第七章 液压元件和液压油 调压回路0

合集下载

第7章液压基本回路(r)解读

第7章液压基本回路(r)解读

第7章液压基本回路不论机械设备的液压传动系统如何复杂,都是由一些液压基本回路组成的。

所谓基本回路,就是由有关的液压元件组成,用来完成特定功能的典型油路。

按其在液压系统中的功用,基本回路可分为:压力控制回路——控制整个系统或局部油路的工作压力;速度控制回路——控制和调节执行元件的速度;方向控制回路——控制执行元件运动方向的变换和锁停;多执行元件控制回路——控制多个执行元件相互间的动作。

本章讨论的是最常见的液压基本回路,熟悉和掌握它们的组成、工作原理及其应用,是分析、设计和使用液压系统的基础。

7.1 压力控制回路压力控制回路是利用压力控制阀来控制系统中液体的压力,以满足执行元件对力或转矩的要求。

这类回路包括调压、减压、卸荷、保压、平衡、增压等回路。

7.1.1调压回路调压回路的功能在于调定或限制液压系统的最高工作压力,或者使执行机构在工作过程的不同阶段实现多级压力变换。

一般是由溢流阀来实现这一功能的。

1.单级调压回路图7.1所示为单级调压回路,这是液压系统中最为常见的回路。

调速阀调节进入液压缸的流量,定量泵提供的多余的油经溢流阀流回油箱,溢流阀起溢流恒压作用,保持系统压力稳定,且不受负载变化的影响。

调节溢流阀可调整系统的工作压力。

当取消系统中的调速阀时,系统压力随液压缸所受负载而变,溢流阀起安全阀作用,限定系统的最高工作压力。

系统过载时,安全阀开启,定量泵泵出的压力油经安全阀流回油箱。

2.多级调压回路图7.2所示为二级调压回路。

先导式溢流阀1的外控口串接二位二通换向阀2和远程调压阀3,构成二级调压回路。

当两个压力阀的调定压力为p3<p1时,系统可通过图7.1单级调压回路换向阀的左位和右位分别获得p3和p1两种压力。

如果在溢流阀的外控口,通过多位换向阀的不同通油口,并联多个调压阀,即可构成多级调压回路。

图7.3为三级调压回路。

主溢流阀1的遥控口通过三位四通换向阀4分别接具有不同调定压力的远程调压阀2和3,当换向阀左位时,压力由阀2调定;换向阀右位时,压力由阀3调定;换向阀中位时,由主溢流阀1来调定系统最高的压力。

液压与气压传动 第七章 液压基本回路

液压与气压传动 第七章 液压基本回路

课时授课计划教学过程:复习: 1、滤油器的结构及功能2、蓄能器的功能3、油箱的结构4、管路、接头、热交换器的种类。

新课:第七章液压基本回路第一节能量回路一、定量泵—溢流阀组成的液压能源回路图7-1所示的能源回路的优点是:结构简单,反应迅速,压力波动比较小。

缺点是:由于定量泵不能改变输出流量,在负载不需要全流量工作时,多余的流量通过溢流阀流回油箱,所以效率较低,尤其当负载流量为零时,泵的流量几乎全部由溢流阀溢流,泵的输出功率绝大部分消耗在溢流阀的节流口上,这将产生大量的热,使油温很快升高。

因此,这种能源一般用在供油压力较低的液压系统中。

能源系统的流量按系统的峰值流量设计,如果伺服所需要的峰值流量的持续时间很短,并且允许供油压力有一定变动,则可以用蓄能器贮存足够的能量以适应短期峰值流量的要求,以减小泵的容量,并使功率损失和油温升高小些。

蓄能器还可起到减小泵的压力脉动和冲击的作用,使系统工作更加平稳。

二、定量泵—蓄能器—自动卸荷阀组成的液压能源回路图7-2所示的液压能源回路克服了图7-1所示回路溢流损失大的缺点,其特点是结构比较简单,功率损失小,适用于高压,但压力波动较大,并且由于供油压力在一定范围内缓慢变化,对伺服系统将引起伺服放大系数的变化,因而对某些要求较高的系统不合适。

另外,所用元件较多,为了使泵有较长时间的卸荷,蓄能器的容量较大,整个能源装置的体积、重量都较大。

这种能源回路一般用在峰值流量系统只有很微小的运动的间歇工作系统中。

三、恒压力变量泵式(自动调压泵)液压能源回路图7-3所示为恒压力变量泵式(自动调压栗〉液压能源回路。

这种能源回路的优点是输出流量取决于系统的需要,因而效率高,经济效果好,适用于高压和大功率系统,既适用于流量变化很大的系统,也适用于间歇工作的系统,为目前航空液压伺服系统所广泛采用。

第二节基本回路一、顺序动作回路顺序动作回路是实现多个并联液压缸顺序动作的控制回路。

按控制方式不同,可分为压力控制、行程控制和时间控制三类。

第七章 液压元件和液压油 液压马达4

第七章 液压元件和液压油 液压马达4

第三节 液压马达
一、工作性能 现假设液压马达按几何尺寸确定的每转排量为q(ms/r),则液压马达的理论转速为
n th 60 Q / q r / min
显然,在不考虑液压马达中所有能量损失的情况下,液压马达的理论输出功率就等于其 输入功率。 因此,可求得液压马达的理论扭矩
M

