耿中高三期中试卷
北省衡水中学217届上学期高三期中考试
北省衡水中学217届上学期高三期中考试第Ⅰ卷语言文字运用(每题2分,共12分)1.下列各句中,加点的成语使用全都恰当的一项是()(2分)①关乎社会建设的重大问题必须通过党委会集体讨论作出决定,如果个别领导干部好为人师,那么后果将不堪设想。
②古代很多文人在官场失意后不再热心于功名,转而到山野求田问舍,过着惬意的隐居生活。
③家具市场产品鱼目混珠的现象早已屡见不鲜,网购平台上售卖仿冒名品家具的卖家也越来越多,有关部门有必要展开一轮彻查严打的行动了。
④在《虞美人》这首词中,南唐后主李煜的愁思如春水般汪洋恣肆,奔放倾泻;又如春水之不舍昼夜,常流不断,无穷无尽。
⑤经过衡中三年的努力学习,理科成绩优秀喜欢航天专业的李楠考上了北航,文科成绩过人的孙博到人大读了新闻系,这也算各得其所了。
⑥搞学术研究若方向不明确,时而东时而西,就会歧路亡羊,很难取得成果。
A.①②⑥B.①③④ C.②④⑤D.③⑤⑥【答案】D【考点定位】正确使用词语(包括熟语)。
能力层级为表达运用E。
【技巧点拨】此类题要在理解句意的基础上,结合具体语境及词语的意思从三个方面综合考虑分析即成语的基本义、感情色彩和语境。
需要注意色彩不明,断词取义,对象误用,谦敬错位,功能混乱,不合语境,望文生义等错误使用类型。
例如本题“好为人师”用在此句中就属于望文生义的错误。
“求田问舍”用在此句就属于贬义褒用的错误。
2. 下列各句中,加点的成语使用全都恰当的一项是()(2分)A.龙川岛像一张舒展着的荷叶漂浮在浩如烟海的千岛湖上,岛上又有30多个小湖,湖水明净,映着日光,犹如闪烁在荷叶上的水珠一样。
B.著名歌唱家李双江之子李天一是个不知天高地厚的初生之犊,无照驾驶,肇事打人,寻衅滋事,其行为引起了人们对“星二代”的热议。
C.有的人本来准备洗心革面重新做人,可最后只是改头换面,给自己的亲人和朋友带来无尽伤痛。
D.至于在反腐败中落马的“裸官”,在贪腐时亦冠冕堂皇,将贪腐得来的钱财转移到海外,以供家属挥霍。
2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷【答案版】
2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .23.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 35.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( )A .甲B .乙C .丙D .丁6.已知奇函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=2x +b ,则f(20232)=( ) A .−1−√2B .1−√2C .√2+1D .√2−17.若sin(α+π6)=35,则sin(2α+5π6)=( ) A .−725B .−1625C .725D .16258.已知函数f (x )=x 3+ax 2+bx +c (a ,b ,c ∈R ),若不等式f (x )<0的解集为{x |x <m +1且x ≠m },则函数f (x )的极小值是( ) A .−14B .0C .−427D .−49二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为CC 1,A 1D 1的中点,则( ) A .BM ∥AD 1 B .AM ⊥BDC .B 1M ⊥平面ABND .MN ∥平面A 1BD10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<312.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|= . 14.写出一个同时满足下列两个性质的函数:f (x )= . ①f (x 1+x 2)=f (x 1)•f (x 2);②∀x ∈R ,f ′(x )<0.15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t 分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e −0.08t .研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待 分钟.(结果保留整数)(参考数据:ln 2≈0.7,ln 3≈1.1,ln 11≈2.4)16.在平面四边形ABCD 中,AB =AD =√2,BC =CD =1,BC ⊥CD ,将四边形沿BD 折起,使A ′C =√3,则四面体A ′﹣BCD 的外接球O 的表面积为 ;若点E 在线段BD 上,且BD =3BE ,过点E 作球O 的截面,则所得的截面中面积最小的圆的半径为 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB.(1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长. 19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n﹣14na n a n+1,求数列{b n }的前n 项和S n .20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.21.(12分)如图,AB 是半球O 的直径,AB =4,M ,N 是底面半圆弧AB ̂上的两个三等分点,P 是半球面上一点,且∠PON =60°. (1)证明:PB ⊥平面P AM ;(2)若点P 在底面圆内的射影恰在ON 上,求直线PM 与平面P AB 所成角的正弦值.22.(12分)已知函数f(x)=1+lnx.x(1)讨论f(x)的单调性;(2)设a,b为两个不相等的实数,且ae b﹣be a=e a﹣e b,证明:e a+e b>2.2023-2024学年江苏省淮安市、南通市部分学校高三(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合A ={x |x 2+x ﹣6=0},B ={2,3},则A ∩B =( ) A .∅B .{2}C .{3}D .{2,3}解:A ={x |x 2+x ﹣6=0}={﹣3,2},故A ∩B ={2}. 故选:B .2.已知a ∈R ,若(2+i )(1+ai )为纯虚数,则a =( ) A .−12B .12C .﹣2D .2解:(2+i )(1+ai )=2﹣a +(1+2a )i , 因为a ∈R ,且(2+i )(1+ai )为纯虚数, 所以{2−a =01+2a ≠0,解得a =2.故选:D .3.“a =1”是“函数f(x)=2x−a2x +a是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:若a =1,则f(x)=2x−12x +1,f(−x)=12x −112x +1=1−2x 1+2x =−2x−12x +1=−f(x),所以f (x )是奇函数; 若函数f(x)=2x−a2x +a在其定义域上为奇函数,可得f(−x)=12x −a 12x +a =1−a⋅2x 1+a⋅2x =−f(x)=−2x −a 2x +a =a−2x2x +a, 解得a =±1,∴a =1是函数f(x)=2x−a2x +a在其定义域上为奇函数的充分不必要条件.故选:A .4.学校以“布一室馨香,育满园桃李”为主题开展了系列评比活动,动员师生一起为营造舒心愉悦的学习生活环境奉献智慧.张老师特地培育了一盆绿萝放置在教室内,绿萝底部的盆近似看成一个圆台,圆台的上、下底面半径之比为3:2,母线长为10cm ,其母线与底面所成的角为60°,则这个圆台的体积为( )A .2375√33πcm 3B .4750√33πcm 3C .7125√33πcm 3 D .9500√33πcm 3解:根据题意,设圆台的上、下底面半径分别为3x ,2x , 因为母线长为10,且母线与底面所成的角为60°, 所以圆台的高为10sin60°=5√3,并且x =10×12=5,所以圆台的上底面半径为3x =15,下底面半径为2x =10,高为5√3. 由此可得圆台的体积为V =13π(152+102+15×10)×5√3=2375√3π3(cm 3). 故选:A .5.已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π2),现有如下四个命题: 甲:该函数图象的相邻两条对称轴之间的距离为π2;乙:该函数图象可以由y =cos2x −√3sin2x 的图象向右平移π4个单位长度得到;丙:该函数在区间(−π12,π6)上单调递增; 丁:该函数满足f(π3+x)+f(π3−x)=0. 如果只有一个假命题,那么该命题是( ) A .甲B .乙C .丙D .丁 解:对于甲,该f (x )图象的相邻两条对称轴之间的距离为T 2=πω=π2,则f (x )的周期T =π;对于乙,将函数y =cos2x −√3sin2x =2cos(2x +π3)的图象向右平移 π4个单位长度,得到y =2cos[2(x −π4)+π3]=2sin(2x +π3) 的图象;对于丙,函数f(x)在区间(−π12,π6)上单调递增;对于丁,函数f(x)满足f(π3+x)+f(π3−x)=0,即f(x)图象关于(π3,0)对称.因为只有乙的条件最具体,所以从乙入手,若乙正确,此时f(x)的单调递增区间为[−5π12+kπ,π12+kπ](k∈Z),与丙的结论矛盾,根据题设“只有一个命题是假命题”,可知这一个假命题只能是乙或丙,若丙是真命题,则甲、丙、丁三个是真命题,由f(x)图象关于(π3,0)对称,且周期为π,可知:在点(π3,0)的左侧且距离最近的f(x)图象的对称轴为x=π12,而π12∈(−π12,π6),说明f(x)在区间(−π12,π6)上不单调,与丙是真命题矛盾.若乙是真命题,则甲、乙、丁三个都是真命题,此时f(x)=2sin(2x+π3),最小正周期T=π,且图象关于(π3,0)对称,甲、乙、丁之间相符合.综上所述,丙不可能是真命题,即唯一的假命题是丙.故选C.6.已知奇函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,f(x)=2x+b,则f(20232)=()A.−1−√2B.1−√2C.√2+1D.√2−1解:因为f(x)为奇函数,且当x∈[0,1]时,f(x)=2x+b,所以f(0)=1+b=0,解得:b=﹣1,即当x∈[0,1]时,f(x)=2x﹣1,又因为f(x)的图象关于直线x=1对称,所以f(x)=f(2﹣x),且f(x)=﹣f(﹣x)则f(x)=f(2﹣x)=﹣f(x﹣2)=﹣f[2﹣(x﹣2)]=﹣f(4﹣x)=f(x﹣4),即函数f(x)是以4为周期的周期函数,故f(20232)=f(252×4+72)=f(72−4)=f(−12)=−f(12)=1−√2.故选:B.7.若sin(α+π6)=35,则sin(2α+5π6)=()A.−725B.−1625C.725D.1625解:∵sin(α+π6)=35,∴sin(2α+5π6)=sin(2α+π3+π2)=cos(2α+π3)=1−2sin2(α+π6)=1−2×(35)2=725.故选:C.8.已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),若不等式f(x)<0的解集为{x|x<m+1且x≠m},则函数f(x)的极小值是()A.−14B.0C.−427D.−49解:因为不等式f(x)<0的解集为{x|x<m+1且x≠m},所以f(m)=f(m+1)=0,且x=m为f(x)=0的二重根,所以f(x)=(x﹣m)2[x﹣(m+1)],则f′(x)=2(x﹣m)[x﹣(m+1)]+(x﹣m)2=(x﹣m)(3x﹣3m﹣2),则当x>3m+23或x<m时f′(x)>0,当m<x<3m+23时f′(x)<0,所以f(x)在(3m+23,+∞),(﹣∞,m)上单调递增,在(m,3m+23)上单调递减,所以f(x)在x=3m+23处取得极小值,即f(x)极小值=f(3m+23)=(3m+23−m)2[3m+23−(m+1)]=−427.故选:C.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在正方体ABCD﹣A1B1C1D1中,M,N分别为CC1,A1D1的中点,则()A.BM∥AD1B.AM⊥BDC.B1M⊥平面ABN D.MN∥平面A1BD解:对于选项A:连接BC1,则BC1∥AD1,又BC1∩BM=B,所以BM∥AD1不正确,故选项A不正确;对于选项B:在正方体中,BD⊥AA1,BD⊥AC且AA1∩AC=A,AA1⊂平面AA1C1C,AC⊂平面AA1C1C,所以BD⊥平面AA1C1C,又AM⊂平面AA1C1C,所以AM⊥BD,故选项B正确;对于选项C:在正方体中,AB⊥平面B1BCC1,又B1M⊂平面B1BCC1,所以AB⊥B1M,取B1C1的中点Q,连接BQ,在正方形BCC1B1中(如图),△BB1Q≅△B1C1M,∠BQB1=∠B1MC1,又∠B1MC1+∠MB1C1=90°,所以∠B1QB+∠MB1C1=90°,所以B1M⊥BQ,又在正方体中,AN∥BQ,所以B1M⊥AN,又AN∩AB=A,所以B1M⊥平面ABN,故选项C正确;对于选项D:取A1D的中点E,连接EN,EC,则EN∥AA1,且EN=1AA1,2所以EN∥MC,且EN=MC,故四边形NECM为平行四边形,则MN∥EC,又EC与平面A1BD相交于点E,所以MN不可能与平面A1BD平行,故选项D不正确.故选:BC .10.设a >b >0,c ∈R ,则( ) A .a |c |>b |c | B .ba≤b+c 2a+c 2C .a 2−b 2<1a−1bD .a +b <√2(a 2+b 2)解:选项A .当c =0时,a |c |>b |c |不成立,故选项A 不正确. 选项B .由b+c 2a+c 2−b a=(b+c 2)a−b(a+c 2)a(a+c 2)=c 2(a−b)a(a+c 2)>0,所以ba≤b+c 2a+c 2,故选项B 正确.选项C .由 a 2−b 2−(1a−1b)=(a −b)(a +b)−b−a ab =(a −b)(a +b +1ab)>0, 所以a 2−b 2>1a−1b,故选项C 不正确.选项D .由[√2(a 2+b 2)]2−(a +b)2=a 2+b 2−2ab =(a −b)2>0,所以a +b <√2(a 2+b 2),故选项D 正确. 故选:BD .11.已知数列{a n }满足a 4=4,a n a n +1=2n (n ∈N *),则( ) A .a 1=1B .数列{a n }为递增数列C .a 1+a 2+…+a 2023=21013﹣3D .1a 1+1a 2+⋯+1a n<3解:依题意,a 4=4,a n a n+1=2n,a n =2na n+1,a n+1=2na n,所以a 3=23a 4=84=2,a 2=22a 3=42=2,a 1=21a 2=22=1,A 选现正确.所以a 3=a 2,所以B 选项错误. 由a n a n+1=2n 得a n+1a n+2=2n+1,两式相除得a n+2a n=2,所以数列{a n }的奇数项是首项为1,公比为2的等比数列;偶数项是首项为2,公比为2的等比数列.a 1+a 2+⋯+a 2023=(a 1+a 3+⋯+a 2023)+(a 2+a 4+⋯+a 2022)=1(1−21012)1−2+2(1−21011)1−2=21012−1+21012−2=21013−3,所以C 选项正确.由上述分析可知,数列{1a n}的奇数项是首项为1,公比为12的等比数列;偶数项是首项为12,公比为12的等比数列. 当n 为偶数时,1a 1+1a 2+⋯+1a n=(1a 1+1a 3+⋯+1a n−1)+(1a 2+1a 4+⋯+1a n),=1(1−12n 2)1−12+12(1−12n 2)1−12=3−32n 2<3;当n 为奇数时,1a 1+1a 2+⋯+1a n =(1a 1+1a 3+⋯+1a n)+(1a 2+1a 4+⋯+1a n−1),=1(1−12n+12)1−12+12(1−12n−12)1−12=3−22n+12−12n−12<3, 综上所述,1a 1+1a 2+⋯+1a n<3,所以D 选项正确.故选:ACD .12.已知函数f (x )=a 2x ﹣x (a >0,a ≠1),则下列结论中正确的是( ) A .