两角和与差的正弦余弦正切公式练习题(含答案)
两角和与差的正弦余弦正切公式练习题(含答案)
两角和与差的正弦余弦正切公式练习题(含答案)两角和差的正弦余弦正切公式练题一、选择题1.给出如下四个命题:①对于任意的实数α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;②存在实数α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;③公式tan(α+β)=tanα+tanβ成立的条件是α≠kπ+π(k∈Z)且β≠kπ+π(k∈Z);1-tanαtanβ/2④不存在无穷多个α和β,使sin(α-β)=sinαcosβ-cosαsinβ。
其中假命题是()A。
①②B。
②③C。
③④D。
②③④2.函数y=2sinx(sinx+cosx)的最大值是()A。
1+2B。
2-1C。
2D。
2/33.当x∈[-π/2,π/2]时,函数f(x)=sinx+3cosx的()A。
最大值为1,最小值为-1B。
最大值为1,最小值为-1/2C。
最大值为2,最小值为-2D。
最大值为2,最小值为-14.已知tan(α+β)=7,tanαtanβ=2/3,则cos(α-β)的值()A。
1/2B。
2/2C。
-2D。
±25.已知π/2<β<α<3π/4,cos(α-β)=12/13,sin(α+β)=-3/5,则sin2α=()A。
56/65B。
-56/65C。
6565/56D。
-5/66.sin15°sin30°sin75°的值等于()A。
3/4B。
3/8C。
1/8D。
1/47.函数f(x)=tan(x+π/4)+1+tanx/4,g(x)=1-tanx,h(x)=cot(π/4-x)。
其中为相同函数的是()A。
f(x)与g(x)B。
g(x)与h(x)C。
h(x)与f(x)D。
f(x)与g(x)及h(x)8.α、β、γ都是锐角,tanα=1/2,tanβ=1/5,tanγ=1/8,则α+β+γ等于()A。
π/3B。
π/4C。
π/5D。
2022秋新教材高中数学第五章两角和与差的正弦余弦正切公式课后提能训练新人教A版必修第一册
第五章 5.5.1 第2课时A级——基础过关练1.sin 105°的值为( )A.B.C.D.【答案】D 【解析】sin 105°=sin(45°+60°)=sin 45°·cos 60°+cos 45°sin 60°=×+×=.2.(多选)下列四个选项,化简正确的是( )A.cos(-15°)=B.cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C.cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=D.sin 14°cos 16°+sin 76°cos 74°=【答案】BCD 【解析】对于A,(方法一)原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°=×+×=,(方法二)原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=×+×=,A错误.对于B,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B正确.对于C,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=,C正确.对于D,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=,D正确.故选BCD.3.(2020年青岛高一期中)已知α,β为锐角,tan α=,cos(α+β)=-,则tan β=( )A.2B.C.D.【答案】A 【解析】因为α,β为锐角,所以0<α+β<π,所以sin(α+β)==,tan(α+β)==-2,则tan β=tan[(α+β)-α]===2.故选A.4.(2020年抚州高一期中)已知cos=2cos(π+α),且tan(α+β)=,则tan β的值为( )A.-7B.7C.1D.-1【答案】B 【解析】因为cos=2cos(π+α),所以sin α=-2cos α,即 tan α=-2.又因为tan(α+β)===,解得tan β=7.故选B.5.已知cos(α-β)=,sin β=-,且α∈,β∈,则cos α=( )A.B.C.- D.-【答案】B 【解析】因为0<α<,-<β<0,所以0<α-β<π.又cos(α-β)=,所以sin(α-β)=.因为-<β<0,sin β=-,所以cos β=.所以cos α=cos[(α-β)+β]=cos(α-β)cos β-sin(α-β)sin β=×-×=.6.(2020年上海黄浦区高一期中)已知sin x=,x∈,则tan的值等于________.【答案】- 【解析】因为sin x=,x∈,所以cos x=-,tan x=-.所以tan===-.7.若sin α+2cos α=0(0<α<π),则tan α=________,tan=________.【答案】-2 - 【解析】因为sin α+2cos α=0(0<α<π),所以sin α=-2cos α,即tan α=-2.所以tan===-.8.(2020年湘潭高一期中)已知tan α,tan β是方程2x2+3x-5=0的两个实数根,则tan(α+β)=________.【答案】- 【解析】因为tan α,tan β是方程2x2+3x-5=0的两个实数根,所以tan α+tan β=-,tan αtan β=-.所以tan(α+β)===-.9.已知cos α=(α为第一象限角),求cos,sin的值.解:因为cos α=,且α为第一象限角,所以sin α= ==.所以cos=cos cos α-sin sin α=×-×=,sin=sincos α+cossin α=×+×=.B级——能力提升练10.sin(θ+75°)+cos(θ+45°)-cos(θ+15°)=( )A.±1B.1C.-1D.0【答案】D 【解析】原式=sin[60°+(θ+15°)]+cos(θ+45°)-cos(θ+15°)=-cos(θ+15°)+sin(θ+15°)+cos(θ+45°)=sin(θ-45°)+cos(θ+45°)=0.故选D.11.已知tan(α+β)=3,tan(α-β)=5,则tan 2α的值为( )A.-B.C.D.-【答案】A 【解析】tan 2α=tan[(α+β)+(α-β)]====-.12.在△ABC中,cos A=,cos B=,则△ABC的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形【答案】B 【解析】由题意得sin A=,sin B=,所以cos C=cos(π-A-B)=-cos(A+B)=-cos A·cos B+sin A sin B=-×+×=-=-=-<0,所以C是钝角,故△ABC是钝角三角形.13.在△ABC中,tan A+tan B+=tan A·tan B,则角C等于( )A.B.C.D.【答案】A 【解析】由已知,得tan A+tan B=·(tan A tan B-1),即=-.所以tan(A +B)=-.所以tan C=tan[π-(A+B)]=-tan(A+B)=,得C=.14.已知cos α=,sin(α-β)=,且α,β∈.(1)求cos(2α-β)的值;(2)求β的值.解:(1)因为α,β∈,所以α-β∈.又因为sin(α-β)=>0,所以0<α-β<.所以sin α==,cos(α-β)==.cos(2α-β)=cos[α+(α-β)]=cos αcos(α-β)-sin αsin(α-β)=×-×=.(2)cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=.又因为β∈,所以β=.C级——探究创新练15.已知函数f(x)=(sin x+cos x)2-2cos2x(x∈R).(1)求函数f(x)的周期和递增区间;(2)若函数g(x)=f(x)-m在上有两个不同的零点x1,x2,求tan(x1+x2)的值.解:(1)因为f(x)=(sin x+cos x)2-2cos2x=1+2sin x·cos x-2cos2x=sin 2x-cos 2x=sin(x∈R),所以函数f(x)的周期T==π.因为函数y=sin x的单调递增区间为(k∈Z),所以函数f(x)的单调递增区间由2kπ-≤2x-≤2kπ+(k∈Z),化简得kπ-≤x≤kπ+(k∈Z),即(k∈Z).(2)因为方程g(x)=f(x)-m=0同解于f(x)=m.在直角坐标系中画出函数f(x)=sin在上的图象,如图,当且仅当m∈[1,)时,方程f(x)=m在上的区间和有两个不同的解x1、x2,且x1与x2关于直线x=对称,即=,所以x1+x2=,故tan(x1+x2)=tan=-1.。
完整版)两角和与差的正弦、余弦、正切经典练习题
完整版)两角和与差的正弦、余弦、正切经典练习题两角和与差的正弦、余弦、正切cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ1、求值:1)cos15°2)cos80°cos20°+sin80°sin20°3)cos130°cos10°+sin130°sin10°5)sin75°7)cos(A+B)cosB+sin(A+B)sinB2.1)证明:cos(π/2-α)=sinα4)cos105°6)求cos75°cos105°+sin75°sin105°8)cos91°cos29°-sin91°sin29°2)已知sinθ=15π,且θ为第二象限角,求cos(θ-π)的值.3)已知sin(30°+α)=√3/2,60°<α<150°,求cosα.4)化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).5)已知sinα=-4/5,求cosα的值。
6)已知cosα=-3π/32,α∈(π/2,π),求sin(α+π/4)的值。
7)已知α,β都是锐角,cosα=32π/53,α∈(π/3,π/2),cosβ=-3π/52,β∈(π/6,π/4),求cos(α+β)的值。
8)已知cos(α+β)=-11/53,求cosβ的值。
9)在△ABC中,已知sinA=√3/5,cosB=1/4,求cosC的值.两角和与差的正弦sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβ利用和差角公式计算下列各式的值:1)sin72°cos42°-cos72°sin42°2)3sinx+cosx3)cos2x-sin2x证明:1)sinα+cosα=sin(α+π/2)2)cosθ+sinθ=2sin(θ+π/4)3)2(sin x+cos x)=2cos(x-π/4)1)已知sinα=-3/5,α是第四象限角,求sin(-α)的值。
两角和与差的正弦、余弦和正切公式
自主梳理
1.(1)两角和与差的余弦 cos(α+β)=_____________________________________________, cos(α-β)=_____________________________________________. (2)两角和与差的正弦 sin(α+β)=_____________________________________________, sin(α-β)=_____________________________________________.