th
pq / 2 Nm
第二节 液压泵
2. 轴向柱塞变向变量 斜轴式轴向柱塞泵 泵
当传动轴5沿图示方向旋转时,连杆 4就带动柱塞2连同缸体3一起绕缸体轴 线旋转,柱塞2同时也在缸体的柱塞孔 内作往复运动,使柱塞孔底部的密封腔 容积不断发生增大和缩小的变化,通过 配流盘1上的窗口6和7实现吸油和排油。
第二节 液压泵
2. 轴向柱塞变向变量 斜轴式轴向柱塞泵 泵
Q
A B
C
D p
第二节 液压泵
4. 柱塞式变量油泵的使用与 (1)泵轴与电动机应用弹性联轴节直接连接,保证轴线的同心度; 管理 (2)有些型号的泵不允许自吸,因此轴向柱塞泵吸入端可以采用辅泵供油;
(3)初次使用或刚经拆卸的泵,启动前必须向泵壳内灌油;安装时泵壳泄油管向上,同时 为减少泄油阻力及避免虹吸现象,泄油管出口可置于油箱液面之上,运行时注意保证 油压; (4)不允许在关闭排出阀的情况下启动; (5)不宜长时间在零位运转; (6)选用合适的工作油,并保持油液清洁; (7)由于泵内零件硬度高,配合紧密,安装时需小心;清洗时不能用棉纱等搽洗。
第二节 液压泵
5. 液压泵的性能比较与选用
第三节 液压马达
一、 工作性能
二、 低速大扭矩液压马达的构造和工作原理
1)连杆式 2)五星轮式 3)内曲线式
第三节 液压马达

液压传动系统基本回路

液压传动系统基本回路

液压传动系统基本回路液压传动系统是一种常用的力传递和控制装置,其基本组成部分是液压元件、液压控制阀和液压能源单元。

而液压传动系统的基本回路则是指通过液压元件将液压能源转化为机械能的系统。

液压传动系统的基本回路可以分为两大类:单向回路和双向回路。

单项回路又可分为单向控制回路和单向控制回路。

下面将详细介绍这两类液压传动系统的基本回路。

一、单项回路单项回路是指通过液压元件将液压能源转化为机械能的系统。

单项回路中的液压元件通常包括液压缸和液压马达。

1. 单向控制回路单向控制回路是指通过单向阀控制液压元件的液压油流的流向,从而实现工作机构的单向运动。

单向控制回路通常由液压泵、阀组、液压缸和单向阀等组成。

液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸则利用压力油液来驱动工作机构。

单向阀的作用是使液压油只能在一个方向上流动,从而控制液压缸的单向运动。

2. 单向反控制回路单向反控制回路是指通过单向阀和控制阀控制液压元件的液压油流的流向,从而实现工作机构的反复往复运动。

单向反控制回路通常由液压泵、阀组、液压缸、双向控制阀和单向阀等组成。

液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸利用压力油液来驱动工作机构。

而双向控制阀的作用是控制液压油液的流动方向,使液压缸能够实现反复往复的运动。

二、双向回路双向回路是指通过液压元件将液压能源转化为机械能的系统,能够实现工作机构的双向运动。

双向回路通常由液压泵、阀组、液压缸和双向阀等组成。

液压泵负责提供压力油液,阀组用来控制油液的流向和压力,液压缸则利用压力油液来驱动工作机构。

双向阀的作用是使液压油可以在两个方向上流动,从而实现液压缸的双向运动。

总结:液压传动系统的基本回路包括单向回路和双向回路。

单向回路可以分为单向控制回路和单向反控制回路,通过控制液压油流的流向实现工作机构的单向运动和反复往复运动。

而双向回路则能够实现工作机构的双向运动。

通过合理选择和布置液压元件、液压控制阀和液压能源单元,可以设计出不同类型和功能的液压传动系统,满足不同工况下的力传递和控制需求。

典型液压系统的基本回路

典型液压系统的基本回路

多路换向阀控制回路
定义:多路换向阀是一种控制液压油流向的阀门,可以实现多个执行机构的控制
工作原理:通过改变阀芯的位置,使液压油流向不同的通道,从而控制执行机构的运动方向和速度
应用场景:广泛应用于各种机械设备的液压系统中,如挖掘机、起重机等 特点:可以实现多个执行机构的独立控制,提高设备的效率和灵活性
速度控制回路
定义:通过改变液压 泵或液压马达的排量 或流量,实现对执行 机构速度的控制。
分类:节流调速回 路、容积调速回路、 容积节流调速回路。
特点:可实现无级 调速,调速范围广 ,稳定性好,但效 率较低。
应用:适用于需要 精确控制速度的场 合,如机床进给系 统、搬运机械等。
方向控制回路
定义:用于控制液压系统中油液流动方向的回路 组成:换向阀、溢流阀等 功能:实现液压缸的正反转、停止等动作 应用:机械手、起重机等设备
状态。
方向控制失灵故障的诊断与排除
故障现象:液压系 统中的方向控制阀 无法正常控制液压 缸或液压马达的正 反转,导致系统无 法按照预定方向进
行动作。
故障原因:方向 控制阀的阀芯卡 滞、堵塞或损坏, 导致液压油的流 动受阻,无法正 常切换油路方向。
诊断方法:检查方 向控制阀的阀芯是 否活动自如,有无 堵塞或卡滞现象。 同时检查液压油的 清洁度,防止杂质 进入阀芯造成卡滞。
排除方法:清洗 或更换方向控制 阀的阀芯,确保 阀芯活动自如。 同时定期更换液 压油,保持液压
油的清洁度。
感谢您的观看
典型液压系统的基本回路
目录
液压系统的基本组成 液压系统的基本回路 典型液压系统的基本回路特点 液压系统基本回路的维护与保养
液压系统基本回路的故障诊断与排除
动力元件