函数f (x )恒有1个极值点B .当a =e 时,曲线y =f (x )恒在曲线y =lnx +2上方C .若函数f (x )有2个零点,则1<a <e 12eD .若过点P (0,t )存在2条直线与曲线y =f (x )相切,则0<t <1 解:f (x )=a 2x ﹣x (a >0,a ≠1),f ′(x )=2a 2x lna ﹣1,对于A :因为a 2x >0恒成立,所以当a ∈(0,1)时,f ′(x )<0,此时f (x )单调递减, 所以此时不存在极值点,A 错误;对于B :当a =e 时,f (x )=e 2x ﹣x ,令g (x )=f (x )﹣(lnx +2)=e 2x ﹣x ﹣lnx ﹣2, 下面先证明:e x ≥x +1和lnx ≤x ﹣1,令f 1(x)=e x −x −1,则f 1′(x)=e x −1>0⇒x >0,所以f 1(x )在(﹣∞,0)单调递减,在(0,+∞)单调递增,所以f 1(x )≥f 1(0)=0,所以e x ≥x +1,当且仅当x =0时,取到等号; 令f 2(x )=lnx ﹣x +1,则f 2′(x)=1x −1>0⇒0<x <1, 所以f 2(x )在(0,1)单调递增,在(1,+∞)单调递减,所以f 2(x )≤f 2(1)=0,所以lnx ≤x ﹣1,当且仅当x =1时,取到等号, 由上结论可得:e 2x ≥2x +1,﹣lnx ≥﹣x +1,因为不能同时取等,所以两式相加可得:e 2x ﹣lnx >x +2, 即e 2x ﹣lnx ﹣x ﹣2>0恒成立,即g (x )>0恒成立, 所以y =f (x )恒在曲线y =lnx +2上方,B 正确;对于C :函数f (x )有2个零点等价于方程a 2x ﹣x =0有两个根, 即a 2x =x ⇒lna 2x =lnx ⇒2xlna =lnx ⇒2lna =lnxx有两个根, 令ℎ(x)=lnxx ,则ℎ′(x)=1−lnxx 2<0⇒x >e , 所以h (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,所以ℎ(x)max =ℎ(e)=1e ,当x →0时,h (x )→﹣∞,当x →+∞时,h (x )→0, 所以要使得2lna =lnx x 有两个根,则2lna ∈(0,1e), 所以0<lna <12e⇒1<a <e 12e ,所以C 正确;对于D :设切点坐标为(x 0,a 2x 0−x 0),则k =f ′(x 0)=2a 2x 0lna −1,又因为切线经过点P (0,t ),所以k =a 2x 0−x 0−tx 0, 所以2a2x 0lna −1=a 2x 0−x 0−tx 0,解得t =a 2x 0−a 2x 0lna 2x 0,令m =a 2x 0,则m ∈(0,+∞),所以t =m ﹣mlnm , 因为过点P (0,t )存在2条直线与曲线y =f (x )相切, 所以方程t =m ﹣mlnm 有两个不同的解,令φ(m )=m ﹣mlnm ,则φ′(m )=﹣lnm >0⇒0<m <1, 所以φ(m )在(0,1)上单调递增,在(1,+∞)上单调递减,所以φ(m )max =φ(1)=1,当m →0时,φ(m )→0,当m →+∞时,φ(m )→﹣∞, 所以要使得方程t =m ﹣mlnm 有两个根,则t ∈(0,1),D 正确. 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13.已知向量a →=(λ,1),b →=(−1,2),若a →与b →共线,则|a →−b →|=√52. 解:由于a →与b →共线,所以λ×2=1×(−1),λ=−12,a →=(−12,1),a →−b →=(−12,1)−(−1,2)=(12,−1), 所以|a →−b →|=√14+1=√52.故答案为:√52. 14.写出一个同时满足下列两个性质的函数:f (x )= a x (0<a <1)(答案不唯一) . ①f (x 1+x 2)=f (x 1)•f (x 2); ②∀x ∈R ,f ′(x )<0.解:由性质②,f(x)是R上的减函数,且满足性质①f(x1+x2)=f(x1)•f(x2),可以是指数函数,所以函数f(x)=a x(0<a<1)符合题意.故答案为:a x(0<a<1)(答案不唯一).15.咖啡适度饮用可以提神醒脑、消除疲劳,让人精神振奋.冲咖啡对水温也有一定的要求,把物体放在空气中冷却,如果物体原来的温度是θ1℃,空气的温度是θ0℃,经过t分钟后物体的温度为θ℃满足θ=θ0+(θ1−θ0)e−0.08t.研究表明,咖啡的最佳饮用口感会出现在65℃.现有一杯85℃的热水用来冲咖啡,经测量室温为25℃,那么为了获得最佳饮用口感,从冲咖啡开始大约需要等待5分钟.(结果保留整数)(参考数据:ln2≈0.7,ln3≈1.1,ln11≈2.4)解:由题意得,65=25+(85﹣25)e﹣0.08t,即e−0.08t=2 3,所以−0.08t=ln 23,解得t=−252×(ln2−ln3)≈252×(0.7−1.1)=5,所以大约需要等待5分钟.故答案为:5.16.在平面四边形ABCD中,AB=AD=√2,BC=CD=1,BC⊥CD,将四边形沿BD折起,使A′C=√3,则四面体A′﹣BCD的外接球O的表面积为3π;若点E在线段BD上,且BD=3BE,过点E作球O的截面,则所得的截面中面积最小的圆的半径为23.解:如图所示:因为AB=AD=√2,BC=CD=1,BC⊥CD,所以BE=CE=DE=√22,AE=√AD2−DE2=√(√2)2−(√22)2=√62,且AC⊥BD,点E为△BCD外接圆的圆心,所以四面体A′﹣BCD的外接球的球心O一定在过点E且垂直面BCD的直线上,如图不妨设GE⊥面BCD,A′F⊥面BCD,四面体A′﹣BCD的外接球的半径OE=ℎ,OB=R=√OE2+EB2=√ℎ2+12,FE=x,则由对称性可知点F也在直线CE上且A′F⊥FC,A′F=2OE=2h,由题意A ′E =AE =√62,FC =FE +EC =x +√22,A ′C =√3, 在Rt △A ′FE 中,有A ′F 2+FE 2=A ′E 2,即x 2+(2ℎ)2=32, 在Rt △A ′FC 中,有A ′F 2+FC 2=A ′C 2,即(x +√22)2+(2ℎ)2=3,联立以上两式解得x =√22,ℎ=12, 所以R =√ℎ2+12=√14+12=√32, 从而四面体A ′﹣BCD 的外接球O 的表面积为S =4πR 2=4π×(√32)2=3π;如图所示:由题意将上述第一空中的点E 用现在的点F 来代替,而现在的点E 为线段BD 的靠近点B 的三等分点, 此时过点E 作球O 的截面,若要所得的截面中面积最小,只需截面圆半径最小, 设球心到截面的距离为d ,截面半径为r ,则r =√R 2−d 2, 所以只需球心到截面的距离为d 最大即可,而当且仅当OE 与截面垂直时,球心到截面的距离为d 最大,即d max =OE , 由以上分析可知此时OO 1=FE =FB −BE =12BD −13BD =√26,OF =12,OE =√14+118=√116,R =√32,所以r =r min =√R 2−OE 2=√34−1136=23. 故答案为:3π;23.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知函数f(x)=(1−2sin 2x)sin2x +12cos4x . (1)求f (x )的最大值及相应x 的取值集合;(2)设函数g (x )=f (ωx )(ω>0),若g (x )在区间 (0,π2) 上有且仅有1个极值点,求ω的取值范围.解:(1)f(x)=(1−2sin 2x)sin2x +12cos4x =cos2x sin2x +12cos4x=12(sin4x +cos4x )=√22sin (4x +π4), 当4x +π4=π2+2k π,k ∈Z ,即x =π16+kπ2,k ∈Z 时,函数取得最大值√22,此时{x |x =π16+kπ2,k ∈Z }; (2)因为g (x )=f (ωx )=√22sin (4ωx +π4),ω>0,若g (x )在区间 (0,π2) 上有且仅有1个极值点,则极值点只能为极大值, 根据五点作图法,令4ωx +π4=π2,则x =π16ω, 令4ωx +π4=3π2,则x =5π16ω,所以{π16ω<π25π16ω≥π2ω>0解得18<ω≤58,故ω的范围为(18,58].18.(12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且tan A +tan B =−√3cacosB . (1)求角A ;(2)已知a =7,D 是边BC 的中点,且AD ⊥AB ,求AD 的长.解:(1)因为tan A +tan B =−√3cacosB ,所以sinA cosA +sinBcosB =−√3c acosB,由正弦定理得,sinAcosA +sinBcosB =−√3sinCsinAcosB ,因为sinAcosA+sinB cosB=sinAcosB+cosAsinB cosAcosB=sin(A+B)cosAcosB=sinC cosAcosB,所以sinCcosAcosB=−√3sinCsinAcosB,因为0<C <π,所以sin C ≠0, 又cos B ≠0,所以tan A =−√3, 因为0<A <π,所以A =2π3.(2)因为D 是边BC 的中点,所以BD =CD =12BC =72, 因为AD ⊥AB ,所以∠DAC =∠BAC ﹣∠BAD =2π3−π2=π6,在Rt △ABD 中,sin B =AD BD =AD 72=2AD7, 在△ACD 中,由正弦定理知,ADsinC=CD sin∠DAC,所以sin C =ADsin∠DAC CD=AD×1272=AD7, 在△ABC 中,由正弦定理知,bsinB=c sinC=a sin∠BAC=√32=√3,所以b2AD 7=cAD 7=√3,所以b =4AD 3,c =2AD3, 在△ABC 中,由余弦定理得,a 2=b 2+c 2﹣2bc cos A , 所以49=b 2+c 2﹣2bc ×cos 2π3,即b 2+c 2+bc =49, 所以(√3)2+(√3)23×3=49,解得AD =√212.19.(12分)已知数列{a n }中,a 1=1,a n+1n+1−a n n=1n(n+1),n ∈N ∗.(1)求数列{a n }的通项公式; (2)设b n =(﹣1)n ﹣14na n a n+1,求数列{b n }的前n 项和S n .解:(1)因为a n+1n+1−a n n=1n(n+1)⇒a n+1n+1−a n n=1n−1n+1⇒a n+1+1n+1=a n +1n,所以{a n +1n }是常数列,所以a n +1n =a 1+11=2,所以a n =2n ﹣1. (2)b n =(−1)n−14na n a n+1=(−1)n−14n(2n−1)(2n+1)=(−1)n−1(12n−1+12n+1),当n 为偶数时,S n =(1+13)−(13+15)+⋯+(12n−3+12n−1)−(12n−1+12n+1)=1−12n+1=2n2n+1, 当n 为奇数时,S n =(1+13)−(15+12)+⋯−(12n−3+12n−1)+(12n−1+12n+1)=1+12n+1=2n+22n+1,所以S n =2n+1+(−1)n−12n+1.20.(12分)已知函数f (x )=ax ﹣a ﹣lnx .(1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:当a =1时,f (x )≥0;(3)设m 为整数,若对于∀n ∈N ∗,(1+13)(1+232)(1+2233)⋯(1+2n−13n )<m 成立,求m 的最小值.解:(1)已知f (x )=ax ﹣a ﹣lnx ,函数定义域为(0,+∞),可得f′(x)=a−1x,此时f′(1)=a﹣1,又f(1)=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=(a﹣1)(x﹣1),即(a﹣1)x﹣y﹣a+1=0;(2)证明:当a=1时,f(x)=x﹣1﹣lnx,函数定义域为(0,+∞),可得f′(x)=1−1x=x−1x,当0<x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以当x=1时,函数f(x)取得极小值也是最小值,最小值f(1)=0,故f(x)≥0;(3)由(2)知lnx≤x﹣1,当且仅当x=1时,等号成立,令x=2n−13n+1,此时ln(1+2n−13n)<2n−13n,可得ln(1+13)+ln(1+232)+ln(1+2233)+⋯+ln(1+2n−13n)<13+232+⋯+2n−13n=13(1−2n3n)1−23=1−2n3n<1,即ln[(1+13)(1+232)(1+2233)⋯(1+2n−13n)]<1,所以(1+13)(1+232)(1+2233)⋯(1+2n−13n)<e,当n≥4时,(1+13)(1+232)(1+2233)⋯(1+2n−13n)≥(1+13)(1+232)(1+2233)(1+2334)=12139659049>2,所以对于任意n∈N*,(1+13)(1+232)(1+2233)⋯(1+2n−13n)<m成立时,整数m的最小值为3.21.(12分)如图,AB是半球O的直径,AB=4,M,N是底面半圆弧AB̂上的两个三等分点,P是半球面上一点,且∠PON=60°.(1)证明:PB⊥平面P AM;(2)若点P在底面圆内的射影恰在ON上,求直线PM与平面P AB所成角的正弦值.证明:(1)连接OM ,MN ,BM ,因为M ,N 是底面半圆弧AB ̂上的两个三等分点, 所以有∠MON =∠NOB =60°,又因为OM =ON =OB =2,所以△MON ,△NOB 都为正三角形,所以MN =NB =BO =OM ,即四边形OMNB 是菱形, 记ON 与BM 的交点为Q ,Q 为ON 和BM 的中点, 因为∠PON =60°,OP =ON , 所以三角形OPN 为正三角形, 所以PQ =√3=12BM ,所以PB ⊥PM ,因为P 是半球面上一点,AB 是半球O 的直径,所以PB ⊥P A , 因为PM ∩P A =P ,PM ,P A ⊂平面P AM , 所以PB ⊥平面P AM ;解:(2)因为点P 在底面圆内的射影恰在ON 上,由(1)知Q 为ON 的中点,△OPN 为正三角形,所以PQ ⊥ON , 所以PQ ⊥底面ABM ,因为四边形OMNB 是菱形,所以MB ⊥ON , 即MB 、ON 、PQ 两两互相垂直,以点Q 为坐标原点,QM ,QN ,QP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则O(0,−1,0),M(√3,0,0),B(−√3,0,0),N(0,1,0),A(√3,−2,0),P(0,0,√3), 所以PM →=(√3,0,−√3),OP →=(0,1,√3),OB →=(−√3,1,0),设平面P AB 的一个法向量为m →=(x ,y ,z), 则{m →⋅OP →=0m →⋅OB →=0,所以{y +√3z =0−√3x +y =0, 令x =1,则y =√3,z =﹣1,所以m →=(1,√3,−1), 设直线PM 与平面P AB 的所成角为θ, 所以sinθ=|cos〈PM →,m →〉|=3+36×5=√105,故直线PM 与平面P AB 所成角的正弦值为√105. 22.(12分)已知函数f(x)=1+lnxx. (1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的实数,且ae b ﹣be a =e a ﹣e b ,证明:e a +e b >2. 解:(1)由f(x)=1+lnx x 得,f ′(x)=−lnxx2, 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0. 故f (x )的递增区间为(0,1),递减区间为(1,+∞). (2)将ae b ﹣be a =e a ﹣e b 变形为a+1e a=b+1e b .令e a =m ,e b =n ,则上式变为1+lnm m=1+lnnn,即有f (m )=f (n ),于是命题转换为证明:m +n >2.不妨设m <n ,由(1)知0<m <1,n >1. 要证m +n >2,即证n >2﹣m >1,由于f (x )在(1,+∞)上单调递减,故即证f (n )<f (2﹣m ), 由于f (m )=f (n ),故即证f (m )<f (2﹣m ), 即证f (m )﹣f (2﹣m )<0在0<m <1上恒成立. 令g (x )=f (x )﹣f (2﹣x ),x ∈(0,1),则g ′(x)=f ′(x)+f ′(2−x)=−lnx x 2−ln(2−x)(2−x)2=−(2−x)2lnx+x 2ln(2−x)x 2(2−x)2, =−(4−4x+x 2)lnx+x 2ln(2−x)x 2(2−x)2=−(4−4x)lnx+x 2ln[(2−x)x]x 2(2−x)2≥0,所以g (x )在区间(0,1)内单调递增, 所以g (x )<g (1)=0,即m +n >2成立. 所以e a +e b >2.。
