最新人教版高中数学必修4第二章《平面向量基本定理》预习导航

合集下载

高中数学人教A版必修4:第二章 2.3 2.3(1).1 平面向量基本定理

高中数学人教A版必修4:第二章 2.3 2.3(1).1 平面向量基本定理

答案:B
4.在等腰Rt△ABC中,∠A=90°,则向量 AB,BC 的夹角
为______.
答案:135°
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
6
用基底表示向量
[典例] 如图,在平行四边形ABCD中,设
对角线 AC =a, BD =b,试用基底a,b表示
AB, BC [解]
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
9
[活学活用]
如图,已知梯形ABCD中,AD∥BC,E,
F分别是AD,BC边上的中点,且BC=
3AD, BA =a, BC =b.试以a,b为基底表
示 EF , DF ,CD. 解:∵AD∥BC,且AD=13BC,
∴ AD=13 BC =13b. ∵E为AD的中点,
[解] 设 BM =e1,CN =e2, 则 AM = AC +CM =-3e2-e1, BN = BC +CN =2e1+e2. ∵A,P,M和B,P,N分别共线,
∴存在实数λ,μ使得 AP=λ AM
=-λe1-3λe2,
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
2.3.1 平面向量基本定理
预习课本P93~94,思考并完成以下问题
(1)平面向量基本定理的内容是什么?
(2)如何定义平面向量基底?
(3)两向量夹角的定义是什么?如何定义向量的垂直?
2019年8月10日
遇上你是缘分,愿您生活愉快,身体健 康,学业有成,金榜题名!
1
[新知初探]
1.平面向量基本定理
条件 结论
2019年8月10日

人教版高中数学必修4第二章平面向量-《2.3.1平面向量基本定理》教案(4)

人教版高中数学必修4第二章平面向量-《2.3.1平面向量基本定理》教案(4)

《平面向量基本定理》的教学设计一 教学目的:1 了解平面向量基本定理及其意义;2 理解平面上任意一个向量都可以由这个平面内两个不共线的向量21,e e 线性表示,初步掌握应用向量解决实际问题的重要思想方法;3 通过作图体会基底的不唯一性;二 教学重点与难点1 重点:平面内的任意向量可以由两个不共线的向量表示2 难点:平面向量基本定理的理解3 教学方法:教师主要引导、学生主体思维为主线,学生动手操作。

4 教学手段:使用多媒体辅助教学,使书本的图形“动”起来,加强了教学的直观性。

使用方格纸让学生画图,使学生能更加直观的理解平面向量的基本定理。

三 教学过程1 复习以提问的方式复习旧知:求向量和的方法,向量的数乘运算;设计意图:让学生思考并回答这两个问题,为这节课的内容做准备。

2 新课引入在学生复述了上述知识之后,让学生在方格纸上画出212,3e e ,并画出2123e e +; 设计意图:让学生通过自己动手做图,再对向量的求和和数乘进行复习,加强学生对旧知的巩固;教师活动:动画演示刚刚所做的图,设计意图:从动画演示上可以让学生从直观上对利用平行四边形法则来求向量的和有了更加直观的印象和理解,同时,利用平行四边形法则来求两个向量的和向量也是这节课在解决问题的主要方法之一。

教师活动:提出问题:“既然我们给定了212,3e e,那么很容易就可以画出1232e e a +=,如果我们给出a ,能否用21,e e 表示a 呢?”3 新课讲解教师活动:让学生在所给的方格上画出,a b ,,c d ,,f g ,并分别用21,e e 来表示,为了方便起见21,e e 是两个互相垂直的向量。

