2017-2018学年高中物理教科版选修3-5教学案 第一章
高中物理教科版选修(3-5)1.1 教学设计 《动量守恒定律》(教科)
《动量守恒定律的应用》动量守恒定律的传统讲解方法是从牛顿第二定律和牛顿第三定律推导出动量守恒定律,或是通过大量的实验事实总结出动量守恒定律。
传统讲解方法没有教师的演示实验,很多学生对导出的动量守恒定律缺乏感性认识,不利于学生顺利地认识现象,建立概念与规律,以及应用规律去解决具体问题。
其实动量守恒定律并不依附于牛顿第二定律和牛顿第三定律,它本身是有实验基础的独立的物理定律。
所以应通过演示实验,启发学生讨论并总结规律,有利于学生对物理规律的掌握。
1、知识与技能:(1)理解动量守恒定律的确切含义和表达,知道定律的运用条件和适用范围;(2)会利用牛顿运动定律推导动量守恒定律;(3)会用动量守恒定律解决简单的实际问题。
2、过程与方法:(1)通过对动量守恒定律的学习,了解归纳与演绎两种思维方法的应用;(2)知道动量守恒定律的实验探究方法。
3、情感态度与价值观:(1)培养学生自觉学习的能力,积极参与合作探究的能力;(2)培养实事求是、具体问题具体分析的科学态度和锲而不舍的探究精神;(3)使学生在学习过程中体验成功的快乐;(4)培养学生将物理知识、物理规律进行横向比较与联系的习惯,养成自主构建知识体1、知道碰撞的特点和遵循的规律,会用动量守恒定律解决实际问题.2、了解中子发现的过程.3、知道反冲现象,了解火箭的工作原理,会用动量守恒定律解决反冲运动的问题.多媒体课件及其相关教材[先填空]1.在碰撞现象中,相互作用的时间很短,外力通常远小于碰撞物体之间的内力,可以忽略不计,认为碰撞过程中动量守恒.2.两物体碰后粘在一起,获得共同速度,这类碰撞属于完全非弹性碰撞.[再判断]1.发生碰撞的两个物体,动量是守恒的.(√)2.发生碰撞的两个物体,机械能是守恒的.(×)3.碰撞后,两个物体粘在一起,动量是守恒的,但机械能损失是最大的.(√)。
(完整word版)高中物理选修3-5全套教案
16.1 实验:探究碰撞中的不变量★新课标要求(一)知识与技能1、明确探究碰撞中的不变量的基本思路.2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法.3、掌握实验数据处理的方法.(二)过程与方法1、学习根据实验要求,设计实验,完成某种规律的探究方法.2、学习根据实验数据进行猜测、探究、发现规律的探究方法。
(三)情感、态度与价值观1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性。
2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识。
3、在对实验数据的猜测过程中,提高学生合作探究能力。
4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会。
★教学重点碰撞中的不变量的探究★教学难点实验数据的处理.★教学方法教师启发、引导,学生自主实验,讨论、交流学习成果。
★教学用具:投影片,多媒体辅助教学设备;完成该实验实验室提供的实验器材,如气垫导轨、滑块等★课时安排1 课时★教学过程(一)引入新课课件演示:(1)台球由于两球碰撞而改变运动状态。
(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子.师:碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化.师:两个物体的质量比例不同时,它们的速度变化也不一样.师:物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒).(二)进行新课1.实验探究的基本思路1.1 一维碰撞师:我们只研究最简单的情况—-两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动.这种碰撞叫做一维碰撞.课件:碰撞演示如图所示,A、B是悬挂起来的钢球,把小球A拉起使其悬线与竖直线夹一角度a,放开后A球运动到最低点与B球发生碰撞,碰后B球摆幅为β角.如两球的质量m A=m B,碰后A球静止,B球摆角β=α,这说明A、B两球碰后交换了速度;如果m A>m B,碰后A、B两球一起向右摆动;如果m A 〈m B ,碰后A 球反弹、B 球向右摆动. 师:以上现象可以说明什么问题?结论:以上现象说明A 、B 两球碰撞后,速度发生了变化,当A 、B 两球的质量关系发生变化时,速度变化的情况也不同.1.2 追寻不变量师:在一维碰撞的情况下与物体运动有关的量只有物体的质量和物体的速度.设两个物体的质量分别为m 1、m 2,碰撞前它们速度分别为v 1、v 2,碰撞后的速度分别为1v '、2v '. 规定某一速度方向为正.