必修五第二章《数列》测试题

合集下载

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。

试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。

(完整版)高中数学必修5数列基础题测试卷.docx

(完整版)高中数学必修5数列基础题测试卷.docx

高一数学必修五第二章数列测试题一 . (每小 5 分,共 60分)1、已知数列{a n}的通公式a n n 23n 4( n N * ) ,a4等于( ).A、 1B、 2C、 0D、 32、在等比数列 { a n } 中 , 已知11a59 , a3( )a9C 、1A、 1 B 、 3 D 、± 33、等比数列a n中 , a29, a5 243,a n的前 4 和()A、 81B、 120 C 、 168D、 1924、数列 1, 3, 6,10,⋯的一个通公式是()22n(n 1)n(n 1)A、a n =n -(n-1)B、 a n=n -1C、 a n= D 、a n =225、已知等差数列a n中 , a2a88 ,数列前9 和S9等于 ()A、 18B、 27C、 36D、 456、S n是等差数列a n的前n和,若S735 , a4()A、8B、 7C、 6D、 57、已知数列3 ,3, 15, ⋯ ,3(2n1), 那么 9 是数列的()A、第 12 B 、第 13C、第 14D、第 158、等差数列{ a n}的前m和 30,前2m 和100,它的前3m 和是()A、 130B、170C、 210D、 2609、a n是等差数列,a1a3a59, a69 ,个数列的前 6 和等于()A、 12B、 24C、 36D、 4810、已知某等差数列共有10 ,其奇数之和15,偶数之和30,其公差()A、 5B、4C、3D、211、已知数列 2 、 6、10 、14 、 3 2 ⋯那么 7 2 是个数列的第几()A、 23B、24C、 19D、2512、在等比数列{ a n}(n N* )中,若a11, a4110 项和为(,则该数列的前)81B 、21C 、211A、222210D 、224211二、填空题(每小题 5 分,共 20 分)13、已知数列的通项a n5n 2 ,则其前 n 项和 S n.14、已知a n是等差数列,a4a6 6 ,其前5项和 S510 ,则其公差d.15、等比数列a n的前n项和为S n,已知S1,2S2,3S3成等差数列,则a n的公比为.16、各项都是正数的等比数列a n,公比q 1 , a5, a7, a8成等差数列,则公比q=三、解答题(70 分)17、有四个数,前三个数成等比数列,其和为19,后三个数为等差数列,其和为12,求此四个数。

第2章数列测试题含详细答案(必修5)

第2章数列测试题含详细答案(必修5)

南京市高一数学5 (必修)第二章:数列、选择题1 在数列 1, 1,2,3, 5, 8, x, 21, 34, 55 中,x 等于() A. 11 B. 125•已知一等比数列的前三项依次为x, 2x - 2, 3x 3 ,1那么-13—是此数列的第()项 2A. 2B. 4C. 6D. 86 .在公比为整数的等比数列'弘{中,如果ai ai 二1& as as 二12,那么该数列的前8项之和为() A. 513B. 512 225C. 510D.8、填空题1. 等差数列 右,中,a? =9, as =33,贝广厂的公差为 __________________________2. 数列(a.)是等差数列,a4 =7,贝ij S7 = ___________________ 6 ■计算 log 3 : ,,3*3]…、<3,二 _________ . A • 66B. 99 C ■ 144D. 297 彎比欢列a 冲, &2 二 9, 35 二 243,则 的前4项和为(A . 81B . 120C • 1684..2 1 与 2 -1, D • 192 两数的等比中项是( )1A. 1B. 一 1C. _1D.—2.等差数列{&}中,Qi 乜 4=39, S3 一 a 27, 的和S9等于( ) 贝v 数列{&}前9项三、解答题1 •成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。