河北省部分重点高中2023-2024学年高三上学期12月期中语文试题含答案
2024年普通高等学校招生全国统一考试语文模拟试题注意事项:1.本试卷满分150分,考试时间150分钟。
2.答卷前,考生务必将自己的班级和姓名填写在答题纸上。
3.回答选择题时,选出每小题答案后,用铅笔把答题纸对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
4.考试结束后,将本试卷和答题纸一并交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
中国大运河包括京杭大运河段、隋唐大运河段和浙东运河段,全长3200多公里,有2500多年的历史。
作为人工创造的伟大工程,大运河充分体现了我们的祖先创造自然、利用自然、与自然和谐共生的成就。
古代中国如何大规模地运送人员和物资?在较长时间里,在当时的技术条件限制之下,最经济、最高效、最便捷的方式一直都是水运。
公元前486年,吴王夫差在今天的扬州附近开通邗沟,沟通了淮河和长江,这被视为中国大运河的开端。
战国七雄之一的魏国开凿了一条郑州和商丘之间的运河,名为鸿沟,极大方便了魏国农业的灌溉和商品贸易的往来。
秦汉魏晋南北朝时期,运河整体变化不大。
隋朝重新统一中国后,隋炀帝以洛阳为中心,组织人力开凿了一条东西走向的大运河,即隋唐大运河。
继起的唐朝享受了隋炀帝修建大运河的红利,盛唐气象有很大一部分功劳应该归于这条大运河,大运河对于唐朝统治安危有重要意义。
北宋王朝定都开封,运输条件得到很大改善,漕运非常高效,是中国漕运史上的巅峰时刻,也促成了北宋开封的极度繁华。
后来南宋偏安江南,首都临安即今天的杭州,这一时期浙东运河得到了更大的利用,它连接杭州和宁波,南宋的物资通过这条运河直达海上,顺利开启海上丝绸之路。
元朝为保证北京的物资供应,在著名水利专家郭守敬的领导下,以隋唐大运河为基础,逢弯取曲,开凿京杭大运河,这就是我们今天所看到的京杭大运河的基本格局。
明成祖朱棣为修建北京城,从全国各地征调人力物力,运力大都依靠运河。
2023-2024学年河北省衡水市武邑中学高三(上)期中数学试卷【答案版】
2023-2024学年河北省衡水市武邑中学高三(上)期中数学试卷一、单选题.本题共8小题,每小题5分,共40分,将答案填涂在答题卡上相应位置. 1.设集合A ={x |x 2﹣1<0},B ={y |y =2x ,x ∈A },则A ∩B =( ) A .(0,1)B .(﹣1,2)C .(﹣1,+∞)D .(12,1)2.O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( )A .﹣2B .−12C .−√2D .√23.若复数z =1﹣i +i 2﹣i 3+…+i 2022﹣i 2023,则复数z 的虚部为( ) A .0B .﹣1C .1D .i4.正项等比数列{a n }中的a 1,a 4031是函数f(x)=13x 3−4x 2+6x −3的极值点,则log √6a 2016=( )A .1B .2C .√2D .﹣15.已知公比不为1的等比数列{a n }的前n 项和为S n ,且满足a 2,2a 5,3a 8成等差数列,则3S 3S 6=( )A .134B .1312 C .94D .11126.已知正四面体A ﹣BCD 的内切球的表面积为36π,过该四面体的一条棱以及球心的平面截正四面体A ﹣BCD ,则所得截面的面积为( ) A .27√2B .27√3C .54√2D .54√37.已知x =tan1.04,a =log 3x ,b =2a ,c =sinb ,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .c <b <a8.已知f (x )=2cos (2ωx −π6)+b sin2ωx +cos (2ωx +π2)(b >0,ω>0)又g (x )=f (x )﹣2√3,对任意的x 1,x 2均有g (x 1)+g (x 2)≤0成立,且存在x 1,x 2使g (x 1)+g (x 2)=0,方程f (x )+√3=0在(0,π)上存在唯一实数解,则实数ω的取值范围是( ) A .12<ω≤56B .12≤ω<56C .512<ω<34D .512<ω≤34二、多选题:本题共4小题,全部选对得5分,部分选对得2分,多选或错选均不得分,共计20分,将答案填涂在答题卡上相应位置.9.著名的“河内塔”问题中,地面直立着三根柱子,在1号柱上从上至下、从小到大套着n 个中心带孔的圆盘.将一个柱子最上方的一个圆盘移动到另一个柱子,且保持每个柱子上较大的圆盘总在较小的圆盘下面,视为一次操作.设将n 个圆盘全部从1号柱子移动到3号柱子的最少操作数为a n ,则( )A .a 2=3B .a 3=8C .a n +1=2a n +nD .a n =2n −110.折扇又名“纸扇”是一种用竹木或象牙做扇骨,㓞纸或者绫绢做扇面的能折叠的扇子.如图1,其平面图是如图2的扇形AOB ,其中∠AOB =150°,OA =2OC =2OD =2,点F 在弧AB 上,且∠BOF =120°,点E 在弧CD 上运动(包括端点),则下列结论正确的有( )A .OF →在OA →方向上的投影向量为√32OA →B .若OE →=λOC →+μOD →,则λ+μ∈[1,√6+√2] C .OD →⋅DA →=1−√3D .EF →⋅EB →的最小值是﹣311.已知复数z 1=cos α+i sin α,z 2=cos β+i sin β,z 3=cos γ+i sin γ,O 为坐标原点,z 1,z 2,z 3对应的向量分别为OZ 1→,OZ 2→,OZ 3→,则以下结论正确的有( ) A .|z 1•z 2|=|z 1|•|z 2|B .若z 1•z 2=z 1•z 3,则z 2=z 3C .若OZ 1→+OZ 2→=OZ 3→,则OZ 1→与OZ 2→的夹角为π3D .若OZ 1→+OZ 2→+OZ 3→=0→,则△Z 1Z 2Z 3为正三角形 12.已知函数f(x)=lnx −a(x+1)x−1(a ∈R),则下列说法正确的是( ) A .当a >0时,f (x )在(1,+∞)上单调递增B .若f (x )的图象在x =2处的切线与直线x +2y ﹣5=0垂直,则实数a =34C .当﹣1<a <0时,f (x )不存在极值D .当a >0时,f (x )有且仅有两个零点x 1,x 2,且x 1x 2=1 三、填空题:(本大题共4小题,每小题5分,共20分)13.已知函数f(x)={|log 3(x −1)|,1<x ≤4x 2−10x +25,x >4,若方程f (x )=n 有4个解分别为x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则(1x 1+1x 2)(x 3+x 4)= . 14.函数f(x)=ln(2x1+x+a)为奇函数,则实数a = . 15.在平行六面体ABCD ﹣A 1B 1C 1D 1中,以顶点A 为端点的三条棱AB ,AD ,AA 1两两夹角都为60°,且AB =2,AD =1,AA 1=3,M ,N 分别为BB 1,B 1C 1的中点,则MN 与AC 所成角的余弦值为 . 16.各项均为正数的等比数列{a n }的前n 项和为S n ,若a 2a 6=4,a 3=1,则(S n +94)22a n的最小值为 .四、解答题:(本大题满分70分,每题要求写出详细的解答过程否则扣分)17.(10分)函数f (x )=sin (ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,其中MN ∥x 轴. (1)求函数y =f (x )的解析式;(2)将y =f (x )的图像向右平移π4个单位,再向上平移2个单位得到y =g (x )的图像,求g(π8)的值.18.(12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(a +b )(sin A ﹣sin B )=(c ﹣b )sin C . (1)求角A 的大小; (2)若sin B 是方程x 2−2x +99100=0的一个根,求cos C 的值. 19.(12分)函数y =2sin x ﹣1在(0,+∞)上的零点从小到大排列后构成数列{a n }. (1)求{a n }的通项公式;(2)设b n =a 2n ﹣1+a 2n ,求数列{b n }的前n 项和S n .20.(12分)如图1,在边长为4的菱形ABCD 中,∠DAB =60°,点M ,N 分别是边BC ,CD 的中点,AC ∩BD =O 1,AC ∩MN =G .沿MN 将△CMN 翻折到△PMN 的位置,连接P A ,PB ,PD ,得到如图2所示的五棱锥P ﹣ABMND .(1)在翻折过程中是否总有平面PBD ⊥平面P AG ?证明你的结论; (2)当四棱锥P ﹣MNDB 体积最大时,求点B 到面PDG 的距离;(3)在(2)的条件下,在线段P A 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为√2929若存在,试确定点Q 的位置;若不存在,请说明理由. 21.(12分)已知数列{a n }的前n 项和为S n ,且S n +a n =3. (1)求{a n }的通项公式; (2)数列{b n }满足b 1=1,b n+1b n=n+22(n+1),设数列{b n }的前n 项和为T n ,证明:T n +a n ≥52.22.(12分)已知函数h (x )=ln (2ex ﹣e ),g (x )=2ax ﹣2a ,a ∈R .(1)若曲线f (x )=h (x )﹣g (x )在(1,f (1))处的切线与直线x ﹣y +1=0平行,求函数f (x )的极值;(2)已知f (x )=h (x )﹣g (x ),若f (x )<1+a 恒成立.求证:对任意正整数n >1,都有∑ln 2n k=1k 54<n(n +1).2023-2024学年河北省衡水市武邑中学高三(上)期中数学试卷参考答案与试题解析一、单选题.本题共8小题,每小题5分,共40分,将答案填涂在答题卡上相应位置. 1.设集合A ={x |x 2﹣1<0},B ={y |y =2x ,x ∈A },则A ∩B =( ) A .(0,1)B .(﹣1,2)C .(﹣1,+∞)D .(12,1)解:A ={x |x 2﹣1<0}=(﹣1,1),B ={y |y =2x ,x ∈A }=(12,2),则A ∩B =(12,1),故选:D .2.O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( )A .﹣2B .−12C .−√2D .√2解:因为O 是正方形ABCD 的中心,所以O 为AC 的中点,所以DO →=DC →+CO →=AB →+12CA →=AB →−12AC →,因为DO →=λAB →+μAC →, 所以λ=1,μ=−12,所以λμ=1−12=−2.故选:A .3.若复数z =1﹣i +i 2﹣i 3+…+i 2022﹣i 2023,则复数z 的虚部为( ) A .0B .﹣1C .1D .i解:z =1−i +i 2−i 3+⋯+i 2022−i2023=1×(1−(−i)2024)1−(−i)=1×(1−1)1+i=0,所以复数z 的虚部为0. 故选:A .4.正项等比数列{a n }中的a 1,a 4031是函数f(x)=13x 3−4x 2+6x −3的极值点,则log √6a 2016=( )A .1B .2C .√2D .﹣1解:根据f(x)=13x 3−4x 2+6x −3,可得f ′(x )=x 2﹣8x +6,因为a 1,a 4031是函数f(x)=13x 3−4x 2+6x −3的极值点,所以a 1,a 4031是方程f ′(x )=x 2﹣8x +6=0的两个实数根,所以a 1a 4031=6,又因为数列{a n }为正项等比数列,所以a 1a 4031=a 20162=6,所以a 2016=√6,log √6a 2016=log √6√6=1. 故选:A .5.已知公比不为1的等比数列{a n }的前n 项和为S n ,且满足a 2,2a 5,3a 8成等差数列,则3S 3S 6=( )A .134B .1312 C .94D .1112解:公比q 不为1的等比数列{a n }的前n 项和为S n , a 2,2a 5,3a 8成等差数列, 可得4a 5=a 2+3a 8, 即为4a 1q 4=a 1q +3a 1q 7,即3q 6﹣4q 3+1=0,解得q 3=13(1舍去),则3S 3S 6=3•a 1(1−q 3)1−q •1−q a 1(1−q 6)=3•1−q 31−q 6=3•11+q 3=3•11+13=94, 故选:C .6.已知正四面体A ﹣BCD 的内切球的表面积为36π,过该四面体的一条棱以及球心的平面截正四面体A ﹣BCD ,则所得截面的面积为( ) A .27√2B .27√3C .54√2D .54√3解:设内切球半径为r ,由题意得4πr 2=36π, 设正四面体棱长为a ,由三角形的性质得BE =√32a ,BO ′=23BE =23×√32a =√33a , ∴在△ABO ′中,AO ′′=√AB 2−BO′2=√63a ,又AOOO′=31, ∴OO ′=14AO′=14×√63a =√612a ,∵OO ′=3,∴√612a =3,解得a =6√6.∴BE =√32a =9√2,AO ′=√63a =12,在△ABE 中,S =12×|BE|×|AO′|=12×12×9√2=54√2. 过该四面体的一条棱以及球心的平面截正四面体A ﹣BCD ,所得截面的面积为54√2. 故选:C .7.已知x =tan1.04,a =log 3x ,b =2a ,c =sinb ,则a ,b ,c 的大小关系为( ) A .a <b <cB .a <c <bC .c <a <bD .c <b <a解:因为π4<1.04<π3,x =tan1.04<tan π3=√3,且x =tan1.04>tan π4=1,则1<x <√3,0<a =log 3x <log 3√3=12,即0<a <12;所以1<b =2a <√2,即1<b <√2,所以12=sin π6<sin1<c =sinb <1,即12<c <1.所以a <c <b . 故选:B .8.已知f (x )=2cos (2ωx −π6)+b sin2ωx +cos (2ωx +π2)(b >0,ω>0)又g (x )=f (x )﹣2√3,对任意的x 1,x 2均有g (x 1)+g (x 2)≤0成立,且存在x 1,x 2使g (x 1)+g (x 2)=0,方程f (x )+√3=0在(0,π)上存在唯一实数解,则实数ω的取值范围是( ) A .12<ω≤56B .12≤ω<56C .512<ω<34D .512<ω≤34解:因为f(x)=2cos(2ωx −π6)+bsin2ωx +cos(2ωx +π2)=2sin(2ωx +π3)+(b −1)sin2ωx=bsin2ωx +√3cos2ωx =√b 2+3sin(2ωx +θ), 其中θ满足tanθ=√3b,又由任意的x1,x2均有g(x1)+g(x2)≤0成立,即任意的x1,x2均有f(x1)+f(x2)≤4√3成立,且存在x1,x2使g(x1)+g(x2)=0,可知f(x)最大值为2√3,所以√b2+3=2√3,又b>0,所以b=3,所以f(x)=2√3sin(2ωx+π6 ),当0<x<π时,π6<2ωx+π6≤2ωπ+π6,又f(x)在(0,π)上存在唯一实数x0使f(x0)=−√3,即sin(2ωx0+π6)=−12,所以7π6<2ωπ+π6≤11π6,所以12<ω≤56.故选:A.二、多选题:本题共4小题,全部选对得5分,部分选对得2分,多选或错选均不得分,共计20分,将答案填涂在答题卡上相应位置.9.