碰撞前后速度的变化和物体的质量m 的关系,我们可以做如下猜测:(1)22112211v m v m v m v m '+'=+ (2)222211222211v m v m v m v m '+'=+ (3)22112211m v m v m v m v '+'=+ 分析:①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量”. ②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量. 2.实验条件的保证、实验数据的测量2.1 实验必须保证碰撞是一维的,即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动;2.2 用天平测量物体的质量;2.3 测量两个物体在碰撞前后的速度. 师:测量物体的速度可以有哪些方法? 生:讨论。
高中物理选修3-5教案讲课讲稿
16.1 实验:探究碰撞中的不变量一、三维目标知识与技能1、明确探究碰撞中的不变量的基本思路2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法3、掌握实验数据处理的方法过程与方法1、学习根据实验要求,设计实验,完成某种规律的探究方法2、学习根据实验数据进行猜测、探究、发现规律的探究方法情感、态度与价值观1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意3、在对实验数据的猜测过程中,提高学生合作探究能力4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会二、教学重点碰撞中的不变量的探究三、教学难点实验数据的处理四、教学过程(一)引入新课课件演示:(1)台球由于两球碰撞而改变运动状态(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子师:碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化 师:两个物体的质量比例不同时,它们的速度变化也不一样师:物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒) (二)进行新课 1、实验探究的基本思路1.1 一维碰撞师:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动,这种碰撞叫做一维碰撞.课件:碰撞演示如图所示,A 、B 是悬挂起来的钢球,把小球A 拉起使其悬线与竖直线夹一角度a ,放开后A 球运动到最低点与B 球发生碰撞,碰后B 球摆幅为β角.如两球的质量m A =m B ,碰后A 球静止,B 球摆角β=α,这说明A 、B 两球碰后交换了速度如果m A >m B ,碰后A 、B 两球一起向右摆动 如果m A <m B ,碰后A 球反弹、B 球向右摆动 师:以上现象可以说明什么问题?结论:以上现象说明A 、B 两球碰撞后,速度发生了变化,当A 、B 两球的质量关系发生变化时,速度变化的情况也不同.1.2 追寻不变量师:在一维碰撞的情况下与物体运动有关的量只有物体的质量和物体的速度设两个物体的质量分别为m 1、m 2,碰撞前它们速度分别为v 1、v 2,碰撞后的速度分别为1v '、2v ' 规定某一速度方向为正,碰撞前后速度的变化和物体的质量m 的关系,我们可以做如下猜测:(1)22112211v m v m v m v m '+'=+ (2)222211222211v m v m v m v m '+'=+(3)22112211m v m v m v m v '+'=+ 分析:①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量” ②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量 2、实验条件的保证、实验数据的测量2.1 实验必须保证碰撞是一维的,即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动2.2 用天平测量物体的质量 2.3 测量两个物体在碰撞前后的速度 师:测量物体的速度可以有哪些方法? 生:讨论 总结:速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和纸带等来达到实验目的和控制实验条件.课件:参考案例――一种测速原理如图所示,图中滑块上红色部分为挡光板,挡光板有一定的宽度,设为L .