2.在等差数列 屮,厂 一 0. 3, a (2 =3. 1,求 a (s + a 〔9 + a?o + a?i + a?2 的值。

3. 求和:(a -1) (a 2 -2) ••• (a 21 - n), (a = 0)4.设等比数列& •'前n 项和为5 ,若S3 • S6二2S“求数列的公比q 参考答案(数学5必修)第二章[基础训练A 组]l.C A E- n - n 1=a n • 2 -B ai ' ai' a? — 39, a3 >a a a - 27, 3ai —13, a6 —99 9 9s 9 (d aj (d aj (13 9> 993. B 色二27 二 q 3, q —3,印二生二3,£ 二 冯二A120a 2 q 1-3 4. C x :=( l)f -2 =l)x ; 1一、选择题——39, 3a 5. B x(3x 3)= (XT 22)x 尸或 lx 二而 4x 二-lx 二-46. C3x 32x 2=_4x(3ai(l q ) =18, ai (q q2)二12,jfn q Z, q = 2, ai = 2,z\1-2二、填空题5.—124. -753 35. -26.三、解答题1.2. 5-2〃d5-22(bl .=8 2.9/吩a】a9)岂仝q J或q=2,22 251049 S7=7 (a<i ■ a:) = 7 印二4 9bi b 65-12 =25, q = ± 5, a<io = a.9 q=±75 5logL ・T3 = log3(3,z 3 刁…3 戶)二log3(3八二丄+丄+ +丄二址3“ 12-2n解:设四数为a—3d, a -d, a d, a 3d, 则4a = 26, a2 -d2 = 4013,d或,23时,时, 四数为2, 5,8,113四数为11,8, 5,2解:dis &19 &20 &21 &22 ―5&20, &12 —3-5 二7d 二2・ & <7-0.4 a?o — ai2 8d — 3. 1 3. 2 = 6. 3…&(8 a (9 a?o a?i a?2 二5a?o 二6. 3 5 一31. 5解:原式二(&玄・・・a n) -(1 2 3.•…-n)二(a 『・・・V -)3)2a(l ——a a) n(n 1)(a.=1)1 -a 23 6由 S3 S6=2S F —q) M —qi/ —q)1-q 1 -q 2q_q —0 =o, 2 (q 3)3 —q 3 一 1 二0,得 cf 或 cf 二1, 3. 两个等華数加{a n l£n [ —「一二一二一,则旦小二“八也+・・・+(1)n +3 b 5 --------------------4. 在等比数列 位}中,若厂3,厂75,则印。