著名的“河内塔”问题中,地面直立着三根柱子,在1号柱上从上至下、从小到大套着n个中心带孔的圆盘.将一个柱子最上方的一个圆盘移动到另一个柱子,且保持每个柱子上较大的圆盘总在较小的圆盘下面,视为一次操作.设将n个圆盘全部从1号柱子移动到3号柱子的最少操作数为a n,则()A.a2=3B.a3=8C.a n+1=2a n+n D.a n=2n−1解:将圆盘从小到大编为1,2,3,…号圆盘,则将第n+1号圆盘移动到3号柱时,需先将第1~n号圆盘移动到2号柱,需a n次操作;将第n+1号圆盘移动到3号柱需1次操作;再将1~n 号圆需移动到3号柱需a n 次操作,故a n +1=2a n +1,故C 错误; 由此递推关系及a 1=1可求得通项为a n =2n −1,故D 正确; 则a 2=3,a 3=7,故A 正确,B 错误. 故选:AD .10.折扇又名“纸扇”是一种用竹木或象牙做扇骨,㓞纸或者绫绢做扇面的能折叠的扇子.如图1,其平面图是如图2的扇形AOB ,其中∠AOB =150°,OA =2OC =2OD =2,点F 在弧AB 上,且∠BOF =120°,点E 在弧CD 上运动(包括端点),则下列结论正确的有( )A .OF →在OA →方向上的投影向量为√32OA →B .若OE →=λOC →+μOD →,则λ+μ∈[1,√6+√2] C .OD →⋅DA →=1−√3D .EF →⋅EB →的最小值是﹣3解:对于A 选项,由题意可知∠AOF =30°, 所以OF →在OA →方向上的投影向量为|OF →|cos30°⋅OA →|OA →|=√32OA →,即A 选项正确;对于B 选项,以点O 为坐标原点,OD 所在直线为x 轴建立如图所示的平面直角坐标系, 则D (1,0)、C(−√32,12),设点E (cos θ,sin θ),其中0≤θ≤5π6, 由OE →=λOC →+μOD →可得(cosθ,sinθ)=λ(−√32,12)+μ(1,0),所以{−√32λ+μ=cosθ12λ=sinθ,即{λ=2sinθμ=√3sinθ+cosθ,所以λ+μ=(2+√3)sinθ+cosθ=(√6+√2)sin(θ+π12), 又因为0≤θ≤5π6,则π12≤θ+π12≤11π12,所以√6−√24≤sin(θ+π12)≤1, 所以λ+μ=(√6+√2)sin(θ+π12)∈[1,√6+√2], 即B 选项正确;对于C 选项,DA →=OA →−OD →,所以OD →⋅DA →=OD →⋅(OA →−OD →)=OA →⋅OD →−OD →2=2×1×cos150°−12=−√3−1, 即选项C 错误;对于D 选项,E (cos θ,sin θ),其中0≤θ≤5π6,B (2,0)、F(−1,√3), 则EB →=(2−cosθ,−sinθ),EF →=(−1−cosθ,√3−sinθ),所以EB →⋅EF →=(2−cosθ)(−1−cosθ)−sinθ(√3−sinθ)=−2sin(θ+π6)−1,因为0≤θ≤5π6,则π6≤θ+π6≤π, 故当θ+π6=π2时,即θ=π3时,EF →⋅EB →取最小值为﹣2﹣1=﹣3,即D 选项正确.故选:ABD .11.已知复数z 1=cos α+i sin α,z 2=cos β+i sin β,z 3=cos γ+i sin γ,O 为坐标原点,z 1,z 2,z 3对应的向量分别为OZ 1→,OZ 2→,OZ 3→,则以下结论正确的有( ) A .|z 1•z 2|=|z 1|•|z 2|B .若z 1•z 2=z 1•z 3,则z 2=z 3C .若OZ 1→+OZ 2→=OZ 3→,则OZ 1→与OZ 2→的夹角为π3D .若OZ 1→+OZ 2→+OZ 3→=0→,则△Z 1Z 2Z 3为正三角形 解:因为z 1=cos α+i sin α,z 2=cos β+i sin β,z 3=cos γ+i sin γ, 所以|z 1|=|z 2|=|z 3|=1,则|OZ 1→|=|OZ 2→|=|OZ 3→|=1,对于A ,z 1•z 2=cos αcos β﹣sin αsin β+(cos αsin β+sin αcos β)i , 故|z 1•z 2|2=(cos αcos β﹣sin αsin β)2+(cos αsin β+sin αcos β)2=cos 2α•cos 2β﹣2cos α•cos β•sin α•sin β+sin 2α•sin 2β+cos 2α•sin 2β+2sin α•cos β•cos α•sin β+sin 2αcos 2β =cos 2α(cos 2β+sin 2β)+sin 2α(sin 2β+cos 2β), =cos 2α+sin 2α =1,|z 1|•|z 2|=1,所以|z 1•z 2|=|z 1|•|z 2|,故A 正确; 对于B ,若z 1•z 2=z 1•z 3,则z 2=z 1⋅z 3z 1=z 3,故B 正确; 对于C ,设OZ 1→与OZ 2→的夹角为θ,θ∈[0,π], 若OZ 1→+OZ 2→=OZ 3→,则(OZ 1→+OZ 2→)2=(OZ 3→)2, 即OZ 1→2+OZ 2→2=1,即1+1+2cos θ=1,所以cos θ=−12,所以θ=2π3,即OZ 1→与OZ 2→的夹角为2π3,故C 错误;对于D ,若OZ 1→+OZ 2→+OZ 3→=0→,则﹣(OZ 1→+OZ 2→)=OZ 3→, 则[﹣(OZ 1→+OZ 2→)]2=OZ 3→2,即(OZ 1→+OZ 2→)2=OZ 3→2,由C 选项可知OZ 1→与OZ 2→的夹角为2π3,同理OZ 2→与OZ 3→的夹角为2π3,OZ 1→与OZ 3→的夹角为2π3, 又|OZ 1→|=|OZ 2→|=|OZ 3→|=1,所以∠Z 1Z 2Z 3=∠Z 1Z 3Z 2=∠Z 2Z 1Z 3=π3,故D 正确.故选:ABD .12.已知函数f(x)=lnx −a(x+1)x−1(a ∈R),则下列说法正确的是( )A .当a >0时,f (x )在(1,+∞)上单调递增B .若f (x )的图象在x =2处的切线与直线x +2y ﹣5=0垂直,则实数a =34C .当﹣1<a <0时,f (x )不存在极值D .当a >0时,f (x )有且仅有两个零点x 1,x 2,且x 1x 2=1 解:因为f(x)=lnx −a(x+1)x−1(a ∈R),x >0且x ≠1, 所以f ′(x )=1x +2a (x−1)2, 对于A ,当a >0时,f ′(x )>0,所以f (x )在(0,1)和(1,+∞)上单调递增,故正确; 对于B ,因为直线x +2y ﹣5=0的斜率为−12,又因为f (x )的图象在x =2处的切线与直线x +2y ﹣5=0垂直, 令f ′(2)=12+2a =2,解得a =34,故正确; 对于C ,当﹣1<a <0时,不妨取a =−12,则f ′(x )=1x −1(x−1)2=x 2−3x+1x(x−1)2, 令f ′(x )=0,则有x 2﹣3x +1=0,解得x 1=32−√52,x 2=32+√52, 当x ∈(0,32−√52)时,f ′(x )>0,f (x )单调递增;当x ∈(32−√52,32+√52)时,f ′(x )<0,f(x )单调递减;所以此时函数有极值,故错误;对于D ,由A 可知,当a >0时,f (x )在(0,1)和(1,+∞)上单调递增, 当x >1时,f (e a )=a ﹣a (1+2e a −1)=−2ae a −1<0, f (e 3a +1)=3a +1﹣a (1+2e 3a+1−1)=(3a+1)(e 3a+1−1)−a(e 3a+1+1)e 3a+1−1>3a(e 3a+1−1)−a(e 3a+1+1)e 3a+1−1=2a(e 3a+1−2)e 3a+1−1>0,所以f (x )在(1,+∞)上有一个零点, 又因为当0<x <1时,f (e ﹣a )=﹣a ﹣a (1+2e −a −1)=2ae a −1>0,f (e﹣3a ﹣1)=﹣3a ﹣1﹣a (1+2e −3a−1−1)=﹣3a ﹣1﹣a (1+2e 3a+11−e 3a+1)=﹣3a ﹣1﹣a •1+e 3a+11−e 3a+1=− [(3a +1)+a •e 3a+1+11−e 3a+1 ]=−(3a+1)(1−e 3a+1)+a(e 3a+1+1)1−e 3a+1=−3a(1−e 3a+1)+a(e 3a+1+1)1−e 3a+1=−4a−2ae 3a+11−e 3a+1=2a(2−e 3a+1)e 3a+1−1<0,所以f (x )在(0,1)上有一个零点;所以f (x )有两个零点,分别位于(0,1)和(1,+∞); 设0<x 1<1<x 2, 令f (x )=0,则有lnx −a(x+1)x−1=0, 所以ln 1x−a(1x +1)1x−1=−lnx −a⋅x+1x1−x x=−lnx −a(x+1)1−x =−lnx +a(x+1)x−1=−(lnx −a(x+1)x−1)=0, 所以f (x )=0的两根互为倒数, 所以x 1x 2=1,故D 正确. 故选:ABD .三、填空题:(本大题共4小题,每小题5分,共20分)13.已知函数f(x)={|log 3(x −1)|,1<x ≤4x 2−10x +25,x >4,若方程f (x )=n 有4个解分别为x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则(1x 1+1x 2)(x 3+x 4)= 10 . 解:作出函数f (x )的大致图象,如下:可知,0<n <1且当1<x ≤4时,|log 3(x ﹣1)|=n 有2个解x 1,x 2; log 3(x 1﹣1)=﹣n ,log 3(x 2﹣1)=n , 得x 1=3−n+1,x 2=3n+1,∴1x 1+1x 2=13−n +1+13n +1=13n +1+3n 1+3n=1;当x >4时,由x 2﹣10x +21=n 有2个解x 3,x 4,根据图象的对称性,得x 3+x 4=10. ∴(1x 1+1x 2)(x 3+x 4)=1×10=10. 故答案为:10. 14.函数f(x)=ln(2x1+x+a)为奇函数,则实数a = ﹣1 . 解:根据题意,函数f(x)=ln(2x1+x+a)为奇函数,则f (x )+f (﹣x )=0, 即ln (2x 1+x +a )+ln (−2x1−x+a )=0,变形可得:a 2−(a+2)x 21−x 2=1,必有a =﹣1;故答案为:﹣1.15.在平行六面体ABCD ﹣A 1B 1C 1D 1中,以顶点A 为端点的三条棱AB ,AD ,AA 1两两夹角都为60°,且AB =2,AD =1,AA 1=3,M ,N 分别为BB 1,B 1C 1的中点,则MN 与AC 所成角的余弦值为 √9114. 解:∵M ,N 分别为BB 1,B 1C 1的中点,∴MN →=12BC 1→=12AD →+12AA 1→,AC →=AB →+AD →,∴MN →2=14AD →2+14AA 1→2+12AD →⋅AA 1→=14+94+12×1×3×cos60°=134,AC →2=AB →2+AD →2+2AB →⋅AD →=4+1+2×2×1×cos60°=7,MN →⋅AC →=(12AD →+12AA 1→)•(AB →+AD →)=12AD →2+12AB →⋅AD →+12AA 1→⋅AB →+12AA 1→⋅AD →=134,∴cos <MN →,AC →>=MN →⋅AC →|MN →||AC →|=134√132×7=√9114.∴直线MN 与AC 所成角的余弦值为√9114. 故答案为:√911416.各项均为正数的等比数列{a n }的前n 项和为S n ,若a 2a 6=4,a 3=1,则(S n +94)22a n的最小值为 8 .解:各项均为正数的等比数列{a n },由a 2a 6=4=a 42,即a 4=2, ∵a 3=1, ∴q =2,a 1=14,∴a n =14×2n ﹣1=2n ﹣3,S n =14(1−2n)1−2=2n ﹣2−14,∴(S n +94)2=(2n ﹣2+2)2=22(n ﹣2)+4×2n ﹣2+4,∴(S n +94)22a n=22(n−2)+4×2n−2+42n−2=2n ﹣2+42n−2+4≥2√2n−2⋅42n−2+4=4+4=8,当且仅当n =3时取等号,故答案为:8.四、解答题:(本大题满分70分,每题要求写出详细的解答过程否则扣分)17.(10分)函数f (x )=sin (ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,其中MN ∥x 轴. (1)求函数y =f (x )的解析式;(2)将y =f (x )的图像向右平移π4个单位,再向上平移2个单位得到y =g (x )的图像,求g(π8)的值.解:(1)根据函数f (x )=sin (ωx +φ)(ω>0,|φ|<π)的部分图象,可得函数的图象关于直线x =−π2−π62=−π3对称,5π12+π3=34×2πω,∴ω=2.再根据五点法作图,可得2×5π12+φ=0,求得φ=−5π6, 故函数f (x )=sin (2x −5π6). (2)将y =f (x )的图像向右平移π4个单位,可得y =sin (2x −π2−5π6)=sin (2x −4π3)=sin (2x +2π3)的图象;再向上平移2个单位得到y =g (x )=sin (2x +2π3)+2的图像. 故g(π8)=sin 11π12+2=sin π12+2=sin (π3−π4)+2=(sin π3cos π4−cos π3sin π4)+2=(√32×√22−12×√22)+2=√6−√24+2.18.(12分)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且(a +b )(sin A ﹣sin B )=(c ﹣b )sin C . (1)求角A 的大小; (2)若sin B 是方程x 2−2x +99100=0的一个根,求cos C 的值. 解:(1)∵(a +b )(sin A ﹣sin B )=(c ﹣b )sin C ,∴利用正弦定理化简得:(a +b )(a ﹣b )=c (c ﹣b ),即b 2+c 2﹣a 2=bc , ∴cos A =b 2+c 2−a 22bc =12,∵A ∈(0,π),∴A =π3.(2)∵x 2−2x +99100=0,解得:x 1=910,x 2=1110, ∵由sin B ≤1,得到sin B =910,可得cos B =±√1−sin 2B =±√1910, ∴cos C =﹣cos (A +B )=sin A sin B ﹣cos A cos B =√32×910−12×(±√1910)=9√3±√1920. 19.(12分)函数y =2sin x ﹣1在(0,+∞)上的零点从小到大排列后构成数列{a n }. (1)求{a n }的通项公式;(2)设b n =a 2n ﹣1+a 2n ,求数列{b n }的前n 项和S n . 解:(1)函数y =2sin x ﹣1的最小正周期为2π, 函数y =2sin x ﹣1在(0,2π)上的零点分别为π6,5π6,数列{a 2n ﹣1} 是以π6为首项,2π为公差的等差数列,即当n 为奇数时,a n =π6+n−12d =nπ−5π6; 数列{a 2n } 是以5π6为首项,2π为公差的等差数列,即当n 为偶数时,a n =5π6+n−22d =nπ−7π6. 综上a n ={nπ−5π6,n 为奇数nπ−7π6,n 为偶数;(2)b n =a 2n ﹣1+a 2n =4n π﹣3π, S n =(b 1+b n )n2=n(2n −1)π. 20.(12分)如图1,在边长为4的菱形ABCD 中,∠DAB =60°,点M ,N 分别是边BC ,CD 的中点,AC ∩BD =O 1,AC ∩MN =G .沿MN 将△CMN 翻折到△PMN 的位置,连接P A ,PB ,PD ,得到如图2所示的五棱锥P ﹣ABMND .(1)在翻折过程中是否总有平面PBD⊥平面P AG?证明你的结论;(2)当四棱锥P﹣MNDB体积最大时,求点B到面PDG的距离;(3)在(2)的条件下,在线段P A上是否存在一点Q,使得平面QDN与平面PMN所成角的余弦值为√2929若存在,试确定点Q的位置;若不存在,请说明理由.解:(1)在翻折过程中总有平面PBD⊥平面P AG,证明:折叠前,因为四边形ABCD是菱形,所以AC⊥BD,由于M,N分别是边BC,CD的中点,所以MN∥BD,所以MN⊥AC,折叠过程中,MN⊥GP,MN⊥GA,GP∩GA=G,GP,GA⊂平面P AG,所以MN⊥平面P AG,所以BD⊥平面P AG,由于BD⊂平面PBD,所以平面PBD⊥平面P AG.