气垫导轨上黄色框架上安装有光控开关,并与计时装置相连,构成光电计时装置当挡光板穿入时,将光挡住开始计时,穿过后不再挡光则停止计时,设记录的时间为t ,则滑块相当于在L 的位移上运动了时间t ,所以滑块匀速运动的速度v=L/t3、实验方案3.1 用气垫导轨作碰撞实验(如图所示) 实验记录及分析(a-1)碰撞前碰撞后质量 m 1=4 m 2=4 m 1=4m 2=4速度 v 1=9v 2=01v '=3 2v '=6 mv =+2211v m v m='+'2211v m v m mv 2=+222211v m v m='+'222211v m v m v/m=+2211m v m v ='+'2211m v m v 实验记录及分析(a-2)碰撞前 碰撞后质量 m 1=4 m 2=2 m 1=4m 2=2速度 v 1=9v 2=01v '=4.5 2v '=9 mv =+2211v m v m='+'2211v m v m mv 2=+222211v m v m='+'222211v m v m v/m=+2211m vm v ='+'2211m v m v实验记录及分析(a-3)实验记录及分析(b)实验记录及分析—(c)v/m=+2211m v m v ='+'2211m v m v 3.2 用小车研究碰撞将打点计时器固定在光滑桌面的一端,把纸带穿过打点计时器,连在小车的后面。
高中物理3一5教案
高中物理3一5教案课题:激光教学目标:1. 了解激光的基本概念和特性;2. 掌握激光的产生原理和工作原理;3. 能够说明激光在不同领域的应用。
教学重点:1. 激光的特性;2. 激光的产生原理;3. 激光的应用。
教学难点:1. 激光的工作原理;2. 激光在不同领域的应用。
教学过程:一、导入(5分钟)1. 引导学生回顾以前学过的关于光的知识,让学生思考光有哪些特性。
2. 引出激光的概念,让学生猜想激光与普通光有何不同。
二、激光的基本概念和特性(10分钟)1. 给出激光的定义,解释激光的特性,如单色性、准直性、相干性等。
2. 通过实例讲解激光与普通光的区别。
三、激光的产生原理(15分钟)1. 分别介绍激光的产生原理,包括受激辐射和放大原理。
2. 讲解激光发射过程中能级跃迁的过程,引导学生理解激光的产生过程。
四、激光的工作原理(15分钟)1. 通过图示和实例讲解激光器的工作原理,包括激发、放大和反射过程。
2. 引导学生理解如何实现特定波长和能量的激光输出。
五、激光的应用(10分钟)1. 介绍激光在不同领域的应用,如医疗、通信、加工等。
2. 引导学生思考如何应用激光技术解决实际问题。
六、小结(5分钟)1. 总结本节课的重点内容,强化学生对激光的理解。
2. 提出问题让学生思考,鼓励他们在课后继续学习激光相关知识。
教学反思:在设计这节课的教学过程中,我尽量将抽象的概念转化为具体的实例,让学生更容易理解和接受新知识。
但是在教学难点部分,还需要进一步完善,留下更多的例子和练习,以帮助学生更好地掌握激光的工作原理和应用。
选修3-5全章教案
选修3-5第十六章动量守恒定律过去的思路冲量和动量的概念↓由牛顿第二定律导出动量定理↓由动量定理导出动量守恒定律↓最后告诉学生:动量守恒定律的适用范围更广**********************************************现在的思路:出发点――“守恒”的重要性,而非牛顿定律寻找碰撞中的不变量↓碰撞中两个物体的m1v1 + m2v2可能是不变的↓定义动量↓经过几代物理学家的探索与争论……共识――动量守恒定律↓动量守恒定律与牛顿定律的关系,动量定理(物理规律的自恰)↓动量守恒定律的普适性思路与过去相比有很大的不同――科学思想、科学方法第1节 实验:探究碰撞中的不变量思路:碰撞是常见的现象,宏观、微观P2演示A 、B 是两个悬挂起来的钢球,质量相等。
使B 球静止,拉起A 球,放开后A 与B 碰撞,观察碰撞前后两球运动的变化。
换为质量相差较多的两个小球,重做以上实验。
一般情况下是否也有不变的量?在实验中寻找不变的量。
器材可选:气垫导轨、平板小车、线悬的小球……P2课文,描述思路:……质量并不描述物体的运动状态,不是我们追寻的“不变量”。
速度在碰撞前后是变化的……物体的质量与它的速度的乘积也在变化……那么,两个物体各自的质量与自己的速度的乘积之和是不是不变量?m 1 v 1 + m 2v 2 = m 1 v 1’ + m 2 v 2’ ?或者,各自的质量与自己的速度的二次方的乘积之和是不变量?m 1 v 12 + m 22 = m 1 v 1’2 + m 2 v 2’2 ?也许,两个物体的速度与自己质量的比值之和在碰撞前后保持不变?11m v +22m v = 11m v '+22m v '?……P3课文,进一步讨论可能的情况:碰撞可能有很多情形……两个质量相同的物体相碰撞,两个质量相差悬殊的物体相碰撞,两个速度大小相同、方向相反的物体相碰撞,一个运动物体与一个静止物体相碰撞…………碰撞时可能中间通过弹簧接触,碰后分开……碰后也可能粘在一起不再分开……我们寻找的不变量必须在各种碰撞的情况下都不改变,这样才符合要求。
高二物理选修3-5-全套教案
第一章动量守恒研究新课标要求(1)探究物体弹性碰撞的一些特点,知道弹性碰撞和非弹性碰撞;(2)通过实验,理解动量和动量守恒定律,能用动量守恒定律定量分析一维碰撞问题,知道动量守恒定律的普遍意义;例1:火箭的发射利用了反冲现象。