(完整版)人教版高中数学必修5第二章__数列练习题

(完整版)人教版高中数学必修5第二章__数列练习题

第二章数列1.{ a } 是首 a = 1,公差 d= 3 的等差数列,假如 a = 2 005,序号 n 等于 () .n1nA. 667B.668C.669D.6702.在各都正数的等比数列{ a } 中,首 a = 3,前三和21, a + a + a =n1345 () .A. 33B.72C.84D.1893.假如 a , a ,⋯, a各都大于零的等差数列,公差d≠ 0, () .128A. a1a8> a4a5 B . a1a8< a4a5C.a1+ a8< a4+ a5 D . a1a8= a4a54.已知方程 ( x2-2x+ m)( x2- 2x+ n) =0 的四个根成一个首1 的等差数列,4| m-n|等于 () .A. 1 B .3C.1D .3 4285.等比数列 { a } 中, a = 9, a =243, { a } 的前 4和 ().n25nA. 81 B .120C. 168D.1926.若数列 { a n} 是等差数列,首a1> 0,a2 003+ a2 004> 0,a2 003·a2 004< 0,使前 n 和 S n> 0建立的最大自然数n 是() .A. 4 005B.4 006C.4 007D.4 0087.已知等差数列 { a } 的公差2,若 a , a, a 成等比数列 ,a = () .n1342A.- 4B.- 6C.- 8D.-108. S n是等差数列 { a n} 的前 n 和,若a5=5,S9=() .a39S5A. 1B.- 1C.2 D .12 9.已知数列-12123a2a1a a ,- 4成等差数列,- 1b b b ,- 4 成等比数列b2的是 () .A.1B.-1C.-1或1D .122224n n n-1-a n2+ an+12n-1=38, n= () .10.在等差数列 { a } 中,a ≠ 0,a= 0( n≥ 2),若 SA. 38B.20C.10 D . 9二、填空11. f( x) =1,利用本中推等差数列前n 和公式的方法,可求得f( - 5) 2x2+ f( - 4) +⋯+ f(0)+⋯+ f( 5) + f( 6)的.12.已知等比数列 { a n} 中,( 1) 若 a3· a4· a5= 8, a2· a3· a4· a5· a6=.( 2) 若 a1+ a2= 324,a3+a4= 36, a5+a6=.( 3) 若 S4= 2, S8= 6, a17+ a18+ a19+a20=.13.在8和27之插入三个数,使五个数成等比数列,插入的三个数的乘.3214.在等差数列 { a n} 中,3( a3+ a5) + 2( a7+ a10+ a13) = 24,此数列前13 之和.15.在等差数列 { a } 中, a = 3, a =- 2, a + a +⋯+ a =.n56451016.平面内有 n 条直 ( n≥ 3) ,此中有且有两条直相互平行,随意三条直不同一点.若用f( n) 表示n 条直交点的个数,f( 4) =;当 n> 4 , f( n)=.三、解答17. ( 1)已知数列 { a n} 的前 n 和 S n= 3n 2-2n,求数列 { an}成等差数列.( 2)已知1,1,1成等差数列,求b c , c a , ab也成等差数列 .a b c a b c18. { a n} 是公比q的等比数列,且a1, a3, a2成等差数列.( 1) 求 q 的;( 2) { b n首 , q 公差的等差数列,其前n ,当 n ≥ 2n}是以 2 n 和 S,比 S与 b n 的大小,并 明原因.19.数列 { a n } 的前 n 和 S n ,已知 a 1=1, a n + 1=n2S n ( n = 1, 2,3⋯ ) .n求 :数列 {S n} 是等比数列. n20.已知数列 { a n } 是首 a 且公比不等于 1 的等比数列, S n 其前 n 和, a 1, 2a 7,3a 4 成等差数列,求 :12S 3, S 6 ,S 12-S 6 成等比数列 .第二章数列参照答案一、选择题1. C分析:由题设,代入通项公式a n= a1+ ( n- 1) d,即 2 005=1+ 3( n-1) ,∴ n= 699.2. C分析:此题考察等比数列的有关观点,及其有关计算能力.设等比数列 { a n} 的公比为q( q> 0) ,由题意得a1+a2+ a3= 21,即 a1( 1+ q+ q2) = 21,又 a1= 3,∴ 1+ q+q2= 7.