=
s3icno7s02°0°=
3.
(2)原式=tan[(π6-θ)+(π6+θ)][1-tan(π6-θ)·tan(π6+θ)]+ 3tan(π6-θ)tan(π6+θ)= 3. 例 2 解题导引 对于给值求值问题,即由给出的某些角的三角函数的值,求另外一些角的三
角函数值,关键在于“变角”,使“所求角”变为“已知角”,若角所在象限没有确定,则应
(1)求 sin α 的值; (2)求 β 的值.
变式迁移 若 sin A= 55,sin B= 1100,且 A、B 均为钝角,求 A+B 的值.
探究点 2 给值求值问题(已知某角的三角函数值,求另一角的三角函数值)
【课后自主检测】
1.已知 sinα+π3+sin α=-45 3,则 cosα+23π等于
2.辅助角公式:asin α+bcos α= a2+b2sin(α+φ),
其中csions
φ= φ=
tan φ=ba,
, , 角 φ 称为辅助角(考试只要求特殊角).
【基础自测】
1.计算 sin 43°cos 13°-cos 43°sin 13°的结果等于
高考数学一轮复习专题22两角和与差的正弦、余弦和正切公式(含解析)
专题22两角和与差的正弦、余弦和正切公式最新考纲1.会用向量的数量积推导出两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4.能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).基础知识融会贯通1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β(C (α-β)) cos(α+β)=cos αcos β-sin αsin β(C (α+β)) sin(α-β)=sin αcos β-cos αsin β(S (α-β)) sin(α+β)=sin αcos β+cos αsin β(S (α+β)) tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α. 【知识拓展】1.降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.2.升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.3.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b2,cos φ=a a 2+b 2.重点难点突破【题型一】和差公式的直接应用【典型例题】求值:sin24°cos54°﹣cos24°sin54°等于()A.B.C.D.【解答】解:sin24°cos54°﹣cos24°sin54°=sin(24°﹣54°)=sin(﹣30°)=﹣sin30°,故选:C.【再练一题】若sinα,α∈(),则cos()=()A.B.C.D.【解答】解:∵sinα,α∈(),∴cosα,∴cos()(cosα﹣sinα).故选:A.思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.【题型二】和差公式的灵活应用命题点1 角的变换【典型例题】已知tan(α)=﹣2,则tan()=()A.B.C.﹣3 D.3【解答】解:∵tan(α)=﹣2,则tan()=tan[(α)],故选:A.【再练一题】若sin()=2cos,则()A.B.C.2 D.4【解答】解:∵sin()=2cos,∴sinαcos cosαsin2cos,即 sinαcos3cosαsin,∴tanα=3tan,则,故选:B.命题点2 三角函数式的变换【典型例题】若,且,则()A.B.C.D.【解答】解:∵α,∴π<2α,又,∴cos2α.∴,解得cosα,则sinα.∴.故选:D.【再练一题】已知sinα+3cosα,则tan(α)=()A.﹣2 B.2 C.D.【解答】解:∵(sinα+3cosα)2=sin2α+6sinαcosα+9cos2α=10(sin2α+cos2α),∴9sin2α﹣6sinαcosα+cos2α=0,则(3tanα﹣1)2=0,即.则tan(α).故选:B.思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β等.基础知识训练1.【辽宁省辽阳市2019届高三下学期一模】已知α∈(22ππ-,),tan α=sin76°cos46°﹣cos76°sin46°,则sin α=( )A B . C D . 【答案】A 【解析】解:由tan α=sin76°cos46°﹣cos76°sin46°=sin (76°﹣46°)=sin30°12=, 且α∈(22ππ-,),∴α∈(0,2π),联立,解得sin α=. 故选:A .2.【福建省2019年三明市高三毕业班质量检查测试】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边过点(3,4)P .若角β满足,则tan β=( )A .-2B .211 C .613D .12【答案】B 【解析】因为角α的终边过点()3,4P ,所以4tan 3α=,又,所以,即,解得2tan 11β=. 故选B3.【福建省宁德市2019届高三毕业班第二次(5月)质量检查考试】( )A .B .C .D .【答案】B 【解析】,故选:B4.【河南名校联盟2018-2019学年高三下学期2月联考】已知,则=( )A .35B .45C D 【答案】D 【解析】∵,∴12tan θ=.∴.故选D .5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟考试】已知,则sin α= ( )A B C .45D .35【答案】A 【解析】因为,所以,所以,且0,2πα⎛⎫∈ ⎪⎝⎭解得,故选A.6.若,则tan α= ( )A .17 B .17-C .1D .1-【答案】D 【解析】tan (α-β)=3,tan β=2, 可得3,∴,解得tan α1=-. 故选:D .7.【福建省三明市2019的是( ) A . B . C .D .【答案】D 【解析】 解:选项A :;选项B :;选项C :; 选项D :,经过化简后,可以得出每一个选项都具有的形式,, 故只需要sin α接近于sin 45︒,根据三角函数图像可以得出sin 46︒最接近sin 45︒,故选D.8.【广西桂林市、崇左市2019届高三下学期二模联考】已知,则( )A .B .C .D .【答案】C 【解析】 由题得.当在第一象限时,.当在第三象限时,.故选:C9.【湖南省长沙市长郡中学2019届高三下学期第一次适应性考试(一模)】已知为锐角,则()sin αβ+的值为( )A .12B .312- C .12D .312+ 【答案】D 【解析】 因为为锐角因为()cos 2β=所以2αβ+大于90°由同角三角函数关系,可得所以 =所以选D10.【山东省菏泽市2019届高三下学期第一次模拟考试】若,且α是钝角,则( )A .46B .46- C .46D .46-【答案】D 【解析】 因为α是钝角,且,所以,故,故选:D11.【安徽省黄山市2019届高三毕业班第三次质量检测】________.【答案】2 【解析】 因为,又,所以,所以.故答案为212.【西南名校联盟重庆市第八中学2019届高三5月高考适应性月考卷(六)】函数的最大值为_______【答案】1【解析】,所以,因此()f x的最大值为1.13.【吉林省2019届高三第一次联合模拟考试】已知,则m=______.【答案】【解析】由得:整理得:m=本题正确结果:14.【山东省泰安市教科研中心2019届高三考前密卷】已知,则=_____.【答案】1 7 -【解析】,则3cos5α=-,所以4tan3α=-,则:,故答案为:17-. 15.【江西省新八校2019届高三第二次联考】在锐角三角形ABC ∆中,角,,A B C 的对边分别为,,a b c ,若3sin c b A =,则的最小值是_______.【答案】12 【解析】 由正弦定理可得:得:,即又令,得:ABC ∆为锐角三角形得:,即1t > 10t ∴->当且仅当,即时取等号本题正确结果:1216.【安徽省合肥市2019届高三第三次教学质量检测】已知函数,若对任意实数x ,恒有,则______.【答案】14- 【解析】对任意实数x ,恒有,则()1fα为最小值,()2f α为最大值.因为,而,所以当sin =1x -时,()f x 取得最小值;当1sin 4x =时,()f x 取得最大值. 所以.所以1cos 0α=.所以.17.【江苏省徐州市2018-2019学年高三考前模拟检测】在ABC ∆中,已知3AC =,cos B =,3A π=.(1)求AB 的长; (2)求的值.【答案】(1)2AB =(2)【解析】(1)在ABC ∆中,因为cos B =,所以02B π<<,所以,又因为,所以,由正弦定理,,所以.(2)因为,所以,所以.18.【天津市北辰区2019届高考模拟考试】在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知45B =,b =cos C =. (1)求边a ;(2)求()sin 2A B -.【答案】(1)(2)【解析】(1)由题意得:cos C =,,0C π<<,∴,∵45B =︒,,∴,∴由正弦定理,得a =.(2)由(1)得,,∴,,∴.19.【2019年塘沽一中、育华中学高三毕业班第三次模拟考试】在ABC △中,角,,A B C 的对边分别为,,a b c ,已知,.(1)求ABC △的面积; (2)若2c =,求的值.【答案】(1)4;(2) 【解析】 解:,,,,易得sin 0A ≠,3cos 5A ∴=,,又,可得,10bc =,可得ABC △的面积;(2),5b ∴=,由余弦定理可得,,a ∴=,,20.【天津市河北区2019届高三一模】已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,满足,.(1)求cos A 的值; (2)求的值。
2021届高考数学总复习(人教A版,理科)配套题库: 两角和与差的正弦、余弦和正切(含答案解析)
