n }是以b 1=a 1-1=-12为首项,12为公比的等比数列. (2)解:方法一:由(1)知2a n +1=a n +1. ∴2a n =a n -1+1(n ≥2), ∴2a n +1-2a n =a n -a n -1, ∴2c n +1=c n (n ≥2).又c 1=a 1=12,a 2+a 1+a 2=2,∴a 2=34. ∴c 2=34-12=14,c 2=12c 1.∴数列{c n }是首项为12,公比为12的等比数列. ∴c n =12·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n . 方法二:由(1)b n =-12·⎝ ⎛⎭⎪⎫12n -1=-⎝ ⎛⎭⎪⎫12n , ∴a n =⎝ ⎛⎭⎪⎫12n+1.∴c n =-⎝ ⎛⎭⎪⎫12n +1-⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫12n -1+1=⎝ ⎛⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n =⎝ ⎛⎭⎪⎫12n -1⎝ ⎛⎭⎪⎫1-12=⎝ ⎛⎭⎪⎫12n (n ≥2). 又c 1=a 1=12也适合上式,∴c n =⎝ ⎛⎭⎪⎫12n .【反思归纳】 等比数列的判定方法(1)定义法:若a n +1a n=q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则数列{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式写成a n =c ·q n (c 、q 均是不为0的常数,n ∈N *),则数列{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则数列{a n }是等比数列.如果判定某数列不是等比数列,只需判定其任意的连续三项不成等比数列即可. 【即时训练】 已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数.(1)对任意实数λ,证明数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.解析:(1)假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4,故49λ2-4λ+9=49λ2-4λ,即9=0,这与事实相矛盾.所以对任意实数λ,数列{a n }都不是等比数列.(2)因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1·⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n (a n -3n +21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b 1=0(n ∈N *),此时{b n }不是等比数列; 当λ≠-18时,b 1=-(λ+18)≠0, 则b n ≠0,所以b n +1b n=-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列. 考点三 等比数列的性质及应用(1)等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( ) (A)1 (B)2 (C)3(D)5(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析:(1)因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项,所以(a 5+a 7)2=(a 1+a 3)(a 9+a 11),故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2;同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项,所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15),故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3.(2)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案:(1)C (2)-12【反思归纳】 在等比数列的基本运算问题中,一般是利用通项公式与前n 项和公式,建立方程(组)求解,但如果灵活运用等比数列的性质,可减少运算量,提高解题速度.【即时训练】 (1)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )(A)18 (B)-18 (C)578(D)558(2)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________. 解析:(1)因为a 7+a 8+a 9=S 9-S 6,在等比数列中S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=1,即S 9-S 6=18.故选A.(2)利用等比数列通项公式求出首项a 1与公比q ,再将a 1a 2…a n 的最值问题利用指数幂的运算法则转化为二次函数最值问题.设等比数列{a n }的公比为q ,则由a 1+a 3=10,a 2+a 4=q (a 1+a 3)=5,知q =12.又a 1+a 1q 2=10,∴a 1=8.故a 1a 2…a n =a n 1q1+2+…+(n -1)=23n ·⎝ ⎛⎭⎪⎫12(n -1)n 2=23n -n 22+n 2=2-n 22+72n . 记t =-n 22+7n 2=-12(n 2-7n ),结合n ∈N *可知n =3或4时,t 有最大值6. 又y =2t 为增函数,从而a 1a 2…a n 的最大值为26=64. 答案:(1)A (2)64等比数列的基本运算教材源题:在等比数列{a n }中: (1)已知a 1=-1,a 4=64,求q 与S 4; (2)已知a 3=32,S 3=92,求a 1与q . 解:(1)由q 3=a 4a 1=-64,解得q =-4,所以S 4=a 1-a 4q 1-q =-1+64×41+4=51.(2)因为S 3=a 1+a 2+a 3=a 3(q -2+q -1+1), 所以q -2+q -1+1=3, 即2q 2-q -1=0,解这个方程得q =1或q =-12. 当q =1时,a 1=32; 当q =-12时,a 1=6.【规律总结】 解决等比数列的基本计算问题主要是利用方程思想,建立方程(组)求解.注意两式相除、整体代换、分类讨论等技巧的应用.【源题变式】 在等比数列{a n }中,a n >0,a 5-a 1=15,a 4-a 2=6,则a 3=________.解析:因为a 5-a 1=15,a 4-a 2=6.所以⎩⎪⎨⎪⎧a 1q 4-a 1=15,a 1q 3-a 1q =6(q ≠1)两者相除得(q 2+1)(q 2-1)q ·(q 2-1)=156,即2q 2-5q +2=0,所以q =2或q =12, 当q =2时,a 1=1, 当q =12时,a 1=-16(舍去).所以a 3=1×22=4.答案:4课时作业基础对点练(时间:30分钟)1.已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件B 解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B.2.等比数列{a n }中,|a 1|=1,a 5=-8a 2,a 5>a 2,则a n 等于( ) (A)(-2)n -1 (B)-(-2)n -1 (C)(-2)n(D)-(-2)nA 解析:∵|a 1|=1,∴a 1=1或a 1=-1.∵a 5=-8a 2=a 2·q 3,∴q 3=-8,∴q =-2.又a 5>a 2,即a 2q 3>a 2,∴a 2<0.而a 2=a 1q =a 1·(-2)<0,∴a 1=1.故a n =a 1·(-2)n -1=(-2)n -1.故选A.3.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( ) (A)16(1-4-n )(B)16(1-2-n )(C)323()1-4-n (D)323(1-2-n )C 解析:∵a 2=2,a 5=14,∴a 1=4,q =12.a 1a 2+a 2a 3+…+a n a n +1=323(1-4-n ).故选C. 4.在等比数列{a n }中,若a 1=19,a 4=3,则该数列前5项的积为( ) (A)±3 (B)3 (C)±1(D)1D 解析:因为a 4=3,所以3=19×q 3(q 为公比),得q =3,所以a 1a 2a 3a 4a 5=a 53=(a 1q 2)5=⎝ ⎛⎭⎪⎫19×95=1,故选D. 5.已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,则mn 等于( )(A)32 (B)32或23 (C)23(D)以上都不对B 解析:设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a <c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到:c =1,d =2,则m =a +b =92,n =c +d =3或m =c +d =3,n =a +b =92,则m n =32或m n =23.故选B.6.已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n ,若b 10b 11=2,则a 21=( )(A)29 (B)210 (C)211(D)212C 解析:由b n =a n +1a n,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211.故选C.7.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=________.解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ①,∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n-1②,∵①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列,∴S 2016=1-210081-2+2×(1-21008)1-2=3×21008-3.答案:3×21008-38.如图,“杨辉三角”中从上往下共有n (n >7,n ∈N )行,设第k (k ≤n ,k ∈N *)行中不是1的数字之和为a k ,由a 1,a 2,a 3,…组成的数列{a n }的前n 项和是S n ,现有下面四个结论:①a 8=254;②a n =a n -1+2n ;③S 3=22;④S n =2n +1-2-2n .其中正确的结论序号为________.1 1 12 1 13 3 1 14 6 4 1 …… ……解析:a n =2n -2,S n =21+22+…+2n -2n =2(1-2n )1-2-2n =2n +1-2-2n ,故只有①④正确.答案:①④9.设数列{a n },{b n }都是正项等比数列,S n ,T n 分别为数列{lg a n }与{lg b n }的前n 项和,且S n T n =n 2n +1,则log b 5a 5=________.解析:设正项数列{a n }的公比为q ,正项数列{b n }的公比为p ,则数列{lg a n }是公差为lg q 的等差数列,{lg b n }是公差为lg p 的等差数列. 故S n =n lg a 1+n (n -1)2lg q . T n =n lg b 1+n (n -1)2lg p .又S n T n=n 2n +1=lg a 1+n -12lg q lg b 1+n -12lg p.所以log b 5a 5=lg a 5lg b 5=lg a 1+4lg q lg b 1+4lg p =S 9T 9=919.答案:91910.设等比数列{a n }的公比为q (q >0),它的前n 项和为40,前2n 项和为3 280,且前n 项中数值最大项为27,求数列的第2n 项.解:若q =1,则na 1=40,2na 1=3 280,矛盾. ∴q ≠1,∴⎩⎪⎨⎪⎧a 1(1-q n )1-q=40 ①a 1(1-q 2n)1-q=3 280 ②①②得1+q n =82,∴q n =81③将③代入①得q =1+2a 1④又∵q >0,∴q >1,∴a 1>0,{a n }为递增数列. ∴a n =a 1q n -1=27由③④⑤得q =3,a 1=1,n =4. ∴a 2n =a 8=1×37=2 187.能力提升练(时间:20分钟)11.已知等比数列{a n }的公比q =2,前100项和为S 100=90,则其偶数项a 2+a 4+…+a 100为( )(A)15 (B)30 (C)45(D)60D 解析:S 100=a 1+a 2+…+a 100=90,设S =a 1+a 3+…+a 99,则2S =a 2+a 4+…+a 100, 所以S +2S =90,S =30,故a 2+a 4+…+a 100=2S =60,故选D.12.已知{a n }是首项为1的等比数列,若S n 是{a n }的前n 项和,且28S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )(A)158或4 (B)4027或4 (C)4027(D)158C 解析:设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84.而S 6=6,两者不相等,因此不合题意.当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q .解得q =3.所以数列{a n }的通项公式为a n =3n -1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为1+13+19+127=4027.故选C.13.已知各项均不相等的等比数列{a n },若3a 2,2a 3,a 4成等差数列,设S n 为{a n }的前n 项和,则S 3a 3=( )(A)139 (B)79 (C)3(D)1A 解析:4a 3=3a 2+a 4, 4a 1q 2=3a 1q +a 1q 3, ∴q 2-4q +3=0, q =3或q =1(舍).∴S 3a 3=a 1(1-q 3)1-q a 1q 2 =1-q 3q 2(1-q )=1-279×(-2)=139.故选A.14.已知数列{a n }的各项均为正数,且前n 项和S n 满足S n =16(a n +1)(a n +2).若a 2,a 4,a 9成等比数列,求数列{a n }的通项公式.解析:因为S n =16(a n +1)(a n +2),所以当n =1时,有S 1=a 1=16(a 1+1)(a 1+2), 解得a 1=1或a 1=2;当n ≥2时,有S n -1=16(a n -1+1)(a n -1+2).①-②并整理,得(a n +a n -1)(a n -a n -1-3)=0(n ≥2).因为数列{a n }的各项均为正数,所以a n -a n -1=3(n ≥2).当a 1=1时,a n =1+3(n -1)=3n -2,此时a 24=a 2a 9成立.当a 1=2时,a n =2+3(n -1)=3n -1,此时a 24=a 2a 9不成立.所以a 1=2舍去.故a n =3n -2.15.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }和通项公式.(2)证明:1a 1+1a 2+…+1a n<32.解析:证明:(1)由a n +1=3a n +1得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32, 所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1,因为当n ≥1时,23n -1<2+13n -1+1=13n -1,所以1a 1+1a 2+…+1a n <1+13+…+13n -1=⎝⎛⎭⎪⎫1-13n ×32,所以1a 1+1a 2+…+1a n <32.。