学生活动:分小组来讨论并画出所给向量。

设计意图:让学生初步体会到平面内的任意向量都可以分解成两个向量的和向量。

教师活动:在幻灯片上打出两个不共线的向量21,e e ,和第三个向量a,让学生讨论怎样由21,e e 来表示向量a 。

人教A版高中数学必修4第二章平面向量2.3.1平面向量基本定理导学案

人教A版高中数学必修4第二章平面向量2.3.1平面向量基本定理导学案

2.3.1.平面向量基本定理学习目标.1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一.平面向量基本定理思考1.如果e 1,e 2是两个不共线的确定向量,那么与e 1,e 2在同一平面内的任一向量a 能否用e 1,e 2表示?依据是什么?答案. 能.依据是数乘向量和平行四边形法则.思考2.如果e 1,e 2是共线向量,那么向量a 能否用e 1,e 2表示?为什么? 答案. 不一定,当a 与e 1共线时可以表示,否则不能表示.梳理.(1)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二.两向量的夹角与垂直思考 1.平面中的任意两个向量都可以平移至起点,它们存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 答案. 存在夹角,不一样.思考2.△ABC 为正三角形,设AB →=a ,BC →=b ,则向量a 与b 的夹角是多少? 答案.如图,延长AB 至点D ,使AB =BD ,则BD →=a ,∵△ABC 为等边三角形,∴∠ABC =60°,则∠CBD =120°,故向量a 与b 的夹角为120°. 梳理.(1)夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b .类型一.对基底概念的理解例1.如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是(..) ①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. A.①② B.②③ C.③④ D.② 答案.B解析.由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.反思与感悟.考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是(..) A.e 1-e 2,e 2-e 1 B.2e 1-e 2,e 1-12e 2C.2e 2-3e 1,6e 1-4e 2D.e 1+e 2,e 1-e 2答案.D解析.选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2(e 1-12e 2),也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 类型二.向量的夹角例2.已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.解.如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA 、OB 为邻边作▱OACB , 则OC →=a +b ,BA →=OA →-OB →=a -b , BC →=OA →=a .因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC , 即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思与感悟.(1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1、λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练2.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.答案.90°解析.由AO →=12(AB →+AC →)知,O ,B ,C 三点共线,且O 是线段BC 的中点,故线段BC 是圆O 的直径,从而∠BAC =90°,因此AB →与AC →的夹角为90°.类型三.平面向量基本定理的应用例3.如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.解.∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点,∴AD →=BC →=2BE →,BA →=CD →=2CF →,∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE → =-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解.取CF 的中点G ,连接EG . ∵E 、G 分别为BC ,CF 的中点,∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43(a +12b )=43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12(43a +23b )=23a +43b . 反思与感悟.将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练3.如图所示,在△AOB 中,OA →=a ,OB →=b ,M ,N 分别是边OA ,OB 上的点,且OM →=13a ,ON →=12b ,设AN →与BM →相交于点P ,用基底a ,b 表示OP →.解.OP →=OM →+MP →,OP →=ON →+NP →. 设MP →=mMB →,NP →=nNA →,则 OP →=OM →+mMB →=13OA →+m (OB →-OM →)=13a +m (b -13a )=13(1-m )a +m b , OP →=ON →+nNA →=12OB →+n (OA →-ON →)=12b +n (a -12b )=12(1-n )b +n a . ∵a ,b 不共线, ∴⎩⎪⎨⎪⎧ 13(1-m )=n ,12(1-n )=m ,即⎩⎪⎨⎪⎧n =15,m =25.∴OP →=15a +25b .1.下列关于基底的说法正确的是(..)①平面内不共线的任意两个向量都可作为一组基底; ②基底中的向量可以是零向量;③平面内的基底一旦确定,该平面内的向量关于基底的线性分解形式也是唯一确定的. A.① B.② C.①③ D.②③ 答案.C解析.零向量与任意向量共线,故零向量不能作为基底中的向量,故②错,①③正确. 2.在直角三角形ABC 中,∠BAC =30°,则AC →与BA →的夹角等于(..) A.30° B.60° C.120° D.150°答案.D解析.由向量夹角定义知,AC →与BA →的夹角为150°.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________. 答案.-15.-12解析.∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.如图所示,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则当以a ,b 为基底时,AC →可表示为________,当以a ,c 为基底时,AC →可表示为________.答案.a +b .2a +c解析.由平行四边形法则可知,AC →=AB →+AD →=a +b ,以a ,c 为基底时将BD →平移,使点B 与点A 重合,再由三角形法则和平行四边形法则即可得到.5.已知在梯形ABCD 中,AB ∥DC ,且AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用a 、b 为基底表示DC →,BC →,EF →.解.连接FD ,∵DC ∥AB ,AB =2CD ,E ,F 分别是DC ,AB 的中点, ∴DC 綊FB .∴四边形DCBF 为平行四边形. 依题意,DC →=FB →=12AB →=12b , BC →=FD →=AD →-AF → =AD →-12AB →=a -12b ,EF →=DF →-DE →=-FD →-DE →=-BC →-12DC →=-⎝ ⎛⎭⎪⎫a -12b -12×12b =14b -a .1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件.