解得 q= 2 或 q=- 3( 不合题意,舍去 ) ,∴ a3+ a4+a5=a1q2( 1+ q+ q2) = 3× 22× 7= 84.3. B.分析:由 a1+ a8= a4+ a5,∴清除C.又 a1· a8=a1( a1+ 7d) = a12+ 7a1d,∴a4· a5=( a1+3d)( a1+ 4d) = a12+ 7a1d + 12d2>a1· a8.4. C分析:解法 1:设 a1=1, a2=1+ d, a3=1+ 2d, a4=1+ 3d,而方程 x2- 2x+ m= 0 中两4444根之和为 2, x2- 2x+ n=0 中两根之和也为2,∴a1+ a2+a3+a4= 1+ 6d=4,∴ d=1,a1,a7是一个方程的两个根, a1=3,a3=5是另一个方程的两个根.1=4=44424∴7,15分别为 m 或 n,16 16∴| m- n|=1,应选 C.2解法 2:设方程的四个根为x1, x2, x3, x4,且x1+ x2= x3+ x4= 2,x1·x2=m, x3· x4= n.由等差数列的性质:若+ s= p+q,则 a + a s= a p+ a q,若设 x1为第一项, x2必为第四项,则 x2=7,于是可得等差数列为 1 , 3,5,7,∴ m = 7 , n =15,1616∴| m - n |= 1.2 5. B分析:∵ a 2= 9,a 5=243,a 5=q 3=243= 27,a 29∴ q = 3,a 1q = 9, a 1= 3,5∴ S 4= 3-3 = 240= 120.1-326. B分析:解法 1:由 a 2 003+ a 2 004>0, a 2 003· a 2 004<0,知 a 2 003 和 a 2 004 两项中有一正数一负数,又 a 1> 0,则公差为负数,不然各项总为正数,故a 2 003> a 2 004,即 a 2 003> 0, a 2 004< 0.∴ S 4 006=4 006( a 1+a4 006 ) =4 006( a2 003+a2 004 )>0,22∴ S 4 007=4 007· ( a 1+ a 4 007) =4 007· 2a 2 004< 0,22故 4 006 为 S n > 0 的最大自然数 . 选 B .解法 2:由 a 1> 0,a 2 003+a 2 004> 0,a 2 003·a 2 004< 0,同解法 1 的剖析得 a 2 003> 0, a 2 004< 0,∴ S 2 003为 S 中的最大值.n∵ S n 是对于 n 的二次函数,如草图所示,∴ 2 003 到对称轴的距离比 2 004 到对称轴的距离小,∴4 007在对称轴的右边.(第6题)2依据已知条件及图象的对称性可得4 006 在图象中右边零点 B 的左边, 4 007, 4 008 都在其右边, S n >0 的最大自然数是 4 006.7. B分析:∵ { a n } 是等差数列,∴ a 3= a 1+ 4, a 4=a 1+6,又由 a 1, a 3, a 4 成等比数列,∴ ( a 1+4) 2= a 1( a 1+ 6) ,解得 a 1=- 8,∴ a 2=- 8+ 2=- 6.8.A分析:∵S 99(a 1 a 9 )=9a 5=9·5=1,∴ A .= 5(a 1 2S 5a 5) 5 a59239.A分析: d 和 q 分 公差和公比, - 4=- 1+ 3d 且- 4=( - 1) q 4,∴ d =- 1, q 2= 2,∴ a 2 a 1 = d = 1.b 2q 2210.C分析:∵ { a n } 等差数列,∴a n 2 = a n - 1 + a n +1,∴ a n 2 = 2a n ,又 a n ≠ 0,∴ a n = 2,{ a n } 常数数列,而 a n = S 2 n 1,即 2n 1∴ n =10.二、填空 11.3 2.分析:∵ f( x) =2x1∴ f( 1- x) =21 x∴ f( x) + f( 1- x) =2n -1= 38= 19,21,21 x=2x= 2 22 x,2222 2 x1(2 2)1 21 12xxx1+2=2=2=2 . 2 2x 2 2x 2 2 x2 2x2S =f( - 5) + f( - 4) +⋯+ f(0) +⋯+ f( 5) + f( 6) ,S =f( 6) + f( 5) +⋯+ f(0) +⋯+ f( - 4) + f( - 5) ,∴ 2S =[ f( 6) + f( - 5)] +[ f( 5) + f( - 4)] +⋯+ [ f( - 5) + f( 6)] = 6 2 , ∴ S =f( -5) + f( - 4) +⋯+ f(0) +⋯+ f( 5) + f( 6) =3 2.12.(1) 32;(2) 4;( 3) 32.