等比数列及其前n项和高三新高考一轮复习
考查等比数列的前n项和
前n项和的实际应用和例题分析
前n项和的求解方法和技巧
前n项和的公式和推导过程
等比数列的定义和性质
考查等比数列的综合应用
等比数列的定义和性质
等比数列的通项公式和前n项和公式
等比数列在实际生活中的应用,如金融、物理等领域
等比数列在高考中的常见题型和解题方法,如选择题、填空题、解答题等
添加标题
等比数列的性质:等比数列的通项公式为an=a1*q^(n-1),其中a1为第一项,q为公比,n为项数。
添加标题
等比数列的前n项和公式:Sn=a1*(1-q^n)/(1-q),其中Sn为前n项和,a1为第一项,q为公比,n为项数。
添加标题
等比数列在高考中的考查形式:选择题、填空题、解答题等,考查学生对等比数列的定义、性质、前n项和公式的理解和应用。
添加标题
等比中项与等比数列的判定
等比中项:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比数列的判定:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比中项的性质:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
等比数列的判定方法:如果一个数列的每一项都是前一项的等比,那么这个数列就叫做等比数列。
பைடு நூலகம்
遇到问题时,及时向老师或同学请教,不要独自钻研
制定合理的复习计划,确保复习进度和效果
复习过程中,注重基础知识的掌握,避免盲目刷题
调整心态,积极备考
保持良好的心态:面对考试压力,保持冷静,积极应对
制定合理的复习计划:根据自身情况,制定适合自己的复习计划
注重基础知识:复习过程中,注重基础知识的掌握,避免盲目追求难题
等比数列及其前n项和讲义-高三数学一轮复习
等比数列及其前n项和一.学习目标1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.体会等比数列与指数函数的关系.二.知识整合1.等比数列的有关概念等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q(q≠0)表示,符号表示为a n+1a n=q(n∈N∗)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项,此时提醒:由a n+1=qa n,q≠0,并不能立即断定{a n}为等比数列,还要验证a1≠0.2.等比数列的有关公式通项公式a n=;推广:a n=a m⋅q n−m(m,n∈N∗)前n项和公式S n={ ,q=1,q≠1提醒:在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情况而导致解题失误.知识拓展:(1)当q≠0,q≠1时,S n=k−k⋅q n(k≠0)是{a n}成等比数列的充要条件,此时k=a11−q.(2)等比数列的单调性当{a 1>0,q >1 或{a 1<0,0<q <1时,等比数列{a n } 是递增数列. 当{a 1>0,0<q <1 或{a 1<0,q >1时,等比数列{a n } 是递减数列. 当q =1 时,等比数列{a n } 是常数列.当q =−1 时,等比数列{a n } 是摆动数列.三.典型例题考点一 等比数列基本量的运算例1(1) 已知等比数列{a n } 的前3项和为168,a 2−a 5=42 ,则a 6= ( )A. 14B. 12C. 6D. 3(2) 已知等比数列{a n } 的前n 项和为S n ,a 1=1 ,a 5=8a 2 ,若S n =31 ,则n = .方法感悟:等比数列基本量运算的解题策略(1)方程思想:等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1 ,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1 和q ,问题便可迎刃而解.(2)分类讨论思想:等比数列{a n } 的前n 项和公式涉及对公比q 的分类讨论,当q =1 时,{a n } 的前n 项和S n =na 1 ;当q ≠1 时,{a n } 的前n 项和S n =a 1(1−q n )1−q =a 1−a n q 1−q .考点二 等比数列的判定与证明例2已知数列{a n } 的首项a 1=12 ,且满足a n+1=a n3−2a n (n ∈N ∗) .(1) 证明:{1a n −1} 是等比数列,并求数列{a n } 的通项公式;(2) 记b n =n (1a n −1) ,求{b n } 的前n 项和S n .变式:已知各项都为正数的数列{a n } 满足a n+1+a n =3⋅2n ,a 1=1 .(1) 若b n =a n −2n ,求证:{b n } 是等比数列;(2) 求数列{a n } 的通项公式.方法感悟:判定等比数列的四种常用方法定义法 若a n+1a n =q (q 为非零常数,n ∈N ∗ )或a n a n−1=q (q为非零常数,且n ≥2 ,n ∈N ∗ ),则{a n } 是等比数列等比中项法 在数列{a n } 中,若a n ≠0 且a n+12=a n ⋅a n+2(n ∈N ∗) ,则{a n } 是等比数列通项公式法 若数列{a n } 的通项公式可以写成a n =c ⋅q n (c ,q均是不为0的常数,n ∈N ∗ )的形式,则{a n } 是等比数列前n 项和公式法 若数列{a n } 的前n 项和S n =k ⋅q n −k (k 为常数,且k ≠0 ,q ≠0 ,q ≠1 ),则{a n } 是等比数列五.达标练习1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =-3,ac =9B .b =3,ac =9C .b =-3,ac =-9D .b =3,ac =-92.已知等比数列{a n }的前3项和为168,a 2-a 5=42,则a 6= ( )A .14B .12C .6D .33.记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( )A .2n -1B .2-21-nC .2-2n -1D .21-n -14.在数列{a n }中,满足a 1=2,a 2n =a n -1·a n +1(n ≥2,n ∈N *),S n 为{a n }的前n 项和.若a 6=64,则S 7的值为( )A .126B .256C .255D .2545. 已知正项等比数列{a n}的首项为1,且4a5,a3,2a4成等差数列,则{a n}的前6项和为( )A. 31B. 3132C. 6332D. 636. 数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+⋯+a k+10= 215−25,则k=( )A. 2B. 3C. 4D. 57. 已知等比数列{a n},其前n项和为S n.若a2=4,S3=14,则a3=.8. 已知等比数列{a n}的公比为−1,前n项和为S n,若{S n−1}也是等比数列,则a1=.9.设等比数列{a n}满足a1+a2=4,a3−a1=8. 记S n为数列{log3a n}的前n项和.若S m+S m+1=S m+3,则m=.10.已知数列{a n}的前n项和为S n,且满足2S n=−a n+n(n∈N∗). (1)证明:数列{a n−12}为等比数列;(2)求数列{a n−1}的前n项和T n.。
2024年新高考版数学专题1_7.3 等比数列
1 3
,
1 an1
+
2 an1
-
3 =0(n≥2,n∈N*).记bn= 1 - 1 .
an
an1 an
(1)证明:{bn}是等比数列;
(2)设cn=2log2bn+2+bn,求数列{cn}的前n项和Sn.
解析
(1)证明:因为 1
an1
2
+
an1
3
-
an
=0,所以 1
an1
1
-
an
=2
1 an
1 an1
2
1 2
an1
2)通项公式:an=a1qn-1(n∈N*,a1,q≠0).推广:an=amqn-m(m,n∈N*,m≠n).
3)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称G
为a与b的等比中项,即G=± ab (a,b同号). 2.等比数列的前n项和公式
Sn=
na1, q a1(1
1, qn )
1 q
a1 qan , q 1. 1 q
考点二 等比数列的性质 1.等比数列的单调性 设等比数列{an}的首项为a1,公比为q. 1)当q>1,a1>0或0<q<1,a1<0时,数列{an}为递增数列; 2)当q>1,a1<0或0<q<1,a1>0时,数列{an}为递减数列; 3)当q=1时,数列{an}是常数列; 4)当q<0时,数列{an}是摆动数列. 2.等比数列的运算性质 1)若{an}是等比数列,且m+n=p+q,则aman=apaq,其中m,n,p,q∈N*. 特别地,若2m=p+q,则apaq=am2 .反之,不一定成立. 2)若{an}是等比数列,公比为q,则ak,ak+m,ak+2m,…(k,m∈N*)是等比数列,公比 为qm.
2023年高考数学一轮复习(新高考地区专用)4-2 等比数列(精讲)(含详解)
4.2 等比数列(精讲)(基础版)思维导图考点一 等比数列基本量的计算【例1】(1)(2022·北京丰台·一模)若数列{}n a 满足12n n a a +=,且41a =,则数列{}n a 的前4项和等于( )考点呈现例题剖析A .15B .14C .158 D .78(2)(2022·重庆·模拟预测)已知等比数列{}n a 的前n 项和为n S ,且2a ,53a ,89a 成等差数列,则63S S =( ) A .13B .43C .3D .4【一隅三反】1.(2022·江西·新余四中)已知n S 为等比数列{}n a 的前n 项和,若38a =,324S =,则公比q =( ) A .12-B .13-C .12-或1D .13-或12.(2022·河北廊坊·高三阶段练习)已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2022·全国·高三专题练习)已知{}n a 为等比数列,n S 为其前n 项和,若213S a =,223a a =,则4S =( )A .7B .8C .15D .314.(2022·河北石家庄·高三期末)等比数列{}n a 的前n 项和为n S ,33S =,69S =,则公比q =( )A .3B .2C .33D .325(2022·四川·三模(理))已知n S 是各项均为正数的等比数列{}n a 的前n 项和,若2481a a ⋅=,313S =,则6a =( ).A .21B .81C .243D .729考点二 等比中项【例2-1】(2022·江西·上饶市第一中学二模)等比数列{}n a 中,若59a =,则3436log log a a +=( ) A .2B .3C .4D .91.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.温馨提示【例2-2】(2022·福建·模拟预测)已知数列{}n a 为等比数列,则“5a ,7a 是方程2202210x x ++=的两实根”是”61a =,或61a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【一隅三反】1.(2022·安徽黄山·一模)在等比数列{}n a 中,1a ,13a 是方程21390x x -+=的两根,则2127a a a 的值为( ) AB .3 C.D .3±2.(2022·吉林吉林)已知各项均为正数的等比数列{}n a 中,23a =,93453a a a =,则3a =( ) A .6B .9C .27D .813.(2022·全国·高三专题练习)设a ,b ,c ,d 是非零实数,则“a ,b ,c ,d 成等比数列”是“ad bc =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.(2022·广西柳州)在等比数列{}n a 中,已知22a =,8462a a =,则公比q =( ) A .2-BC .2D .2±考点三 等比数列前n 项和的性质【例3-1】(2022·全国·高三专题练习)已知等比数列{an }的前n 项和为Sn ,S 10=1,S 30=13,S 40=( ) A .﹣51B .﹣20C .27D .40【例3-2】(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为n S ,若121n n S t -=⋅-,则t =( )A .2B .-2C .1D .-1【例3-3】(2022·全国·高三专题练习)已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( ) A .12B .2C .172341D .341172【例3-4】(2022·全国·高三专题练习)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=-,则 k =( )A .2B .3C .4D .5【例3-5】(2022·全国·高三专题练习)各项均为正数的等比数列{}n a 的前n 项和n S ,若264a a =,31a =,则29()42n n S a +的最小值为( )A .4B .6C .8D .12【一隅三反】1.