4.已知sinθ+cosθ= ,则sinθ-cosθ的值为( ).
A. B.- C. D.-
解析∵sinθ+cosθ= ,∴(sinθ+cosθ)2=1+sin 2θ= ,∴sin 2θ= ,又0<θ< ,∴sinθ<cosθ.∴sinθ-cosθ=- =- =- .
答案B
5.若tanα=lg(10a),tanβ=lg ,且α+β= ,则实数a的值为( ).
S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.
(2)已知cosα=- ,α∈ ,tanβ=- ,β∈ ,
求cos(α+β).
解(1)证明①如图,在直角坐标系xOy内作单位圆O,并作出角α,β与-β,使角α的始边为Ox轴非负半轴,交⊙O于点P1,终边交⊙O于点P2;角β的始边为OP2,终边交⊙O于点P3,角-β的始边为OP1,终边交⊙O于点P4.
答案C
二、填空题
7.已知cos = ,α∈ ,则cosα=________.
解析∵α∈ ,∴α+ ∈ ,
∴sin = .
故cosα=cos [ - ]
=cos cos +sin sin
= × + × = .
答案
8.设α为锐角,若cos = ,则
sin 的值为________.
解析∵α为锐角且cos = ,
∴α+ ∈ ,∴sin = .
∴sin =sin
=sin 2 cos -cos 2 sin
= sin cos -
= × × - = - = .
答案
9.函数f(x)=2cos2x+sin 2x的最小值是________.
解析∵f(x)=2cos2x+sin 2x=1+cos 2x+sin 2x=1+ sin ,∴f(x)min=1- .
两角和与差及二倍角公式经典例题及答案
:两角和与差及其二倍角公式知识点及典例知识要点:1、两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)= ; C(α+β):cos(α+β)= ; S(α+β):sin(α+β)= ; S(α-β):sin(α-β)= ; T(α+β):tan(α+β)= ; T(α-β):tan(α-β)= ; 2、二倍角的正弦、余弦、正切公式2S α:sin2α= ; 2T α:tan2α= ;2C α:cos2α= = = ;3、在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等。
如T(α±β)可变形为:tan α±tan β=___________________; tan αtan β= = . 考点自测:1、已知tan α=4,tan β=3,则tan(α+β)=( )711A 、 711B 、-713C 、 713D 、-2、已知cos ⎝⎛⎭⎫α-π6+ sin α=453,则 sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235 C .-45 D.453、在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665 D .-1665 4、若cos2θ+cos θ=0,则sin2θ+sin θ的值等于( )A .0B .±3C .0或 3D .0或±35、三角式2cos55°-3sin5°cos5°值为( )A.32B. 3 C .2 D .1 题型训练题型1 给角求值一般所给出的角都是非特殊角,利用角的关系(与特殊角的联系)化为特殊角 例1求[2sin50sin10(1)]︒︒︒+.变式1:化简求值:2cos10sin 20.cos 20︒︒︒- 题型2给值求值三角函数的给值求值问题解决的关键在于把“所求角”用“已知角”表示.如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=--- 例2 设cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,其中α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫0,π2,求cos(α+β).变式2:π3π33π50π,cos(),sin(),4445413βααβ<<<<-=+=已知求sin(α+β)的值.题型3给值求角已知三角函数值求角,一般可分以下三个步骤:(1)确定角所在的范围;(2)求角的某一个三角函数值(要求该三角函数应在角的范围内严格单调);(3)求出角。
第三章 第5节 两角和与差的正弦、余弦和正切公式
第三章 第五节 两角和与差的正弦、余弦和正切公式1.2cos10°-sin20°sin70°的值是 ( )A.12B.32C. 3D. 2 解析:原式=2cos(30°-20°)-sin20°sin70°=2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70°=3cos20°cos20°= 3.答案:C2.2+2cos8+21-sin8的化简结果是 ( ) A .4cos4-2sin4 B .2sin4 C .2sin4-4cos4 D .-2sin4 解析:原式=4cos 24+2(sin4-cos4)2=2|cos4|+2|sin4-cos4|, ∵5π4<4<3π2,∴cos4<0,sin4<cos4. ∴原式=-2cos4+2(cos4-sin4)=-2sin4. 答案:D3.(2010·辽宁模拟)已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)=________.解析:∵tan β=cos α-sin αcos α+sin α,∴tan β=1-tan α1+tan α=tan(π4-α).又∵α、β均为锐角,∴β=π4-α,即α+β=π4,∴tan(α+β)=tan π4=1.答案:14.sin(π4-x )=35,则sin2x 的值为 ( )A.725 B.1425 C.1625 D.1925解析:∵sin(π4-x )=35∴22cos x -22sin x =22(cos x -sin x )=35. ∴cos x -sin x =325. ∴(cos x -sin x )2=1-sin2x =1825, ∴sin2x =725. 答案:A5.已知α为钝角,且sin(α+π12)=13,则cos(α+5π12)的值为 ( ) A.22+36 B.22-36 C .-22+36 D.-22+36解析:∵α为钝角,且sin(α+π12)=13, ∴cos(α+π12)=-223, ∴cos(α+5π12)=cos[(α+π12)+π3]=cos(α+π12)cos π3-sin(α+π12)sin π3=(-223)·12-13·32=-22+36. 答案:C6.已知cos ⎝⎛⎭⎫x -π4=210,x ∈⎝⎛⎭⎫π2,3π4. (1)求sin x 的值; (2)求sin ⎝⎛⎭⎫2x +π3的值.解:(1)法一:因为x ∈⎝⎛⎭⎫π2,3π4, 所以x -π4⎝⎛⎭⎫π4,π2,sin ⎝⎛⎭⎫x -π4=1-cos 2⎝⎛⎭⎫x -π4=7210.sin x =sin[⎝⎛⎭⎫x -π4+π4]=sin(x -π4)cos π4+cos(x -π4)sin π4=7210×22+210×22=45. 法二:由题设得22cos x +22sin x =210即cos x +sin x =15.又sin 2x +cos 2x =1,从而25sin 2x -5sin x -12=0, 解得sin x =45或sin x =-35.因为x ∈⎝⎛⎭⎫π2,3π4,所以sin x =45. (2)因为x ∈⎝⎛⎭⎫π2,3π4,故cos x =-1-sin 2x =-1-⎝⎛⎭⎫452=-35.sin2x =2sin x cos x =-2425,cos2x =2cos 2x -1=-725.所以sin ⎝⎛⎭⎫2x +π3=sin2x cos π3+cos2x sin π3=-24+7350.7.已知A 、B ( ) A.5π4 B.7π4 C.5π4或7π4 D.9π4解析:由已知可得cos A =-255,cos B =-31010,∴cos(A +B )=cos A cos B -sin A sin B =22, 又∵π2A <π,π2<B <π,∴π<A +B <2π,∴A +B =7π4.答案:B8.在△ABC 中,3sin A +4cos B =6,4sin B +3cos A =1,则C 等于 ( ) A .30° B .150° C .30°或150° D .60°或120°解析:已知两式两边分别平方相加,得25+24(sin A cos B +cos A sin B )=25+24sin(A +B )=37, ∴sin(A +B )=sin C =12,∴C =30°或150°.当C =150°时,A +B =30°,此时3sin A +4cos B <3sin30°+4cos0°=112,这与3sin A +4cos B =6相矛盾,∴C =30°. 答案:A9.如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A 、B 两点.已知A 、B 的横坐标分别为210,255.(1)求tan(α+β)的值; (2)求α+2β的值.解:(1)由已知条件及三角函数的定义可知,cos α=210,cos β=255.因α为锐角,故sin α >0,从而sin α=1-cos 2α=7210,同理可得sin β=55.因此tan α=7,tan β=12. 所以tan(α+β)=tan α+tan β1-tan αtan β=7+121-7×123.(2)tan(α+2β)=tan[(α+β)+β]=-3+121-(-3)×12=-1.又0<α<π2,0<β<π20<α+2β<3π2,从而由tan(α+2β)=-1得α+2β=3π4.10.(2010·晋城模拟)已知向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于 ( ) A .-34 B .-14 C.34 D.14解析:a ·b =4sin(α+π6)+4cos α- 3=23sin α+6cos α-3=43sin(α+π3)-3=0,∴sin(α+π3)=14.