分析:( 1)由 a 3· a 5= a 42 ,得 a 4= 2, ∴ a 2· a 3·a 4 ·a 5· a 6= a 45 =32.a1a2324q 2 1 ,( 2)221369(a a )q∴a5+ a6=( a1+a2) q4= 4.S4= a1+a 2+ a3+ a4=2q4=2 ,( 3)+ S q 4S =a + a ++ a = S812844∴a17+ a18+ a19+ a20=S4q16= 32.13. 216.分析:本考等比数列的性及算,由插入三个数后成等比数列,因此中数必与8 ,27同号,由等比中的中数827= 6,插入的三个数之8×27×6=216.323232 14. 26.分析:∵ a3+ a5= 2a4, a7+a13= 2a10,∴6( a4+ a10) =24, a4+ a10= 4,∴ S13( a1+a13 )= 13( a4+ a10 ) = 134=26.13=222 15.- 49.分析:∵ d= a6-a5=- 5,∴a4+ a5+⋯+ a10=7( a4+a10)2=7( a5- d+ a5+5d )2=7( a5+ 2d)=- 49.116. 5,( n+ 1)( n- 2) .分析:同一平面内两条直若不平行必定订交,故每增添一条直必定与前方已有的每条直都订交,∴ f( k) = f( k- 1) + ( k- 1) .由 f( 3) =2,f( 4) = f( 3) + 3= 2+ 3=5,f( 5) = f( 4) + 4= 2+ 3+4= 9,⋯⋯f( n) = f( n - 1) + ( n - 1) ,相加得 f( n) = 2+ 3+ 4+⋯+ ( n - 1) = 1( n +1)( n - 2) .2 三、解答17.剖析: 判断 定数列能否 等差数列关 看能否 足从第2 开始每 与其前一差 常数.明:( 1) n =1 , a 1= S 1=3- 2= 1,当 n ≥2 , a n =S n -S n - 1= 3n 2-2n - [ 3( n - 1) 2- 2( n -1)] = 6n -5,n = 1 ,亦 足,∴a n = 6n - 5( n ∈N* ) .首 a 1= 1, a n - a n - 1= 6n - 5-[ 6( n - 1) - 5] = 6( 常数 )( n ∈ N* ) ,∴数列 { a n } 成等差数列且 a 1=1,公差 6.111( 2)∵, , 成等差数列,∴ 2 = 1 + 1化 得 2ac =b( a + c) . b a cb +c + a +b = bc + c 2+ a 2+ ab = b( a + c)+a 2+ c 2=( a + c) 2=( a + c)2= a c ac ac acb( a +c)2a + c2·,∴b + c, c + a , a + b也成等差数列.abc18.解:( 1)由2a 3=a 1 +a 2,即 2a 1q 2= a 1+ a 1q ,∵ a 1≠ 0,∴ 2q 2- q -1= 0,∴ q =1 或-1. 22( 2)若 q = 1, S n = 2n +n( n -1)= n+3n.2 2当 n ≥2 , S n -b n =S n - 1=( n -1)( n +2)> 0,故 S n >b n . 2若 q =- 1 , S n = 2n +n( n -1) ( - 1 ) = - n 2+9n . 2 2 2 4当 n ≥2 , S n -b n =S n - 1=( n -1)( 10-n), 4故 于 n ∈ N +,当nnn n ;当 n ≥ 11n n.2≤ n ≤ 9 , S > b ;当 n = 10 , S=b , S< b 19. 明:∵ a= S -S a n +2 ,=Sn +1n +1n , n +1nn∴ ( n +2) S ++因此Sn +1= 2S n .n +1n故 {S n} 是以 2 为公比的等比数列. n20.证明:由 a 1, 2a 7, 3a 4 成等差数列,得 4a 7= a 1+3a 4 ,即 4 a 1q 6= a 1+ 3a 1q 3,变形得 ( 4q 3+ 1)( q 3 -1) = 0,∴ q 3=- 1或 q 3=1( 舍 ) . 4a 1 (1 q 6 )3S 6=1 q=1 q 1;由12a 1 (1 q 3 ) 12=1612S 31 qa 1 (1 q 12 )S12S 6 =S12- 1=1 q - 1= 1+ q 6- 1= 1 ; S 6S 6a 1 (1 q 6 ) 161 q得 S6 = S 12 S 6 . 12S 3 S 6 ∴ 12S ,S ,S - S 成等比数列.36126。