液压传动与控制____液压基本回路

液压传动与控制____液压基本回路
常用的方向控制回路有:
换向回路、
锁紧回路 (制动回路)、
浮动回路等。
一、换向回路
其作用是-变换执行机构的运动方向。
对执行机构的换向,要求具有良好的平稳性和 灵敏性。
在换向过程中,运动部件的速度变化有三个阶 段:
制动阶段—从某种工作速度减至零速; 停滞阶段—短暂的过渡停顿; 起动阶段—又从零速反向加速至所需的工作速
1.由两个过载阀组成的缓冲补油回路 (见附图) 该回路简单,适用于两边流量相等的系统。
由两个过载阀组成 的缓冲补油回路-
2.由四个单向阀和一个过载阀组成的缓冲补油回路
该回路简单,由于 两边使用一个过载 阀,只能调定一种 压力,故适用于两 边油路的过载压力 调定压力相同的系 统中。
3.由两个过载阀和两个补油单向阀组成的缓 冲补油回路
1.双向减压回路
(见下图 )
5 4 至主油路 3
2
6
1
图3-35 减压回路
2.单向减压回路 3.分析减压回路
五、增压回路 使系统的局部油路或某个执行元件获得比液压
泵工作压力高得多的压力时,可采用增压回路。 常用的有 双向增压回路、单向增压回路。
1.单向增压回路 (课本P131图6-4 a)
单向增压回路-
1
2
Δ

B
1
B
图3-54 进口节泵供油压力pB是不变的,带动
泵的电动机功率也是不变的; ②流量Q和油压pB ,却按最高速度和最大负载
来选择;
③当系统在低速、轻载下工作时,有相当大的 一部分功率被损耗掉,损失的功率变成热能 使系统油温升高;
④由于液压缸回油腔没有背压,所以运动平稳 性较差;
F1=p1 S1 F2=p2 S2 F1=F2 p1 S1 =p2 S2 p2= (S1/ S2) p2 (S1/ S2)=K>1

液压作业第7章作业答案

液压作业第7章作业答案

第7章作业答案一、选择题1.在采用节流阀的进油口节流调速回路中,当负载一定,节流阀开口减小,液压泵工作压力( C )A.最大B.减, C.不变2.在采用节流阀的回油路节流调速回路中,当不考虑系统的泄漏损失和溢流阀的调压偏差,但负载增大是,试分析: 1)活塞的运动速度( b ) 2)液压泵输出功率( c ) 3)液压泵输入功率( c );a.最大 b.减小 c.基本不变 d.可能最大也可能减小3.某铣床要在切削力变化范围较大的场合下顺铣和逆铣工作,在选择该铣床的调速回路时,你认为选择下列调速回路中的( B )种比较合适。

A.采用节流陶进油路节流调速回路B.采用节流阀回油路节流调速回路c.采用调速阀进油路节流调速回路D.采用调速阀回油路节流调速回路4.在动作顺序要改变的液压系统中宜用( A ),A.用行程开关和电磁阀控制的顺序动作回路…、”B.用行程换向阀控制韵顺序动作回路‘C.用压力继电控制的顺序动作回路D.用行程孔控制的顺序动作回路5.为了使工作机构在任意位置可靠地停留,且在停留时其工作机构在受力的情况下不发生位移,通常采用( D )。

A、卸荷回路B、调压回路C、平衡回路D、锁紧回路。

二.判断题正确的在括号内填Y 错的在括号内填 N20.系统要求有良好的低速稳定性,可采用容积节流调速回路 ( Y )2l、在旁路节流回路中,若发现溢流阀在系统工作时不溢流,说明溢流阀有故障。

( N )三读懂下列油路图,指出图中有哪一种或几种基本回路。

并简要说明工作原理.四、综合分析题1、读下列油路图,填写电磁铁动作顺序表第一题第二题注:所有电磁铁吸合为“+”,断开为“-”,吸合断开均可,也为“-”第一题1YA 2YA 3YA 4YA 5YA 快进中速进给慢速进给快退(2)当油缸运动到端点,负载无穷大,试分析在下列情况下,将A B C点3、如图所示:(2)系统的动作顺序为:A缸快速运动到位加紧——B缸快进——B缸1工进-—B缸2工进-—B缸快退-—A缸快速退回-—油泵卸荷。

第七章 液压元件和液压油 插装阀1

第七章 液压元件和液压油 插装阀1

图 调速阀的工作原理和职能符号 (a)结构原理图;(b)符号;(c)简化符号; 1-减压阀口;2-减压阀芯;3-节流阀口;4-节流阀芯
普通型调速阀的工作原 理
设减压阀的进口压力为p1,负载串接在调 速阀的出口p3处。节流阀(流量—压差传 感器)前、后的压力差(p2-p3)代表着负载 流量的大小,p2和p3作为流量反馈信号分 别引到减压阀阀芯两端(压差—力传感器) 的测压活塞上,并与定差减压阀芯一端 的弹簧(充当指令元件)力相平衡,减压阀 芯平衡在某一位置。 减压阀芯两端的测压活塞做得比阀口处 的阀芯更粗的原因是为了增大反馈力以 克服液动力和摩擦力的不利影响。
溢流节流阀的工作原理
溢流节流阀与负载相并联,采用并联溢流式 流量负反馈,可以认为它是由定差溢流阀和 节流阀并联组成的组合阀。其中节流阀充当 流量传感器,节流阀口不变时,通过自动调 节起定差作用的溢流口的溢流量来实现流量 负反馈,从而稳定节流阀前后的压差,保持 其流量不变。与调速阀一样,节流阀(传感器) 前后压差基本不变,调节节流阀口时,可以 改变流量的大小。溢流节流阀能使系统压力 随负载变化,没有调速阀中减压阀口的压差 损失,功率损失小,是一种较好的节能元件, 但流量稳定性略差一些,尤其在小流量工况 下更为明显。 因此溢流节流阀一般用于对速度稳定性要求 相对较高,而且功率较大的进油路节流调速 系统。
量增加的影响。
温度补偿原理图 1-手柄;2-温度补偿杆; 3-节流口;4-节流阀芯
第一节 液压控制阀
四、插装阀
分类:插装式方向控制阀 插装式压力控制阀 插装式流量控制阀 功能:采用插入连接方法,能实现常规液压控制阀的功能,且结构简单,通用性强,体积小, 流阻小,密封性好,抗污染能力强,动作灵敏特别适合大流量(大于200L/min)的液压系统。 插装阀(逻辑阀)是一种较新型的液压元件,它的特点是通流能力大,密封性能好,动作灵敏, 结构简单,因而主要用于流量较大系统或对密封性能要求较高的系统。