(2022·湖南·长沙一中)一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180 B .108 C .75D .632.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为( ) A .2B .4C .8D .163.(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为213n n S r -=+,则r 的值为 A .13B .13-C .19D .19-4.(2021·全国·高三专题练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2B .3C .4D .55.(2022·四川绵阳·一模)已知正项等比数列{}n a 的前n 项和为n S ,若5-,3S ,6S 成等差数列,则96S S -的最小值为( )A .25B .20C .15D .10考点四 等比数列定义及其运用【例4】(2022·全国·高三专题练习)已知数列{}n a 满足12a =,121nn n a a a +=+,则下列结论正确的是( )A .数列1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列C .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列 D .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为2的等比数列 【一隅三反】1.(2021·江苏盐城)(多选)设等比数列{}n a 的前n 项和为n S ,则下列数列一定是等比数列的有( )A .12a a +,23a a +,34a a +,…B .13a a ,35a a +,57a a +,…C .2S ,42S S -,64S S -,…D .3S ,63S S -,96S S -,…2.(2022·广东·佛山一中)已知数列{n a }满足:11232n n a a a +==+, (1)求证:数列{1n a +}是等比数列;(2)()3log 1n n b a =+,求数列{n a ·n b }的前n 项和n S .3.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且112a =,11()*2n n n a a N n n ++=∈. (1)证明数列{}n an为等比数列,并求数列{}n a 的通项公式;(2)设(2)n n b n S =-,求数列32{}nn b -前n 项和n T . 考点五 等比数列的实际应用【例5-1】(2022·浙江省义乌中学模拟预测)我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问日织几何?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,问第五天织布的尺数是多少你的答案是( ) A .531B .1C .52D .8031【例5-2】(2022·江苏·沭阳如东中学模拟预测)著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于1415,则需要操作的次数n 的最小值为( ) 参考数据:lg2=0.3010,lg3=0.4771 A .6B .7C .8D .9【一隅三反】1.(2022·全国·模拟预测)在适宜的环境中,一种细菌的一部分不断分裂产生新的细菌,另一部分则死亡.为研究这种细菌的分裂情况,在培养皿中放入m 个细菌,在1小时内,有34的细菌分裂为原来的2倍,14的细菌死亡,此时记为第一小时的记录数据.若每隔一小时记录一次细菌个数,则细菌数超过原来的10倍的记录时间为第( )A .6小时末B .7小时末C .8小时末D .9小时末2.(2022·湖南湖南·二模)在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假设某种传染病的基本传染数02R =,平均感染周期为7天,那么感染人数由1(初始感染者)增加到999大约需要的天数为( )(初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……参考数据:lg20.3010≈) A .42B .56C .63D .703.(2022·云南·高三阶段练习(理))为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元 B .40000元C .42500元D .50000元4.2 等比数列(精讲)(基础版)思维导图考点一 等比数列基本量的计算【例1】(1)(2022·北京丰台·一模)若数列{}n a 满足12n n a a +=,且41a =,则数列{}n a 的前4项和等于( )考点呈现例题剖析A .15B .14C .158 D .78(2)(2022·重庆·模拟预测)已知等比数列{}n a 的前n 项和为n S ,且2a ,53a ,89a 成等差数列,则63S S =( ) A .13B .43C .3D .4【答案】(1)C (2)B【解析】(1)因为12n n a a +=,且41a =,所以数列{}n a 是以2为公比的等比数列,又3411a a q ==,得118a =,所以44141(12)(1)1581128a q S q --===--.故选:C (2)设等比数列公比为q ,由2a ,53a ,89a 成等差数列可得,47111239a q a q a q ⨯⋅=⋅+⋅,化简得639610q q -+=,解得313q =,()()61363311411311a q S q q S a q q--==+=--.故选:B. 【一隅三反】1.(2022·江西·新余四中)已知n S 为等比数列{}n a 的前n 项和,若38a =,324S =,则公比q =( )A .12-B .13-C .12-或1D .13-或1【答案】C【解析】设等比数列{}n a 的公比为q .因为38a =,324S =,所以38a =,1216a a +=,即218a q =,()1116a q +=,所以212q q +=,解得12q =-或1q =.故选:C.2.(2022·河北廊坊·高三阶段练习)已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )1.等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q1-q.温馨提示A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由40S >,得1514011a a a a q q q--=>--,因为1q >,所以510a a ->,即51a a >.故必要性满足; 1514411a a a a q S q q--==--.因为1q >,51a a >,所以40S >.故充分性满足.所以“51a a >”是“40S >”的充要条件.故选:C3.(2022·全国·高三专题练习)已知{}n a 为等比数列,n S 为其前n 项和,若213S a =,223a a =,则4S =( )A .7B .8C .15D .31【答案】C【解析】设等比数列{}n a 的公比为q ,则21213S a a a =+=,则212a a =,所以,212a q a ==, 因为223a a =,即()21124a a =,10a ≠,解得11a =,因此,()441411215112a q S q--===--.故选:C.4.(2022·河北石家庄·高三期末)等比数列{}n a 的前n 项和为n S ,33S =,69S =,则公比q =( ) ABCD【答案】D【解析】依题意,等比数列{}n a 满足,33S =,69S =,则1q ≠,()()3611113,911a q a q qq--==--,两式相除得()()3363331113,1311q q q q q q-+-==+=--,32,q q ==故选:D 5(2022·四川·三模(理))已知n S 是各项均为正数的等比数列{}n a 的前n 项和,若2481a a ⋅=,313S =,则6a =( ).A .21B .81C .243D .729【答案】C【解析】224381a a a ⋅==,因为0n a >,所以0q >,39a =,又313S =,故124a a +=,设公比是q ,则()121149a q a q ⎧+=⎨=⎩,两式相除得:2149q q +=,解得:3q =或34q =-(舍去),故336393243a a q ==⨯=.故选:C 考点二 等比中项【例2-1】(2022·江西·上饶市第一中学二模)等比数列{}n a 中,若59a =,则3436log log a a +=( )A .2B .3C .4D .9【答案】C【解析】根据等比中项得2546a a a =,所以()2434334353663log log log log log 81log 34a a a a a +=====.故选:C.【例2-2】(2022·福建·模拟预测)已知数列{}n a 为等比数列,则“5a ,7a 是方程2202210x x ++=的两实根”是”61a =,或61a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】在等比数列中,若5a ,7a 是方程2202210x x ++=的两实根,571a a ∴=,5720220a a +=-<,则50a <,70a <,则57661a a a a ==,则61a =或61a =-,即充分性成立,当61a =,或61a =-时,能推出57661a a a a ==,但无法推出572022a a +=-,即必要性不成立, 即“5a ,7a 是方程2202210x x ++=的两实根”是“61a =,或61a =-”的充分不必要条件,故选:A . 【一隅三反】1.(2022·安徽黄山·一模)在等比数列{}n a 中,1a ,13a 是方程21390x x -+=的两根,则2127a a a 的值为( ) AB .3 C.D .3±【答案】B【解析】因为1a 、13a 是方程21390x x -+=的两根,所以3119=a a ,11313+=a a ,所以10a >,130a >,又{}n a 为等比数列,则6710=>a q a ,所以213212719===a a a a a ,所以73a =或73a =-(舍去),所以212773==a a a a .故选:B. 2.(2022·吉林吉林)已知各项均为正数的等比数列{}n a 中,23a =,93453a a a =,则3a =( )A .6B .9C .27D .81【答案】B【解析】()3239335444,,3327a a a a a =∴==∴=,39a ∴=.故选:B 3.(2022·全国·高三专题练习)设a ,b ,c ,d 是非零实数,则“a ,b ,c ,d 成等比数列”是“ad bc =”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】由a b c d ,,,成等比数列可得ad bc =,但当14,1,1,4a b c d ====时,a b c d ,,,不是等比数列,所以“a ,b ,c ,d 成等比数列”是“ad=bc ”的充分而不必要条件,故选:A.4.(2022·广西柳州)在等比数列{}n a 中,已知22a =,8462a a =,则公比q =( ) A.2- B C .2 D .2±【答案】D【解析】由等比数列284652a a a ==,解得452a =±,所以33522a q a ==±,所以2q =±,故选:D. 考点三 等比数列前n 项和的性质【例3-1】(2022·全国·高三专题练习)已知等比数列{an }的前n 项和为Sn ,S 10=1,S 30=13,S 40=( ) A .﹣51 B .﹣20 C .27 D .40【答案】D【解析】由{an }是等比数列,且S 10=1>0,S 30=13>0,得S 20>0,S 40>0,且1<S 20<13,S 40>13 所以S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列, 即1,S 20﹣1,13﹣S 20,S 40﹣13构成等比数列,∴(S 20﹣1)2=1×(13﹣S 20),解得S 20=4或S 20=﹣3(舍去),∴(13﹣S 20)2=(S 20﹣1)(S 40﹣13),即92=3×(S 40﹣13),解得S 40=40.故选:D .【例3-2】(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为n S ,若121n n S t -=⋅-,则t =( )A .2B .-2C .1D .-1【答案】A【解析】设等比数列的公比为q ,当1q =时,1n S na =,不合题意; 当1q ≠时,等比数列前n 项和公式()1111111n n n a q a aS q qq q-==-⋅+---, 依题意()111212110,222n nn S t t t t -=⋅-=⋅-⇒+-==.故选:A【例3-3】(2022·全国·高三专题练习)已知数列}{n a 的前n 项和121n n S -=+,则数列}{n a 的前10项中所有奇数项之和与所有偶数项之和的比为( ) A .12 B .2 C .172341D .341172【答案】C【解析】当2n ≥时,212n n n n a S S --=-=,又112a S ==,即前10项分别为2,1,2,4,8,16,32,64,128,256,所以数列}{n a 的前10项中5141023341143S -===-偶,)(421451022172143S -=+=+=-奇,所以172341S S =奇偶, 故选:C .【例3-4】(2022·全国·高三专题练习)数列{}n a 中,12a =,对任意 ,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=-,则 k =( )A .2B .3C .4D .5【答案】C【解析】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=, 所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n nn a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++⋅-⋅-∴+++===-=---,1522k +∴=,则15k +=,解得4k =.故选:C.【例3-5】(2022·全国·高三专题练习)各项均为正数的等比数列{}n a 的前n 项和n S ,若264a a =,31a =,则29()42n n S a +的最小值为( )A .4B .6C .8D .12【答案】C【解析】因为264a a =,且等比数列{}n a 各项均为正数,所以2444,2a a ==,公比432,a q a ==首项114a =, 所以1(1)2114n n n a q S q --==- ,通项11124n n n a a q --==,所以29()2164448242n nn n S a +=++≥=,当且仅当216,342n n n =∴=,所以当3n =时,29()42n nS a+的最小值为8.