(2)零向量与任意向量共线,故不能作为基底.2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.课时作业一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是(..)A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2答案.B解析.B中,∵6e1-8e2=2(3e1-4e2),∴(6e1-8e2)∥(3e1-4e2),∴3e1-4e2和6e1-8e2不能作为基底.2.若向量a与b的夹角为60°,则向量-a与-b的夹角是(..)A.60°B.120°C.30°D.150°答案.A3.如图所示,用向量e1,e2表示向量a-b为(..)A.-4e1-2e2B.-2e1-4e2C.e1-3e2D.3e1-e2答案.C解析.如图,由向量的减法得a -b =AB →.由向量的加法得AB →=e 1-3e 2.4.设向量e 1和e 2是某一平面内所有向量的一组基底,若3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2,则实数y 的值为(..) A.3 B.4 C.-14 D.-34答案.B解析.因为3x e 1+(10-y )e 2=(4y -7)e 1+2x e 2, 所以(3x -4y +7)e 1+(10-y -2x )e 2=0,又因为e 1和e 2是某一平面内所有向量的一组基底,所以⎩⎪⎨⎪⎧3x -4y +7=0,10-y -2x =0,解得⎩⎪⎨⎪⎧x =3,y =4,故选B.5.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于(..) A.a +λb B.λa +(1-λ)b C.λa +b D.11+λa +λ1+λb 答案.D解析.∵P 1P →=λPP 2→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .6.若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为(..) A.165 B.125 C.85 D.45 答案.C解析.∵CD →=4DB →=rAB →+sAC →, ∴CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,∴r =45,s =-45.∴3r +s =125-45=85.7.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →等于(..)A.14a +12b B.12a +14b C.23a +13b D.12a +23b 答案.C解析.如图,设CF →=λCD →,AE →=μAF →,则CD →=OD →-OC →=12b -12a ,故AF →=AC →+CF →=(1-12λ)a +12λb .∵AF →=1μAE →=1μ(AO →+OE →)=1μ(12a +14b )=12μa +14μb , ∴由平面向量基本定理,得⎩⎪⎨⎪⎧1-12λ=12μ,12λ=14μ,∴⎩⎪⎨⎪⎧λ=23,μ=34,∴AF →=23a +13b ,故选C.二、填空题8.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 答案.(-∞,4)∪(4,+∞)解析.若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.9.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为________. 答案.60°解析.作OA →=a ,OB →=b ,则BA →=a -b ,∠AOB 为a 与b 的夹角,由|a |=|b |=|a -b |知△AOB 为等边三角形,所以∠AOB =60°.10.如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.答案.43解析.设AB →=a ,AD →=b ,则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.三、解答题11.判断下列命题的正误,并说明理由:(1)若a e 1+b e 2=c e 1+d e 2(a 、b 、c 、d ∈R ),则a =c ,b =d ;(2)若e 1和e 2是表示平面内所有向量的一组基底,那么该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.解.(1)错,当e 1与e 2共线时,结论不一定成立.(2)正确,假设e 1+e 2与e 1-e 2共线,则存在实数λ,使e 1+e 2=λ(e 1-e 2),即(1-λ)e 1=-(1+λ)e 2.因为1-λ与1+λ不同时为0, 所以e 1与e 2共线,这与e 1,e 2不共线矛盾.所以e 1+e 2与e 1-e 2不共线,即它们可以作为基底,该平面内的任一向量可以用e 1+e 2、e 1-e 2表示出来.12.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.解.如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt△OCD 中,∵|OC →|=23,∠COD =30°,∠OCD =90°,∴|OD →|=4,|CD →|=2,故OD →=4OA →,OE →=2OB →,即λ=4,μ=2,∴λ+μ=6.13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB=k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →.解.方法一.如图所示,∵AB →=e 2,且DC AB=k , ∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0,且NB →=-12BC →,AM →=12AD →, ∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC → =k +12e 2. 方法二.如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2,MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →) =k +12e 2. 方法三.如图所示,连接MB ,MC .同方法一可得DC →=k e 2,BC →=e 1+(k -1)e 2.由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 四、探究与拓展14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.答案.90°解析.由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |,所以∠ABO =30°,OA ⊥OB ,即向量a 与c 的夹角为90°.15.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2.(1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式;(3)若4e 1-3e 2=λa +μb ,求λ,μ的值.(1)证明.若a ,b 共线,则存在λ∈R ,使a =λb ,则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧ λ=1,3λ=-2⇒⎩⎪⎨⎪⎧ λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底.(2)解.设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2)=(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧ m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧ m =2,n =1.∴c =2a +b . (3)解.由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2. ∴⎩⎪⎨⎪⎧ λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1. 故所求λ,μ的值分别为3和1.。