第七章 液压基本回路

第七章 液压基本回路

v q1 q2 q1,q2——流入、流出液压缸的流量; A1 A2 A1,A2——液压缸无杆腔、有杆腔的有效工作面积。
液压马达的转速nM由进入马达的流量q和马达的排量VM决定,即nM
q VM
改变流入或流出执行元件的流量q,或改变液压缸的有效工作面积A和 马改达变的变排量量马达VM排均量可V以M达来到控控制制执执行行元元件件的速速度度的。目的。通常用改变流量q或
m——由孔口形状决定的指数,0.5<m<1
液 调节节流阀通流面积AT,即可改变通过节流阀的流量q1,从而调节
压缸的工作速度。
根据上述讨论,液压缸的运动速度为v
q1 A1
KAT A1
( pP
F )m A1
称为进油节流调速回路的速度―负载特性方程。
由此式可知,液压缸的工作速度是节流阀通流面积AT和液压缸负
(a) 用蓄能器保压的回路 (b)多缸系统一缸保压回路
7.1.5 背压回路
在液压系统中设置背压回路,是为了提高执行元件的运动平稳性 或减少爬行现象。所谓背压就是作用在压力作用面反方向上的压力或 回油路中的压力。背压回路就是在回油路上设置背压阀,以形成一定 的回油阻力,用以产生背压,一般背压为0.3MPa~0.8MPa。
调速阀进油路调速回路速度―负载特性如图:
5. 采用溢流节流阀的 进油节流调速回路
这种回路是在进油节流调速回路中用溢流节流阀替代 节流阀(或调速阀)而构成。泵不在恒压下工作(属变压系统) ,泵压随负载的大小而变,故效率比用节流阀(或调速阀) 的进油节流调速回路高。
此回路适用于运动平稳性要求较高、功率较大的节流 调速系统。
节流阀控制液压缸的回油量q2,实现速度的调节。由连续性原理可得
q1 v q2

项目七:液压系统 - 液压元件

项目七:液压系统 - 液压元件
马达,多作用内曲线径向柱塞马达)
二、执行元件
液压马达工作原理
二、执行元件
液压缸
液压缸是将液压能转变为机械能的装置,将液压能转变为直线运动或摆动的机械能。液压缸输入的
压力能表现为液体的流量和压力;输出的机械能表现为速度和力。
二、执行元件
二、执行元件
液压缸
按作用方式,分为单作用式和双作用式两种。 单作用式液压缸——液压油只能使液压缸实现单向运动,即压力油只是通向液压缸的一腔,而 反方向运动则必须依靠外力来实现,如复位弹簧力、自重或其它外部作用。
双作用式液压缸——在两个方向上的运动都由液压油的压力推动来实现。
按结构特点可分为活塞式、柱塞式、伸缩式和摆动式。


















二、执行元件
液压缸
单作用活塞式液压缸 单向液压驱动,回程靠自重、弹簧或其它外力。
单作用柱塞式液压缸 柱塞较粗,受力较好,稳定性好,单向进油驱动,回程靠外力。
压力作用下——吸油 2、随着齿轮旋转,油液带到左侧的压油腔,轮齿逐渐啮合,使密封容
积↓ ,齿槽间的油液被挤压排出泵外 ——压油
优点:结构简单、体积小、质量小、工作可靠、成本低、自吸性好、 对油污染不敏感,由于齿轮泵是轴对称的旋转体,允许有较高的转速; 缺点:流量脉动和困油现象严重,噪声大、排量不可调。 应用:汽车、汽车修理设备液压系统中。
液压工作介质 各类液压油(液)
作为系统的载能介质,在传递能量的同时并起润 滑冷却作用
一、动力元件
液压泵
一、动力元件
液压泵
液压泵是将电动机 (或其他原动机) 输出的机械能转换为液压能的能量转换装置。液压系统中,液 压泵是动力元件,是液压系统的重要组成部分。 液压泵由电动机带动将液压油从油箱中吸出,并以一定的压力输送到系统,驱动执行元件做功。