故选:C.【一隅三反】1.(2022·湖南·长沙一中)一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180 B .108 C .75D .63【答案】D【解析】由题意得S 7,S 14-S 7,S 21-S 14组成等比数列48,12,3,即S 21-S 14=3,∴S 21=63. 故选:D2.(2022·全国·高三专题练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为( ) A .2 B .4 C .8 D .16【答案】C【解析】设这个等比数列{}n a 共有()2k k N *∈项,公比为q ,则奇数项之和为132185k S a a a -=+++=奇,偶数项之和为()2421321170n n S a a a q a a a qS -=+++=+++==奇偶,170285S q S ∴===偶奇, 等比数列{}n a 的所有项之和为()212212211708525512kkk a S -==-=+=-,则22256k=,解得4k =,因此,这个等比数列的项数为8.故选:C.3.(2022·全国·高三专题练习)等比数列{}n a 的前n 项和为213n n S r -=+,则r 的值为A .13B .13-C .19D .19-【答案】B【解析】当1n =时,113a S r ==+,当2n ≥时,212323223221118333(31)8383393n n n n n n n n n a S S --------=-=-=-=⋅=⋅⋅=⋅ 所以81333r r +=∴=-,故选B. 4.(2021·全国·高三专题练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2 B .3 C .4 D .5【答案】B【解析】设等比数列{}n a 的公比为q ,则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =,故选:B.5.(2022·四川绵阳·一模)已知正项等比数列{}n a 的前n 项和为n S ,若5-,3S ,6S 成等差数列,则96S S -的最小值为( ) A .25 B .20 C .15 D .10【答案】B【解析】因为{}n a 是正项等比数列,所以3S ,63S S -,96S S -仍然构成等比数列,所以263396()()S S S S S -=-.又5-,3S ,6S 成等差数列,所以6352S S -=,6335S S S -=+,所以()()2263396333352510S S S S S S S S S -+-===++. 又{}n a 是正项等比数列,所以30S >,3325101020S S ++≥=,当且仅当35S =时取等号.故选:B.考点四 等比数列定义及其运用【例4】(2022·全国·高三专题练习)已知数列{}n a 满足12a =,121nn n a a a +=+,则下列结论正确的是( )A .数列1n a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列 B .数列1n a ⎧⎫⎨⎬⎩⎭是公差为2的等差数列C .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列 D .数列11n a ⎧⎫-⎨⎬⎩⎭是公比为2的等比数列【答案】C 【解析】∴121n n n a a a +=+,∴111111222n n n n a a a a ++==⋅+,1n a ⎧⎫∴⎨⎬⎩⎭既不是等比数列也不是等差数列; ∴1111112n n a a +⎛⎫-=- ⎪⎝⎭,∴数列11n a ⎧⎫-⎨⎬⎩⎭是公比为12的等比数列.故选:C【一隅三反】1.(2021·江苏盐城)(多选)设等比数列{}n a 的前n 项和为n S ,则下列数列一定是等比数列的有( ) A .12a a +,23a a +,34a a +,… B .13a a ,35a a +,57a a +,… C .2S ,42S S -,64S S -,… D .3S ,63S S -,96S S -,…【答案】BD【解析】设数列{}n a 的公比为q ,0q ≠,对于A 和C ,都有首项121(1)a a a q +=+,当1q =-时,120a a +=,不满足等比数列,故AC 错误;对于B ,2131(1)0a a a q +=+≠,且2235131313()a a q a a q a a a a ++==++, 同理25735a a q a a +=+,故数列13a a ,35a a +,57a a +,…为等比数列,B 正确; 对于D ,231231(1)0S a a a a q q =++=++≠,且3633S S q S -=,39663S S q S S -=-, 故数列3S ,63S S -,96S S -,…为等比数列,D 正确;故选:BD 2.(2022·广东·佛山一中)已知数列{n a }满足:11232n n a a a +==+, (1)求证:数列{1n a +}是等比数列;(2)()3log 1n n b a =+,求数列{n a ·n b }的前n 项和n S . 【答案】(1)证明见解析(2)()()12133142n nn n n S +-⨯++=-【解析】(1)因为11232n n a a a +==+,,所以1131n n a a ++=+(). 而113a +=,所以数列{1n a +}是以113a +=为首项,以3为公比的等比数列,所以13nn a +=,即31n n a =-.(2)由(1)可得()3log 1n n b a n =+=∴()31nn n a b n ⋅=-记1213233n n T n =⨯+⨯++⨯……∴所以()23131323133n n n T n n +=⨯+⨯++-⨯+⨯……∴∴-∴得:12123333nn n T n +-=+++-⨯ ()1313313n n n +-=-⨯-∴()121334n nn T +-⨯+=∴()()()1213311242n nn n n n S T n +-⨯++=-+++=-. 3.(2022·全国·高三专题练习)已知数列{}n a 的前n 项和为n S ,且112a =,11()*2n n n a a N n n ++=∈. (1)证明数列{}n an为等比数列,并求数列{}n a 的通项公式;(2)设(2)n n b n S =-,求数列32{}n n b -前n 项和n T . 【答案】(1)证明见解析;2n n na =;(2) 1(34)24(1)(2)n n n T n n ++=-++.【解析】(1)因为112n n n a a n ++=,所以1112n n a n a n++=,又因为11112a a ==,所以数列{}n a n是以首项为12,公比为12的等比数列,从而1111()()222n n n a n -=⨯=,故2n n n a =. (2)由(1)中结论可知,2311111112()3()(1)()()22222n n n S n n -=⨯+⨯+⨯++-+ ∴,所以23411111111()2()3()(1)()()222222n n n S n n +=⨯+⨯+⨯++-+ ∴,由∴-∴得,231111111()()()()222222n n n S n +=++++- 111[1()]122()1212n n n +-=-- 化简整理得,222n nn S +=-,所以222n n nn n b n S ()(), 故2232(32)22222()(2)22n n n n n n n n b n n n n n n ++--==-=--+++, 所以324351122222222222[()()()()()]132435112n n n n n T n n n n -++=--+-+-++-+--++,故1(34)24(1)(2)n n n T n n ++=-++. 考点五 等比数列的实际应用【例5-1】(2022·浙江省义乌中学模拟预测)我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问日织几何其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,问第五天织布的尺数是多少你的答案是( ) A .531B .1C .52D .8031【答案】D【解析】根据题意可知该女子每天织布的尺数成等比数列,设该等比数列为{}n a ,公比q =2, 则第1天织布的尺数为1a ,第5天织布的尺数为5a ,前5天共织布为55S =, 则()51112551231a a-=⇒=-,∴445158023131a a q =⋅=⨯=.故选:D.【例5-2】(2022·江苏·沭阳如东中学模拟预测)著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于1415,则需要操作的次数n 的最小值为( ) 参考数据:lg2=0.3010,lg3=0.4771 A .6 B .7 C .8 D .9【答案】B【解析】第一次操作去掉13,设为1a ;第二次操作去掉29,设为2a ;第三次操作去掉427,设为3a , 依次类推,11233n n a -⎛⎫=⋅ ⎪⎝⎭.故0111222[()()()]3333n n S -=⨯+++ 2113121412331513n n⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=⨯=-≥ ⎪⎝⎭-, 整理,得12153n⎛⎫≥ ⎪⎝⎭,()21lg lg lg2lg3lg15315nn ⎛⎫∴≤∴-≤- ⎪⎝⎭,,()lg3lg5lg3lg5lg31lg211 6.7lg2lg3lg3lg2lg3lg2lg3lg2n -+++-∴≥===+≈----,故n 的最小值为7. 故选:B. 【一隅三反】1.(2022·全国·模拟预测)在适宜的环境中,一种细菌的一部分不断分裂产生新的细菌,另一部分则死亡.为研究这种细菌的分裂情况,在培养皿中放入m 个细菌,在1小时内,有34的细菌分裂为原来的2倍,14的细菌死亡,此时记为第一小时的记录数据.若每隔一小时记录一次细菌个数,则细菌数超过原来的10倍的记录时间为第( ) A .6小时末 B .7小时末C .8小时末D .9小时末【答案】A【解析】设n a 表示第n 小时末的细菌数,依题意有()11332242n n n a a a n --=⨯=≥,133242a m m =⨯=,则{}n a 是等比数列,首项为32m ,公比32q =,所以32nn a m ⎛⎫= ⎪⎝⎭.依题意,10n a m >,即3102n m m ⎛⎫> ⎪⎝⎭,所以3102n⎛⎫> ⎪⎝⎭, 由于563310,24372932102642⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝=⎭=<,又*N n ∈,所以6n ≥,所以第6小时末记录的细菌数超过原来的10倍, 故选:A.2.(2022·湖南湖南·二模)在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定,假设某种传染病的基本传染数02R =,平均感染周期为7天,那么感染人数由1(初始感染者)增加到999大约需要的天数为( )(初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……参考数据:lg20.3010≈) A .42 B .56 C .63 D .70【答案】C【解析】设第n 轮感染的人数为n a ,则数列{}n a 是12a =,公比2q的等比数列,由()2121199912nn S ⨯-+=+=-,可得121000n +=,解得2500n =,两边取对数得lg 2lg500n =,则lg 23lg 2n =-,所以33118.979lg 20.3010n =-=-≈=, 故需要的天数约为9763⨯=. 故选:C3.(2022·云南·高三阶段练习(理))为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=)A .32500元B .40000元C .42500元D .50000元【答案】B 【解析】设010000a =,从6月份起每月底用于下月进货的资金依次记为1a ,2a ,…,12a ,()100120%1000 1.21000a a a =⨯+-=-,同理可得1 1.21000n n a a +=-, 所以()15000 1.25000n n a a +-=-, 而050005000a -=,所以数列{}5000n a -是等比数列,公比为1.2,所以50005000 1.2n n a -=⨯,12125000 1.2500050009500050000a =⨯+=⨯+=,∴总利润为500001000040000-=,故选:B .。
2025年高考数学一轮复习-6.3-等比数列【课件】
3. 等比数列的性质 (1)与项有关的性质 ①在等比数列{an}中,an=amqn-m(n,m∈N*). ②在等比数列{an}中,若 m+n=p+q=2k,m,n,p,q,k∈N*,则 aman=apaq=a2k. ③在公比为 q 的等比数列{an}中,取出项数成等差数列的项 ak,ak+d,ak+2d,…,仍可组成一 个等比数列,公比是 qd. ④m 个等比数列,由它们的各对应项之积组成一个新数列,仍然是等比数列,公比是原来每个 等比数列对应的公比之积. ⑤若{an},{bn}均为等比数列,公比分别为 q1,q2,则{kan}(k≠0)仍为等比数列,且公比为 q1; {anbn}仍为等比数列,且公比为 q1q2;abnn仍为等比数列,且公比为qq12. ⑥当{an}是公比为 q(q>0)的正项等比数列时,数列{lgan}是等差数列,首项为 lga1,公差为 lgq.
判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)G 为 a,b 的等比中项⇔G2=ab.
()
(2)一个等比数列的公比大于 1,则该数列单调递增.
()
(3)任何等比数列前 n 项和都可以写成 Sn=a1(11--qqn).
()
(4)如果数列{an}是等比数列,那么数列{a2n}是等比数列.
故选 B.
() 1
D. 2
(2024 全 国 甲 卷 ) 记 Sn 为 等 比 数 列 {an} 的 前 n 项 和 . 若 S2 = 4 , S4 = 6 , 则 S6 =
()
A. 7
B. 8
C. 9
D. 10
解法一:(等比数列性质)因为 S2=4≠0,所以 q≠-1, 由等比数列性质得 S2,S4-S2,S6-S4 成等比数列,所以(S4-S2)2=S2(S6-S4), 即(6-4)2=4(S6-6),解得 S6=7.