(2)当平面PMN⊥平面MNDB时,四棱锥P﹣MNDB体积最大,由于平面PMN∩平面MNDB=MN,GP⊂平面PMN,GP⊥MN,所以GP⊥平面MNDB,由于AG⊂平面MNDB,所以GP⊥AG,菱形ABCD边长为4,且∠DAB=60°,所以BD=4,AC=2√3,PG=CG=√3,在Rt△O1DG中,DG=√22+(√3)2=√7,所以S△PGD=12×√7×√3=√212,S△BDG=12×4×√3=2√3,设点B到面PDG的距离为h,则由等体积法有V B﹣PDG=V P﹣BDG,即13S△PDG×ℎ=13S△BDG×PG,即√212ℎ=2√3×√3,所以ℎ=4√21 7,所以点B到面PDG的距离为4√21 7.(3)存在,理由如下:在点G处有GA,GM,GP两两互相垂直,则以G为坐标原点建立如图所示空间直角坐标系,依题意可知P(0,0,√3),D(√3,−2,0),B(√3,2,0),N(0,−1,0),A(3√3,0,0),PA →=(3√3,0,−√3),设PQ =λP A (0≤λ≤1),则GQ →=GP →+PQ →=GP →+λPA →=(0,0,√3)+(3√3λ,0,−√3λ)=(3√3λ,0,√3−√3λ),平面PMN 的法向量为n 1→=(1,0,0),DQ →=(3√3λ−√3,2,√3−√3λ),DN →=(−√3,1,0), 设平面QDN 的法向量为n 2→=(x ,y ,z), 则{n 2→⋅DQ →=(3√3λ−√3)x +2y +(√3−√3λ)z =0n 2→⋅DN →=−√3x +y =0,故可设n 2→=(λ−1,√3λ−√3,3λ+1), 设平面QDN 与平面PMN 所成角为θ, 由于平面QDN 与平面PMN 所成角的余弦值为√2929, 所以cosθ=|n 1→⋅n 2→|n 1→|⋅|n 2→||=|λ−1|√(λ−1)+(√3λ−√3)2+(3λ+1)=√2929,解得λ=12或λ=3(舍去),所以当Q 是P A 的中点时,平面QDN 与平面PMN 所成角的余弦值为√2929.21.(12分)已知数列{a n }的前n 项和为S n ,且S n +a n =3. (1)求{a n }的通项公式; (2)数列{b n }满足b 1=1,b n+1b n=n+22(n+1),设数列{b n }的前n 项和为T n ,证明:T n +a n ≥52.解:(1)由S n +a n =3,当n =1时,S 1+a 1=3,解得a 1=32;当n ≥2时,S n ﹣1+a n ﹣1=3,相减得a n +a n ﹣a n ﹣1=0,即a n a n−1=12,∴数列{a n }是以32为首项,12为公比的等比数列,故a n =32n ,验证n =1时成立, 故a n =32n ; (2)b 1=1,b n+1b n=n+22(n+1),故b n =b n b n−1⋅b n−1b n−2⋅⋯⋅b 2b 1⋅b 1=(12)n−1(n+1n ⋅n n−1⋅n−1n−2⋅⋯⋅32)×1=n+12n (n ≥2), b 1=1适合上式,则b n =n+12n . ∴T n =22+322+423+⋯+n+12n , 12T n =222+323+424+⋯+n+12n+1,两式相减可得: 12T n =1+122+123+124+⋯+12n−n+12n+1=1+122(1−12n−1)1−12−n+12n+1=32−n+32n+1,∴T n =3−n+32n ,T n +a n =3−n 2n . 令c n =n 2n ,c n+1−c n =n+12n+1−n 2n =−n+12n+1,n ∈N *, 故c 1=c 2,且c n+1−c n =−n+12n+1<0,n ≥2,n ∈N *, c n 是从第二项开始单调递减数列,得(c n )max =c 1=c 2=12.故T n +a n =3−n 2n ≥3−12=52. 22.(12分)已知函数h (x )=ln (2ex ﹣e ),g (x )=2ax ﹣2a ,a ∈R .(1)若曲线f (x )=h (x )﹣g (x )在(1,f (1))处的切线与直线x ﹣y +1=0平行,求函数f (x )的极值;(2)已知f (x )=h (x )﹣g (x ),若f (x )<1+a 恒成立.求证:对任意正整数n >1,都有∑ln 2n k=1k 54<n(n +1).解:(1)由f (x )=ln (2ex ﹣e )﹣2ax +2a ,可得f ′(x)=22x−1−2a , 由条件可得f ′(1)=2﹣2a =1,即a =12,则f(x)=ln(2x −1)−x +2,f ′(x)=22x−1−1=−(2x−3)2x−1(x >12),令f′(x)=0可得x=3 2,当x>32时,f′(x)<0,当12<x<32时,f′(x)>0.所以f(x)在(32,+∞)上单调递减,在(12,32)上单调递增,所以f(x)的极大值为f(32)=ln2−32+2=ln2+12,无极小值.(2)证明:f(x)<1+a,即ln(2x﹣1)﹣a(2x﹣1)<0对任意的x>12恒成立,即a(2x﹣1)>ln(2x﹣1),其中x>1 2,令t=2x﹣1>0,则at>lnt,即at>lnt⇒a>lnt t,构造函数g(t)=lntt,则g′(t)=1−lnt2,令g′(t)=0,得t=e,列表如下:所以函数y=g(t)的单调递增区间为(0,e),单调递减区间为(e,+∞),所以g(t)max=g(e)=1 e ,所以a>1 e ,即a>1e时,ln(2x﹣1)<a(2x﹣1)恒成立,取a=25,则ln(2x−1)<2(2x−1)5对任意的x>12恒成立,令k=2x﹣1(k∈N*),则lnk<2k 5,所以ln1+ln2+ln3+⋯+ln(2n)<25(1+2+3+⋯+2n)=2n(1+2n)5<4n(n+1)5,所以∑2n k=154lnk<n(n+1),即∑ln2nk=1k54<n(n+1).。
河北省衡水重点中学2023-2024学年高三上学期期中考试语文试题
2023-2024学年上学期期中考试高三年级语文试题一、现代文阅读(34分)(一)现代文阅读I(本题共5小题,16分)阅读下面的文字,完成1~2题。
材料一:中国文学最缺乏的是悲剧的观念。
无论是小说,是戏剧,总是一个美满的团圆。
有一两个例外的文学家,要想打破这种团圆的迷信,如《石头记》的林黛玉不与贾宝玉团圆,如《桃花扇》的侯朝宗不与李香君团圆;但是这种结束法是中国文人所不许的,于是有《后石头记》、《红楼圆梦》等书,让林黛玉重新活过来好同贾宝玉团圆;于是有顾天石的《南桃花扇》使侯公子与李香君当场团圆!这种“团圆的迷信”乃是中国人思想薄弱的铁证。
作书的人明知世上的真事都是不如意的居大部分,他明知世上的事不是颊倒是非,便是生离死别,他却偏要使“天下有情人都成了眷属”,偏要说善恶分明,报应昭彰。
他闭着眼睛不肯看天下的悲剧惨剧,不肯老老实实写天工的颠倒惨酷,他只图说一个纸上的大快人心。
这便是说谎的文学。
更进一层说:团圆快乐的文字,读完了,至多不过能使人觉得一种满意的观念,决不能叫人有深沉的感动,决不能引人到彻底的觉悟,决不能使人起根本上的思量反省。
例如《石头记》写林黛玉与贾宝玉一个死了,一个出家做和尚去了,这种不满意的结果方才可以使人伤心感叹,使人觉悟家庭专制的罪恶,使人对于人生问题和家族社会问题发生一种反省。
若是这一对有情男女竟能成就“木石烟缘”团圆完聚,事事如意,那么曹雪芹又何必作这一部大书呢?这一部书还有什么“余味”可说呢?故这种“团圆”的小说戏剧,根本说来,只是脑筋简单,思力薄弱的文学,不耐人寻思,不能引人反省。
(摘编自胡适《文学进化观念与戏曲改良》)材料二:中国人深信善有善报,恶有恶报,善恶报应不在今生,就在未世。
好人遭逢不幸,也被认为是前世作了草,应当受谴责的总是遭难者自己,而不是命运。
中国人既然有这样的伦理信念,自然对人生悲剧性的一面就感受不深。
对人类命运的不合理性没有一点感觉,也就没有悲剧,不愿承认痛苦和灾难有什么不合理性。
河北省重点高中2023-2024学年度上学期高三期中考试语文试题及参考答案
河北省重点高中2023-2024学年度上学期高三期中考试语文试题及参考答案本试卷共8页,总分150分,考试时间150分钟。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1-5题。
近代以前,长期的农业社会,产生、继承、发展了许多节日。
现在只要打开《岁时广记》一类的古代文献看看,你就会感到惊异了。
为什么会有那么多的节日?是古人闲着无事干,或者他们物力、精力过剩,所以要来弄弄这种“四时八节”吗?不是的。
尽管过去有些节日,现在我们看来是无谓、可笑乃至可厌的,但其在被创造乃至被继承的当时,有它的主客观原因和相应条件。
在过去节日及其活动中,有些是有一定现实意义和作用的(如端午的洒雄黄酒、六月六的晒衣物及年终的掸尘等),有些却只是为满足生活、心理的要求(如新年的家人团聚、亲友来往以及追傩、钉桃符等)。
后者往往带着幻想和迷信的色彩。
这是由于当时人们对付实际事物的能力还很有限,认识事物的知识水平又比较低下。
因此,为了满足需要,不能不借助于巫术及宗教信仰、仪式。
这就必然要使这种文化带有消极的因素。
它标志着人类和民族文化的原始的或近原始的阶段。
但是,人民文化具有一种自然调节、改进的能力。
随着社会的发展,人们的实际活动能力和心理智能也不断变化。
他们对于传统文化(包括节日活动在内)中的不合理的、过时的部分,往往不自觉地或半自觉地加以改动,使之合理化(或比较合理化),使之具有较高的社会意义。
例如本来是一种禳灾法术的放纸鸢活动,逐渐成为一种大人或儿童的文娱活动。
又如本来是江滨人民驱除瘟神等的宗教行事——送瘟船,后来却被联系到楚国忠臣的沉江故事,使它具有历史的和伦理的意义。
这种事实,不仅说明了民间文化的进步性,也增强了文化进化理论的可靠性。
民间节日,作为一种文化事象,有一个颇值得注意的特点,就是它的复合性。
例如端午节,它既有划龙舟吃粽子等活动,又有饮雄黄酒、插艾蒿、挂蒲剑、贴钟馗图、小孩带香囊和穿老虎腰肚,以及出嫁了的女儿回娘家、邻居互送节物等活动。
河北省保定市2023-2024学年高三上学期期中考试语文试题(含答案)
河北省保定市2023-2024学年高三上学期期中考试语文试题及答案解析2023年高三摸底考试语文试题本试卷共23小题,满分150分。
考试用时150分钟。
注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、班级、考号填写在答题卡上。
将条形码横贴在答题卡右上角“贴条形码区”。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读1(本题共5小题,19分)阅读下面的文字,完成1~5题。
党的二十大报告提出“推进以县城为重要载体的城镇化建设”,2023年中央一号文件强调“推进县城城多融合发展”。
国家统计局近日公布数据显示,“十四五”规划中,我国“常住人口城慎化率提高到65%”的目标已提前实现。
而与数量增长相比,我国就近城镇化的发展断趋向更值得关注。
近日,《农民日报》对话涂圣伟、鲍家伟、吴宇哲三位专家,对此展开研讨。
主持人:过去很长一段时间内,我国农村流出人口都以跨省流动、异地城镇化为主。
近年来,就近城慎化成为断型城慎化的重要途径之一。
为什么会出现这种趋向涂圣伟:就近城镇化是我国城镇化进入相对稳定发展阶段的一个重要标志。
一是我四区域协调发展水平提升的必然结果。
改革开放之初,东都沿海地区率先发展,大量中西部地区农业转移人口跨省流动就业,异地城慎化是当时域镇化建设的主要特点。
近年来,随着区域协调发展战略的深入实施,广大中西部地区得到长足发展,环境变好了,就业创业机会增多,吸引了部分农业转移人口回流。
二是我国农业转移人口规模巨大,不可能全部在大中城市实现市民化。
2023-2024学年河北省衡水市冀州中学高三(上)期中数学试卷【答案版】
2023-2024学年河北省衡水市冀州中学高三(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示图中的阴影部分的是( )A .(A ∪C )∩(B ∪C ) B .(A ∪B )∩(A ∪C ) C .(A ∪B )∪(B ∪C )D .(A ∪B )∩C2.若复数z =1+i 2023(i 为虚数单位),则复数z 在复平面上对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知非零向量a →,b →满足|a →|=2|b →|,且(a →−b →)⊥b →,则a →与b →的夹角为( ) A .π6B .π3C .2π3D .5π64.函数f(x)=x 2log 42+x2−x的大致图象是( )A .B .C .D .5.将函数y =cos (2x +4π5)的图象上各点向右平行移动π2个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是( ) A .y =4cos(4x −π5)B .y =4sin(4x +π5)C .y =4cos(4x −4π5) D .y =4sin(4x +4π5)6.已知数列{a n }的首项为1,D 是△ABC 边BC 所在直线上一点,且AC →=3(a n +1)AD →−(a n+1−2)AB →,则数列{a n }的通项公式为( ) A .3n ﹣2 B .3n +1﹣2 C .5×(−3)n−1−14D .5×(−3)n −147.已知正方形ABCD 的边长为2,将△ACD 沿AC 翻折到△ACD ′的位置,得到四面体D ′﹣ABC ,在翻折过程中,点D ′始终位于△ABC 所在平面的同一侧,且BD ′的最小值为√2,则点D 的运动轨迹的长度为( ) A .πB .2πC .2√2π3D .4√2π38.已知三角形ABC 中,BC =3,角A 的平分线交BC 于点D ,若BDDC =12,则三角形ABC 面积的最大值为( ) A .1B .2C .3D .4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列命题中正确的是( )A .若a >0,b >0,a +b =1,则a 2+b 2≥12B .命题:“∀x ≥0,x 2≥0”的否定是“∃x <0,x 2<0”C .已知函数f (2x +1)的定义域为[﹣1,1],则函数f (x )的定义域为[﹣1,3]D .若函数f(√x −1)=x −3√x ,则f (x )=x 2﹣x ﹣2(x ≥﹣1)10.已知A ,B 是函数f(x)=tan(3x +π6)的图象与直线y =3的两个交点,则下列结论正确的是( )A .|AB|min =π3B .f (x )的定义域为{x ∈R|x ≠3kπ+3π2,k ∈Z} C .f (x )在区间(0,π6)单调递增D .f (x )的图象的对称中心为点(kπ6−π18,0),k ∈Z 11.已知数列{a n }的前n 项的和为S n ,S 1=4,S 2=8,4S n =S n +1+4S n ﹣1(n ≥2),则下列说法正确的是( ) A .S 4=32B .{a n +1﹣2a n }是等比数列C .a n ={4,n =12n+1−4,n ≥2D .a n ={4,n =12n,n ≥212.设函数f (x )的定义域为R ,且满足f (x )=f (2﹣x ),f (x )=﹣f (x +2),当x ∈(0,1]时,f (x )=e x ﹣2x ﹣1,则( ) A .f (x )是奇函数 B .f (2023)=e ﹣3C .f (x )的值域是[1﹣2ln 2,2ln 2﹣1]D .方程f (x )=3﹣e 在区间[0,2024]内恰有1518个实数解 三、填空题:本题共4小题,每小题5分,共20分.13.已知等差数列{a n }满足a 1=4,a 3+a 5=a 42+1,则a 7= .14.已知函数f (x )的定义域为(﹣∞,+∞),y =f (x )+e x 为偶函数,y =f (x )﹣2e x 为奇函数,则f (x )的最小值为 .15.在三棱锥A ﹣BCD 中,∠ABD =∠ABC =60°,BC =BD =2,AB =4,则三棱锥A ﹣BCD 外接球的表面积为 .16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知c =4,C =60°,BD →=DC →2+DA →,则DA →⋅DB→的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数列{a n }为等比数列,在数列{b n }中,b 1=2,b 2=4,且a n +1=a n (b n +1﹣b n ). (1)求数列{b n }的通项公式;(2)若a 1=1,c n =a n +b n ,求数列{c n }的前n 项和S n . 