例2:收集资料,了解中子是怎样发现的。
讨论动量守恒定律在其中的作用。
(3)通过物理学中的守恒定律,体会自然界的和谐与统一。
第二节动量和动量定理三维教学目标1、知识与技能:知道动量定理的适用条件和适用范围;2、过程与方法:在理解动量定理的确切含义的基础上正确区分动量改变量与冲量;3、情感、态度与价值观:培养逻辑思维能力,会应用动量定理分析计算有关问题。
教学重点:动量、冲量的概念和动量定理。
教学难点:动量的变化。
教学方法:教师启发、引导,学生讨论、交流。
教学用具:投影片,多媒体辅助教学设备。
1、动量及其变化(1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。
记为p=mv 单位:kg·m/s读作“千克米每秒”。
理解要点:①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。
大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念。
②矢量性:动量的方向与速度方向一致。
综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。
(2)动量的变化量:1、定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。
2、指出:动量变化△p是矢量。
方向与速度变化量△v相同。
一维情况下:Δp=mΔυ= mυ2- mΔυ 1 矢量差例1:一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?2、动量定理(1)内容:物体所受合外力的冲量等于物体的动量变化(2)公式:Ft =m'v-mv ='p-p让学生来分析此公式中各量的意义:其中F是物体所受合外力,mv是初动量,m'v是末动量,t是物体从初动量变化到末动量所需时间,也是合外力F作用的时间。
高中物理教科版选修3-5教学案:第一章 第1节 碰撞 Word版含答案
第1节碰__撞( 对应学生用书页码P1 )一、碰撞现象1、碰撞做相对运动的两个( 或几个)物体相遇而发生相互作用,运动状态发生改变的过程。
2、碰撞特点( 1 )时间特点:在碰撞过程中,相互作用时间很短。
( 2 )相互作用力特点:在碰撞过程中,相互作用力远远大于外力。
( 3 )位移特点:在碰撞过程中,物体发生速度突变时,位移极小,可认为物体在碰撞前后仍在同一位置。
试列举几种常见的碰撞过程。
提示:棒球运动中,击球过程;子弹射中靶子的过程;重物坠地过程等。
二、用气垫导轨探究碰撞中动能的变化1、实验器材气垫导轨,数字计时器、滑块和光电门,挡光条和弹簧片等。
2、探究过程( 1 )滑块质量的测量仪器:天平。
( 2 )滑块速度的测量仪器:挡光条及光电门。
( 3 )数据记录及分析,碰撞前、后动能的计算。
三、碰撞的分类1、按碰撞过程中机械能是否损失分为:( 1 )弹性碰撞:碰撞过程中动能不变,即碰撞前后系统的总动能相等,E k1+E k2=E k1′+E k2′。
( 2 )非弹性碰撞:碰撞过程中有动能损失,即动能不守恒,碰撞后系统的总动能小于碰撞前系统的总动能。
E k1′+E k2′<E k1+E k2。
( 3 )完全非弹性碰撞:碰撞后两物体黏合在一起,具有相同的速度,这种碰撞动能损失最大。
2、按碰撞前后,物体的运动方向是否沿同一条直线可分为: ( 1 )对心碰撞( 正碰 ):碰撞前后,物体的运动方向沿同一条直线。
( 2 )非对心碰撞( 斜碰 ):碰撞前后,物体的运动方向不在同一直线上。
( 高中阶段只研究正碰 )。
( 对应学生用书页码P1 )探究一维碰撞中的不变量1.探究方案方案一:利用气垫导轨实现一维碰撞 ( 1 )质量的测量:用天平测量。
( 2 )速度的测量:v =Δx Δt ,式中Δx 为滑块( 挡光片 )的宽度,Δt 为数字计时器显示的滑块( 挡光片 )经过光电门的时间。
( 3 )各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量。
2017-2018学年高中物理(SWSJ)教科版选修3-5教学案:第一章章末盘点含答案
碰撞与动量守恒错误!专题一动量守恒定律应用中的常见模型1。
人船模型此类问题关键在于确定物体位移或速度间的关系,并结合动量守恒求解。
2.完全非弹性碰撞模型此类问题特点是最后物体“合”为一体,具有共同的末速度。
利用动量守恒结合功能关系求解.3.爆炸模型此类问题动量守恒,其他形式的能转化为物体的动能,满足能量守恒。
4.“子弹打木块”模型(1)在此类问题中,由于木块处于光滑水平面上,子弹打击木块的过程中动量守恒。
(2)由于存在阻力做功,则系统的机械能减小,且减小量为阻力乘以相对位移(子弹打入木块的深度),所以系统产生的内能,即热量Q=fs相=ΔE机。