2025届高考数学一轮复习教案:数列-等比数列
第三节等比数列课程标准1.理解等比数列的概念并掌握其通项公式与前n项和公式.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.3.体会等比数列与指数函数的关系.考情分析考点考法:高考命题常以等比数列为载体,考查基本量的运算、求和及性质的应用.等差数列与等比数列的综合应用是高考的热点,在各个题型中均有出现.核心素养:数学建模、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.等比数列的有关概念定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列通项公式设{a n}是首项为a1,公比为q的等比数列,则通项公式a n=a1q n-1.推广:a n=a m q n-m(m,n∈N*)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时,G2=ab【微点拨】(1)等比数列中不含有0项;(2)同号的两个数才有等比中项,且等比中项有两个,它们互为相反数.2.等比数列的前n项和公式【微点拨】在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.3.等比数列与指数函数的关系等比数列的通项公式可整理为a n=1·q n,而y=1·q x(q≠1)是一个不为0的常数1与指数函数q x的乘积,从图象上看,表示数列1·q n中的各项的点是函数y=1·q x的图象上孤立的点.4.等比数列的性质(1)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q.特别地,若m+n=2p,则a m·a n=2.(2)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列(公比q≠-1).(3)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列.(4)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k.(5)等比数列{a n}的单调性:当q>1,a1>0或0<q<1,a1<0时,数列{a n}是递增数列;当q>1,a1<0或0<q<1,a1>0时,数列{a n}是递减数列;当q=1时,数列{a n}是常数列.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论正确的是()A.满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列B.三个数a,b,c成等比数列的必要不充分条件是b2=acC.数列{a n}的通项公式是a n=a n,则其前n项和为S n=(1-)1-D.如果数列{a n}为正项等比数列,则数列{ln a n}是等差数列【解析】选BD.A中q不能为0;B中当a=b=c=0时满足b2=ac,但不是等比数列;C 中a=1时不成立;D中,a n>0,设a n=a1q n-1,则ln a n=ln a1+(n-1)ln q,{ln a n}是等差数列.2.(选择性必修第二册P29例1·变形式)若{a n}是各项均为正数的等比数列,且a1=1,a5=16,则a6-a5=()A.32B.-48C.16D.-48或16【解析】选C.由题意,q>0,则q=2,所以a6-a5=a5(q-1)=16.3.(忽视前n项和的条件致误)等比数列{a n}中,a3=6,前三项和S3=18,则公比q的值为()A.1B.-12C.1或-12D.-1或-12【解析】选C.因为S3=18,a3=6,所以a1+a2=32(1+q)=12,故2q2-q-1=0,解得q=1或q=-12.4.(2023·全国乙卷)已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=________.【解析】设{a n}的公比为q(q≠0),则a2a4a5=a3a6=a2q·a5q,显然a n≠0,则a4=q2,即a1q3=q2,则a1q=1.因为a9a10=-8,则a1q8·a1q9=-8,则q15=(5)3=-8=(-2)3,则q5=-2,则a7=a1q·q5=q5=-2.答案:-2【巧记结论·速算】1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{1},{2},{a n·b n数列.2.当{a n}是等比数列且q≠1时,S n=11--11-·q n=A-A·q n.【即时练】1.设n∈N*,则“数列{a n}为等比数列”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.充分性:若数列为等比数列,公比为q,为公比为12的等比数列,充分性成立;必要性:,公比为q,则-1=±所以数列不是等比数列,必要性不成立.2.已知数列{a n}的前n项和S n=22n+1+a,若此数列为等比数列,则a=________.【解析】因为数列的前n项和S n=22n+1+a=2×4n+a,所以a=-2.答案:-2【核心考点·分类突破】考点一等比数列基本量的计算[例1](1)(一题多法)记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则=()A.2n-1B.2-21-nC.2-2n-1D.21-n-1【解析】选B.方法一:设等比数列{a n}的公比为q,则由5-3=14-12=12,6-4=15-13=24,解得1=1,=2,所以S n=1(1-)1-=2n-1,a n=a1q n-1=2n-1,所以=2-12-1=2-21-n.方法二:设等比数列{a n}的公比为q,因为6-45-3=4(1-2)3(1-2)=43=2412=2,所以q=2,所以=1(1-)1-1-1=2-12-1=2-21-n.(2)已知等比数列{a n}的前n项和为S n,若a3a11=232,且S8+S24=mS16,则m=()A.-4B.4C.-83D.83【解析】选D.因为a3a11=232,且a n≠0,所以a11=2a3即a1q10=2a1q2,解得q8=2或q=0(舍去),因为S 8+S 24=mS 16,所以1(1-8)1-+1(1-24)1-=m ·1(1-16)1-,又因为q 8=2,a 1≠0,所以-8=-3m ,解得m =83.【解题技法】等比数列基本量的计算(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解;(2)注意观察条件转化式的特点,尽量采用整体消元、代入的方法简化运算,如两式相除就是等比数列中常用的运算技巧.【对点训练】1.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=()A .16B .8C .4D .2【解析】选C .设各项均为正数的等比数列{a n }的公比为q ,则1+1+12+13=15,14=312+41,解得1=1=2,所以a 3=a1q 2=4.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,5项和为()A .158或5B .3116或5C .3116D .158【解析】选C .若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×1(1-3)1-=1(1-6)1-,解得q =2.故a n =a 1q n-1=2n -1,1=(12)n -1.1为首项,以12为公比的等比数列,所以5项和为T 5=1×[1-(12)5]1-12=3116.【加练备选】设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=()A.32B.12C.23D.2【解析】选A.因为在等比数列中,S2=3a2+2,S4=3a4+2,所以S4-S2=a3+a4=3(a4-a2),所以a2(q+q2)=3a2(q2-1),又a2≠0,所以q+q2=3(q2-1),即2q2-q-3=0,又q>0,所以q=32.考点二等比数列的判定与证明[例2]已知数列{a n}中,a1=1且2a n+1=6a n+2n-1(n∈N*),(1)求证:数列+;(2)求数列{a n}的通项公式.【解析】(1)因为2a n+1=6a n+2n-1(n∈N*),所以a n+1=3a n+n-12,所以r1+r12+2=3+-12+r12+2=3+32+2=3,因为a1+12=1+12=32,所以数列+2是首项为32,公比为3的等比数列.(2)由(1)得,a n+2=32×3n-1=12×3n,所以a n=12×3n-2.【解题技法】等比数列的判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列等比中项法若数列{a n}中,a n≠0且r12=a n·+2(n∈N*),则{a n}是等比数列【对点训练】数列{a n}中,a1=2,a n+1=r12a n(n∈N*).证明数列{}是等比数列,并求数列{a n}的通项公式.【解析】由题设得r1r1=12·,又11=2,所以数列{}是首项为2,公比为12的等比数列,所以=2×(12)n-1=22-n,a n=n·22-n=42.【加练备选】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n}中的b3,b4,b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+54}是等比数列.【解析】(1)设成等差数列的三个正数分别为a-d,a,a+d,依题意,得a-d+a+a+d=15,解得a=5.所以数列中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去),故数列的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以数列是以54为首项,以2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列的前n 项和S n =54(1-2)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,r1+54+54=5·2-15·2-2=2.因此{S n +54}是以52为首项,以2为公比的等比数列.考点三等比数列性质的应用【考情提示】等比数列的性质作为解决等比数列问题的工具,因其考查数列知识较全面而成为高考命题的热点,重点解决基本量运算、条件转化等.角度1等比数列项的性质[例3]已知各项均为正数的等比数列的前n 项和为S n ,a 2a 4=9,9S 4=10S 2,则a 2+a 4的值为()A .30B .10C .9D .6【解析】选B .已知为各项均为正数的等比数列,则a n >0,可得a 1>0,q >0,因为32=a 2a 4=9,所以a 3=3,又因为9S 4=10S 2,则9(a 1+a 2+a 3+a 4)=10(a 1+a 2),可得9(a 3+a 4)=a 1+a 2,所以3+41+2=q 2=19,解得q =13,故a 2+a 4=3+a 3q =10.角度2等比数列前n 项和的性质[例4]已知正项等比数列{a n}的前n项和为S n,且S8-2S4=5,则a9+a10+a11+a12的最小值为()A.10B.15C.20D.25【解析】选C.由题意可得a9+a10+a11+a12=S12-S8,由S8-2S4=5,可得S8-S4=S4+5.又由等比数列的性质知S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2.于是a9+a10+a11+a12=S12-S8=(4+5)24=S4+254+10≥2当且仅当S4=5时等号成立.所以a9+a10+a11+a12的最小值为20.角度3等比数列的单调性[例5]已知{a n}是等比数列,a1>0,前n项和为S n,则“2S8<S7+S9”是“{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为数列是等比数列,a1>0,2S8<S7+S9,所以a8<a9,所以q7<q8,所以q7(q-1)>0,所以q<0或q>1,所以2S8<S7+S9的充要条件为q<0或q>1.又a1>0,数列为递增数列的充要条件为q>1,所以“2S8<S7+S9”是“为递增数列”的必要不充分条件.【解题技法】1.应用等比数列性质的两个关注点(1)转化意识:在等比数列中,两项之积可转化为另外两项之积或某项的平方,这是最常用的性质.(2)化归意识:把非等比数列问题转化为等比数列问题解决,例如有关S m,S2m,S3m的问题可利用S m,S2m-S m,S3m-S2m(S m≠0)成等比数列求解.2.等比数列的单调性的应用方法研究等比数列的单调性问题,要综合考虑首项的符号以及公比的取值范围,而涉及等比数列有关的单调性的充分必要条件问题,既要考虑数列的单调性也要善于举反例说明.【对点训练】1.设单调递增的等比数列{a n}满足12+14=1336,a1a5=36,则公比q=()A.32B.94C.2D.52【解析】选A.因为数列{a n}为等比数列,所以a1a5=a2a4=36,所以12+14=2+424=2+436=1336,则a2+a4=13,又数列{a n}单调递增,所以q>1,解得a2=4,a4=9,则q2=94,因为q>1,所以q=32.2.设无穷等比数列{a n}的前n项和为S n,若-a1<a2<a1,则()A.{S n}为递减数列B.{S n}为递增数列C.数列{S n}有最大项D.数列{S n}有最小项【解析】选D.由-a1<a2<a1可得a1>0,所以q=21<1,因为-a1<a2得q=21>-1,所以-1<q<1,因为S n=1(1-)1-,当0<q<1时,{S n}递增,当-1<q<0时,{S n}既有递增又有递减,A,B错误;当0<q<1时,S n有最小项S1,没有最大项,当-1<q<0时,a1>0,a2<0,a3>0,a4<0且a3+a4>0,S n有最小项S2,没有最大项,C错误,D 正确.3.设等比数列{a n}的前n项和为S n.若a n>0,S3=5,a7+a8+a9=20,则S15=________.【解析】由等比数列的性质可知S3,S6-S3,S9-S6,S12-S9,S15-S12是等比数列,由条件可知S3=5,S9-S6=20,则此等比数列的公比q2=205=4,又a n>0,所以q=2,S15=S3+(S6-S3)+(S9-S6)+(S12-S9)+(S15-S12),所以S15=5(1-25)1-2=155.答案:155。
高考一轮复习理科数学课件等比数列的概念及基本运算
通过绘制等比数列的图像,可以更直观地了解放射性元素的衰变速度。
等比数列在解决实
04
际问题中应用
增长率问题建模
复合增长率计算
利用等比数列的求和公式 ,可以计算一定时期内的 复合增长率,从而预测未 来的发展趋势。
连续增长问题
当某个量按照固定的比例 连续增长时,可以利用等 比数列的通项公式求解任 意时刻的数值。
02
通过设定方程,利用求和公式解出首项或公比。
等比数列在实际问题中的应用
03
如分期付款、复利计算等场景,可转化为等比数列求和问题进
行求解。
乘除法运算规则
等比数列的乘法运算
两个等比数列对应项相乘,得到的新数列仍为等比数列,且公比为原两数列公比之积。
等比数列的除法运算
一个等比数列除以另一个等比数列,得到的新数列仍为等比数列,且公比为原两数列公比 之商(分母数列公比不能为0)。
生物学中细胞分裂模型
细菌繁殖
细菌在适宜的环境下会进行二分裂繁殖,即一个细菌分裂成 两个细菌,然后这两个细菌再分别分裂成四个细菌,以此类 推。这种繁殖方式可以用等比数列来描述。
放射性物质衰变
放射性物质会不断地放出射线并衰变成其他物质。在衰变过 程中,放射性物质的原子数会按照固定的比例减少,这种变 化也可以用等比数列来描述。
。
这个相等的比值被称为公比,通 常用字母q表示。
等比数列的一般形式为:a, aq, aq^2, aq^3, ...,其中a是首项
,q是公比。
等比中项概念
01
等比中项是指在一个等比数列中 ,如果两项a和b的等比中项为c, 则c的平方等于a和b的乘积。
02
等比中项的性质是:若a、G、b 依次为等比数列的三项,则G叫 做的等比中项,且G^2=a+b( 等比中项的平方等于前项与后项 之积)。
2024版新教材高考数学全程一轮总复习第六章数列第三节等比数列课件
知识梳理
1.等比数列的有关概念
(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项
同一个常数
的_______都等于__________,那么这个数列叫做等比数列,这个常
比
数叫做等比数列的________,通常用字母q表示(显然q≠0).数学表达
公比
an
=q
an−1
式为________(n≥2,q为非零常数).
题后师说
(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,
特别是性质“若m+n=p+q,则am·an =ap·aq”,可以减少运算量,
提高解题速度.
(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要
进行适当变形.此外,解题时注意设而不求思想的运用.