18.(12分)已知α∈(0,π),sinα+cosα=√62,且cos α<sin α.(1)求角α的大小;(2)已知函数f (x )=sin2x +2sin 2(x +α),若f (x )在区间(0,m )上有极大值,无极小值,求m 的取值范围.19.(12分)已知函数f(x)=−2a 2lnx +12x 2+ax(a ∈R).(1)当a =1时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.20.(12分)已知数列{a n }的前n 项和为S n ,a 1=√2,a n >0,a n +1•(S n +1+S n )=2. (1)求S n ;(2)求1S 1+S 2+1S 2+S 3+⋯+1S n +S n+1.21.(12分)如图,有一景区的平面图是一个半圆形,其中O 为圆心,直径AB 的长为2km ,C ,D 两点在半圆弧上,且BC =CD ,设∠COB =θ. (1)当θ=π6时,求四边形ABCD 的面积;(2)若要在景区内铺设一条由线段AB ,BC ,CD 和DA 组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l 的最大值.22.(12分)已知函数f (x )=sin 3x cos x ,f ′(x )为f (x )的导函数. (1)求f (x )在(0,2π)上的极值;(2)设n ∈N *,求证:sin 2x •sin 22x •sin 24x …sin 22nx ≤3n4n .2023-2024学年河北省衡水市冀州中学高三(上)期中数学试卷参考答案与试题解析一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列表示图中的阴影部分的是( )A .(A ∪C )∩(B ∪C ) B .(A ∪B )∩(A ∪C ) C .(A ∪B )∪(B ∪C )D .(A ∪B )∩C解:图中阴影部分表示元素满足:是C 中的元素,或者是A 与B 的公共元素, 故可以表示为C ∪(A ∩B ), 也可以表示为:(A ∪C )∩(B ∪C ), 结合选项可知应为:(A ∪C )∩(B ∪C ). 故选:A .2.若复数z =1+i 2023(i 为虚数单位),则复数z 在复平面上对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限解:因为z =1+i 2023=1﹣i ,所以z =1+i 在复平面上对应的点为(1,1),该点在第一象限. 故选:A .3.已知非零向量a →,b →满足|a →|=2|b →|,且(a →−b →)⊥b →,则a →与b →的夹角为( ) A .π6B .π3C .2π3D .5π6解:∵(a →−b →)⊥b →,∴(a →−b →)⋅b →=a →⋅b →−b →2=|a|→|b|→cos <a →,b →>−b →2=0, ∴cos <a →,b →>=|b|→2|a|→|b|→=|b|→22|b|→2=12,∵<a →,b →>∈[0,π],∴<a →,b →>=π3.故选:B . 4.函数f(x)=x 2log 42+x2−x的大致图象是( )A .B .C .D . 解:方法一:因为2+x2−x >0,即(x +2)•(x ﹣2)<0,所以﹣2<x <2,所以函数f(x)=x 2log 42+x2−x的定义域为(﹣2,2),关于原点对称, 又f(−x)=(−x)2log 42−x2+x=−f(x),所以函数f (x )是奇函数,其图象关于原点对称, 故排除B ,C ; 当x ∈(0,2)时,2+x 2−x>1,即log 42+x2−x >0,因此f (x )>0,故排除A .故选:D .方法二:由方法一,知函数f (x )是奇函数,其图象关于原点对称,故排除B ,C ; 又f(1)=12log 23>0,所以排除A .故选:D . 5.将函数y =cos (2x +4π5)的图象上各点向右平行移动π2个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是( ) A .y =4cos(4x −π5)B .y =4sin(4x +π5)C .y =4cos(4x −4π5) D .y =4sin(4x +4π5) 解:由题意函数y =cos(2x +4π5)的图象上各点向右平移π2个单位长度,得到y =cos(2x −π+4π5)=cos(2x −π5),再把横坐标缩短为原来的一半,得到y =cos(4x −π5),再把纵坐标伸长为原来的4倍,得到y =4cos(4x −π5),考察四个选项知,A 是正确的 故选:A .6.已知数列{a n }的首项为1,D 是△ABC 边BC 所在直线上一点,且AC →=3(a n +1)AD →−(a n+1−2)AB →,则数列{a n }的通项公式为( ) A .3n ﹣2 B .3n +1﹣2 C .5×(−3)n−1−14D .5×(−3)n −14解:依题意,由B ,C ,D 三点共线,可得3(a n +1)﹣(a n +1﹣2)=1,化简整理,可得a n +1=3a n +4, 两边同时加2,可得a n +1+2=3a n +4+2=3(a n +2), ∵a 1+2=3,∴数列{a n +2}是以3为首项,3为公比的等比数列, ∴a n +2=3×3n−1=3n , ∴a n =3n −2,n ∈N *. 故选:A .7.已知正方形ABCD 的边长为2,将△ACD 沿AC 翻折到△ACD ′的位置,得到四面体D ′﹣ABC ,在翻折过程中,点D ′始终位于△ABC 所在平面的同一侧,且BD ′的最小值为√2,则点D 的运动轨迹的长度为( ) A .πB .2πC .2√2π3D .4√2π3解:设方形ABCD 对角线AC 与BD 交于O ,由题意,翻折后BD ′=√2时,△OD ′B 为边长为√2的等边三角形,此时∠D ′OB =π3,若继续翻折BD ′<√2,如下图示BD ′=√2,所以点D 的运动轨迹是以O 为圆心,√2为半径的圆心角为2π3的圆弧,所以点D的运动轨迹的长度为2π3×√2=2√2π3.故选:C.8.已知三角形ABC中,BC=3,角A的平分线交BC于点D,若BDDC=12,则三角形ABC面积的最大值为()A.1B.2C.3D.4解:因为角A的平分线交BC于点D,若BDDC=12,由角平分线的性质可得ABAC=BDDC=12,设AB=x,则AC=2x,BC=3,由余弦定理可得cos A=AB2+AC2−BC22AB⋅AC=5x2−94x2,所以sin A=√(4x2)2−(5x2−9)24x2=√−9x4+90x2−814x2=3√−x4+10x2−94x2,所以S△ABC=12AB•AC•sin A=12•2x2•3√−x4+10x2−94x2=34•√−x4+10x2−9=34•√−(x2−5)2+16≤34•√16=3,当x2=5时,即x=√5时取等号.所以三角形ABC面积的最大值为3.故选:C.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题中正确的是()A.若a>0,b>0,a+b=1,则a2+b2≥12B.命题:“∀x≥0,x2≥0”的否定是“∃x<0,x2<0”C.已知函数f(2x+1)的定义域为[﹣1,1],则函数f(x)的定义域为[﹣1,3]D.若函数f(√x−1)=x−3√x,则f(x)=x2﹣x﹣2(x≥﹣1)解:对于A,由a>0,b>0,a+b=1,得b=1﹣a,且0<a<1,则a2+b2=a2+(1−a)2=2a2−2a+1=2(a−12)2+12,0<a<1,所以当a=12时,a2+b2取到最小值12,所以a2+b2≥12,故A正确;对于B,“∀x≥0,x2≥0”的否定是“∃x≥0,x2<0”,故B错误;对于C,f(2x+1)的定义域为[﹣1,1],设t=2x+1,当x∈[﹣1,1]时,t∈[﹣1,3],故f(x)的定义域为[﹣1,3],C正确;对于D ,令t =√x −1,则√x =t +1,t ≥﹣1,由f(√x −1)=x −3√x ,得f (t )=(t +1)2﹣3(t +1)=t 2﹣t ﹣2,t ≥﹣1, 所以函数f (x )的表达式为f (x )=x 2﹣x ﹣2,x ≥﹣1,D 正确. 故选:ACD .10.已知A ,B 是函数f(x)=tan(3x +π6)的图象与直线y =3的两个交点,则下列结论正确的是( )A .|AB|min =π3B .f (x )的定义域为{x ∈R|x ≠3kπ+3π2,k ∈Z} C .f (x )在区间(0,π6)单调递增D .f (x )的图象的对称中心为点(kπ6−π18,0),k ∈Z 解:因为A ,B 是函数f(x)=tan(3x +π6)的图象与直线y =3的交点,所以|AB |的最小值为函数f (x )的最小正周期,T =π3,所以|AB|min =π3,故A 正确;令3x +π6≠π2+kπ,k ∈Z ,解得x ≠π9+kπ3,k ∈Z ,所以f (x )的定义域为{x ∈R|x ≠π9+kπ3,k ∈Z},故B 错;因为x ∈(0,π6),所以3x +π6∈(π6,2π3),因为函数y =tan x 在(π6,2π3)上不单调,所以函数f (x )在(0,π6)上不单调,故C 错;令3x +π6=kπ2,k ∈Z ,解得x =−π18+kπ6,k ∈Z ,所以f (x )的对称中心为点(−π18+kπ6,0),k ∈Z ,故D 正确. 故选:AD .11.已知数列{a n }的前n 项的和为S n ,S 1=4,S 2=8,4S n =S n +1+4S n ﹣1(n ≥2),则下列说法正确的是( ) A .S 4=32B .{a n +1﹣2a n }是等比数列C .a n ={4,n =12n+1−4,n ≥2D .a n ={4,n =12n ,n ≥2解:由题意可知S 3=4S 2﹣4S 1=16,所以S 4=4S 3﹣4S 2=32,故A 正确; 因为a 3﹣2a 2=S 3﹣S 2﹣2(S 2﹣S 1)=S 3﹣3S 2+2S 1=0, 所以{a n +1﹣2a n }不能是等比数列,故B 错误;因为4S n =S n +1+4S n ﹣1(n ≥2),即S n +1=4S n ﹣4S n ﹣1(n ≥2),所以S n+1−2S n =21(S n −2S n−1)=22(S n−1−2S n−2)=⋯=2n (S 2﹣2S 1)=0, 所以S n +1﹣2S n =0,即S n+1S n=2,又因为S 2S 1=84=2,所以{S n }是以2为首项,4为公比的等比数列,所以S n =4×2n−1=2n+1,所以a 1=S 1=4,a n =S n −S n−1=2n+1−2n =2n (n ≥2), 即a n ={4,n =12n ,n ≥2,故选项C 错误;D 正确.故选:AD .12.设函数f (x )的定义域为R ,且满足f (x )=f (2﹣x ),f (x )=﹣f (x +2),当x ∈(0,1]时,f (x )=e x ﹣2x ﹣1,则( ) A .f (x )是奇函数 B .f (2023)=e ﹣3C .f (x )的值域是[1﹣2ln 2,2ln 2﹣1]D .方程f (x )=3﹣e 在区间[0,2024]内恰有1518个实数解解:函数f (x )的定义域为R ,关于原点对称,因为f (x )=f (2﹣x ),所以f (﹣x )=f (x +2), 又因为f (x +2)=﹣f (x ),所以f (﹣x )=﹣f (x ),所以f (x )是奇函数,A 正确; 由f (x )=﹣f (x +2),得f (x +4)=﹣f (x +2)=f (x ),所以f (x )以4为周期,因为f (2023)=f (4×506﹣1)=f (﹣1)=﹣f (1)=3﹣e ,所以f (2023)=3﹣e ,故B 错误; 因为当x ∈(0,1]时,f (x )=e x ﹣2x ﹣1,所以f ′(x )=e x ﹣2, 当0<x <ln 2时,f ′(x )<0,当ln 2<x ≤1时,f ′(x )>0, 所以f (x )在(0,ln 2)上单调递减,在(ln 2,1)上单调递增,所以f (x )min =f (ln 2)=1﹣2ln 2,又f (1)=e ﹣3<0,所以f (x )∈[1﹣2ln 2,0). 因为f (x )为奇函数,所以当x ∈[﹣1,0]时,f (x )∈[0,2ln 2﹣1],因为f (x )的图象关于直线x =1对称,所以当x ∈[﹣1,3]时,f (x )∈[1﹣2ln 2,2ln 2﹣1], 因为f (x )的周期为4,所以当x ∈R 时,f (x )∈[1﹣2ln 2,2ln 2﹣1],故C 正确; 方程f (x )=3﹣e 的解的个数,即y =f (x )的图象与y =3﹣e 的图象交点个数. 因为y =f (x )的周期为4,且当x ∈[0,4]时,y =f (x )与y =3﹣e 有3个交点, 所以当x ∈[0,2024]时,y =f (x )与y =3﹣e 有20244×3=1518个交点,故D 正确.故选:ACD.三、填空题:本题共4小题,每小题5分,共20分.13.已知等差数列{a n}满足a1=4,a3+a5=a42+1,则a7=﹣2.解:在等差数列{a n}中,∵等差数列{a n}满足a1=4,a3+a5=a42+1,又a3+a5=2a4,∴a42−2a4+1=0,解得a4=1,又a1=4,而a1+a7=2a4,解得a7=﹣2.故答案为:﹣2.14.已知函数f(x)的定义域为(﹣∞,+∞),y=f(x)+e x为偶函数,y=f(x)﹣2e x为奇函数,则f(x)的最小值为√3.解:y=f(x)+e x是偶函数,所以f(﹣x)+e﹣x=f(x)+e x,y=f(x)﹣2e x是奇函数,所以f(﹣x)﹣2e﹣x=﹣f(x)+2e x,两式联立解得f(x)=12e x+32e−x,由基本不等式得f(x)=12e x+32e−x≥12×2√e x⋅3e−x=√3,当且仅当e x=3e﹣x,即x=ln√3时,等号成立,因此f(x)的最小值是√3.故答案为:√3.15.在三棱锥A﹣BCD中,∠ABD=∠ABC=60°,BC=BD=2,AB=4,则三棱锥A﹣BCD外接球的表面积为16 π.解:由∠ABD=∠ABC=60°,BC=BD=2,AB=4,根据余弦定理可得 AC =AD =2√3, 则 AC ⊥BC ,AD ⊥BD ,取AB 中点O ,则OA =OB =OC =OD , 则三棱锥A ﹣BCD 外接球的直径为AB =4, 故三棱锥A ﹣BCD 外接球的表面积为4π⋅(AB 2)2=16π. 故答案为:16π.16.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知c =4,C =60°,BD →=DC→2+DA →,则DA →⋅DB→的最大值为 −8825. 解:由题意,BD →=DC →2+DA →=32DC →+CA →=−32CD →+CA →,BD →=BC →+CD →,消去BD →得:CD →=25(CA →+CB →),因为DA →⋅DB →=(DC →+CA →)⋅(DC →+CB →)=(35CA →−25CB →)⋅(35CB →−25CA →)=−625(a 2+b 2)+1325abcos60°,由cos60°=a 2+b 2−162ab,得a 2+b 2=ab +16≥2ab ,当且仅当a =b 时等号成立,所以0<ab ≤16, 所以原式=−625(16+ab)+1350ab =150ab −9625≤−8825. 故答案为:−8825.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知数列{a n }为等比数列,在数列{b n }中,b 1=2,b 2=4,且a n +1=a n (b n +1﹣b n ). (1)求数列{b n }的通项公式;(2)若a 1=1,c n =a n +b n ,求数列{c n }的前n 项和S n . 