[例1]如图11所示,在光滑的水平面上有一辆平板车,上面站着一个人,车以速度v0前进。
已知车的质量为m1,人的质量为m2,某时刻人突然向前跳离车,设人跳离车时,相对于车的速度为v,求人跳离后车的速度。
图11[解析]由受力特点可知人与车组成的系统动量守恒。
由相对速度v可建立人、车末速度的关系.选取人和车组成的系统为研究对象。
人跳出车的过程中,系统的动量守恒。
取车前进方向为正方向,假设人跳出之后车的速度为v1,人的速度为v2。
对系统由动量守恒定律(m1+m2)v0=m1v1+m2v2又v2-v1=v,所以v1=v0-错误!。
[答案] v0-错误!专题二多物体组成系统的动量问题及临界问题1.多体问题对于两个以上的物体组成的物体系,由于物体较多,相互作用的情况也不尽相同,作用过程较为复杂,虽然仍可对初、末状态建立动量守恒的关系式,但因未知条件过多而无法求解,这时往往要根据作用过程中的不同阶段,建立多个动量守恒的方程,或将系统内的物体按相互作用的关系分成几个小系统,分别建立动量守恒的方程。
2.临界问题在动量守恒定律的应用中,常常会遇到相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界问题。
这类问题的求解关键是充分利用反证法、极限法分析物体的临界状态,挖掘问题中隐含的临界条件,选取适当的系统和过程,运用动量守恒定律进行解答.[例2]如图1。
2017-2018学年高中物理(SWSJ)教科版选修3-5教学案:第一章第2节动量含答案
第2节动__量(对应学生用书页码P4)一、动量的概念1.定义物体的质量和速度的乘积。
2.定义式p=mv。
3.单位在国际单位制中,动量的单位是kg·m/s。
4.方向动量是矢量,其方向与物体的速度方向相同,动量的运算服从矢量运算。
[特别提醒]在计算动量时必须规定正方向,与正方向同向为正,与正方向反向为负.二、动量守恒定律1.系统相互作用的两个或多个物体组成的整体。
2.动量守恒定律(1)内容:如果一个系统不受外力或所受合外力为零,这个系统的总动量保持不变.(2)成立条件:系统不受外力或所受合外力为零。
(3)两物体在同一直线上运动时,动量守恒表达式:m1v1+m2v2=m1v1′+m2v2′3.动量守恒定律的适用范围及意义动量守恒定律既适用于宏观领域,又适用于微观或高速领域,它是自然界中最普遍、最基本的定律之一.1.判断:(1)物体的质量越大,动量一定越大.( )(2)物体的速度大小不变,动量可能不变。
( )(3)物体动量大小相同,动能一定相同。
()答案:(1)×(2)√(3)×2.思考:如图1.21所示,两个穿滑冰鞋的小孩静止在滑冰场上,不论谁推谁,两人都会向相反方向滑去。
在互相推动前,两人的动量都为零;由于推力作用,每个人的动量都发生了变图1。
21化。
那么,他们的总动量在推动前后是否也发生了变化呢?提示:系统的总动量守恒,系统内的每个人的动量发生变化,但系统的内力(相互作用力)不会改变系统(两个人)的总动量,推动前、后总动量都为零。
(对应学生用书页码P5)正确理解动量的概念1。
动量的瞬时性通常说物体的动量是物体在某一时刻或某一位置的动量,动量的大小可用p=mv表示.2.动量的矢量性动量的方向与物体的瞬时速度的方向相同。
有关动量的运算,如果物体在一条直线上运动,则选定一个正方向后,动量的矢量运算就可以转化为代数运算。
3.动量的相对性物体的动量与参考系的选择有关。
高中物理选修3-5全套教案
16.1 实验:探究碰撞中的不变量★新课标要求(一)知识与技能1、明确探究碰撞中的不变量的基本思路.2、掌握同一条直线上运动的两个物体碰撞前后的速度的测量方法.3、掌握实验数据处理的方法.(二)过程与方法1、学习根据实验要求,设计实验,完成某种规律的探究方法.2、学习根据实验数据进行猜测、探究、发现规律的探究方法。
(三)情感、态度与价值观1、通过对实验方案的设计,培养学生积极主动思考问题的习惯,并锻炼其思考的全面性、准确性与逻辑性.2、通过对实验数据的记录与处理,培养学生实事求是的科学态度,能使学生灵活地运用科学方法来研究问题,解决问题,提高创新意识.3、在对实验数据的猜测过程中,提高学生合作探究能力。
4、在对现象规律的语言阐述中,提高了学生的语言表达能力,还体现了各学科之间的联系,可引伸到各事物间的关联性,使自己溶入社会.★教学重点碰撞中的不变量的探究★教学难点实验数据的处理.★教学方法教师启发、引导,学生自主实验,讨论、交流学习成果。
★教学用具:投影片,多媒体辅助教学设备;完成该实验实验室提供的实验器材,如气垫导轨、滑块等★课时安排1 课时★教学过程(一)引入新课课件演示:(1)台球由于两球碰撞而改变运动状态。