巩固训练3
(1)[2023·山东日照期末]等比数列 an 中,a1a2a3 =-8,a5 =16,则
公比为(
)
A.-2
B.2
C.-4
D.4
答案:A
解析:设公比为q,
因为a1a2a3=-8,所以a32 =-8,a2=-2,
a5
所以 =q3=-8,解得q=-2.故选A.
a2
(2)已知等比数列 an ,满足log2a2+log2a11=1,且a5a6a8a9=16,则
数列 an 的公比为(
)
A.2
B.4
q
b
b
列且公比大于0时,可设四个数分别为 3 , ,bq,bq3.
q
q
a1 > 0,
a1 < 0,
(3)若ቊ
或ቊ
时,则等比数列{an}是递增数列;
q>1
0<q<1
高考第一轮复习数学:3.3 等比数列 高考数学第一轮复习教案集 新课标 人教版 高考数学第一轮复习
3.3 等比数列●知识梳理数列{a n }从第2项起,每一项与它前一项的比等于同一个常数的数列称作等比数列.常数叫公比.2.通项公式:a n =a 1q n -1, 推广形式:a n =a m q n -m .变式:q =mn mna a -(n 、m ∈N *). n 项和S n =⎪⎩⎪⎨⎧≠≠--=--=).10(11)1(),1(111q q q qa a q q a q na n n 或注:q ≠1时,m n S S =mnq q --11.4.等比中项:若a 、b 、c 成等比数列,则b 为a 、c 的等比中项,且b =±ac .5.三个数或四个数成等比数列且又知积时,则三个数可设为q a 、a 、aq ,四个数可设为3qa、qa、aq 、aq 3为好. 6.证明等比数列的方法:(1)用定义:只需证nn a a 1+=常数;(2)用中项性质:只需a n +12=a n ·a n +2或n n a a 1+=12++n n a a . ●点击双基1.一个直角三角形三内角的正弦值成等比数列,其最小内角是215-215-251-251-解析:设Rt △ABC 中,C =2π,则A 与B 互余且A 2B =sin A ,即cos 2A =sin A ,1-sin 2A =sin A ,解之得sin A =215-或sin A =215--(舍).答案:B2.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于10B.2201615解析:由等比数列的定义,a 1·a 2·a 3=(q a 3)3,故a 1·a 2·a 3·…·a 30=(1030963qa a a a ⋅⋅⋅⋅⋅⋅)3.又q =2,故a 3·a 6·a 9·…·a 30=220. 答案:B3.某纯净水制造厂在净化水过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为B.10解析:由题意列式(1-20%)n <5%,两边取对数得n >2lg 3112lg -+≈n ≥14.答案:C4.(2004年全国,文14)已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =___________________.解析:由已知得q 7=aa 10=128=27,故q =2.∴a n =a 3·q n -3=3·2n -3. 答案:3·2n -35.如下图,在杨辉三角中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是___________________.1 1 1 12 11 3 3 1 1 4 6 4 1……解析:观察可知,第n (n ∈N *)行中有n 个数,从左向右依次是二项式系数C 01-n ,C 11-n ,C 21-n ,…,C 11--n n ,故当n ≥3时,除了1外,第n 行各数的和为a n =C 11-n +C 21-n +…+C 21--n n =2n -1-2.又前两行全部为数字1,故前n 行非1的数字之和为a 3+a 4+…+a n =21)21(42---n -2(n -2)=2n -2n .答案:2n -2n ●典例剖析【例1】 已知等比数列{a n }中,a 1+a 2+a 3=7,a 1a 2a 3=8,求a n . 剖析:利用等比数列的基本量a 1,q ,根据条件求出a 1和q . 解:设{a n }的公比为q ,由题意知⎪⎩⎪⎨⎧=⋅⋅=++,8,721112111q a q a a q a q a a 解得⎩⎨⎧==2,11q a 或⎪⎩⎪⎨⎧==.21,41q a ∴a n =2n -1或a n =23-n .评述:转化成基本量解方程是解决数列问题的基本方法.思考讨论用a 2和q 来表示其他的量好解吗?该题的{a n }若成等差数列呢?【例2】 已知数列{a n }为等差数列,公差d ≠0,{a n }的部分项组成下列数列:a 1k ,a 2k ,…,a n k ,恰为等比数列,其中k 1=1,k 2=5,k 3=17,求k 1+k 2+k 3+…+k n .剖析:运用等差(比)数列的定义分别求得a n k ,然后列方程求得k n .解:设{a n }的首项为a 1,∵a 1k 、a 2k 、a 3k 成等比数列,∴(a 1+4d )2=a 1(a 1+16d ). 得a 1=2d ,q =12k k a a =3.∵a n k =a 1+(k n -1)d ,又a n k =a 1·3n -1, ∴k n =2·3n -1-1.∴k 1+k 2+…+k n =2(1+3+…+3n -1)-n=2×3131--n-n =3n -n -1.评述:运用等差(比)数列的定义转化为关于k n 的方程是解题的关键,转化时要注意:a n k 是等差数列中的第k n 项,而是等比数列中的第n 项.【例3】 设各项均为正数的数列{a n }和{b n }满足5n a ,5n b ,51+n a 成等比数列,lg b n ,lg a n +1,lg b n +1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n 、b n .剖析:由等比中项、等差中项的性质得a n +1=1+⋅n n b b 递推出a n =n n b b ⋅-1(n ≥2). 解:∵5n a ,5n b ,51+n a 成等比数列, ∴(5n b )2=5n a ·51+n a ,即2b n =a n +a n +1.① 又∵lg b n ,lg a n +1,lg b n +1成等差数列, ∴2lg a n +1=lg b n +lg b n +1,即a n +12=b n ·b n +1.② 由②及a i >0,b j >0(i 、j ∈N *)可得 a n +1=1+⋅n n b b .③ ∴a n =n n b b 1-(n ≥2).④将③④代入①可得2b n =n n b b ⋅-1+1+⋅n n b b (n ≥2), ∴2n b =1-n b +1+n b (n ≥2). ∴数列{n b }为等差数列. ∵b 1=2,a 2=3,a 22=b 1·b 2,∴b 2=29. ∴n b =2+(n -1)(29-2) =21(n +1)(n =1也成立).∴b n =2)1(2+n .∴a n =n n b b ⋅-1=2)1(222+⋅n n =2)1(+n n (n ≥2). 又当n =1时,a 1=1也成立. ∴a n =2)1(+n n . 评述:由S n 求a n 时要注意验证a 1与S 1是否一致.特别提示1.{a n }为等比数列是a n +12=a n ·a n +2的充分但不必要条件.2.若证{a n }不是等比数列,只需证a k 2≠a k -1a k +1(k 为常数,k ∈N ,且k ≥2). ●闯关训练 夯实基础1.若等比数列{a n }的公比q <0,前n 项和为S n ,则S 8a 9与S 9a 8的大小关系是 A.S 8a 9>S 9a 8B.S 8a 9<S 9a 8 C.S 8a 9=S 9a 8解析:由等比数列通项公式和前n 项和公式得 S 8·a 9-S 9·a 8=-q q a --1)1(81·a 1q 3-qq a --1)1(91·a 1q 7 =q a q q q a ----1)]()[(16716821=qq q a --1)(7821=-a 12q 7.又q <0,则S 8·a 9-S 9·a 8>0,即S 8·a 9>S 9·a 8. 答案:Ar ,三年定期的年利率为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于A.1)1(3-+rB.31[(1+r )3-1]C.(1+r )3-1D.r解析:由题意得(1+r )3<1+3q ,故q >31[(1+r )3-1]. 答案:B3.(2003年某某,8)若首项为a 1,公比为q 的等比数列{a n }的前n 项和总小于这个数列的各项和,则首项a 1,公比q 的一组取值可以是(a 1,q )=___________.解析:由题意知q q a n --1)1(1<qa-11且|q |<1对n ∈N 都成立,∴a 1>0,0<q <1.答案:(1,21)(a 1>0,0<q <1的一组数) 4.设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =___________________.解析:分解因式可得[(n +1)a n +1-na n ]·[a n +1+a n ]=0,又a n >0,则(n +1)a n +1-na n =0,即n n a a 1+=1+n n .又a 1=1,由累积法可得a n =n1. 答案:n1“*”对于任意非零自然数n 满足以下运算性质: (1)1*1=1;(2)(n +1)*1=3(n *1). 试求n *1关于n 的代数式.解:“n *1”是一个整体,联想数列通项形式,设n *1=a n ,则a 1=1,a n +1=3a n ,得a n =3n-1,即n *1=3n -1.6.等比数列{a n }的各项均为正数,其前n 项中,数值最大的一项是54,若该数列的前n项之和为S n ,且S n =80,S 2n =6560,求:(1)前100项之和S 100. (2)通项公式a n .解:设公比为q ,∵S 2n -S n =6480>S n , ∴qa n =a 1q n -1(∵a n >0).①又S n =q q a n --1)1(1=80,②S 2n =qq a n --1)1(21=6560,③由①②③解得a 1=2,q =3,则(1)前100项之和S 100=13)13(2100--=3100-1.(2)通项公式为a n =2·3n -1. 培养能力7.数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n . (1)设=a n -1,求证:数列{}是等比数列; (2)求数列{b n }的通项公式.(1)证明:∵a 1=S 1,a n +S n =n ,∴a 1+S 1=1,得a 1=21. 又a n +1+S n +1=n +1,两式相减得2(a n +1-1)=a n -1,即111--+n n a a =21,也即n n c c 1+=21,故数列{}是等比数列.(2)解:∵c 1=a 1-1=-21, ∴=-n 21,a n =+1=1-n 21,a n -1=1-121-n . 故当n ≥2时,b n =a n -a n -1=121-n -n 21=n 21.又b 1=a 1=21,即b n =n 21(n ∈N *).8.设数列{a n }、{b n }(b n >0,n ∈N*),满足a n =nb b b nlg lg lg 21+⋅⋅⋅++(n ∈N*),证明:{a n }为等差数列的充要条件是{b n }为等比数列.证明:充分性:若{b n }为等比数列,设公比为q ,则a n =n q q q b n n )lg(lg 121-⋅⋅⋅⋅⋅⋅+=nq b n n n 2)1(1lg lg -+=lg b 1+(n -1)lg q 21,a n +1-a n =lg q 21为常数,∴{a n }为等差数列. 必要性:由a n =nb b b nlg lg lg 21+⋅⋅⋅++得na n =lg b 1+lg b 2+…+lg b n ,(n +1)a n +1=lg b 1+lg b 2+…+lg b n +1,∴n (a n +1-a n )+a n +1=lg b n +1. 若{a n }为等差数列,设公差为d , 则nd +a 1+nd =lg b n +1,∴b n +1=10nd a 21+,b n =10d n a )1(21-+. ∴nn b b 1+=102d 为常数. ∴{b n }为等比数列. 探究创新 9.有点难度哟! 设数列{a n },a 1=65,若以a 1,a 2,…,a n 为系数的二次方程:a n -1x 2-a n x +1=0(n ∈N*且n ≥2)都有根α、β满足3α-αβ+3β=1.(1)求证:{a n -21}为等比数列; (2)求a n ;(3)求{a n }的前n 项和S n . (1)证明:∵α+β=1-n n a a ,αβ=11-n a 代入3α-αβ+3β=1得a n =31a n -1+31, ∴21211---n n a a =2121313111--+--n n a a =31为定值. ∴数列{a n -21}是等比数列. (2)解:∵a 1-21=65-21=31,∴a n -21=31×(31)n -1=(31)n .