∴sin(α+4π3)=-sin(α+π3)=-14. 答案:B11.已知cos(α-π6)+sin α=453,则sin(α+7π6)的值为________.解析:∵cos(α-π6)+sin α=32cos α+32sin α=453,∴12cos α+32sin α=45, ∴sin(α+7π6)=-sin(α+π6)=-(32sin α+12cos α) =-45答案:-4512.(文)已知点M (1+cos2x,1),N (1,3sin2x +a )(x ∈R ,a ∈R ,a 是常数),设y =OM ON(O 为坐标原点).(1)求y 关于x 的函数关系式y =f (x ),并求f (x )的最小正周期;(2)若x ∈[0,π2]时,f (x )的最大值为4,求a 的值,并求f (x )在[0,π2]上的最小值.解:(1)依题意得:O M =(1+cos2x,1),O N=(1,3sin2x +a ), ∴y =1+cos2x +3sin2x +a =2sin(2x +π6)+1+a .∴f (x )的最小正周期为π.(2)若x ∈[0,π2],则(2x +π6)∈[π6,7π6,∴-12sin(2x +π6)≤1,此时y max =2+1+a =4,∴a =1, y min =-1+1+1=1.(理)已知α、β为锐角,向量a =(cos α,sin α),b =(cos β,sin β),c =(12,-12).(1)若a·b =22,a·c =3-14,求角2β-α的值; (2)若a =b +c ,求tan α的值. 解:(1)∵a·b =(cos α,sin α)·(cos β,sin β)=cos αcos β+sin αsin β =cos(α-β)=22, ① a·c =(cos α,sin α)·(12,-12)=12cos α-12sin α=3-14, ② 又∵0<α<π2,0<β<π2,∴-π2α-β<π2由①得α-β=±π4,由②得α=π6.由α、β为锐角,∴β=5π12.从而2β-α=23π.(2)由a =b +c 可得⎩⎨⎧cos β=cos α-12, ③sin β=sin α+12, ④③2+④2得cos α-sin α=12,∴2sin αcos α=34.又∵2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=34, ∴3tan 2α-8tan α+3=0. 又∵α为锐角,∴tan α>0, ∴tan α=8±82-4×3×36=8±286 =4±73.。
两角和与差的正弦余弦正切公式练习题(答案)
两角和差的正弦余弦正切公式练习题知 识 梳 理1.两角和与差的正弦、余弦和正切公式 s in (α±β)=s in_αcos _β±cos_αsin _β. cos(α∓β)=cos_αc os_β±sin_αsin_β. t an(α±β)=错误!.2.二倍角的正弦、余弦、正切公式 s in 2α=2sin_αcos_α.cos 2α=cos 2α-sin2α=2cos 2α-1=1-2sin 2α. ta n 2α=错误!. 3.有关公式的逆用、变形等(1)ta n α±tan β=t an(α±β)(1∓ta n_αt an_β). (2)co s2α=\f(1+cos 2α,2),sin 2α=错误!.(3)1+sin 2α=(si n α+co s α)2,1-sin 2α=(sin α-cos α)2,sin α±co s α=\r(2)sin 错误!.4.函数f (α)=a sin α+bcos α(a ,b 为常数),可以化为f (α)=a 2+b 2s in(α+φ),其中t an φ=\f(b,a ) 一、选择题1.给出如下四个命题ﻩﻩ①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立;②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是 ﻩ( )A .①②ﻩB.②③ C.③④ﻩD.②③④2.函数)cos (sin sin 2x x x y +=的最大值是ﻩﻩ( )A .21+ﻩB .12-ﻩC .2ﻩD . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的ﻩﻩ( ) A.最大值为1,最小值为-1ﻩB .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-14.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值ﻩﻩ( ) A.21 B .22 C.22-D.22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A.6556ﻩB .-6556ﻩC.5665 D.-5665 6. 75sin 30sin 15sin ⋅⋅的值等于ﻩﻩ( ) A .43 B .83ﻩC.81 D.417.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是ﻩﻩ( )A.)()(x g x f 与B .)()(x h x g 与C.)()(x f x h 与ﻩD.)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( ) A.3πB.4πﻩC.π65ﻩD.π45 9.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A.p +q +1=0 B .p-q +1=0ﻩC.p+q-1=0 D .p-q-1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A.412--a a ﻩB.-412--a a ﻩC.214a a --± D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为ﻩ( )A.1tan tan >+B A ﻩB .1tan tan <⋅B A C.1tan tan =⋅B A D.不能确定 12. 50sin 10sin 70cos 20sin +的值是ﻩ( )A.41B.23ﻩC.21D.43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B,B C A cos 2cos 1cos 1-=+求2cos CA -的值. 两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[- 三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====ﻩ3275tan )2tan(+==- αβ. 19.证:y x y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A +C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA 故222cos =-C A .。
最新两角和与差的正弦余弦正切公式练习题(含答案)
两角和差的正弦余弦正切公式练习题一、选择题1.给出如下四个命题①对于任意的实数α和β,等式βαβαβαsin sin cos cos )cos(-=+恒成立; ②存在实数α,β,使等式βαβαβαsin sin cos cos )cos(+=+能成立; ③公式=+)tan(βαβαβαtan tan 1tan ⋅-+an 成立的条件是)(2Z k k ∈+≠ππα且)(2Z k k ∈+≠ππβ;④不存在无穷多个α和β,使βαβαβαsin cos cos sin )sin(-=-; 其中假命题是( )A .①②B .②③C .③④D .②③④ 2.函数)cos (sin sin 2x x x y +=的最大值是( )A .21+B .12-C .2D . 2 3.当]2,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的( ) A .最大值为1,最小值为-1 B .最大值为1,最小值为21-C .最大值为2,最小值为-2D .最大值为2,最小值为-1 4.已知)cos(,32tan tan ,7)tan(βαβαβα-=⋅=+则的值 ( )A .21 B .22 C .22-D .22±5.已知=-=+=-<<<αβαβαπαβπ2sin ,53)sin(,1312)cos(,432则 ( )A .6556B .-6556C .5665D .-56656. 75sin 30sin 15sin ⋅⋅的值等于( )A .43 B .83 C .81D .41 7.函数)4cot()(,tan 1tan 1)(),4tan()(x x h x x x g x x f -=-+=+=ππ其中为相同函数的是 ( )A .)()(x g x f 与B .)()(x h x g 与C .)()(x f x h 与D .)()()(x h x g x f 及与8.α、β、γ都是锐角,γβαγβα++===则,81tan ,51tan ,21tan 等于 ( )A .3π B .4π C .π65D .π459.设0)4tan(tan 2=++-q px x 是方程和θπθ的两个根,则p 、q 之间的关系是( )A .p+q+1=0B .p -q+1=0C .p+q -1=0D .p -q -1=0 10.已知)tan(),sin(4sin ,cos βαβααβ++==则a 的值是( )A .412--a aB .-412--a aC .214a a --±D .412--±a a11.在△ABC 中,90C >,则B A tan tan ⋅与1的关系为( )A .1tan tan >+B A B .1tan tan <⋅B AC .1tan tan =⋅B AD .不能确定12. 50sin 10sin 70cos 20sin +的值是( )A .41B .23C .21D .43二、填空题(每小题4分,共16分,将答案填在横线上)13.