人教版数学高中必修四《平面向量的基本定理》

人教版数学高中必修四《平面向量的基本定理》

人教版数学高中必修四《平面向量的基本定理》
人教版数学高中必修四《平面向量的基本定理》
1、平面向量的基本定理。

2、平面向量的基本定理的推导与使用。

详细请看本课视频。

本课程终生免费,目的是为了更好的为学生服务,为了让更多的人听到焦老师的课程,您可以点击标题下方“焦阳初中数学”快速关注,也可以保存并转发此公众号名片,您的关注,是对公益事业的支持,你的转发,也是在做公益,谢谢。

感谢各位朋友的支持,感谢大家的推广。

今天,我们要学习的课程是人教版数学高中必修四《平面向量的基本定理》。

今后每天会更新七、八、九年级及高中的课程,同步于课堂,敬请关注,谢谢。

关于“北师大版“和“苏教版“课程的声明:
目前焦老师一个人在做这个公益平台,录制课程蓝本为人教版数学教材,但是各教材的制订,课程标准是相同的,只是编排顺序不同,所以您看到的课程虽然是人教版课程,但不影响北师版的学习。

公众号置顶,添加到桌面,学生观看更方便。

人教版数学高中必修四《平面向量的基本定理》。

最新人教版高中数学必修4第二章《平面向量基本定理》温故知新

最新人教版高中数学必修4第二章《平面向量基本定理》温故知新

2.3 平面向量的基本定理及坐标表示
2.3.1 平面向量基本定理
温故知新
新知预习
1.如果e 1、e 2是同一平面内的两个____________向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =____________.我们把不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组____________.
2.不共线的向量存在夹角,关于向量的夹角,我们规定:已知两个非零向量a 和b ,作=a ,=b ,则∠AOB =θ(0°≤θ≤180°)叫做____________.显然θ=____________时,a 与b 同向;当θ=____________时,a 与b 反向.
3.如果a 与b 的夹角是90°,我们说a 与b ____________,记作____________.
知识回顾
1.通过前面几节的学习我们知道,给出平面内任意两个向量e 1、e 2,便可作出向量3e 1+2e 2,e 1-2e
2.
如图
.
图2-3-4。