设备控制技术课件第7章液压基本回路及液压系统第2节

设备控制技术课件第7章液压基本回路及液压系统第2节

主轴锥孔中的刀具松开;同时,液压缸24的活塞杆上移,松开刀库中预选的 刀具;此时,液压缸36的活塞杆在弹簧力作用下将机械手上两个定位销伸出, 卡住机械手上的刀具。松开主轴锥孔中刀具的压力可由减压阀23调节。
3)机械手拔刀 主轴、刀库上的刀具松开后,无触点开关发出信号,电磁阀 25处于右位,由缸26带动机械手伸出,使刀具从主轴锥孔和刀库链节中拔出。 缸26带有缓冲装置,以防止行程终点发生撞击和噪声。
转速由单向调速阀11控制。若7YA通电,则液压马达带动刀架反转,转速由单 向调速阀12控制。当4YA断电时,阀6左位工作,液压缸使刀架夹紧。
(3)尾座套筒的伸缩运动 当6YA通电时,阀7左位工作,系统压力油经减压阀10、换向阀7到尾座套 筒液压缸的左腔,液压缸右腔油液经单向调速阀13、阀7回油箱,缸筒带动尾 座套筒伸出,伸出时的预紧力大小通过压力表16显示。反之,当5YA通电时, 阀7右位工作,系统压力油经减压阀10、换向阀7、单向调速阀13到液压缸右 腔,液压缸左腔的油液经阀7流回油箱,套筒缩回。 3.数控车床液压系统的特点 1)采用单向变量液压泵向系统供油,能量损失小。 2)用换向阀控制卡盘夹紧,并且能实现高压和低压夹紧的转换,可根据 工件情况调节夹紧力的大小,操作方便简单。 3)用液压马达实现刀架的转位,可无级调速,并能控制刀架正、反转。 4)用换向阀控制尾座套筒液压缸的换向,以实现套筒的伸出或缩回,并 能调节尾座套筒伸出工作时的预紧力大小,以适应不同工件的需要。 5)压力表14、15、16可分别测量相应处的压力,以便于故障诊和调试。
7.2.3 数控加工中心液压传动系统
1.数控加工中心液压传动系统概述 数控加工中心是由计算机数字控制(CNC控制),可在一次装夹中完成 钻、扩、铰、镗、铣、锪、攻丝、螺纹加工、测量等多道工序加工,集机、 电、液、气、计算机于一体的高效自动化机床。机床各部分的动作均由计算 机的指令控制,具有加工精度高、尺寸稳定性好、生产周期短、自动化程度 高等优点,特别适合于加工形状复杂、精度要求高的多品种成批、中小批量 及单件生产。目前,在加工中心中大多采用了液压传动技术,主要完成机床 的各种辅助动作,下面介绍卧式镗铣加工中心的液压系统。 2.数控加工中心液压系统的工作原理 图7-25所示为某卧式镗铣加工中心 液压系统原理图,各部分组成及工作原 理如下:

气压与液压传动控制技术第七章

气压与液压传动控制技术第七章




3. 串联液压缸
当液压缸长度虽然不受限制,但直径受到限制,无法满足输 出力的大小要求时,可以采用多个液压缸串联构成的串联液 压缸来获得较大的推力输出(图7-8 )上一页 返回
图7-8
(1)伸缩缸
(2)串联液压缸
图7-8伸缩缸和串联液压缸结构示意图
返回
7.2.3缓冲装置



在液压系统中,当运动速度较高时,由于负载及液压缸活塞 杆本身的质量较大,造成运动时的动量很大,因而活塞运动 到行程末端时,易与端盖发生很大的冲击。这种冲击不仅会 引起液压缸的损坏,而且会引起各类阀、配管及相关机械部 件的损坏,具有很大的危害性。 所以在大型、高速或高精度的液压装置中,常在液压缸末端 设置缓冲装置,使活塞在接近行程末端时,使回油阻力增加, 从而减缓运动件的运动速度,避免活塞与液压缸端盖的撞击。 图7-9所示即为带缓冲装置的液压缸,它采用的缓冲装置是与 缓冲气缸中的缓冲装置相类似的可调节流缓冲装置。其缓冲 过程如图7-10所示。


2. 单杆活塞式液压缸
活塞杆仅从液压缸的某一侧伸出的液压缸,称为单杆活塞液 压缸,也称单出杆液压缸。
上一页 下一页 返回
7.2.1活塞式液压缸


(1) 双作用液压缸
如图7-2、图7-3所示的单杆活塞式液压缸的活塞只有一端带 活塞杆,其伸出和缩回均由液压力推动实现,是双作用液压 缸。由于活塞两端有效面积不等,如果以相同流量的压力油 分别进入液压缸的左、右腔,则活塞移动的速度和在活塞上 产生的推力是不相等的。 当输入液压缸无杆腔的油液流量为q,液压缸进出油口压力分 别为p1和p2,活塞上所产生的推力F1和速度v1(方向均向右) 为: F A p A p [( p p ) D 2 p d 2 ] 7.3

液压系统的基本回路

液压系统的基本回路

(1) 进油节流调速回路
进油节流调速回路是将节流 阀装在执行机构的进油路上, 调速原理如图6-20所示。
根据进油节流调速回路的特 点,节流阀进油节流调速回路 适用于低速、轻载、负载变化 不大和对速度稳定性要求不高 的场合。
图6-20 进油节流调速回路
(2) 回油节流调速回路
回油节流调速回路将节流阀安装
活塞的液压作用力Fa推动大 小活塞一起向右运动,液压
缸b的油液以压力pb进入工作 液压缸,推动其活塞运动。
其关系如下:
pb
pa
Aa Ab
三、增压回路
2.双作用增压回路
四、保压回路
有些机械设备在工作过程中,常常要求液压执行机构在 工作循环的某一阶段内保持一定压力,这时就需要采用保 压回路。保压回路可在执行元件停止运动或仅仅有工件变 形所产生的微小位移的情况下使系统压力基本保持不变。
一、启停回路
当执行元件需要频繁地启动或停止时,系统中经常采用 启、停回路来实现这一要求。
二、换向回路 1. 简单换向回路
简单换向回路是指在液压泵和执行元件之间加装普通换向 阀,就可实现方向控制的回路。如图6-2、6-3所示。
2.复杂换向回路
采用特殊设计的机液换向阀,以行程挡块推动机动 先导阀,由它控制一个可调式液动换向阀来实现工作 台的换向,既可避免“换向死点”,又可消除换向冲 击。这种换向回路,按换向要求不同可分为 时间控制 制动式 和 行程控制制动式 两种。
图6-19 采用顺序阀的平衡回路
第三节 速度控制回路
速度控制回路是调节和变换执行元件运动速度的回路,它包 括调速回路、快速回路和速度换接回路。
一、调速回路
调速回路主要有以下三种方式: (1)节流调速回路 (2)容积调速回路 (3)容积节流调速回路

液压与气压传动作业答案

液压与气压传动作业答案

《液压与气压传动》平时作业平时作业(一)第一章概述1.液压传动系统由哪几部分组成?各个组成部分的作用是什么?答:(1)能源装置:将原动机所提供的机械能转变成液压能的装置,通常称液压泵。