∴a n =(31)n +21.(3)解:S n =(31+231+…+n 31)+2n =311)311(31--n +2n =21+n -n 321⨯. ●思悟小结1.深刻理解等比数列的定义,紧扣从“第二项起”和“比是同一常数”这两点.2.运用等比数列求和公式时,需对q =1和q ≠1进行讨论.3.证明数列{a n }是等差数列的两种基本方法是: (1)利用定义,证明1-n na a (n ≥2)为常数; (2)利用等比中项,即证明a n 2=a n -1·a n +1(n ≥2). ●教师下载中心 教学点睛1.等比数列的性质在求解中有着十分重要的作用,应让学生熟练掌握、灵活运用.2.解决等比数列有关问题的常见思想方法:(1)方程的思想:等比数列中五个元素a 1、a n 、n 、q 、S n 可以“知三求二”; (2)分类讨论的思想:当a 1>0,q >1或a 1<0,0<q <1时为递增数列,当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.“基本量”是解决问题的基本方法. 拓展题例【例1】 数列{a n }中,a 1=1,a n =21a n -1+1(n ≥2),求通项公式a n . 解:由a n =21a n -1+1,得a n -2=21(a n -1-2). 令b n =a n -2,则b n -1=a n -1-2,∴有b n =21b n -1. ∴b n =21b n -1=21·21b n -2=21·21·21b n -3 =…=b 1=(21)n -1·b 1. ∵a 1=1,∴b 1=a 1-2=-1. ∴b n =-(21)n -1.∴a n =2-121-n .【例2】 已知数列{a n }中,a 1=65,a 2=3619并且数列log 2(a 2-31a ),log 2(a 3-32a ),…,log 2(a n +1-3n a )是公差为-1的等差数列,而a 2-21a ,a 3-22a,…,a n +1-2n a 是公比为31的等比数列,求数列{a n }的通项公式. 分析:由数列{log 2(a n +1-3n a)}为等差数列及等差数列的通项公式,可求出a n +1与a n的一个递推关系式①;由数列{a n +1-2n a}为等比数列及等比数列的通项公式,可求出a n +1与a n 的另一个递推关系式②.解两个关系式的方程组,即可求出a n .解:∵数列{log 2(a n +1-3na )}是公差为-1的等差数列, ∴log 2(a n +1-3n a )=log 2(a 2-31a 1)+(n -1)(-1)=log 2(3619-31×65)-n +1=-(n +1),于是有a n +1-3n a =2-(n +1).① 又∵数列{a n +1-21a n }是公比为31的等比数列,∴a n +1-21a n =(a 2-21a 1)·3-(n -1)=(3619-21×65)·3-(n -1)=3-(n +1).于是有a n +1-21a n =3-(n +1).②由①-②可得61a n =2-(n +1)-3-(n +1),∴a n =n 23-n 32.。
高三数学一轮复习 等比数列与数列求和
6.3 等比数列 6.4数列求和【学习目标】1、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式2、熟练掌握等差等比数列的前n 项和公式,能应用公式求数列的前n 项和3、掌握非等差等比数列求和的几种方法【重点难点】重点:等比数列的定义和性质,数列求和的方法难点:等比数列的定义和性质,数列求和的方法. 【导学流程】 一、基础感知 1、等比数列基本公式 (1)定义:1(N ,)n na q n q a *+=∈为非零常数 (2)通项公式:11n n a a q -=⨯(3)等比中项:2,,a A b A ab ⇔=成等比数列(4)前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩2、等比数列基本性质(1)n m n m a a q -=⨯(2)m n k l m n k l a a a a +=+⇔⋅=⋅(3)232,,n n n n n S S S S S --成等比数列(4)n n S A Aq =-3、数列求和:(公式法、分组求和、错位相减、裂项相消、并项求和、倒序相加)(1)、公式求和①等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=②等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n (2)、分组求和:适用于等差、等比数列以加减的形式构成的新数列的前n 项和(3).错位相减:适用于等差、等比数列以乘、除的形式构成的新数列的前n 项和 若,其中是等差数列,是公比为等比数列, 令,则两式错位相减并整理即得 (4).裂项相消法:适用于类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和(1)(2); (3) (4)(5)、并项求和当数列通项中出现n )1(-或1)1(+-n 时,常常需要对n 取值的奇偶性进行分类讨论。
2025届高三数学等比数列-一轮复习
2025届高三数学等比数列-一轮复习1.等比数列的概念(1)等比数列:一般地,如果一个数列从第 项起,每一项与它的前一项的比都等于 ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比常用字母q 表示(显然q ≠0),定义的表达式为a na n -1=q (n ∈N *,n ≥2)或a n+1a n =q (n ∈N *).(2)等比中项:若三个数a ,G ,b 成等比数列,则G 叫做a 与b 的等比中项,且有 .2.等比数列的有关公式(1)通项公式:a n = (n ∈N *);(2)前n 项和公式:S n ={na 1,q =1, ,q ≠1或S n ={na 1,q =1, ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m q n -m (n ,m ∈N *).(2)若数列{a n }为等比数列,且m +n =p +q ,则a m a n =a p a q (m ,n ,p ,q ∈N *).(3)若数列{a n }是等比数列,公比为q ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公比为q m 的等比数列.(4)如果等比数列{a n }的前n 项和为S n ,那么(S 2n -S n )2=S n (S 3n -S 2n ),如果公比q ≠-1或虽q =-1但n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列.不能认为在任何等比数列中,都有S n ,S 2n -S n ,S 3n -S 2n 成等比数列(5)当等比数列{a n }的项数为偶数,公比为q 时,S 偶S 奇=q . 4、等比数列的单调性 当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列;当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列;当q =1时,{a n }是常数列;当q <0时,{a n }是摆动数列.常用结论 1.若数列{a n },{b n }为等比数列,则{λa n }(λ≠0),{|a n |},⎭⎬⎫⎩⎨⎧n a 1,{a n 2},{a n b n },⎭⎬⎫⎩⎨⎧n n a b 仍为等比数列.2.若数列{a n }为公比不为1的等比数列,其前n 项和S n =A ·q n +B (A ≠0,B ≠0,q ≠0,q ≠1),则必有A +B =0;反之,若某一非常数列的前n 项和S n =A ·q n -A (A ≠0,q ≠0,q ≠1),则数列{a n }必为等比数列.3.若非零数列{a n }的前n 项和为S n ,且S n =ka n +b (k ≠0,k ≠1),则数列{a n }必为等比数列.题型一等比数列基本量的运算【例1】设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=().A.31B.32C.63D.64【对点1】在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是.【对点2】已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=()A.21B.42C.63D.84【对点3】若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则ln a1+ln a2+......+ln a20=.【对点4】等比数列{a n}的各项均为实数,其前n项和为S n.已知S3=7,4 ,则a8=.S6=634题型二等比数列的性质【例2】(1)记S n为等比数列{a n}的前n项和,若S4=-5,S6=21S2,则S8=()A.120B.85C.-85D.-120(2)已知正项等比数列{a n}共有2n项,它的所有项的和是奇数项的和的3倍,则公比q=.【对点1】已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=_________. 【对点2】记S n为等比数列{a n}的前n项和,且1Sλ,则=5a=n⋅3-n___________.【对点3】记S n 为等比数列{a n }的前n 项和,若6845,,3a a a 成等差数列,则=+6510a a S ___________. 【对点4】记S n 为等比数列{a n }的前n 项和,且436=S S ,则=69S S ___________.题型三等比数列的判定与证明【例3】已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1) 证明:{a n +b n }是等比数列【对点1】在数列{a n }中,a 1=1,且a n +1=2a n +n -1.(1)证明:数列{a n +n }为等比数列,并求出a n ;【对点2】已知数列{a n }满足a 1=1,a n+1=3a n +1.(1)证明{a n +12}是等比数列,并求{a n }的通项公式;。
2025年高考数学一轮复习 第六章 数列-第三节 等比数列【课件】
− − = + ⋅ − = ,所以 = .
因为数列{}的各项均为正数,所以 = .因为 = ,所以 = = .故选D.
(2)记 为等比数列{ }的前项和,若4 = −5,6 = 212 ,则8 =( C )
则 + = ±.故答案为±.
= −
= ,
31
5.已知等比数列{ }的公比 > 1,前项和为 ,1 = 1,2 + 3 = 6,则5 =____.
[解析] 由题意得 + = + = + = ,解得 = 或−.因为 > ,所
(3)数列 ,2 − ,3 − 2 ,⋯ 仍是等比数列(此时{ }的公比 ≠ −1);
偶
(4)若项数为2,则
奇
= ;
若项数为2 + 1,则
奇 −1
偶
= .
知识拓展
(1)若数列{ },{ }(项数相同)是等比数列,则数列{ ⋅ } ≠ 0 ,{ },{2 },
以 = ,故 =
−
−
= .故答案为31.
02
研考点 题型突破
题型一 等比数列基本量的计算
典例1(1) 已知等比数列{ }的各项均为正数,若2 = 1,8 = 26 + 34 ,则9 =( D )
A.18 3
B.36 3
C.27
D.27 3
[解析] 设数列{ }的公比为,则 = , = , = .
2.等比中项
2 =
如果,,成等比数列,那么___叫作与的等比中项,即是与的等比中项⇔ ______
2024届新高考一轮复习北师大版 第6章 第3节 等比数列 课件(42张)
解析 当 a=1 时,an=1,Sn=n; 当 a≠1 时,Sn=a(11--aan) .
n,a=1, ∴Sn=a(11--aan),a≠1.
返回导航
5.已知数列{an}满足 a1=1,an+1=2an+1,则 an=________________. 答案 2n-1(n∈N+) 解析 ∵an+1=2an+1(n∈N+), ∴an+1+1=2(an+1),∴{an+1}是以 a1+1=2 为首项,2 为公比的等 比数列,∴an+1=2n. 即 an=2n-1(n∈N+).
=q(n∈N+,
q 为非零常数).
(2)如果在 a 与 b 之间插入一个数 G,使得 a,G,b 成等比数列,那么
G2=__a_b_,即 G=± ab .我们称 G 为 a,b 的等比中项.
返回导航
2.等比数列的通项公式及前 n 项和公式
(1)若等比数列{an}的首项为 a1,公比是 q,则其通项公式为 an=a1qn- 1(a1≠0,q≠0);
通项公式的推广:an=amqn-m.
(2)等比数列的前 n 项和公式:当 q=1 时,Sn=na1;当 q≠1 时,Sn=
a1(1-qn) 1-q
=a11--aqnq
.
推广:当 q≠0,1 时,{an}是等比数列⇔Sn=Aqn-A(A 为常数且 A≠0).