高中数学第二章平面向量2.3.1平面向量基本定理课件新人教A版必修4

高中数学第二章平面向量2.3.1平面向量基本定理课件新人教A版必修4

[自主学习]
1.下面三种说法:①一个平面内只有一对不共线的向量可作为表示该平面内
所有向量的基底;②一个平面内有无数对不共线的向量可作为表示该平面内所有
向量的基底;③零向量不可以作为基底中的向量.其中正确的说法是( )
A.①②
B.②③
C.①③
D.①②③
解析: 平面内的一对向量只要不共线均可作为表示这个平面内所有向量的 基底,基底本身也可以用这组基底表示,故①错;②对;由于零向量与平面内的 任一向量共线,故③正确.
知识点二 向量的夹角 1.两向量夹角的概念:已知两个非零向量 a 和 b,作O→A=a,O→B=b,则 __∠_A_O__B___=θ,叫作向量 a 与 b 的夹角. (1)范围:向量 a 与 b 的夹角 θ 的范围是 0°≤θ≤180°. (2)当 θ=0°时,a 与 b__同__向__. (3)当 θ=180°时,a 与 b_反__向___. 2.垂直:如果 a 与 b 的夹角是__9_0_°_,我们说 a 与 b 垂直,记作_a_⊥__b__.
解析: (1)由平面几何知识知 BG=23BF, 故A→G=A→B+B→G=A→B+23BF=a+23b-12a =a+23b-13a=23a+23b. (2)D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a. B→F=B→C+C→F=2E→C+C→F =-2C→E+C→F=-2a+b.
[规律方法] 用基底表示向量的两种方法
(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为 止.
(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解.
◎ 变式训练 1.(1)本例条件不变,试用基底 a,b 表示A→G; (2)若本例中的基向量“A→B,A→D”换为“C→E,C→F”,即若C→E=a,C→F=b, 试用 a,b 表示向量D→E,B→F.

人教版高中数学必修4第二章平面向量-《2.3.1平面向量基本定理》教案(2)

人教版高中数学必修4第二章平面向量-《2.3.1平面向量基本定理》教案(2)

《平面向量基本定理》的教学设计(新)一、教学课题:普通高中课程标准实验教科书必修4、§2.3.1平面向量基本定理、第一课时。

二、教学目标:1知识与技能(1) 了解平面向量基本定理及其意义,会利用向量基本定理解决简单问题; (2) 培养学生分析、抽象、概括的推理能力。

2过程与方法(1) 通过平面向量基本定理的得出过程,体会由特殊到一般的思维方法; (2) 通过本节学习,体会用基底表示平面内任一向量的方法。

3情感.态度与价值观(1)通过本节学习,培养学生的理性思维,培养学生独立思考及勇于探求、敢于创新的精神、培养主动学习的意识;(2)通过平面向量基本定理的探求过程,培养学生观察能力、抽象概括能力、独立思考的能力,激发学生学习数学的兴趣。

三、教学重点、难点重点:平面向量基本定理的应用难点:对平面向量基本定理的发现和形成过程,数学思想的渗透。

四、教学方法与手段探求式教学法、多媒体手段 五、教学过程 1、创设情景以媒体展示常娥一号的成功升空,引出火箭的发射运动过程中,始终能分解为两个方向上的运动(两个不共线向量的线性组合)切入主题 2、数学探究探究一 给定一个向量是否一定可以用“一个”已知非零向量表示? (复习向量共线定理)探究二 平面内给定一个向量是否一定可以用“两个”已知不共线向量表示??aB NCOA =1e OM =1a 1eOB =2e ON =2a 2eOC =a =OM +ON =1a 1e +2a 2e 再问::一对实数1a 、2a 是否惟一?(学生讨论并回答)点评:由作图中分解结果的惟一,决定了两个分解向量的惟一。

由平行向量基本定理,有且只有一个实数1a ,使得OM =1a 1e 成立,同理2a 也惟一,即一组数1a 、2a 惟一确定。

学生进一步尝试概括定理:如果1e 和2e 是平面内的两个不平行的向量,那么对于该平面内的给定向量a 存在惟一的一对实数1a 、2a ,使a =1a 1e +2a 2e平面向量基本定理:如果1e 和2e 是一平面内的两个不共线的向量,那么该平面内的任一向量a ,存在惟一的一对实数1a 、2a ,使a =1a 1e +2a 2e说明:1、我们把不共线向量1e 、2e 叫做表示这一平面内所有向量的一组基底。