(2)执行元件:将液压泵所提供的液压能转变称机械能的元件。

(3)控制元件:控制或调节液压系统中液压油的压力、流量和液压油的流动方向元件。

(4)辅助元件:上述三部分以外的其他元件,例如油箱、油管、管接头、蓄能器、滤油器、冷却器、加热器及各种检测仪表等,它们的功能各不相同,但对保证系统正常工作有重要作用。

(5)工作介质:油液或液压液,是液压传动中能量传递的载体。

2.液压传动的主要优缺点是什么?答:优点:(1)与机械传动、电力传动同功率相比较时,液压传动的体积小、重量轻、结构紧凑。

(2)工作平稳、反应快、冲击小、能高速启动、制动、能够频繁换向。

(3)可实现大范围的无级调速,能在运行过程中进行调速,调速范围可达(2000:1)。

(4)控制方便,易于实现自动化,对压力、流量、方向易于进行调节或控制。

(5)易于实现过载保护。

(6)液压元件已经标准化、系列化和通用化,在液压系统的设计和使用中都比较方便。

(7)有自润滑和吸振性能。

缺点:(1)不能保证严格的传动比。

(2)损失大,有利于远距离传输。

(3)系统工作性能易受温度影响,因此不易在很高或很低的温度条件下工作。

(4)液压元件的制造精度要求高,所以元件价格贵。

(5)液压诉故障不易查找。

(6)工作介质的净化要求高。

第二章液压油与液压流体力学基础1.试解释下列概念(1)恒定流动:液体流动时,若液体中任何一点的压力、流速和密度都不随时间而变化,这种流动就称为恒定流动。

(2)非恒定流动:流动时压力、流速和密度中任何一个参数会随时间变化,则称为非恒定流动(也称非定常流动)。

(3)通流截面:液体在管道中流动时,垂直于流动方向的截面称为通流截面。

(4)流量:单位时间内,流过通流截面的液体体积为体积流量,简称流量。

第七章 液压元件和液压油 邮箱7

第七章 液压元件和液压油 邮箱7

第四节 液压系统的辅助元件
3. 吸收系统脉动,缓和背压冲 击
蓄能器能吸收系统压力突变时的冲击,如液压泵突然启动或停止, 液压阀突然关闭或开启,液压缸突然运动或停止。 也能吸收液压泵工作时的流量脉动所引起的压力脉动,相当于 油路中的平滑滤波。
二、蓄能器(功能)
第四节 液压系统的辅助元件
二、蓄能器
蓄能器的结构形式
第四节 液压系统的辅助元件
二、蓄能器(功能)
1. 辅助动力源
图示为一液压机的液压系统, 当液压缸保压时,泵的流量进 入蓄能器4被储存起来,达到 设定压力后卸荷阀3打开,泵 卸荷;当液压缸快速进退时, 蓄能器与泵一起向液压缸供油, 因此,系统设计时可按平均流 量选用较小流量规格的泵。
液压机液压系统
1一液压泵;2一单向阀;3一卸荷阀;4一蓄能器; 5一换向阀;6一液压缸
第四节 液压系统的辅助元件
二、蓄能器(功能)
2. 系统保压
在液压泵停止向系统提供油 液的情况下,蓄能器所存储的压 力油液向系统补充,补偿系统泄 漏或充当应急能源,使系统在一 段时间内维持系统压力。 避免系统在油源突然中断时 所造成的机件损坏。
第四节 液压系统的辅助元件
(2) 吸 、回 、 泄 油管 的 设 置
泵的吸油管与系统回油管之间的距离应尽可能远些,管口都应插于 最低液面以下,但离油箱底要大于管径的2~3倍,以免吸空和飞溅 起泡。吸油管端部所安装的滤油器,离箱壁要有3倍管径的距离, 以便四面进油。 回油管口应截成45°斜角,以增大回流截面,并使斜面对着箱壁, 以利散热和沉淀杂质。 阀的泄油管口应在液面之上,以免产生背压;液压马达和泵的泄油 管则应引入液面之下,以免吸入空气。 为防止油箱表面泄油落地,必要时要在油箱下面或顶盖四周设泄油

第七章 液压元件和液压油 液压控制阀

第七章 液压元件和液压油 液压控制阀

按元件数目分:单体阀、组合阀(复合阀,集成式)
按连接方式分:螺纹连接、板式连接、阀兰连接
按功能分类: 定制控制式、比例控制式、逻辑控制式
武汉理工大学 轮机工程系
wangke
第一节 液Leabharlann 控制阀一、方向控制阀分类:单向阀,换向阀
1. 单向阀 功能:只允许油液单向流动。 要求: 灵敏可靠,开启阻力小,止逆密封性好,无噪音。 分类:球阀,锥阀,
wangke
液压元件结构式表 示的原理图
武汉理工大学 轮机工程系
液压元件图形符号 表示的原理图
第七章 液压元件和液压油
武汉理工大学 轮机工程系
wangke
第一节 液压控制阀
作用:对执行元件(工作机构)进行控制和调节。 分类 按工作原理分:方向控制阀 (液流方向) 压力控制阀 (压力大小) 流量控制阀 (流量大小)
直通式,直角式
符号:
单向阀
武汉理工大学 轮机工程系
液控单向阀
wangke
单向阀
武汉理工大学 轮机工程系
wangke
第一节 液压控制阀
一、方向控制阀
单向阀开启压力一般为0.035~0.05MPa, 所以单向阀中的弹簧很软。 单向阀的主要用途如下:
(1)安装在液压泵出口,防止系统压力突然升 高而损坏液压泵。防止系统中的油液在泵 停机时倒流回油箱; (2)单向阀可以安装在回油路中作为背压阀。 将软弹簧更换成合适的硬弹簧,用以产生 0.2~0.6MPa的背压,就成为背压阀;
2. 换向阀 功能:利用阀芯和阀体间相对位置的不同来变换不同管路间的通断关系,实 现接通、切断,或改变液流方向。它的用途很广,种类也很多。 要求: ① 油液流经换向阀时的压力损失要小(一般0.3MPa); ② 互不相通的油口间的泄漏要小; ③ 换向可靠、迅速且平稳无冲击。