已知m =-⋅+)sin()sin(αββα,则βα22cos cos -的值为 . 14.在△ABC 中,33tan tan tan =++C B A ,C A B tan tan tan 2⋅= 则∠B=.15.若),24cos()24sin(θθ-=+ 则)60tan( +θ= . 16.若y x y x cos cos ,22sin sin +=+则的取值范围是 . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.化简求值:)34sin(x -π)36cos()33cos(x x +--⋅ππ)34sin(x +⋅π.18.已知 0βαβαcos ,cos ,90且 <<<是方程02150sin 50sin 222=-+- x x 的两根,求)2tan(αβ-的值.19.求证:yx xy x y x 22sin cos 2sin )tan()tan(-=-++.20.已知α,β∈(0,π)且71tan ,21)tan(-==-ββα,求βα-2的值.21.证明:xx xx x 2cos cos sin 22tan 23tan +=-.22.已知△ABC 的三个内角满足:A+C=2B ,B C A cos 2cos 1cos 1-=+求2cos CA -的值.两角和差的正弦余弦正切公式练习题参考答案一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B 10.D 11.B 12.A二、13.m 14.3π15.32-- 16.]214,214[-三、17.原式=)34cos()33sin()33cos()34sin(x x x x -----ππππ=462-.18.)4550sin(2)2150(sin 4)50sin 2(50sin 222 ±=---±=x ,12sin 95cos5,sin 5cos85,x x ∴====3275tan )2tan(+==- αβ.19.证:yx y x y x y x y x y x y x y x 2222sin sin cos cos )]()sin[()cos()sin()cos()sin(⋅-⋅-++=--+++=左=-=+-=yx xy x x x x 222222sin cos 2sin sin )sin (cos cos 2sin 右. 20.13tan ,tan(2)1,2.34ααβαβπ=-=-=-21.左==+=⋅=⋅-x x x x x x x x x x x x 2cos cos sin 22cos23cos sin 2cos 23cos 2sin23cos 2cos 23sin右.22.由题设B=60°,A+C=120°,设2CA -=α知A=60°+α, C=60°-α,22cos ,2243cos cos cos 1cos 12=-=-=+ααα即CA故222cos =-C A .。
两角和与差的正弦、余弦和正切公式(含解析)
两角和与差的正弦、余弦和正切公式(含解析)1.两角和与差的正弦、余弦、正切公式1) $cos(\alpha-\beta): cos(\alpha-\beta)=cos\alphacos\beta+sin\alpha sin\beta$2) $cos(\alpha+\beta): cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta$3) $sin(\alpha+\beta): sin(\alpha+\beta)=sin\alphacos\beta+cos\alpha sin\beta$4) $sin(\alpha-\beta): sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta$5) $tan(\alpha+\beta):tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}$6) $tan(\alpha-\beta): tan(\alpha-\beta)=\frac{tan\alpha-tan\beta}{1+tan\alpha tan\beta}$2.二倍角的正弦、余弦、正切公式1) $sin2\alpha: sin2\alpha=2sin\alpha cos\alpha$2) $cos2\alpha: cos2\alpha=cos^2\alpha-sin^2\alpha=2cos^2\alpha-1=1-2sin^2\alpha$3) $tan2\alpha: tan2\alpha=\frac{2tan\alpha}{1-tan^2\alpha}$3.常用的公式变形1) $tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta}$2) $cos2\alpha=\frac{1+cos2\alpha}{2}$,$sin2\alpha=\frac{1-cos2\alpha}{2}$3) $1+sin2\alpha=(sin\alpha+cos\alpha)^2$,$1-sin2\alpha=(sin\alpha-cos\alpha)^2$,$\sin\alpha+\cos\alpha=2\sin\frac{\alpha+\beta}{4}$基础题必做1.若$tan\alpha=3$,则$\frac{sin2\alpha}{2sin\alphacos\alpha}$的值等于$2tan\alpha=2\times3=6$。
高一 两角和与差的余弦、正弦、正切公式知识点+例题+练习 含答案
1.两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C (α-β))cos(α+β)=cos αcos β-sin αsin β (C (α+β))sin(α-β)=sin αcos β-cos αsin β (S (α-β))sin(α+β)=sin αcos β+cos αsin β (S (α+β))tan(α-β)=tan α-tan β1+tan αtan β(T (α-β)) tan(α+β)=tan α+tan β1-tan αtan β(T (α+β)) 2.二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;tan 2α=2tan α1-tan 2α. 3.公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan αtan β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)存在实数α,使tan 2α=2tan α.( √ )(5)两角和与差的正弦、余弦公式中的角α,β是任意的.( √ )1.化简cos 40°cos 25°1-sin 40°= . 答案 2解析 原式=cos 40°cos 25°1-cos 50°=cos (90°-50°)cos 25°·2sin 25°=sin 50°22sin 50°= 2. 2.若sin α+cos αsin α-cos α=12,则tan 2α= . 答案 34解析 由sin α+cos αsin α-cos α=12,等式左边分子、分母同除cos α得,tan α+1tan α-1=12,解得tan α=-3, 则tan 2α=2tan α1-tan 2α=34. 3.(2015·重庆改编)若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17. 4.(教材改编)sin 347°cos 148°+sin 77°cos 58°= .答案 22 解析 sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°=(-cos 77°)·(-sin 58°)+sin 77°cos 58°=sin 58°cos 77°+cos 58°sin 77°=sin(58°+77°)=sin 135°=22. 5.设α为锐角,若cos(α+π6)=45,则sin(2α+π12)的值为 . 答案 17250解析 ∵α为锐角,cos(α+π6)=45, ∴α+π6∈⎝⎛⎭⎫π6,2π3,∴sin(α+π6)=35, ∴sin(2α+π3)=2sin(α+π6)cos(α+π6)=2425, ∴cos(2α+π3)=2cos 2(α+π6)-1=725, ∴sin(2α+π12)=sin(2α+π3-π4) =22[sin(2α+π3)-cos(2α+π3)]=17250.题型一 三角函数公式的基本应用例1 (1)已知sin α=35,α∈(π2,π),则cos 2α2sin (α+π4)= . (2)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是 .答案 (1)-75(2) 3 解析 (1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π, ∴cos α=-45. ∴原式=-75. (2)∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2 α=-231-(-3)2= 3. 思维升华 (1)使用两角和与差的三角函数公式,首先要记住公式的结构特征.(2)使用公式求值,应先求出相关角的函数值,再代入公式求值.(1)若α∈(π2,π),tan(α+π4)=17,则sin α= . (2)已知cos(x -π6)=-33,则cos x +cos(x -π3)的值是 . 答案 (1)35(2)-1 解析 (1)∵tan(α+π4)=tan α+11-tan α=17, ∴tan α=-34=sin αcos α, ∴cos α=-43sin α. 又∵sin 2α+cos 2α=1,∴sin 2α=925. 又∵α∈(π2,π),∴sin α=35. (2)cos x +cos(x -π3)=cos x +12cos x +32sin x =32cos x +32sin x =3(32cos x +12sin x ) =3cos(x -π6)=-1. 