最新人教版高中数学必修4第二章《平面向量》本章概览

最新人教版高中数学必修4第二章《平面向量》本章概览

第二章平面向量本章概览内容提要有了力,才能改变物体的运动状态;有了速度,才能描述物体的运动快慢;有了位移,才能表示质点的位置变动.力,速度,位移……这些都是具有大小和方向的量.我们称这些量为向量.向量就是本章所要研究的内容.本章内容包括向量的线性运算,向量的分解与向量的坐标运算,平面向量的数量积,向量的应用等四大节内容.第一大节,是向量的线性运算.通过位移引入向量的概念,用有向线段来描述向量,把向量和几何图形,生活实际联系起来,说明向量来源于实际并应用于实际.接着教材讲述了向量加法,减法,数乘向量的运算法则,向量共线的条件与轴上向量坐标运算.第二大节,是向量的分解与向量的坐标运算.教材首先介绍了平面向量基本定理,以此为依据引入了向量的正交分解与向量的直角坐标运算,进而给出了向量的加法,减法,数乘向量的坐标运算公式,用坐标表示共线向量的条件.第三大节,是平面向量的数量积.首先以力做功为背景引入了平面向量数量积的概念,给出了向量数量积的运算律,接着把向量数量积的运算坐标化,推出了直角坐标平面上的度量公式.第四大节,是向量的应用.主要介绍了向量在平面几何,解析几何中的应用,以及用向量解决物理中的力,速度等实际问题.向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具;向量又是一个具有几何和代数双重身份的概念.这就使得平面向量成为中学数学知识的交汇点,知识的生长点.同时向量是近代数学中的重要和基本的数学概念之一、它是沟通代数,几何与三角函数的一种工具.学法指导1.结合实际背景深刻理解向量的概念.向量是近代数学中重要和基本的数学概念之一、它是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景.向量的物理背景是力,速度,加速度等概念,几何背景是有向线段.学习的过程中应结合这些背景深刻理解向量的概念.2.理解并正确运用向量的有关运算法则和公式.学习向量的运算法则和公式时注意与实数的运算法则相类比.同时,注意它们之间的区别,防止负迁移.3.注重向量的实际应用.在了解向量的丰富实际背景的基础上,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力.。

(完整版)数学必修4-第二章-平面向量知识点,推荐文档

(完整版)数学必修4-第二章-平面向量知识点,推荐文档

形法则”
① 三量角b 的形终法点则指:向当被a,减b 有向共量同a起的点终时点,的向a 量b 表。示为从减向
② 平行四边形法则:两个已知向量是要共始点的,差向量是如图
所示的对角线。设
AB
a,
AC
b

a
-
b
=
AB
AC
CB
.
3.实数与向量的积
(1)
定义:实数
λ
与向量
a
的积是一个向量,记作
4.平面向量的坐标运算:
①若
a
( x1 ,
y1
),
b
( x2
,
y2
)
,则
a
b
x1
x2
,
y1
y2

②若
Ax1 ,
y1
,
Bx2
,
y2
,则
AB
x2
x1,
y2
y1

③若
a
=(x,y),则
a
=(
x,
y);
④若
a
( x1 ,
y1 ), b
(x2 ,
y2
)
,则
a
//
b
x1 y2
x2
y1
1.平面向量基本定理:如果 e1 , e2 是同一平面内的两个不共线向量,
那么对于这一平面内的任一向量
a
,有且只有一对实数
λ1,λ2
使
a
=λ1
e1
+λ2
e2
.
注意:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量 的一组基底;
(2) 基底不惟一,关键是不共线;

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点第二章平面向量1. 平面向量的概念:平面上具有大小和方向的箭头。

2. 向量的表示:向量通常用小写字母加上一个箭头表示,如a→。

3. 平行向量:具有相同或相反的方向的向量。

4. 向量的加法:向量a→与向量b→相加得到向量c→,其坐标分别相加,即c→ = a→ + b→。

5. 向量的减法:向量a→与向量b→相减得到向量c→,其坐标分别相减,即c→ = a→ - b→。

6. 向量的数量积:向量a→与向量b→的数量积,用a·b表示,满足a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a→和向量b→的模,θ为两个向量夹角的大小。