解:(1)设数列{a n }的公比为q , 由a n +1=a n (b n +1﹣b n ),知b n +1﹣b n =a n+1a n=q ,为常数,所以数列{b n }是等差数列,设其公差为d , 由b 1=2,b 2=4,知d =2,所以b n =2+(n ﹣1)×2=2n ,且q =2, 故数列{b n }的通项公式为b n =2n . (2)由(1)知a n+1a n=2,若a 1=1,则a n =2•2n ﹣1=2n , 所以c n =a n +b n =2n +2n ,所以S n =(21+2)+(22+4)+(23+6)+…+(2n+2n )=(21+22+23+ (2))+(2+4+6+…+2n )=2−2n⋅21−2+n(2+2n)2=2n +1﹣2+n 2+n . 18.(12分)已知α∈(0,π),sinα+cosα=√62,且cos α<sin α.(1)求角α的大小;(2)已知函数f (x )=sin2x +2sin 2(x +α),若f (x )在区间(0,m )上有极大值,无极小值,求m 的取值范围.解:(1)因为sinα+cosα=√62,所以(sinα+cosα)2=1+sin2α=32,则sin2α=12,因为α∈(0,π), 所以2α∈(0,2π), 则2α=π6或2α=5π6,解得α=π12或α=5π12, 因为cos α<sin α, 所以α=5π12; (2)由(1)知f(x)=sin2x +2sin 2(x +5π12)=sin2x +1−cos(2x +5π6) =32sin2x +√32cos2x +1=√3sin(2x +π6)+1, 当x ∈(0,m )时,2x +π6∈(π6,2m +π6),因为f(x)在区间(0,m)上有极大(最大)值,无极小(最小)值,所以π2<2m+π6≤3π2,解得π6<m≤2π3,则m的取值范围为(π6,2π3].19.(12分)已知函数f(x)=−2a2lnx+12x2+ax(a∈R).(1)当a=1时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.解:(1)当a=1时,f(x)=−2lnx+12x2+x,f′(x)=−2x+x+1,f′(1)=−2+1+1=0,f(1)=32,所以曲线y=f(x)在(1,f(1))处的切线方程为y=3 2.(2)f′(x)=x2+ax−2a2x=(x+2a)(x−a)x,①当a=0时,f′(x)=x>0,所以函数在(0,+∞)上单调递增;②当a>0时,令f′(x)=0,则x1=﹣2a(舍)或x2=a,f′(x)<0,0<x<a,当x∈(0,a)时,函数f(x)单调递减;f′(x)>0,x>a,当x∈(a,+∞)时,函数f(x)单调递增.③当a<0时,令f′(x)=0,则x1=﹣2a或x2=a(舍),f′(x)<0,0<x<﹣2a,当x∈(0,﹣2a)时,函数f(x)单调递减;f′(x)>0,x>﹣2a,当x∈(﹣2a,+∞)时,函数f(x)单调递增.综上所述:当a=0时,函数在(0,+∞)上单调递增;当a>0时,函数f(x)在(0,a)上单调递减,函数f(x)在(a,+∞)上单调递增;当a<0时,函数f(x)在(0,﹣2a)上单调递减,函数f(x)在(﹣2a,+∞)上单调递增.20.(12分)已知数列{a n}的前n项和为S n,a1=√2,a n>0,a n+1•(S n+1+S n)=2.(1)求S n;(2)求1S1+S2+1S2+S3+⋯+1S n+S n+1.解:(1)a1=√2,a n>0,a n+1•(S n+1+S n)=2,可得(S n+1﹣S n)(S n+1+S n)=2,可得S n+12﹣S n2=2,即数列{S n2}为首项为2,公差为2的等差数列,可得S n2=2+2(n﹣1)=2n,由a n>0,可得S n=√2n;(2)1S n+S n+1=√2n+√2(n+1)=√22(√n+√n+1)=√22(√n+1−√n),即有1S1+S2+1S2+S3+⋯+1S n+S n+1=√22(√2−1+√3−√2+2−√3+⋯+√n+1−√n)=√22(√n+1−1).21.(12分)如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ.(1)当θ=π6时,求四边形ABCD的面积;(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l最长,并求出l的最大值.解:(1)连结OD,则∠COD=π6,∠AOD=2π3,所以四边形ABCD的面积为S四边形ABCD=S四边形OBCD+S△AOB=2×12×1×1×sinπ6+12×1×1×sin2π3=2+√34(km2);(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理得BCsinθ=OBsinπ−θ2=1cosθ2,所以BC=CD=sinθcosθ2=2sinθ2,同理在△AOD中,∠OAD=θ,∠DOA=π﹣2θ,由正弦定理得DAsin(π−2θ)=ODsinθ,所以DA=sin2θsinθ=2cosθ,所以l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2;令t =sin θ2(0<t <√22),所以l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5,当t =12时,即θ=π3,l 的最大值为5.22.(12分)已知函数f (x )=sin 3x cos x ,f ′(x )为f (x )的导函数. (1)求f (x )在(0,2π)上的极值;(2)设n ∈N *,求证:sin 2x •sin 22x •sin 24x …sin 22nx ≤3n4n .解:(1)已知函数f (x )=sin 3x cos x ,因为f (x +π)=sin 3(x +π)cos (x +π)=sin 3x cos x =f (x ) 所以π是函数f (x )的周期,可得f ′(x )=3sin 2x cos 2x ﹣sin 4x =sin 2x (4cos 2x ﹣1), 当0<x <π3时,f ′(x )>0,f (x )单调递增;当π3<x <2π3时,f ′(x )<0,f (x )单调递减;当2π3<x <π时,f ′(x )>0,f (x )单调递增,所以f (x )在(0,π)上的极小值为−3√316,极大值为3√316, 由周期性可知函数f (x )在(π,2π)上的极小值为−3√316,极大值为3√316, 且函数f (x )在(2π3,π)上单调递增,(π,4π3)上单调递增, 因为f (x )是基本初等函数,一定连续, 所以x =π不是f (x )的极值点, 故f (x )在(0,2π)上的极小值为−3√316,极大值为3√316; (2)证明:易知f (0)=0,由(1)知f(x)=sin 3xcosx =12sin 2xsin2x ∈[−3√316,3√316],所以0≤|sin 2xsin2x|≤3√38,则|sin2x⋅sin22x⋅sin24x⋯sin22n x|=|(sin3x⋅sin32x⋅sin34x⋯sin32n x)2 3|=[|sinx||sin2xsin2x|⋯|sin22n x|]23≤(|sinx|×3√38×⋯×|sin22n x|)23≤[(3√38)n]23=(34)n=3n4n,故sin2x⋅sin22x⋅sin24x⋯⋯sin22n x≤3n4n成立.。
2024年河北省沧州市高三上学期期中语文试卷与参考答案
2024年河北省沧州市语文高三上学期期中自测试卷(答案在后面)一、现代文阅读Ⅰ(18分)阅读下面的文章,完成1-5题。
【原文】《时间里的秘密》作者:虚构在这个快节奏的社会里,我们常常被时间追赶着前进,很少有机会停下来思考时间的真正意义。
时间,这个无形无色却又无所不在的存在,它既是我们的朋友也是敌人。
它可以是治愈一切伤痛的良药,也能成为最残酷的刽子手;它可以带来成长和变化,也可以让美好的瞬间转瞬即逝。
记得小时候,每到暑假结束时,总有一种不舍之情涌上心头。
那时候觉得两个月的时间好长啊,足够做很多想做的事情了。
可随着年龄的增长,这种感觉却渐渐淡去了。
现在回想起来,那段看似漫长的时光,在记忆中不过是一闪而过的光点罢了。
这就是时间的秘密之一吧——当你意识到它的珍贵时,往往已经来不及珍惜。
工作之后,我开始更加深刻地体会到时间的价值。
每天忙碌于各种事务之间,偶尔抬头望向窗外,才惊觉又一个季节悄悄来临。
于是乎,便有了这样一种感悟:与其抱怨时间不够用,不如学会如何高效利用每一刻。
通过合理规划日程安排,我们可以做到既享受生活又能追求事业上的成功。
然而,即便如此努力地管理着自己的时间,仍然会遇到无法预料的变化打乱原有的计划。
这时,保持一颗平和的心态就显得尤为重要了。
接受现实,并从中寻找新的机会与挑战,才是面对不可控因素的最佳方式。
最后,我想说的是,无论未来怎样变幻莫测,请永远不要忘记给自己留出一点空间来感受这个世界。
因为只有当我们真正慢下来去体会生活的美好时,才能发现隐藏在时间背后那些温暖而又令人感动的故事。
题目1.文章开头提到“时间既是我们的朋友也是敌人”,请结合全文内容解释这句话的意思。
2.根据文章内容,为什么作者说“这就是时间的秘密之一”?3.工作后,作者对于时间的态度发生了怎样的转变?请简要概括。
4.当面临突发情况影响原有计划时,作者建议采取什么态度应对?5.从本文可以得出什么样的人生哲理?二、现代文阅读Ⅱ(17分)阅读下面的文字,完成下面小题。
河北省保定市2024-2025学年高三上学期期中考试语文试题(解析版)
河北省保定市2024-2025学年高三上学期期中考试语文试题本试卷共23小题,满分150分。
考试用时150分钟。
注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、班级、考号填写在答题卡上。
将条形码横贴在答题卡右上角“贴条形码区”。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成小题。
材料一:人类本质上不仅是自我中心的,而且还容易陷入社会中心的思维和行为。
群体为我们提供了安全保障,以至于我们将它们的规则、诫命以及禁忌内化了,并不加思考地遵从。
同辈群体特别容易主导我们的生活。
我们对群体价值下意识地接受,导致了无意识水平的标准:“它是真实的,因为我们相信它。
”信念似乎没有如此荒唐,但确实有一些人类群体非理性地将其当成是理性的予以接受。
我们不仅接受我们所属群体的信念体系,而且,也是最重要的,我们是按照这些信念系统行事的。
比如,很多群体从本质上是反智的,群体会期望它的成员坚持任何畸形行为。
比如,一些青年群体期望它的成员用言语和身体虐待群体外的人(以作为具有力量和勇气的证据);而有些群体在工作周内一起分享午餐,参与传播在同一工作场所中的其他人的流言蜚语。
除了我们所处的面对面的群体之外,我们还被更大规模的社会力量间接地影响着,这些社会力量在很大程度上反映了我们社会中的成员关系。
比如,在资本主义社会,支配性的思维就是人们应该尽可能多地挣钱。
尽管这种形式的思维可能会引发争论,它鼓励着人们去接受富人与穷人之间所存在的巨大鸿沟,鼓励人们将其当成是正确的和正常的。
苏教版语文高三上学期期中试卷及答案指导(2024年)
2024年苏教版语文高三上学期期中复习试卷(答案在后面)一、现代文阅读Ⅰ(18分)阅读下面的文章,完成下列小题。
【甲】“如果我是你的话,我会先跟老板说,把工资涨一涨。
”面对儿子的困惑,李老汉给出的建议是:“这样你的心情会好很多,工作起来也会更卖力。
”李老汉是村里有名的“老裁缝”,他的裁缝店开了几十年,徒弟也带了不少。
退休后,李老汉本可以在家安享晚年,可他闲不住,又继续开了裁缝店。
他说:“人啊,总得找点事做,这样才不会胡思乱想。
”儿子小杨大学毕业后,李老汉又收了他做徒弟。
转眼几年过去,小杨学得有模有样,李老汉就把店交给了他。
他对儿子说:“人的一生,要学会独立,要学会自己解决问题,要有一颗平常心。
”小杨接手裁缝店后,生意越来越好。
可他发现,随着顾客增多,自己越来越忙,忙得连时间都抽不出来。
于是,他向李老汉抱怨道:“爸,我现在特别忙,每天都要处理很多顾客,生意虽然好,但我却感觉特别累。
”李老汉听完,微微一笑:“忙是好事,这说明你的手艺不错,顾客都愿意找你。
但你也要注意调整心态,不要让忙碌影响到你的心情。
这样,你才能更好地工作。
”小杨不解地问:“那您有什么好办法吗?”李老汉说:“其实,办法很简单。
你可以先跟老板说,把工资涨一涨。
这样你的心情会好很多,工作起来也会更卖力。
”小杨觉得李老汉的建议有些奇怪,他问:“爸,为什么您要让我先跟老板说涨工资呢?”李老汉微笑着说:“因为这样你的心情会好很多,工作起来也会更卖力。
人啊,有了希望,就有了动力。
”小杨听了李老汉的话,试着跟老板谈了涨工资的事。
老板知道他手艺好,生意好,爽快地答应了。
从此,小杨的心情好了很多,工作起来也更加卖力。
【乙】一天,小杨跟李老汉闲聊,无意间提到了一个话题:“爸,我觉得您是一个心态特别好的人,无论遇到什么困难,您都能保持乐观的心态。
我想知道,您是如何做到的?”李老汉笑了笑,说:“其实,保持乐观的心态并没有什么秘诀,关键是要有一颗平常心。
人的一生,不可能一帆风顺,总会遇到各种困难和挫折。
河北省衡水中学2021届高三上学期期中试题语文
一、语言文字运用:(共6分)1.依次填入下列各句横线处的成语,最恰当的一组是(2分)①北大经管学院院长孙祁祥在为栏目所作的序言中表示,中国改革再出发,要有历史的视角与长期作战的思想准备;既要有 的勇气,也要有超越意识形态的包容。
②英国的一项科学研究显示,播放一些古典音乐能促进食客 地慷慨解囊,有助于增加酒店的收入。
③高一新生在军训中生活条件较为艰苦,但他们对这些却 仍然坚持努力学习,刻苦训练,磨练了自己的意志。
A.破釜沉舟不由自主不以为然 B.孤注一掷 情不自禁不以为然C.破釜沉舟 情不自禁不以为意 D。
孤注一掷不由自主不以为意2.下列各句中,没有语病的一项是(2分)A.这是一所百年老校,在这里,百年古树掩映下的名人故居与现代教学大楼、图书馆完美融合的校园环境,营造出学校独特的育人环境和文化氛围.B。
网络运用的自如开放,使得网络小说在语言,风格和结构等方面明显有别于传统小说,因此,网络小说越来越多地引起了年轻一代的兴趣与共鸣.C。
朱永新在“国际人才高峰论坛"上指出,阅读非常重要,阅读能力的高低直接关系到一个国家和民族的未来。
D.山西省通过大量的贴民意、暖民心的宣传教育,关于消费者权益的一些法律法规得到宣传,也促使经营者不断提升产品和服务质量。
3。
填入下面一段文字横线处的语句,最恰当的一句是(2分)我以为小小说不应排斥故事(情节)性,恰恰相反,小小说的情节(故事)往往是作品成败的重要因素. , ; , 。
, ,他既要惜墨如金又要纵情泼墨,这种矛盾状况要求作者必须拿“干货",掏“精华”,任何的粉饰卖弄都是多余甚至讨厌的。
①如果没有好的故事情节,他们很快就会厌倦②喜欢读故事是中国人的传统习惯③通俗文学之所以受欢迎,原因也在于此④他们读小说首先注意的不是人物或主题,而是故事⑤这就要看小小说作家能不能以极短的篇幅向读者讲述一个精彩而又复杂的故事⑥读者在读小小说时,绝不会因为其篇幅短小而降低对故事性的要求,相反这种要求更高了A.①③②④⑥⑤ B.①③⑤⑥②④ C.②④①③⑥⑤ D。
2021年高三上学期期中检测语文试卷 含解析
2021年高三上学期期中检测语文试卷含解析一、基础知识题(共1小题)1.阅读下面一段文字,完成1—5题。
时间愈久,愈爱这一室虚白,像画面上的大片留白,情味隽永。
世界至繁,天地至简,这小小的一室,容得下一个人的万千思绪。
坐在这简单的四壁之间,心无旁骛,独品一刻之(闲/静)。
我们需要的生活,其实比想象的更加简单,所谓“良田万顷,日食一升;广厦千间,夜眠七尺”。
身无长物,是一种让人(羡慕/艳羡)的状态。
也许我们本来就无须为太多的念头埋单,美丽的风景,看过就好。
庞杂的愿望中往往夹杂着太多的不切实际,付账时常常随着别人的风向,有时忘了自己的。
加法生活里充满了太多多余的对比和(奢想/向往),不如试试减法生活,如这四壁白雪,保留自然给予的一点天真和质朴。
放轻松,抛开重负,世界还是一样美好。
1.文中加横线字的注音或字形有错误的一项是()A.隽(juàn)永万千思绪B.给(jǐ)予心无旁骛C.身无长(zhǎng)物付账D.广厦(shà)千间埋单2.依次选用文中括号里的词语,最恰当的一项是()A.闲羡慕向往B.静羡慕奢想C.静艳羡向往D.闲艳羡奢想3.下列各句中,标点符号使用正确的一句是()A.要解决长假出行拥堵问题:一是修路架桥并开发更多的旅游资源;二是落实好带薪休假制度,让错峰出游成为现实,事实上,后者远比前者效果更快更好。
B.1962年拍摄的电影《甲午风云》中,管带邓世昌高高屹立在舰桥上,双手握拳高举、头戴“暖式”顶戴花翎——民族英雄的壮烈形象打动了几代中国观众。