(2)微观粒子之间由于相互碰撞而改变状态,甚至使得一种粒子转化为其他粒子.师:碰撞是日常生活、生产活动中常见的一种现象,两个物体发生碰撞后,速度都发生变化.师:两个物体的质量比例不同时,它们的速度变化也不一样.师:物理学中研究运动过程中的守恒量具有特别重要的意义,本节通过实验探究碰撞过程中的什么物理量保持不变(守恒).(二)进行新课 1.实验探究的基本思路 1.1 一维碰撞师:我们只研究最简单的情况-—两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动.这种碰撞叫做一维碰撞. 课件:碰撞演示如图所示,A 、B 是悬挂起来的钢球,把小球A 拉起使其悬线与竖直线夹一角度a ,放开后A 球运动到最低点与B 球发生碰撞,碰后B 球摆幅为β角.如两球的质量m A =m B ,碰后A 球静止,B 球摆角β=α,这说明A 、B 两球碰后交换了速度;如果m A >m B ,碰后A 、B 两球一起向右摆动; 如果m A 〈m B ,碰后A 球反弹、B 球向右摆动. 师:以上现象可以说明什么问题?结论:以上现象说明A 、B 两球碰撞后,速度发生了变化,当A 、B 两球的质量关系发生变化时,速度变化的情况也不同.1.2 追寻不变量师:在一维碰撞的情况下与物体运动有关的量只有物体的质量和物体的速度.设两个物体的质量分别为m 1、m 2,碰撞前它们速度分别为v 1、v 2,碰撞后的速度分别为1v '、2v '. 规定某一速度方向为正.碰撞前后速度的变化和物体的质量m 的关系,我们可以做如下猜测:(1)22112211v m v m v m v m '+'=+ (2)222211222211v m v m v m v m '+'=+ (3)22112211m v m v m v m v '+'=+ 分析:①碰撞前后物体质量不变,但质量并不描述物体的运动状态,不是我们追寻的“不变量". ②必须在各种碰撞的情况下都不改变的量,才是我们追寻的不变量.2.实验条件的保证、实验数据的测量2.1 实验必须保证碰撞是一维的,即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动;2.2 用天平测量物体的质量;2.3 测量两个物体在碰撞前后的速度.师:测量物体的速度可以有哪些方法?生:讨论。
高中选修3-5物理教案
高中选修3-5物理教案【篇一:高中物理选修3-5全套教案--动量守恒定律(一)】★新课标要求(一)知识与技能理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围(二)过程与方法在理解动量守恒定律的确切含义的基础上正确区分内力和外力(三)情感、态度与价值观培养逻辑思维能力,会应用动量守恒定律分析计算有关问题★教学重点动量的概念和动量守恒定律★教学难点动量的变化和动量守恒的条件.★教学方法教师启发、引导,学生讨论、交流。
★教学用具:投影片,多媒体辅助教学设备★课时安排1 课时★教学过程(一)引入新课(二)进行新课1.动量(momentum)及其变化理解要点:①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。
师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念.②矢量性:动量的方向与速度方向一致。
师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。
(2)动量的变化量:定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。
强调指出:动量变化△p是矢量。
方向与速度变化量△v相同。
【例1(投影)】一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少?【学生讨论,自己完成。
老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】2.系统内力和外力【学生阅读讨论,什么是系统?什么是内力和外力?】(1)系统:相互作用的物体组成系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2节动__量(对应学生用书页码P4) 一、动量的概念 1.定义物体的质量和速度的乘积。
2.定义式 p=mv。
3.单位在国际单位制中,动量的单位是kg·m/s。
4.方向动量是矢量,其方向与物体的速度方向相同,动量的运算服从矢量运算。
[特别提醒] 在计算动量时必须规定正方向,与正方向同向为正,与正方向反向为负。
二、动量守恒定律 1.系统相互作用的两个或多个物体组成的整体。
2.动量守恒定律 (1)内容:如果一个系统不受外力或所受合外力为零,这个系统的总动量保持不变。
(2)成立条件:系统不受外力或所受合外力为零。
(3)两物体在同一直线上运动时,动量守恒表达式: m1v1+m2v2=m1v1′+m2v2′ 3.动量守恒定律的适用范围及意义动量守恒定律既适用于宏观领域,又适用于微观或高速领域,它是自然界中最普遍、最基本的定律之一。
1.判断: (1)物体的质量越大,动量一定越大。