7. 向量的数量积的性质:具有交换律、结合律和分配律。

8. 向量的夹角:向量a→与向量b→的夹角可以通过向量的数量积来计算夹角的余弦值。

9. 向量的夹角的性质:两个向量夹角为0°,当且仅当它们是同一向量或其中一个向量是另一个向量的相反向量。

10. 向量的共线与垂直:两个向量共线,当且仅当它们的夹角为0°或180°;两个向量垂直,当且仅当它们的数量积为0。

11. 平面向量的坐标表示:平面上的向量可以用坐标表示,即向量a→可以表示为(a,b)。

12. 平面向量的数量积的坐标表示:向量a→(a1, a2)与向量b→(b1, b2)的数量积为a1b1 + a2b2。

13. 向量的数量积与坐标表示的关系:向量a→(a1, a2)与向量b→(b1, b2)的数量积等于它们的坐标相乘的和。

14. 平移向量:平面上的一点A沿着一条向量a→移动到另一点B,其位置关系可以用带箭头的线段→AB表示,这条线段就是向量a→。

15. 平面向量的模运算:给定向量a→(a1, a2),有|a→| = √(a1^2 + a2^2)。

这些是数学必修四第二章平面向量的核心知识点。

高一数学必修4第二章平面向量基本定理及坐标表示知识点

高一数学必修4第二章平面向量基本定理及坐标表示知识点

高一数学必修4第二章平面向量基本定理及坐标表示知识点
平面向量是在二维平面内既有方向又有大小的量,这部分内容在数学必修4第二章中有讲到。

下面是店铺给大家带来的高一数学必修4第二章平面向量基本定理及坐标表示知识,希望对你有帮助。

平面向量基本定理及坐标表示知识点(一)
平面向量的基本定理:
如果
是同一平面内的两个不共线的向量,那么对这一平面内的任一向量
存在唯一的一对有序实数
使
成立,不共线向量
表示这一平面内所有向量的一组基底。

平面向量的坐标运算:
在平面内建立直角坐标系,以与x轴、y轴方向相同的两个单位向量
为基底,则平面内的任一向量
可表示为
,称(x,y)为向量
的坐标,
=(x,y)叫做向量
的坐标表示。

基底在向量中的应用:
(l)用基底表示出相关向量来解决向量问题是常用的方法之一.
(2)在平面中选择基底主要有以下几个特点:①不共线;②有公共起点;③其长度及两两夹角已知.(3)用基底表示向量,就是利用向量的加法和减法对有关向量进行分解。

用已知向量表示未知向量:
用已知向量表示未知向量,一定要结合图像,可从以下角度如手:
(1)要用基向量意识,把有关向量尽量统一到基向量上来;
(2)把要表示的向量标在封闭的图形中,表示为其它向量的和或差的形式,进而寻找这些向量与基向量的关系;
(3)用基向量表示一个向量时,如果此向量的起点是从基底的公共点出发的,一般考虑用加法,否则用减法,如果此向量与一个易求向量共线,可用数乘。

数学人教B版必修4预习导航:2.2.1平面向量基本定理 含

数学人教B版必修4预习导航:2.2.1平面向量基本定理 含
(1)e1,e2是同一平面内的两个不共线的向量;
(2)该平面内的任意向量a都可用e1,e2线性表示,且这种表示是唯一的;
(3)对基底的选取不唯一,只要是同一平面内的两个不共线的向量都可以作为一组基底;
(4)教材中定理的证明,是用作图法证明了存在性,又用反证法证明了唯一性.
直线的向量参数形式
已知A,B是直线l上任意两点,O是l外一点,则对于直线l上任一点P,存在实数t,使 关于基底{ , }的分解式为 =(1-t) +t ,这个等式叫做直线l的向量参数方程式,其中实数t叫做参变数,简称参数.
(1)直线l的向量参数方程式也可以写成 = (其中t为实数).
(2)在直线l的向量参数方程式 =(1-t) +t 中, 与 的系数之和一定为1.
(3)对于平面内任意一点O,若存在唯一的一对实数λ,μ,使得 =λ +μ ,且λ+μ=1,则P,A,B三点共线.
(4)对于平面内任意一点O,若P,A,B三点共线,则一定存在唯一的一对实数λ,μ,使得 =λ +μ ,且λ+μ=1.
预习导航
课程目标
学习脉络
1.掌握平面向量基本定理及其意义.
2.掌握平面向量基本定理的应.
3.了解直线的向量参数方程.
内容
注意问题
平面向量基本定理
如果e1和e2是一平面内的两个不平行的向量,那么该平面内的任一向量a,存在唯一的一对实数a1,a2,使a=a1e1+a2e2.我们把不共线向量e1,e2叫做表示这一平面内所有向量的一组基底,记为{e1,e2}.a1e1+a2e2叫做向量a关于基底{e1,e2}的分解式.