液压元件组成

液压元件组成

液压元件组成
液压元件是液压传动系统中的核心部件,它们不仅负责液压能量的转换和传递,还能控制系统的输出和运行。

液压元件主要包括以下几类:
1. 液压泵:负责将机械能转化为液压能,并将液压油送入液压系统。

2. 液压马达:与液压泵相反,将液压能转化为机械能,推动各种机械装置运动。

3. 液压缸:将液压能转化为机械能,用于推动、拉动、举升等运动。

4. 液压阀门:控制液压系统流量、压力和方向的元件,包括单向阀、安全阀、调压阀、换向阀等。

5. 液压管路:将液压油从液压泵输送至各个液压元件,同时将液压能传递回油箱。

以上是常见的液压元件,它们的组合和配合形成了各种不同类型的液压系统,广泛应用于机械、航空、军事等领域。

在使用液压系统时,需要根据不同的需求选择合适的液压元件,以确保系统的性能和安全。

- 1 -。

液压传动期末考试复习题库

液压传动期末考试复习题库

《液压传动》练习题第一章液压传动概述一、填空题:(每空0.5分,共20分)1、液压传动装置是机械设备中的传动机构,其作用为将原动机输出的动力传递和分配给工作机构。

2、液压传动装置完成能量传递和转换的前提(必要)条件是液体必须在封闭的容器内。

3、在液压传动装置完成能量传递和转换的过程中,其压力(p)的大小取决于外负载,工作机构的运行速度(v)取决于流量,流量(Q)的大小取于工作容积的变化量大小和单位时间内的变化次数。

4、液压传动装置要完成能量传递和转换,必须依靠一定的液压系统来完成。

5、液压传动系统由动力元件、执行元件、控制调节元件、辅助元件、工作介质。

6、液压传动装置是依靠密封容器(液压系统)内液体的容积变化来传递能量的。

7、GB/T786—1993规定:液压传动系统的图形(职能)符号只表示液压元件的功能,而不表示液压元件的结构和参数,在绘制液压系统图时,以液压元件的静止状态或零位置来表示。

8、液体的压力作用于与液体接触的表面的表面,也作用于液体之间。

9、液体压力的作用方向垂直于接触面。

10、静止液体中任何一点的压力各个方向都均相等。

11、液体压力的单位是Pa 。

12、液体压力的传递遵循帕斯卡定律。

13、为了降低液体在系统内流动时的压力损失和避免产生“气穴”现象,规定液压系统内吸油管的液流速度为1~2m/s ,回油管的液流速度为 1.5~2m/s ,压力油管的液流速度为3~6m/s 。

14、按液压系统内油液泄漏的情况,泄漏可分为内泄漏和外泄漏。

14、15、在液压传动中,用泄漏量(流量损失)的大小来表示系统的泄漏大小。

16、在液压传动中,用容积效率的大小来表示系统的密封性。

17、影响液压系统泄漏量的因素有密封间隙、压力和温度,其中密封间隙对泄漏量起决定性影响。

18、在液压系统中存在着压力损失、流量损失和机械损失三种能量损失而使系统内油液的温度升高。

二、选择题:(每题1分,共7分)1、液压传动装置是机械设备中的机构。

液压基本回路课件.