( ) (2)物体的速度大小不变,动量可能不变。
( ) (3)物体动量大小相同,动能一定相同。
( ) 答案:(1)× (2)√ (3)× 1 2.思考:如图1-2-1所示,两个穿滑冰鞋的小孩静止在滑冰场上,不论谁推谁,两人都会向相反方向滑去。
在互相推动前,两人的动量都为零;由于推力作用,每个人的动量都发生了变化。
那么,他们的总动量在推动前后是否也发生了变化呢?提示:系统的总动量守恒,系统内的每个人的动量发生变化,但系图1-2-1 统的内力(相互作用力)不会改变系统(两个人)的总动量,推动前、后总动量都为零。
(对应学生用书页码P5) 1.动量的瞬时性通常说物体的动量是物体在某一时刻或某一位置的动量,动量的大小可用p=mv表示。
2.动量的矢量性动量的方向与物体的瞬时速度的方向相同。
有关动量的运算,如果物体在一条直线上运动,则选定一个正方向后,动量的矢量运算就可以转化为代数运算。
3.动量的相对性物体的动量与参考系的选择有关。
选择不同的参考系时,同一物体的动量可能不同,通常在不说明参考系的情况下,物体的动量是指物体相对地面的动量。
4.动量的变化量是矢量,其表达式Δp=p2-p1为矢量式,运算遵循平行四边形定则,当p2、p1在同一条直线上时,可规定正方向,将矢量运算转化为代数运算。
5.动量与速度的关系 (1)联系:动量和速度都是描述物体运动状态的物理量,都是矢量,动量的方向与速度的方向相同,p=mv。
(2)区别:速度描述物体运动的快慢和方向;动量描述运动物体的作用效果。
6.动量与动能的关系 p212Ek(1)联系:都是描述物体运动状态的物理量,Ek==pv,p=2mEk=v。
2m2(2)区别:动量是矢量,动能是标量;动能从能量的角度描述物体的状态,动量从运动物体的作用效果方面描述物体的状态。
动量是矢量,两个物体的动量相等,说明其大小相等,方向也相同。
2 正确理解动量的概念 1.关于动量的概念,下列说法正确的是( ) A.动量大的物体惯性一定大 B.动量大的物体运动一定快 C.动量相同的物体,运动方向一定相同 D.动量相同的物体,速度小的惯性大解析:选CD 动量大的物体,质量不一定大,惯性也不一定大,A错;同样,动量大的物体,速度也不一定大,B也错;动量相同指动量的大小和方向均相同,而动量的方向就是物体运动的方向,故动量相同的物体,运动方向一定相同,C对;动量相同的物体,速度小的质量大,惯性大,D也对。
对动量守恒定律的理解 1.研究对象:动量守恒定律的研究对象是相互作用的物体组成的系统。
2.对系统“总动量保持不变”的三点理解: (1)系统的总动量是指系统内各物体动量的矢量和,总动量不变指的是系统的总动量的大小和方向都不变。
(2)系统的总动量保持不变,但系统内每个物体的动量可能在不断变化。
(3)系统在整个过程中任意两个时刻的总动量都相等,不能误认为只是初、末两个状态的总动量相等。
3.动量守恒定律的“五性”: (1)条件性:应用动量守恒定律时,一定要先判断系统是否满足动量守恒的条件。
①系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。
②系统受外力作用,但所受合外力为零。
③系统受外力作用,但外力远远小于系统内各物体间的内力,系统的总动量近似守恒。
例如,手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力完全可以忽略不计,系统的动量近似守恒。
④系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。
(2)矢量性:动量守恒定律的表达式是一个矢量式,其矢量性表现在:①系统的总动量在相互作用前后不仅大小相等,而且方向也相同。
②在求初、末状态系统的总动量p=p1+p2+…和p′=p1′+p2′+…时要按矢量运算法则计算。
如果各物体动量的方向在同一直线上,要选取正方向,将矢量运算转化为代数运算。
计算时切不可丢掉表示方向的正、负号。
3 (3)相对性:动量守恒定律中,系统中各物体在相互作用前后的动量必须相对于同一参考系,通常为地面。
(4)同时性:动量守恒定律中p1、p2…必须是系统中各物体在相互作用前同一时刻的动量,p1′、p2′…必须是系统中各物体在相互作用后同一时刻的动量。
(5)普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统。
不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
如果一个系统满足动量守恒的条件,它的总动量方向是满足守恒条件后的总动量方向。
如果受力情况变化,要注意不同受力情况下是否满足守恒条件。