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点数学必修四第二章平面向量知识点在年少学习的日子里,大家最熟悉的就是知识点吧?知识点也可以通俗的理解为重要的内容。

想要一份整理好的知识点吗?以下是店铺帮大家整理的数学必修四第二章平面向量知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

1、平面向量基本概念有向线段:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作或AB;向量的模:有向线段AB的长度叫做向量的模,记作|AB|;零向量:长度等于0的向量叫做零向量,记作或0。

(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆);相等向量:长度相等且方向相同的向量叫做相等向量;平行向量(共线向量):两个方向相同或相反的非零向量叫做平行向量或共线向量,零向量与任意向量平行,即0//a;单位向量:模等于1个单位长度的向量叫做单位向量,通常用e 表示,平行于坐标轴的单位向量习惯上分别用i、j表示。

相反向量:与a长度相等,方向相反的向量,叫做a的.相反向量,—(—a)=a,零向量的相反向量仍然是零向量。

2、平面向量运算加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则a b=(x1+x2,y1+y2)。

向量加法与减法的几何表示:平行四边形法则、三角形法则。

向量加法有如下规律:+ = +(交换律);+(+c)=(+)+c (结合律);实数与向量的积:实数与向量的积是一个向量。

(1)| |=| |·| |;(2)当a>0时,与a的方向相同;当a<0时,与a的方向相反;当a=0时,a=0。

两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= 。

(2)若=(),b=()则‖b 。

3、平面向量基本定理若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得= e1+ e2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预习导航
1.平面向量基本定理
如果e 1和e 2
是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数a 1,a 2,使a =a 1e 1+a 2e 2.我们把不共线向量e 1,e 2叫做表示这一平面内所有向量的一组基底,记为{e 1,e 2}.a 1e 1+a 2e 2叫做向量a 关于基底{e 1,e 2}的分解式.
平面向量的基底唯一吗?
答:不唯一,只要两个向量不共线,都可以作为平面向量的一组基底.
【自主测试1-1】如果e 1,e 2是平面内所有向量的一组基底,那么( )
A .对平面α中任一向量a ,使a =a 1e 1+a 2e 2的实数a 1,a 2有无数对
B .对实数a 1,a 2,a 1e 1+a 2e 2不一定在平面α内
C .空间任一向量a 可以表示为a =a 1e 1+a 2e 2,这里a 1,a 2是实数
D .若实数a 1,a 2使a 1e 1+a 2e 2=0,则a 1=a 2=0
答案:D
【自主测试1-2】在四边形ABCD 中,设AB →=a ,AD →=b ,用基底a ,b 表示DB →=
__________.
解析:DB →=AB →-AD →=a -b .
答案:a -b
2.直线的向量参数方程式
已知A ,B 是直线l 上任意两点,O 是l 外一点,则对于直线l 上任一点P ,存在实数t ,使OP →关于基底{OA →,OB →}的分解式为OP →=(1-t )OA →+tOB →,这个等式叫做直线l 的向量参数方程式,其中实数t 叫做参变数,简称参数.
当t =12时,P 为线段AB 的中点,则OP →=12
(OA →+OB →).这是线段AB 的中点的向量表达式.
名师点拨 上述的向量参数方程式与P ,A ,B 三点共线的条件是完全一致的,学习了向量的正交分解后,可以进一步地认识它与解析几何中直线方程的联系.
【自主测试2】M 为线段AB 的中点,O 为平面上任一点,OM →=xOA →+yOB →,则有x =
__________,y =__________.
解析:由线段AB 的中点的向量表达式,知x =y =12
. 答案:12 12。

相关文档
最新文档