液压基本回路课件.
2019/2/27 18
保压回路
保压回路是使系统在液压缸不动或仅 有工件变形所产生的微小位移下稳定地保 持工作压力,并保持一段时间。 保压指标:保压压力,保压时间。 • 利用蓄能器的保压回路 • 用液压泵保压的回路 • 用液控单向阀保压的回路
19
2019/2/27
• 利用蓄能器的保压回路 • 借助蓄能器来保持系统压力,补偿系统泄漏。
2019/2/27 17
双泵供油回路的卸荷回路
利用双泵作液压钻床的动力源。 当液压缸快速推进时,推动液压缸 所需的压力较左右两边的溢流阀所 设定压力还低,故大排量泵和小排 量泵的压力油全部送到液压缸使活 塞快速前进。 当钻头和工件接触时,液压缸移动 速度要变慢且工作压力变大,此时 往液压缸的油压力上升到比右边的 卸荷阀设定的工作压力大时,卸荷 阀被打开,低压大排量泵进行卸荷。 液压缸的油液就由高压小排量泵来 供给。
2019/2/27 7
4 .无级调压回路 如图 c 所示调 节先导型比例电磁溢流阀的输 入电流 I ,即可实现系统压力 的无级调节,这样不但回路结 构简单,压力切换平稳 , 而且 更容易使系统实现远距离控制 或程序控制。
2019/2/27
8
减压回路
减压回路的功用是使系统中的某一部分油 路具有较系统压力低的稳定压力,以满足 机床的夹紧、定位、润滑及控制油路的要 求。
2019/2/27
15
•2.用换向阀的中位机能 卸荷回路 是采用中位(M型中位 机能)换向阀,当阀位 处于中位置时,泵排出 的液压油直接经换向阀 流回油箱,泵的工作压 力接近于零。方法比较 简单,但压力损失较多, 适合低压小流量的系统。
2019/2/27 16
用先导型溢流阀的卸载回路
将先导溢流阀的远程控 制口 和 二位二 通电磁 阀 相接 。 当二位 二通电 磁 阀通 电 ,先导 溢流阀 的 远程 控 制口通 油箱, 泵 排出 的 液压油 全部流 回 油箱 , 泵出口 压力几 乎 是零 , 故泵成 卸荷运 转 状态 。 在实际 应用上 , 此二 位 二通电 磁阀和 先 导溢 流 阀组合 在一起 , 此种 组 合称为 电磁控 制 溢流阀。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种平衡阀的职能符号如表所示(续)
控制与 泄油方 式 名称
内控外泄 加单向阀 单向顺 序阀
外控外泄 加单向阀 外控单向 顺序阀
内控内泄 加单向阀 内控单向 平衡阀
外控内泄 加单向阀 外控单向 平衡阀
职能符 号
直动式顺序阀的派生 阀
•远控顺序阀(外控外泄)
远控平衡阀(外控内泄) 卸荷阀(外控内泄)
第一节 液压控制阀
二、压力控制阀
3. 顺序阀
顺序阀的作用是利用油液压力作为控制信号控制油路通断。 顺序阀也有直动型和先导型之分,根据控制压力来源不同,它还有内控式和外 控式之分。 通过改变控制方式、泄油方式以及二次油路的连接方式,顺序阀还可用作背压 阀、卸荷阀和平衡阀等。
直动型顺序阀
单级调压回路
双向调压回路
当执行元件正、反向运动需要不同的供油 压力时,可采用双向调压回路,如图(a)所。 当换向阀在左位工作时,活塞为工作行程, 泵出口压力较高,由溢流阀1调定。当换向 阀在右位工作时,活塞作空行程返回,泵 出口压力较低,由溢流阀2调定。
双向调压回路(a)
双向调压回路
图 (b)所示回路在图示位置时,阀2的出 口被高压油封闭,即阀1的遥控口被堵 塞,故泵压由阀1调定为较高压力。当 换向阀在右位工作时,液压缸左腔通油 箱,压力为零,阀2相当于阀1的远程调 压阀,泵的压力由阀2调定。
•平衡阀(内控内泄)
•顺序阀(内控外泄)
内控 外泄
压力阀在调压与减压回路中 的应用
(b)
调压回路 在定量泵系统中(a),液压泵的供 油压力可以通过溢流阀来调节。 在变量泵系统中(b),用溢流阀作 安全阀以限定系统的最高压力, 防止系统过载。
(a)
单级调压回路
在图示的定量泵系统中,节流阀可以 调节进入液压缸的流量,定量泵输出 的流量大于进入液压缸的流量,而多 余油液便从溢流阀流回油箱。调节溢 流阀便可调节泵的供油压力,溢流阀 的调定压力必须大于液压缸最大工作 压力和油路上各种压力损失的总和。 为了便于调压和观察,溢流阀旁一般 要就近安装压力表。
直动式减压阀

其结构如图所示。它主要由阀芯、阀壳、弹簧、调压手轮组成。进口压力称为一 次压力p1,出口压力称为二次压力p2。

一次油路p1进入阀体,流经节流口X节流降压后,从二次油路p2输出,这是主油路。 输出的油,从出油口分支进入阀芯底部,流经阀芯中心的阻尼孔进入弹簧腔溢流 回油箱。
阀芯上作用力的平衡方程式: p2F = R0+ K(Xmax-X) 式中(Xmax-X)— 弹簧变形量; R0 — 弹簧预调压力; K — 弹簧刚性系数; F —阀芯底面积。

直动式顺序阀通常为滑阀结构,其工作原 理与直动式溢流阀相似,均为进油口测压, 但顺序阀为减小调压弹簧刚度,还设置了 断面积比阀芯小的控制活塞A。 顺序阀与溢流阀的区别还有:
其一,出口不是溢流口,因此出口p2不 接回油箱,而是与某一执行元件相连,弹 簧腔泄漏油口L必须单独接回油箱;

其二,顺序阀不是稳压阀,而是开关阀, 它是一种利用压力的高低控制油路通断的 “压控开关”,严格地说,顺序阀是一个 二位二通液动换向阀。
图(b) 多级调压回路

R x
p2
先导式减压 阀
先导式减压阀如图所示,由先导阀和主阀两部分组成。该阀的原理如图下:
先导级由减压出口供油的先导式减压阀 (a)图形符号 (b)结构图
第一节 液压控ቤተ መጻሕፍቲ ባይዱ阀
二、压力控制阀
3. 顺序阀
功能:利用油液信号,控制执行机构的动作顺序。 要求:灵敏可靠,工作平稳,无噪音,压力稳定,机构简单 。 分类:直控式,远控式,卸荷式
平衡阀(单向顺序阀)

当顺序阀内装并联的单向阀,可构成单向顺序阀。单向顺序阀也有内外控之分。 若将出油口接通油箱,且将外泄改为内泄,即可作平衡阀用,使垂直放置的液 压缸不因自重而下落。
各种顺序阀的职能符号如表所示
控制与 泄油方式
内控外泄
外控外泄
内控内泄
外控内泄
名 称
顺序阀
外控顺序阀
背压阀
卸荷阀
职能符号
双向调压回路(b)
多级调压回路
在不同的工作阶段,液压系统需要不同 的工作压力,多级调压回路便可实现这 种要求。 图 (a)所示为二级调压回路。图示状态 下,泵出口压力由溢流阀3调定为较高 压力,阀2换位后,泵出口压力由远程 调压阀1调为较低压力。
图(a) 多级调压回路
多级调压回路
图 (b)为三级调压回路。溢流阀1的远程 控制口通过三位四通换向阀4分别接远程 调压阀2和3,使系统有三种压力调定值; 换向阀在左位时,系统压力由阀2调定, 换向阀在右位时,系统压力由阀3调定; 换向阀在中位时,系统压力由主阀1调定。 在此回路中,远程调压阀的调整压力必 须低于主溢流阀的调整压力,只有这样 远程调压阀才能起作用。
相关文档
最新文档