题型二 三角函数公式的灵活应用例2 (1)sin(65°-x )cos(x -20°)+cos(65°-x )·cos(110°-x )的值为 . (2)求值:cos 15°+sin 15°cos 15°-sin 15°= . 答案 (1)22(2) 3 解析 (1)原式=sin(65°-x )·cos(x -20°)+cos(65°-x )cos [90°-(x -20°)]=sin(65°-x )cos(x -20°)+cos(65°-x )sin(x -20°)=sin [(65°-x )+(x -20°)]=sin 45°=22. (2)原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力.(1)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为 .(2)函数f (x )=2sin 2(π4+x )-3cos 2x 的最大值为 . 答案 (1)π4(2)3 解析 (1)由题意知:sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C 1-tan B tan C=-1=-tan A ,所以A =π4.(2)f (x )=1-cos ⎣⎡⎦⎤2(π4+x )-3cos 2x =sin 2x -3cos 2x +1=2sin ⎝⎛⎭⎫2x -π3+1, 可得f (x )的最大值是3.题型三 角的变换问题例3 (1)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β= . (2)已知cos(α-π6)+sin α=453,则sin(α+7π6)的值是 . 答案 (1)2525 (2)-45解析 (1)依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45. 又α,β均为锐角,所以0<α<α+β<π,cos α>cos(α+β).因为45>55>-45, 所以cos(α+β)=-45. 于是cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525. (2)∵cos(α-π6)+sin α=453, ∴32cos α+32sin α=453, 3(12cos α+32sin α)=453, 3sin(π6+α)=453, ∴sin(π6+α)=45,∴sin(α+7π6)=-sin(π6+α)=-45. 思维升华 (1)解决三角函数的求值问题的关键是把“所求角”用“已知角”表示.①当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;②当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=(α+β2)-(α2+β)等. 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2= . 答案 539解析 cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2 =cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2, ∵0<α<π2,∴π4<π4+α<3π4, ∴sin ⎝⎛⎭⎫π4+α=223.又-π2<β<0,则π4<π4-β2<π2, ∴sin ⎝⎛⎭⎫π4-β2=63. 故cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.5.三角函数求值忽视角的范围致误典例 (1)已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,则cos(α+β)的值为 .(2)已知在△ABC 中,sin(A +B )=23,cos B =-34,则cos A = . 易错分析 (1)角α2-β,α-β2的范围没有确定准确,导致开方时符号错误. (2)对三角形中角的范围挖掘不够,忽视隐含条件,B 为钝角.解析 (1)∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53, sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2=459,∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1 =2×49×5729-1=-239729. (2)在△ABC 中,∵cos B =-34, ∴π2<B <π,sin B =1-cos 2B =74. ∵π2<B <A +B <π,sin(A +B )=23, ∴cos(A +B )=-1-sin 2(A +B )=-53, ∴cos A =cos [(A +B )-B ]=cos(A +B )cos B +sin(A +B )sin B=⎝⎛⎭⎫-53×⎝⎛⎭⎫-34+23×74=35+2712. 答案 (1)-239729 (2)35+2712温馨提醒 在解决三角函数式的求值问题时,要注意题目中角的范围的限制,特别是进行开方运算时一定要注意所求三角函数值的符号.另外,对题目隐含条件的挖掘也是容易忽视的问题,解题时要加强对审题深度的要求与训练,以防出错.[方法与技巧]1.巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x ·tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2, 配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22, 1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[失误与防范]1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在三角函数求值时,一定不要忽视题中给出的或隐含的角的范围.A 组 专项基础训练(时间:40分钟)1.cos 85°+sin 25°cos 30°cos 25°= . 答案 12解析 原式=sin 5°+32sin 25°cos 25°=sin (30°-25°)+32sin 25°cos 25°=12cos 25°cos 25°=12. 2.若θ∈[π4,π2],sin 2θ=378,则sin θ= . 答案 34解析 由sin 2θ=378和sin 2θ+cos 2θ=1得 (sin θ+cos θ)2=378+1=(3+74)2, 又θ∈[π4,π2],∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34. 3.若tan θ=3,则sin 2θ1+cos 2θ= . 答案3 解析 sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ= 3. 4.已知cos α=-55,tan β=13,π<α<32π,0<β<π2,则α-β的值为 . 答案 54π 解析 因为π<α<32π,cos α=-55,所以sin α=-255,tan α=2,又tan β=13,所以tan(α-β)=2-131+23=1,由π<α<32π,-π2<-β<0得π2<α-β<32π,所以α-β=54π. 5.已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4= . 答案 322解析 因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝⎛⎭⎫β-π4, 所以tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322. 6.sin 250°1+sin 10°= .答案 12解析 sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 7.已知α、β均为锐角,且cos(α+β)=sin(α-β),则tan α= . 答案 1解析 根据已知条件:cos αcos β-sin αsin β=sin αcos β-cos αsin β,cos β(cos α-sin α)+sin β(cos α-sin α)=0,即(cos β+sin β)(cos α-sin α)=0.又α、β为锐角,则sin β+cos β>0,∴cos α-sin α=0,∴tan α=1.8.若tan θ=12,θ∈(0,π4),则sin(2θ+π4)= . 答案 7210解析 因为sin 2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=45, 又由θ∈(0,π4),得2θ∈(0,π2), 所以cos 2θ=1-sin 22θ=35, 所以sin(2θ+π4) =sin 2θcos π4+cos 2θsin π4=45×22+35×22=7210. 9.已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值;(2)求tan α-1tan α的值.解 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3. 10.已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. 解 (1)因为sin α2+cos α2=62, 两边同时平方,得sin α=12. 又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π, 所以-π<-β<-π2,故-π2<α-β<π2. 又sin(α-β)=-35,得cos(α-β)=45. cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =-32×45+12×⎝⎛⎭⎫-35 =-43+310. B 组 专项能力提升(时间:20分钟)11.已知tan(α+π4)=12,且-π2<α<0,则2sin 2α+sin 2αcos (α-π4)= . 