2.下列说法中正确的是( ) A.若系统不受外力作用,则该系统的机械能守恒 B.若系统不受外力作用,则该系统的动量守恒 C.平抛运动中,物体水平方向不受力,则水平方向的动能不变 D.平抛运动中,物体水平方向不受力,则水平方向的动量不变解析:选BD 若有内力做功,则系统机械能不守恒,A错误;由动量守恒条件知,若系统不受外力作用,则系统动量守恒,B正确;动能是标量,不能将动能分解,C错误;动量是矢量,某一方向不受力,该方向上动量不变,D正确。
1.动量守恒定律的不同表现形式 (1)p=p′:系统相互作用前总动量p等于相互作用后总动量p′。
(2)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反。
(3)Δp=0:系统总动量增量为零。
(4)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
2.应用动量守恒定律的解题步骤:动量守恒定律的表现形式及解题步骤 4 3.在光滑水平面上,一质量为m、速度大小为v的A球与质量为2m静止的B球碰撞后,A球的速度方向与碰撞前相反。
则碰撞后B球的速度大小可能是________。
(填选项前的字母) A.0.6v C.0.3v B.0.4v D.0.2v 解析:选A 由动量守恒定律得mv=mvA+2mvB,规定A球原方向为正方向,由题意可知vA为负值,则2mvB>mv,因此B球的速度可能为0.6v。
(对应学生用书页码P6) 对动量守恒条件的理解 [例1] 如图1-2-2所示,A、B两物体的质量mA>mB,中间用一段细绳相连并有一被压缩的弹簧,放在平板小车C上后,A、B、C均处于静止状态。
若地面光滑,则在细绳被剪断后,A、B从C上未滑离之前,A、B沿相反方向滑动过程中,下列说法正确的是( ) 图1-2-2 A.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C组成的系统动量也守恒B.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量也不守恒 C.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,但A、B、C组成的系统动量守恒 D.以上说法均不对 [解析] 当A、B两物体组成一个系统时,弹簧的弹力为内力,而A、B与C之间的摩擦力为外力。
当A、B与C之间的摩擦力等大反向时,A、B组成的系统所受外力之和为零, 5 动量守恒;当A、B与C之间的摩擦力大小不相等时,A、B组成的系统所受外力之和不为零,动量不守恒。
而对于A、B、C组成的系统,由于弹簧的弹力,A、B与C之间的摩擦力均为内力,故不论A、B与C之间的摩擦力的大小是否相等,A、B、C组成的系统所受外力之和均为零,故系统的动量守恒。
[答案] AC 在同一物理过程中,系统的动量是否守恒,与系统的选取密切相关,判断动量是否守恒,首先要弄清所研究的对象和过程,即哪个系统在哪个过程中,常见的判断方法是: (1)分析系统在所经历过程中的受力情况,看合外力是否为零。
(2)直接分析系统在某一过程的初、末状态的动量,看它们是否大小相等,方向相同。
对动量守恒定律的理解 [例2] (江苏高考)牛顿的《自然哲学的数学原理》中记载,A、B两个玻璃球相碰,碰撞后的分离速度和它们碰撞前的接近速度之比总是约为15∶16。
分离速度是指碰撞后B对A的速度,接近速度是指碰撞前A对B的速度。
若上述过程是质量为2m的玻璃球A以速度v0碰撞质量为m的静止玻璃球B,且为对心碰撞,求碰撞后A、B的速度大小。
[解析] 设碰撞后两球的速度分别为v1和v2,根据动量守恒定律有:2mv0=2mv1+mv2,v2-v115根据题意有= v0161731联立以上两式解得:v1=v0,v2=v0。
48241731[答案] v1=v0 v2=v0 4824 (1)应用动量守恒定律解题时要充分理解它的同时性、矢量性,且只需抓住始、末状态,无需考虑细节过程。
(2)应用动量守恒定律的关键是正确地选择系统和过程,并判断是否满足动量守恒的条件。
多个物体组成系统的动量守恒 [例3] (山东高考)如图1-2-3,光滑水平直轨道上两滑块A、B用橡皮筋连接,A的质量为m,开始时橡皮筋松弛,B静止,给A向左的初速度v0。
一段时间后,B与A同向运动 6 发生碰撞并粘在一起。
碰撞后的共同速度是碰撞前瞬间A的速度的两倍,也是碰撞前瞬间B的速度的一半。
求:图1-2-3 (1)B的质量; (2)碰撞过程中A、B系统机械能的损失。
[解析] (1)以初速度v0的方向为正方向,设B的质量为mB,A、B碰撞后共同速度为v,v由题意知:碰撞前瞬间A的速度为,碰撞前瞬间B的速度为2v,由动量守恒定律得 2vm+2mBv=(m+mB)v 2由①式得 1mB=m 2② ① (2)从开始到碰后的全过程,由动量守恒定律得 mv0=(m+mB)v ③ 设碰撞过程A、B系统机械能的损失为ΔE,则 1v11ΔE=m()2+mB(2v)2-(m+mB)v2 2222联立②③④式得 1ΔE=mv02 611[答案] (1)m (2)mv02 26 善于选择系统和过程是解决这类问题的关键。