C.节日“堵”在路上、“人在囧途”的尴尬、诸多不文明的旅游行为、以“千元大虾”为典型的消费猫腻……黄金周虽已结束,但一个个“假日印记”却格外鲜明。
D.书展7天的热闹过后,剩下的358天怎么办?对于上海书展来说,如何“热热闹闹一周,长长久久一年”?成为书展组委会着力思考的问题。
4.下列各句中,加横线的成语使用正确的一项是()A.中国药学家屠呦呦获“诺奖”实至名归,这无疑是一件值得庆祝的好事,不只是因为得奖,更因为这是一个造福众生的伟大贡献。
江苏省扬州市2023-2024学年高三上学期期中考试语文答案
2023-2024学年度第一学期期中检测试题高三语文参考答案2023.111.C(坚持收玉米,主要不是来自外力,而是来源于内在的朴素自觉)2.C(“提倡老百姓的工作和生活都应该超越功利性”的说法过于绝对)3.A(材料和A项都可以用来论证乡土社会中人们的道德自觉)4.(1)丰富论据,共同论证了中国乡土文化中存在的相同的文化基因:为人做事依据良知,超越功利;(2)表明这一文化基因自古有之,不曾断绝,为提倡更好地挖掘和延续这一文化基因、重拾乡土文化的主张提供依据;(3)故事中李贤祖父的行为对李贤有积极影响,从而肯定了李贤祖父的“盛德”,作者借此也间接肯定了六爸行为的重要意义。
(每点2分,答对两点即可)5.(1)前一个例子语言古典雅致,如“次日,大雨至,十数日不断,村庄田地遂为水淹,无法收割”等有文言特色;(2)后一个例子语言质朴直白,如“我们村玉米地全被水淹了,玉米泡在积水里,无法收获……”等用白话表达,直白自然;(3)亦文亦白的语言,契合文本内容,使行文自然,让文章更显摇曳之美。
(每点2分)6.D(文章中心思想并不是赞美匠人们对手艺的钟情和追求,文章叙述手艺人的生活和他们的手艺,借此表达对“手艺”与“尊严”以及乡村“真相”的思考,流露出深沉、真挚的情感)7.C(“也表现了他们讨生活的不易”理解错误,文章写他们说喜话,没有表现他们生活不易之意)8.(1)生存的尊严:依靠手艺生活,养活自己;(2)匠人的尊严:苦学大本领,成为大师傅,受人敬重;(3)手艺的尊严:享受手艺的“滋味”,追求技艺的价值认同。
(每点2分,答出两点即可)9.示例:甲组:(1)文章用大量说明性文字介绍相关常识,如木匠的种类、搘锅的讲究等,实录了村庄生活与风俗文化的真实存在;(2)文章通过记叙、描写生动展现了手艺匠人及其技艺,呈现了村庄手艺人的真实生存状态;(3)文章首尾用议论方式,思考“手艺”与“尊严”等内容,揭示了村庄的内在精神本质。
江苏省淮安、南通部分学校2023-2024学年高三上学期11月期中监测语文试题及答案
2024届高三第一学期期中质量监测语文一、现代文阅读(35分)(一)现代文阅读I(本题共5小题19分)阅诙卜面的义宁,完成1-5挫材料一:近年未,“颜值经济”持续升温,各种宣传医关机构、医关服务的广告呈井喷之势。
在利益的驱动下,医美广告的虚假宣传、过度宣传、导向不正等问题也日益凸显。
比如,有的医美广告一味鼓吹“无痛”“微创”“见效快",对风险、后遗症却迫而不谈:有的以所谓名医名师、诊疗前后对比图为医美效果背书.引诱消骨者”入坑":有的将容貌不佳与“低能”“悄惰”“贫穷”等、将容貌出众与“高素质”“勤奋”“成功”等不当关联,编造“整容改变命运”一类的故事,扭曲审美认知。
凡此种种.不仅助长社会的"容貌灶虑“情绪.还可能误导,计费者,让其忽视医疗美容行业,扑载的风陓.官目冲动消费,甚至徒而走险。
医美广告已经成为纠众反映强烈的问题.一组数据可见一挝。
中国消费者协会官网投诉数括显示,2015年到2020年,全国消协组织收到的区美行业投诉从483件增长到7233件.5年间投诉让增长近14倍,其中,庄1只宣传就是叶众投诉让从中的问题。
医关是一个颜值行业,也是一项健康产业.广告是其第一道关。
把好广告质忔关,依法规范医天广告,可以说是势在必行、刻不容缓。
实际上,整桥违规医夫广告的行动一立在路上。
首先,2017年以来.多部委连续多年开展打击非法医关专项行动,都把严查违,去广告和互联网信息作力重要一坏。
去年,国家卫位委、市场监骨总局等八部11联合下发通知,对医关广告的发布进行规范,其中明确,医疗美容广告属干医疗广告,非医疗机构不得发布医疗广告.提高了医美广告发布的11槛。
其次,市场监管总局专门从内容、乙介床子方面对医美广告执,去提出细化要求,更具针对性和可探作性,显示出坚决维护医美广告市场秩序的决心。
监节部l1重本出击,加大执法、处罚力度,网络平台过立处全审核机制.主动拦截违,去违规区天广告。
多方合力、久久为功,才能彻底祁治医美广告领块的顽疾。
浙江省高中联盟2022-2023学年物理高三第一学期期中综合测试模拟试题含解析
2022-2023高三上物理期中模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、目前海王星有14颗已知的天然卫星,“海卫一”是海王星的卫星中最大的一颗。
若“海卫一”绕海王星的运行轨道视为圆其轨道半径为r,运行周期为T,将海王星视为质量分布均匀且半径为R的球体,引力常量为G,则海王星的质量为A.B.C.D.2、如图所示,由轻杆AB和BC构成的三角形支架固定在墙壁上,A、B、C各固定点均用铰链连接.在B处挂一重物,以F1、F2分别表示轻杆AB、BC对B点的弹力,则以下说法中正确的是()A.F1沿AB延长线方向,F2沿BC方向B.F1沿BA方向,F2沿CB延长线方向C.F1沿BA方向,F2沿BC方向D.F1沿AB延长线方向,F2沿CB延长线方向3、下列物理量中,属于矢量的是A.路程B.速率C.质量D.加速度4、用水平拉力F拉着一物体在水平地面上做匀速直线运动,某时刻起力F随时间均匀减小,方向不变,物体所受的摩擦力f随时间变化的图像如右图中实线所示(动摩擦因数不变).则该过程对应的v-t图像是()A.B.C.D.5、某半导体激光器发射波长为1.5×10-6 m,功率为5.0×10-3 W的连续激光.已知可见光波长的数量级为10-7 m,普朗克常量h=6.63×10-34 J·s,该激光器发出的A.是紫外线B.是红外线C.光子能量约为1.3×10-13 JD.光子数约为每秒3.8×1017个6、如图,质量为m的物体用轻绳悬挂于天花板上,绳上套有一个轻质的光滑小圆环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-2011学年度第一学期期中考试试卷高 三 化 学命题人:徐闯注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分120分,时间100分钟。
2.请将第Ⅰ卷的答案填涂在答题卡...上,第Ⅱ卷的答案写在答题卷...指定空格内。
可能用到的相对原子质量:H:1 O:16 S:32 Na:23 Fe:56 Al:27 Si:28 Ba:137第I 卷(选择题 共48分)一、选择题(本题包括8小题,每小题3分,共24分,每小题只有一个选项最符合题意。
)1.下列叙述正确的是①硅酸钠的水溶液俗称水玻璃,可用作木材防腐剂;② 正常雨水的pH 为5.6,主要是因为溶解了SO 2;③从海带中提取碘单质的过程涉及氧化还原反应;④ 含磷合成洗涤剂易于被细菌分解,不会导致水体污染;⑤ 为防止电池中的重金属离子污染土壤和水源,废电池要集中处理。
A .①②③④⑤B .②③⑤C .①③⑤D .①②④⑤2.化学概念在逻辑上存在如下关系:包含关系并列关系交叉关系对下列概念的说法正确的是 A .电解质与非电解质属于包含关系 B .化合物与碱性氧化物属于包含关系 C .单质与化合物属于交叉关系D .氧化还原反应与分解反应属于并列关系3.下列实验装置图所示的实验操作,不能..达到相应的实验目的的是4.将过量..的CO 2通入下列溶液中,出现浑浊的是 ①CaCl 2溶液;②石灰水;③饱和Na 2CO 3溶液;④Na 2AlO 2溶液;⑤Ca (ClO )2溶液I IIIIII IIB .分离沸点相差较大的互溶液体混合物C .向容量瓶中 转移液体D .分离互不相溶的两种液体A .证明氨气极 易溶于水水NH 3气球玻璃管A .③④B .②③C .②③④D .①④⑤ 5.用N A 表示阿伏加德罗常数的值,下列说法正确的是 A .5.6g 硅与足量的氢氧化钠溶液反应转移的电子数为0.4 N A B .12.5mL16mol/L 浓硫酸与足量铜反应,转移的电子数为0.2N A C .6.2g 氧化钠和7.8g 过氧化钠混合物中所含有的离子数均为0.3 N A D .2.24L 氯气与氢氧化钠溶液完全反应转移的电子数为0.1 N A 6.下列有关物质检验的实验结论正确的是 选项 实 验 操 作 及 现 象实 验 结 论A 向某溶液中加入盐酸酸化的氯化钡溶液,有白色沉淀生成该溶液中一定含有SO 42-B 向某溶液中加入2滴KSCN 溶液,溶液不显红色。
再向溶液中加入几滴新制的氯水,溶液变为红色 该溶液中一定含有Fe 2+C 将某气体通入品红溶液中,品红溶液褪色该气体一定是SO 2 D将木炭和浓硫酸反应生成气体通入澄清石灰水中,有白色沉淀生成该气体一定是CO 27.在实验室进行物质制备,从原料及试剂分别制取相应的最终产物的下列设计中,理论上正确、操作上可行、经济上合理的是A .C CO CO 2 Na 2CO 3B .Cu Cu(NO 3)2溶液 Cu(OH)2C .Fe Fe 2O 3 Fe 2(SO 4)3溶液D .CaO Ca(OH)2溶液 NaOH 溶液8.下列是某同学对相应反应的离子方程式所作的评价,其中评价合理的是 编号 化学反应离子方程式评价A 碳酸钙与醋酸反应 CO 32-+2CH 3COOH =CO 2↑+ H 2O+2CH 3COO -错误,碳酸钙是弱电解质,不应写成离子B 稀硝酸与过量的铁 Fe+4H + +NO 3—= Fe 3+ + NO ↑+2H 2O正确C NaHCO 3的水解 HCO 3-+H 2OCO 32-+H 3O +错误,少CO 32-水解D等物质的量的FeBr 2和Cl 2反应2Fe 2+ + 2Br —+ 2Cl 2 =2Fe 3+ + Br 2 + 4Cl —正确二、选择题(本题包括6小题,每小题4分,共24分,每小题有一个或两个选项符合题意。
若正确答案只包括一个选项,多选时该题为0分;若正确答案包括两个选项,只选一个且正确的得2分,选两个且都正确的得满分,但只要选错一个,该小题就为0分。
)9.下列各组离子在指定条件下,一定..能大量共存的是 A .pH 为1的无色溶液: K +、Fe 2+、NO 3—、Cl —B .能使碘化钾淀粉试纸变蓝色的溶液:Na +、NH 4+、S 2—、Br —C .水电离出的c(H +)=10—12mol/L 的溶液:Ba 2+、Na +、NO 3—、Cl —D .加入铝条有氢气放出的溶液:Na +、NH 4+、HCO 3—、NO 3—AgNO 3溶液NaOH 溶液 点燃H 2SO 4溶液 H 2ONa 2CO 3溶液 在空气中点燃 CuO 、△NaOH 溶液10.下列叙述正确的是A .Ca 2 Mg 5Si 8O 22 (OH)2可表示为2CaO·5MgO·8SiO 2·2H 2OB .Na 2O 2与水反应、红热的Fe 与水蒸气反应均能生成碱C .Li 、C 、P 分别在足量氧气中燃烧均生成一种相应氧化物D .NaHCO 3、Na 2CO 3、(NH 4)2CO 3三种固体受热后均能生成气体11.如图所示,将甲、乙两个装有不同物质的针筒用导管连接起来,将乙针筒内的物质压到甲针筒内,进行下表所列的不同实验(气体在同温同压下测定)。
下列说法正确的是实验序号甲针筒内物质 乙针筒内物质 1 10mLHCl 10mLNH 3 2 30mLNO 2(主要)10mLH 2O (液)3 20mLHBr 10mLCl 2 410mLCCl 410mLNH 3A .上述4个实验均发生了氧化还原反应B .实验2,甲中剩余的无色气体是NOC .实验3,甲中充满黄绿色气体D .实验4,甲中活塞将向外移动12.根据下列实验现象,所得结论一定正确的是A B C D 实验 实验现象 结论 A 左烧杯中铁表面有气泡,右边烧杯中铜表面有气泡 金属活动性:Al >Fe >Cu B 左边棉花变为橙色,右边棉花变为蓝色 氧化性:Cl 2>Br 2>I 2 C 白色固体先变为淡黄色,后变为黑色 溶解性:AgCl >AgBr >Ag 2S D锥形瓶中有气体产生,烧杯中液体变浑浊酸性:HCl >H 2CO 3>H 2SiO 313.由短周期元素组成的中学常见无机物A 、B 、C 、D 、E 、X 存在如右图转化关系(部分生成物和反应条件略去)。
下列推断错误..的是 A .若B 是氢氧化钠,E 是气体,则X 一定是非金属氧化物 B .若B 是刺激性气体,D 是红棕色气体,则X 一定是氧气 C .若X 是可溶性铝盐,D 为白色沉淀,则A 一定是NaD .若A 是单质,B 和D 的反应是OH -+HCO 3- =H 2O+CO 32-,则X 一定是CO 2Fe稀硫酸CuAl FeNaBr 溶液 淀粉KI溶液Cl 2AgClNaBr溶液 Na 2S 溶液稀盐酸Na 2CO 3 Na 2SiO 3棉球14.将15.6 g Na2O2和5.4 g Al同时放入一定量的水中,充分反应后得到200 mL溶液,再向该溶液中缓慢通入标准状况下的HCl气体6.72 L,若反应过程中溶液的体积保持不变,则下列说法正确的是A.标准状况下,反应过程中得到6.72L的气体B.最终得到的溶液中c(Na+)=c(Cl-)+c(OH-)C.最终得到7.8g的沉淀D.最终得到的溶液中c(Na+)=1.5mol/L第Ⅱ卷(非选择题,共72分)15.(12分)某课外小组利用以下装置探究氯气与氨气之间的反应。
其中A、F分别为氨气和氯气的发生装置,C为纯净、干燥的氯气与氨气反应的装置。
请回答下列问题:(1)装置F中发生反应的离子方程式。
(2)装置A中的烧瓶内固体可选用(选填以下选项的代号)。
A.碱石灰B.生石灰C.二氧化硅D.五氧化二磷E.烧碱(3)虚线框内应添加必要的除杂装置,请从上图的备选装置中选择,并将编号填入下列空格。
B 、D 、E 。
(4)氯气和氨气在常温下相混合就会反应生成氯化铵和氮气,该反应的化学方程式为;装置C内出现浓厚的白烟并在容器内壁凝结,请设计一个实验方案鉴定该固体中的阳离子。
(5)若从装置C的G处逸出的尾气只含有N2和少量Cl2,应如何处理才能不污染环境?答:。
16.(10分)某化学课外活动小组为探究铜与硝酸反应还原产物主要..生成NO时硝酸的浓度,设计实验装置如下图所示:(连接好仪器并检查气密性后,分别装入相对应的试剂)(1)实验开始前先打开活塞K持续通入N2一段时间后,关闭K。
将铜丝(足量)下移伸入浓硝酸中,有大量的红棕色气体生成,随时间的进行,气体颜色变浅,当A中充满无色气体时,此时装置A中的离子反应方程式为_______________________,接下来的实验操作是________________。
(2)本实验中装置A的优点是_____________________________。
(3)将B 中溶液稀释至200mL ,用0.20mol/L 的NaOH 溶液进行滴定。
实验数据如下(硝酸的挥发、分解及体积的变化忽略不计)。
实验编号待测液体积(mL )NaOH 溶液体积(mL )1 20.00 15.98 220.0014.993 20.00 15.01则硝酸与铜反应主要..生成NO 时硝酸的浓度不大于 __________ mol/L ,如果在滴定操作时,先仰视后俯视滴定管读数,所测得主要..生成NO 时硝酸的浓度 (偏大、偏小、不变)。
17.(8分)某课外研究小组,用含有较多杂质的铜(主要杂质为Fe ),通过下列化学反应制取胆矾。
请回答相关问题:pH 控制可参考下列数据:物 质 开始沉淀时的pH完全沉淀时的pH氢氧化铁 2.7 3.7 氢氧化亚铁 7.6 9.6 氢氧化铜5.26.4(1)第一步加入H 2O 2的目的_____________________________________________。
(2)I 中除了加入Cu 2(OH)2CO 3,还可以加入___________。
a .Cu b .Cu(OH)2 c .CuO d .CuCO 3(3)II 中加热煮沸时发生反应的离子方程式为________________________。
(4)IV 中加H 2SO 4调节pH=1的目的是______________________________________。
18.(10分)A 、B 、C 、D 、E 、F 六种物质的相互转化关系如下图所示(反应条件未标出),其中反应①是置换反应。
(1)若A 、D 、F 都是非金属单质,且A 、D 所含元素同主族,A 、F 所含元素同周期,则反应①的化学方程式是 。