答案 -255解析 由tan(α+π4)=tan α+11-tan α=12, 得tan α=-13. 又-π2<α<0, 所以sin α=-1010. 故2sin 2α+sin 2αcos (α-π4)=2sin α(sin α+cos α)22(sin α+cos α)=22sin α =-255. 12.已知α∈⎝⎛⎭⎫0,π2,且sin 2α-sin αcos α-2cos 2α=0,则tan ⎝⎛⎭⎫π3-α= . 答案 8-5311解析 ∵sin 2α-sin αcos α-2cos 2α=0,cos α≠0,∴tan 2α-tan α-2=0.∴tan α=2或tan α=-1,∵α∈⎝⎛⎭⎫0,π2,∴tan α=2, tan ⎝⎛⎭⎫π3-α=tan π3-tan α1+tan π3tan α =3-21+23=(3-2)(23-1)(23-1)(23+1)=8-5312-1=8-5311. 13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3= . 答案 2-156解析 ∵cos 4α-sin 4α=(sin 2α+cos 2α)(cos 2α-sin 2α)=cos 2α=23, 又α∈⎝⎛⎭⎫0,π2, ∴2α∈(0,π),∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α =12×23-32×53=2-156. 14.设f (x )=1+cos 2x 2sin ⎝⎛⎭⎫π2-x +sin x +a 2sin ⎝⎛⎭⎫x +π4的最大值为2+3,则常数a = . 答案 ±3解析 f (x )=1+2cos 2x -12cos x+sin x +a 2sin ⎝⎛⎭⎫x +π4=cos x +sin x +a 2sin ⎝⎛⎭⎫x +π4 =2sin ⎝⎛⎭⎫x +π4+a 2sin ⎝⎛⎭⎫x +π4 =(2+a 2)sin ⎝⎛⎭⎫x +π4. 依题意有2+a 2=2+3, ∴a =±3.15.已知函数f (x )=1-2sin ⎝⎛⎭⎫x +π8 ·⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8. (1)求函数f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤-π2,π12,求函数f ⎝⎛⎭⎫x +π8的值域. 解 (1)函数f (x )=1-2sin ⎝⎛⎭⎫x +π8[sin ⎝⎛⎭⎫x +π8-cos ⎝⎛⎭⎫x +π8] =1-2sin 2⎝⎛⎭⎫x +π8+2sin ⎝⎛⎭⎫x +π8cos ⎝⎛⎭⎫x +π8 =cos ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x +π4=2sin ⎝⎛⎭⎫2x +π2 =2cos 2x ,所以f (x )的最小正周期T =2π2=π. (2)由(1)可知f ⎝⎛⎭⎫x +π8=2cos ⎝⎛⎭⎫2x +π4. 由于x ∈⎣⎡⎦⎤-π2,π12, 所以2x +π4∈⎣⎡⎦⎤-3π4,5π12, 所以cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-22,1, 则f ⎝⎛⎭⎫x +π8∈[-1,2], 所以f ⎝⎛⎭⎫x +π8的值域为[-1,2].。
三角恒等变换-知识点+例题+练习
两角和与差的正弦、余弦和正切基础梳理1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. 4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. 两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝ ⎛⎭⎪⎫α+β2-⎝ ⎛⎭⎪⎫α2+β. (2)化简技巧:切化弦、“1”的代换等. 三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.双基自测1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .2cos 2 π12-1 B .1-2sin 275° C.2tan 22.5°1-tan 222.5°D .sin 15°cos 15°2.(2011·福建)若tan α=3,则sin 2αcos 2α的值等于( ). 3.已知sin α=23,则cos(π-2α)等于( ). 4.(2011·辽宁)设sin ⎝ ⎛⎭⎪⎫π4+θ=13,则sin 2θ=( ).5.tan 20°+tan 40°+3tan 20° tan 40°=________.考向一 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x .[审题视点] 切化弦,合理使用倍角公式.三角函数式的化简要遵循“三看”原则:(1)一看“角”,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式;(3)三看“结构特征”,分析结构特征,找到变形的方向.【训练1】化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.考向二三角函数式的求值【例2】►已知0<β<π2<α<π,且cos⎝⎛⎭⎪⎫α-β2=-19,sin⎝⎛⎭⎪⎫α2-β=23,求cos(α+β)的值.三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余互补”关系.【训练2】 已知α,β∈⎝ ⎛⎭⎪⎫0,π2,sin α=45,tan(α-β)=-13,求cos β的值.考向三 三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.【训练3】 已知α,β∈⎝ ⎛⎭⎪⎫-π2,π2,且tan α,tan β是方程x 2+33x +4=0的两个根,求α+β的值.考向四 三角函数的综合应用【例4】►(2010·北京)已知函数f (x )=2cos 2x +sin 2x .(1)求f ⎝ ⎛⎭⎪⎫π3的值;(2)求f (x )的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y =A sin(ωx +φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值.三角函数求值、求角问题策略面对有关三角函数的求值、化简和证明,许多考生一筹莫展,而三角恒等变换更是三角函数的求值、求角问题中的难点和重点,其难点在于:其一,如何牢固记忆众多公式,其二,如何根据三角函数的形式去选择合适的求值、求角方法. 一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论.【示例】► (2011·江苏)已知tan ⎝ ⎛⎭⎪⎫x +π4=2,则tan x tan 2x 的值为________.二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角.【示例】► (2011·南昌月考)已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.▲三角恒等变换与向量的综合问题两角和与差的正弦、余弦、正切公式作为解题工具,是每年高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.【示例】► (2011·温州一模)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝ ⎛⎭⎪⎫0,π2.(1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.【课后训练】A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15B.14C.13D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于 ( ) A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( )A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于 ( )A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值等于________. 6.3tan 12°-3(4cos 212°-2)sin 12°=________.7.sin α=35,cos β=35,其中α,β∈⎝⎛⎭⎫0,π2,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎝⎛⎭⎫π2,π,且sin α2+cos α2=62. (1)求cos α的值;(2)若s in(α-β)=-35,β∈⎝⎛⎭⎫π2,π,求cos β的值. =-32×45+12×⎝⎛⎭⎫-35=-43+310.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·山东)若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ等于( )A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( )A.1318 B.1322 C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分)4.已知锐角α满足cos 2α=cos ⎝⎛⎭⎫π4-α,则sin 2α=_______. 5.已知cos ⎝⎛⎭⎫π4-α=1213,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫π4+α=_________. 6. 设x ∈⎝⎛⎭⎫0,π2,则函数y =2sin 2x +1sin 2x的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎝⎛⎭⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π =1617,求cos(α+β)的值.。