返回导航
3.等比数列的性质 已知{an}是等比数列,Sn 是数列{an}的前 n 项和. (1)若 m+n=p+q,则 aman=apaq,其中 m,n,p,q∈N+,特别地, 若 2k=p+q,则 apaq=a2k ,其中 p,q,k∈N+. (2)相隔等距离的项组成的数列仍是等比数列,即 ak,ak+m,ak+2m,…, 仍是等比数列,公比为 qm(k,m∈N+). (3)当 q≠-1,或 q=-1 且 n 为奇数时,Sn,S2n-Sn,S3n-S2n 仍成等 比数列,其公比为 qn.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列●知识梳理 1.定义数列{a n }从第2项起,每一项与它前一项的比等于同一个常数的数列称作等比数列.常数叫公比.2.通项公式:a n =a 1q n -1,推广形式:a n =a m q n -m.变式:q =mn mn a a -(n 、m ∈N *). 3.前n 项和S n =⎪⎩⎪⎨⎧≠≠--=--=).10(11)1(),1(111q q q qa a q q a q na n n 或注:q ≠1时,m n S S =mnq q --11.4.等比中项:若a 、b 、c 成等比数列,则b 为a 、c 的等比中项,且b =±ac .5.三个数或四个数成等比数列且又知积时,则三个数可设为qa、a 、aq ,四个数可设为3qa 、q a 、aq 、aq 3为好. 6.证明等比数列的方法:(1)用定义:只需证nn a a 1+=常数;(2)用中项性质:只需a n +12=a n ·a n +2或n n a a 1+=12++n n a a . ●点击双基1.一个直角三角形三内角的正弦值成等比数列,其最小内角是215-215- 251-251- 解析:设Rt △ABC 中,C =2π,则A 与B 互余且A 为最小内角.又由已知得sin 2B =sin A ,即cos 2A =sin A ,1-sin 2A =sin A ,解之得sin A =215-或sin A =215--(舍).答案:B2.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于解析:由等比数列的定义,a 1·a 2·a 3=(q a 3)3,故a 1·a 2·a 3·…·a 30=(1030963qa a a a ⋅⋅⋅⋅⋅⋅)3.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B3.某纯净水制造厂在净化水过程中,每增加一次过滤可减少水中杂质20%,要使水中杂质减少到原来的5%以下,则至少需过滤的次数为解析:由题意列式(1-20%)n<5%,两边取对数得n >2lg 3112lg -+≈.故n ≥14.答案:C4.(2004年全国,文14)已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =___________________.解析:由已知得q 7=aa 10=128=27,故q =2.∴a n =a 3·q n -3=3·2n -3. 答案:3·2n -35.如下图,在杨辉三角中,从上往下数共有n (n ∈N *)行,在这些数中非1的数字之和是___________________.1 1 1 12 1 13 3 1 14 6 4 1……解析:观察可知,第n (n ∈N *)行中有n 个数,从左向右依次是二项式系数C 01-n ,C 11-n ,C 21-n ,…,C 11--n n ,故当n ≥3时,除了1外,第n 行各数的和为a n =C 11-n +C 21-n +…+C 21--n n =2n -1-2.又前两行全部为数字1,故前n 行非1的数字之和为a 3+a 4+…+a n =21)21(42---n -2(n -2)=2n -2n .答案:2n-2n ●典例剖析【例1】 已知等比数列{a n }中,a 1+a 2+a 3=7,a 1a 2a 3=8,求a n . 剖析:利用等比数列的基本量a 1,q ,根据条件求出a 1和q . 解:设{a n }的公比为q ,由题意知⎪⎩⎪⎨⎧=⋅⋅=++,8,721112111q a q a a q a q a a解得⎩⎨⎧==2,11q a 或⎪⎩⎪⎨⎧==.21,41q a ∴a n =2n -1或a n =23-n.评述:转化成基本量解方程是解决数列问题的基本方法.思考讨论用a 2和q 来表示其他的量好解吗该题的{a n }若成等差数列呢【例2】 已知数列{a n }为等差数列,公差d ≠0,{a n }的部分项组成下列数列:a 1k ,a 2k ,…,a n k ,恰为等比数列,其中k 1=1,k 2=5,k 3=17,求k 1+k 2+k 3+…+k n .剖析:运用等差(比)数列的定义分别求得a n k ,然后列方程求得k n .解:设{a n }的首项为a 1,∵a 1k 、a 2k 、a 3k 成等比数列,∴(a 1+4d )2=a 1(a 1+16d ). 得a 1=2d ,q =12k k a a =3.∵a n k =a 1+(k n -1)d ,又a n k =a 1·3n -1,∴k n =2·3n -1-1.∴k 1+k 2+…+k n =2(1+3+…+3n -1)-n=2×3131--n -n =3n-n -1.评述:运用等差(比)数列的定义转化为关于k n 的方程是解题的关键,转化时要注意:a n k 是等差数列中的第k n 项,而是等比数列中的第n 项.【例3】 设各项均为正数的数列{a n }和{b n }满足5n a ,5n b ,51+n a 成等比数列,lg b n ,lg a n +1,lg b n +1成等差数列,且a 1=1,b 1=2,a 2=3,求通项a n 、b n .剖析:由等比中项、等差中项的性质得a n +1=1+⋅n n b b 递推出a n =n n b b ⋅-1(n ≥2). 解:∵5n a ,5n b ,51+n a 成等比数列, ∴(5n b )2=5n a ·51+n a ,即2b n =a n +a n +1.①又∵lg b n ,lg a n +1,lg b n +1成等差数列,∴2lg a n +1=lg b n +lg b n +1,即a n +12=b n ·b n +1.②由②及a i >0,b j >0(i 、j ∈N *)可得a n +1=1+⋅n nb b .③∴a n =n n b b 1-(n ≥2).④将③④代入①可得2b n =n n b b ⋅-1+1+⋅n n b b (n ≥2), ∴2n b =1-n b +1+n b (n ≥2). ∴数列{n b }为等差数列. ∵b 1=2,a 2=3,a 22=b 1·b 2,∴b 2=29. ∴n b =2+(n -1)(29-2) =21(n +1)(n =1也成立).∴b n =2)1(2+n .∴a n =n n b b ⋅-1=2)1(222+⋅n n =2)1(+n n (n ≥2). 又当n =1时,a 1=1也成立.∴a n =2)1(+n n .评述:由S n 求a n 时要注意验证a 1与S 1是否一致. 特别提示1.{a n }为等比数列是a n +12=a n ·a n +2的充分但不必要条件.2.若证{a n }不是等比数列,只需证a k 2≠a k -1a k +1(k 为常数,k ∈N ,且k ≥2). ●闯关训练 夯实基础1.若等比数列{a n }的公比q <0,前n 项和为S n ,则S 8a 9与S 9a 8的大小关系是 >S 9a 8 <S 9a 8 =S 9a 8D.不确定 解析:由等比数列通项公式和前n 项和公式得 S 8·a 9-S 9·a 8=-q q a --1)1(81·a 1q 3-qq a --1)1(91·a 1q 7=q a q q q a ----1)]()[(16716821=qq q a --1)(7821=-a 12q 7.又q <0,则S 8·a 9-S 9·a 8>0,即S 8·a 9>S 9·a 8. 答案:A2.银行一年定期的年利率为r ,三年定期的年利率为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于A.1)1(3-+rB.31[(1+r )3-1] C.(1+r )3-1解析:由题意得(1+r )3<1+3q ,故q >31[(1+r )3-1]. 答案:B3.(2003年上海,8)若首项为a 1,公比为q 的等比数列{a n }的前n 项和总小于这个数列的各项和,则首项a 1,公比q 的一组取值可以是(a 1,q )=___________.解析:由题意知q q a n --1)1(1<qa-11且|q |<1对n ∈N 都成立,∴a 1>0,0<q <1.答案:(1,21)(a 1>0,0<q <1的一组数) 4.设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =___________________.解析:分解因式可得[(n +1)a n +1-na n ]·[a n +1+a n ]=0,又a n >0,则(n +1)a n +1-na n =0,即n n a a 1+=1+n n .又a 1=1,由累积法可得a n =n1. 答案:n15.定义一种运算“*”对于任意非零自然数n 满足以下运算性质: (1)1*1=1;(2)(n +1)*1=3(n *1). 试求n *1关于n 的代数式.解:“n *1”是一个整体,联想数列通项形式,设n *1=a n ,则a 1=1,a n +1=3a n ,得a n =3n -1,即n *1=3n -1.6.等比数列{a n }的各项均为正数,其前n 项中,数值最大的一项是54,若该数列的前n 项之和为S n ,且S n =80,S 2n =6560,求:(1)前100项之和S 100. (2)通项公式a n .解:设公比为q ,∵S 2n -S n =6480>S n ,∴q >1.则最大项是a n =a 1q n -1(∵a n >0). ①又S n =qq a n --1)1(1=80,②S 2n =qq a n --1)1(21=6560,③由①②③解得a 1=2,q =3,则(1)前100项之和S 100=13)13(2100--=3100-1.(2)通项公式为a n =2·3n -1. 培养能力7.数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n . (1)设c n =a n -1,求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.(1)证明:∵a 1=S 1,a n +S n =n ,∴a 1+S 1=1,得a 1=21.又a n +1+S n +1=n +1,两式相减得2(a n +1-1)=a n -1,即111--+n n a a =21,也即n n c c 1+=21,故数列{c n }是等比数列.(2)解:∵c 1=a 1-1=-21, ∴c n =-n 21,a n =c n +1=1-n 21,a n -1=1-121-n .故当n ≥2时,b n =a n -a n -1=121-n -n 21=n 21.又b 1=a 1=21,即b n =n 21(n ∈N *).8.设数列{a n }、{b n }(b n >0,n ∈N*),满足a n =nb b b n lg lg lg 21+⋅⋅⋅++(n ∈N*),证明:{a n }为等差数列的充要条件是{b n }为等比数列.证明:充分性:若{b n }为等比数列,设公比为q ,则a n =n q q q b n n )lg(lg 121-⋅⋅⋅⋅⋅⋅+=nq b n n n 2)1(1lglg -+=lg b 1+(n -1)lg q 21,a n +1-a n =lg q 21为常数,∴{a n }为等差数列.必要性:由a n =nb b b nlg lg lg 21+⋅⋅⋅++得na n =lg b 1+lg b 2+…+lg b n ,(n +1)a n +1=lg b 1+lg b 2+…+lg b n +1,∴n (a n +1-a n )+a n +1=lg b n +1.若{a n }为等差数列,设公差为d , 则nd +a 1+nd =lg b n +1,∴b n +1=10nd a 21+,b n =10d n a )1(21-+.∴nn b b 1+=102d为常数. ∴{b n }为等比数列. 探究创新9.有点难度哟!设数列{a n },a 1=65,若以a 1,a 2,…,a n 为系数的二次方程:a n -1x 2-a n x +1=0(n ∈N*且n ≥2)都有根α、β满足3α-αβ+3β=1.(1)求证:{a n -21}为等比数列;(2)求a n ;(3)求{a n }的前n 项和S n .(1)证明:∵α+β=1-n n a a ,αβ=11-n a 代入3α-αβ+3β=1得a n =31a n -1+31, ∴21211---n n a a =2121313111--+--n n a a =31为定值. ∴数列{a n -21}是等比数列. (2)解:∵a 1-21=65-21=31,∴a n -21=31×(31)n -1=(31)n.∴a n =(31)n +21.(3)解:S n =(31+231+…+n 31)+2n =311)311(31--n +2n =21+n -n 321⨯. ●思悟小结1.深刻理解等比数列的定义,紧扣从“第二项起”和“比是同一常数”这两点.2.运用等比数列求和公式时,需对q =1和q ≠1进行讨论.3.证明数列{a n }是等差数列的两种基本方法是: (1)利用定义,证明1-n na a (n ≥2)为常数; (2)利用等比中项,即证明a n 2=a n -1·a n +1(n ≥2). ●教师下载中心 教学点睛1.等比数列的性质在求解中有着十分重要的作用,应让学生熟练掌握、灵活运用.2.解决等比数列有关问题的常见思想方法:(1)方程的思想:等比数列中五个元素a 1、a n 、n 、q 、S n 可以“知三求二”;(2)分类讨论的思想:当a 1>0,q >1或a 1<0,0<q <1时为递增数列,当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.3.转化为“基本量”是解决问题的基本方法. 拓展题例【例1】 数列{a n }中,a 1=1,a n =21a n -1+1(n ≥2),求通项公式a n . 解:由a n =21a n -1+1,得a n -2=21(a n -1-2). 令b n =a n -2,则b n -1=a n -1-2,∴有b n =21b n -1.∴b n =21b n -1=21·21b n -2=21·21·21b n -3 =…=b 1=(21)n -1·b 1.∵a 1=1,∴b 1=a 1-2=-1.∴b n =-(21)n -1.∴a n =2-121 n . 【例2】 已知数列{a n }中,a 1=65,a 2=3619并且数列log 2(a 2-31a ),log 2(a 3-32a ),…,log 2(a n +1-3n a )是公差为-1的等差数列,而a 2-21a ,a 3-22a ,…,a n +1-2n a 是公比为31的等比数列,求数列{a n }的通项公式.分析:由数列{log 2(a n +1-3n a)}为等差数列及等差数列的通项公式,可求出a n +1与a n的一个递推关系式①;由数列{a n +1-2n a}为等比数列及等比数列的通项公式,可求出a n +1与a n 的另一个递推关系式②.解两个关系式的方程组,即可求出a n .解:∵数列{log 2(a n +1-3n a)}是公差为-1的等差数列,∴log 2(a n +1-3n a )=log 2(a 2-31a 1)+(n -1)(-1)=log 2(3619-31×65)-n +1=-(n +1),于是有a n +1-3n a =2-(n +1).①又∵数列{a n +1-21a n }是公比为31的等比数列,∴a n +1-21a n =(a 2-21a 1)·3-(n -1)=(3619-21×65)·3-(n -1)=3-(n +1). 于是有a n +1-21a n =3-(n +1).②由①-②可得61a n =2-(n +1)-3-(n +1), ∴a n =n 23-n 32.。