(完整版)两角和与差的正弦、余弦、正切经典练习题
两角和与差的正弦、余弦、正切一、两角和与差的余弦βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-1、求值:(1) 15cos (2) 20802080sin sin cos cos +(3) 1013010130sin sin cos cos +(4)cos105°(5)sin75°(6)求cos75°cos105°+sin75°sin105°(7)cos (A +B )cosB +sin (A +B )sinB .(8) 29912991sin sin cos cos -2. (1)求证:cos (2π-α) =sin α.(2)已知sin θ=1715,且θ为第二象限角,求cos (θ-3π)的值. (3)已知sin (30°+α)=,60°<α<150°,求cos α.3. 化简cos (36°+α)cos (α-54°)+sin (36°+α)sin (α-54°).4. 已知32=αsin ,⎪⎭⎫ ⎝⎛∈ππα,2,53-=βcos ,⎪⎭⎫ ⎝⎛∈23ππβ,,求)cos(βα+的值.5.已知1312-=αcos ,⎪⎭⎫ ⎝⎛∈23ππα,,求)cos(4πα+的值。
6. 已知α,β都是锐角,31=αcos ,51-=+)cos(βα,求βcos 的值。
7.在△ABC 中,已知sin A =53,cos B =135,求cos C 的值.二、两角和与差的正弦sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ-=-1利用和差角公式计算下列各式的值(1)sin 72cos 42cos 72sin 42︒︒-︒︒ (2)13cos sin 22x x -(3)3sin cos x x + (4)22cos 2sin 222x x -二、证明: )4cos(2)cos (sin 2)3()4sin(2sin cos )2()6sin(cos 21sin 23)1(ππθθθπααα-=++=++=+x x x3(1)已知3sin 5α=-,α是第四象限角,求sin()4πα-的值。
3.1两角和与差的正弦、余弦和正切公式
3.1 两角和与差的正弦、余弦和正切公式例题1.求下列各式的值(1)cos1050; (2)cos460cos160+sin460sin160例题2.求值:(1)cos150cos1050+sin150sin1050;(2)cos (α﹣350)·cos (250+α)+sin (α﹣350)·sin (250+α)(3)cos400cos700+cos200cos500(4)00008cos 8sin 15sin 7cos -例题3.已知α是第一象限角,sin α=53,β是第四象限角,cos β=54,求cos (α+β)和cos (α﹣β)的值。
例题4.求下列各式的值:(1)sin1650;(2)sin (540﹣x )cos (360+x )+cos (540﹣x )sin (360+x )例题5.已知cos (α+β)=31-,cos2α=135-,α、β均为锐角,求sin (α﹣β)例题6.化简下列各式:(1)⎪⎭⎫ ⎝⎛-απ4tan ;(2)000076tan 74tan 176tan 74tan -+;(3)0015tan 3115tan 3+-;(4)000070tan 50tan 370tan 50tan -+例题7.0000008sin 15sin 7cos 8sin 15cos 7sin -∙+例题8.求值:(1)12cos 12sin 22ππ-;(2)sin750cos750;(3)0215sin 3432-;(4)02015tan 115tan 2-;例题9.(1)求125cos 12cos ππ的值;(2)已知215sin -=x ,求⎪⎭⎫⎝⎛-42sin πx 的值;例题10.求值:(1)sin100sin500sin700;(2)sin60sin420sin660sin780例题11.求值:(1+tan10)(1+tan20)(1+tan30)…(1+tan440)例题12.化简:(1)cos720·cos360;(2)cos200·cos400·cos600·cos800;(3)1322cos 2cos 2cos 2cos cos -∙∙∙∙n ααααα例题13.化简:αααα3cos cos 3sin sin 33+例题14.已知31sin sin -=-βα,21cos cos =-βα,求)cos(βα-的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
tan(
)
tan an 1 tan tan
成立的条件是
k
2
(k
Z)且
k
2
(k
Z);
④不存在无穷多个 α 和 β,使 sin( ) sin cos cos sin ;
其中假命题是
A.①②
B.②③
C.③④
() D.②③④
2
4
13
5
A. 56 65
B.- 56 65
C. 65 56
D.- 65 56
()
6. sin15o sin 30o sin 75o 的值等于
()
A. 3 4
B. 3 8
C. 1 8
D. 1 4
7.函数
f
(x)
tan(x
), g(x)
1
tan
x , h(x)
cot(
x) 其中为相同函数的是
D.最大值为 2,最小值为-1
4.已知 tan( ) 7, tan tan 2 ,则cos( ) 的值 3
()
A.
5.已知
3 , cos(
)
12 ,sin(
)
3 ,则sin 2
12. sin 20o cos 70o sin10o sin 50o的值是
A. 1
4
B. 3
2
C. 1
2
D. 3
4
二、填空题(每小题 4 分,共 16 分,将答案填在横线上)
13.已知 sin( ) sin( ) m ,则 cos2 cos2 的值为
() () .
4
C. 5 6
D. 5 4
9.设
tan和
tan(
)是方程x 2
px q
0 的两个根,则
p、q 之间的关系是(
)
4
A.p+q+1=0
B.p-q+1=0 C.p+q-1=0 D.p-q-1=0
10.已知 cos a,sin 4sin( ),则 tan( ) 的值是
求 tan( 2 ) 的值.
2
19.求证: tan(x y) tan(x y) sin 2x . cos2 x sin 2 y
20.已知 α,β∈(0,π)且 tan( ) 1 , tan 1 ,求 2 的值.
2
7
21.证明: tan 3 x tan x 2sin x .
4
1 tan x
4
()
A. f (x)与g(x) B. g(x)与h(x) C. h(x)与f (x) D. f (x)与g(x)及h(x)
8.α、β、 都是锐角, tan 1 , tan 1 , tan 1 ,则 等于 ( )
2
5
8
1
A.
3
B.
2.函数 y 2sin x(sin x cos x) 的最大值是
()
A.1 2
B. 2 1
C. 2
D. 2
3.当 x [ , ] 时,函数 f (x) sin x 3 cos x 的 22
()
A.最大值为 1,最小值为-1
B.最大值为 1,最小值为 1 2
C.最大值为 2,最小值为-2
.
2
三、解答题(本大题共 74 分,17—21 题每题 12 分,22 题 14 分)
17.化简求值: sin(
3x)
cos(
3x)
cos(
3x)
sin(
3x) .
4
3
6
4
18.已知 0o 90o,且 cos, cos 是方程 x 2 2 sin 50o x sin 2 50o 1 0 的两根, 2
14.在△ABC 中, tan A tan B tan C 3 3 , tan 2 B tan A tan C 则∠B=
.
15.若 sin( 24o) cos(24o ), 则 tan( 60o) =
.
16.若 sin x sin y 2 ,则cos x cos y 的取值范围是
cos(x y) cos(x y) cos 2 x cos 2 y sin 2 x sin 2 y
sin 2x
sin 2x 右.
cos2 x (cos2 x sin 2 x) sin 2 y cos2 x sin 2 y
两角和差的正弦余弦正切公式练习题
一、选择题 1.给出如下四个命题
①对于任意的实数 α 和 β,等式 cos( ) cos cos sin sin 恒成立;
②存在实数 α,β,使等式 cos( ) cos cos sin sin 能成立;
③公式
()
A. 1 a2
a4
B.- 1 a 2
a4
C. a 4
1 a2
D. 1 a 2
a4
11.在△ABC 中, C 90o ,则 tan A tan B 与 1 的关系为
A. tan A tan B 1 C. tan A tan B 1
B. tan A tan B 1 D.不能确定
18. x
2 sin(50o 45o) ,
2
x1 sin 95o cos 5o, x2 sin 5o cos 85o,
tan( 2 ) tan 75o 2 3 .
19.证: 左 sin(x y) sin(x y) sin[(x y) (x y)]
2
2 cos x cos 2x
22.已知△ABC 的三个内角满足:A+C=2B, 1 1 2 求 cos A C 的值.
cos A cos C cos B
2
两角和差的正弦余弦正切公式练习题参考答案
3
一、1.C 2.A 3.D 4.D 5.B 6.C 7.C 8.B 9.B
11.B 12.A
二、13.m 14. 3
15. 2 3
16.[ 14 , 14 ]
22
三、17.原式=
sin(
3x)
cos(
3x)
sin(
3x)
cos(
3x) =
2
6.
4
3
3
4
4
10.D
2 sin 50o ( 2 sin 50o)2 4(sin 2 50o 1 )