高中数学必修五第二章数列章末检测题 附答案解析

高中数学必修五第二章数列章末检测题 附答案解析

第二章 数列章末检测题(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数列中,既是无穷数列又是递增数列的是( ).A.1111,,,,234B.1,2,3,4,-- C.1111,,,,248----D.,n2.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),则a 4等于( ). A.11 B.15 C.17 D.203.600是数列1×2,2×3,3×4,4×5,…的第( ).A.20项B.24项C.25项D.30项4.在等比数列{a n }中,若a 2a 3a 6a 9a 10=32,则2912a a 的值为( ).A.4B.2C.-2D.-4 5.若{a n }为等差数列,S n 是其前n 项和,且S 11=223π,则tan a 6的值为( ).B.C.D.36.已知数列{a n }是等差数列,其前n 项和为S n ,若a 6=2,且S 5=30,则S 8等于( ). A.31 B.32 C.33 D.347.等比数列{a n }各项均为正,a 3,a 5,-a 4成等差数列,S n 为{a n }的前n 项和,则63S S 等于( ). A.2 B.78 C.98 D.548.已知等差数列{a n }的前n 项和为S n ,若12020OB a OA a OC =+,且A ,B ,C 三点共线(该直线不过点 O ),则S 2 020等于( ).A.1 008B.1 009C.1010D.2 0199.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5 个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( ).A.55 986只B.46 656只C.216只D.36只10.若数列{a n }是等差数列,a 1>0,a 2 009+a 2 010>0,a 2 009a 2 010<0,则使前n 项和S n >0成立的最大自然数n 是( ).A.4 017B.4 018C.4 019D.4 020二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.在等比数列{a n }中,a 2 006和a 2 012是方程x 2+x-1=0的两根,则a 2 007a 2 011= . 12.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q= ;前n 项和S n = . 13.数列{a n }的前20项由如图所示的程序框图依次输出的a 值构成,则数列{a n }的一个通项公式a n = .14.已知数列{a n }的前n 项和S n =n 2+2n-1,则a 1+a 3+a 5+…+a 25= .15.已知函数()221x f x x =+,那么f (1)+f (2)+…+f (2 019)+f 12⎛⎫ ⎪⎝⎭+f 13⎛⎫ ⎪⎝⎭+…+f 12019⎛⎫⎪⎝⎭= .三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n项和.17.(8分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1. (1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和T n .18.(9分)已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式; (2)设1n n nT S S =-(n ∈N *),求数列{T n }的最大项的值与最小项的值.19.(10分)已知{a n}是首项为19,公差为-2的等差数列,S n为{a n}的前n项和.(1)求通项公式a n及S n;(2)设{b n-a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及其前n项和T n.20.(10分)设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n,且12nn naTλ++=(λ为常数),令c n=b2n(n∈N*),求数列{c n}的前n项和R n.参考答案1.【解析】A 项中数列是递减的无穷数列,B 项中数列是摆动数列,D 项中数列是递增的有穷数列. 【答案】C2.【解析】a 4=S 4-S 3=20-9=11. 【答案】A3.【解析】a 1=1×2=1×(1+1),a 2=2×3=2×(2+1),a 3=3×4=3×(3+1),a 4=4×5=4×(4+1),…,a n =n (n+1),令n (n+1)=600,解得a=24或a=-25(舍去),即600是数列{a n }的第24项. 【答案】B4.【解析】设公比为q ,由a 2a 3a 6a 9a 10=32,得5632a =,所以a 6=2,所以29612612122a a aa a a ⋅===. 【答案】B 5.【解析】()()1116611611112211223a a a a S a π++====,则623a π=,6tan a = 【答案】B6.【解析】设等差数列{a n }的公差为d ,则有()11525515302a d a d +=⎧⎪⎨⨯-+=⎪⎩, 解得126343a d ⎧=⎪⎪⎨⎪=-⎪⎩, 所以()8188182S a d ⨯-=+2648283233⎛⎫=⨯+⨯-= ⎪⎝⎭. 【答案】B7.【解析】设等比数列{a n }的公比为q ,则有q>0.∵a 3,a 5,-a 4成等差数列,∴a 3-a 4=2a 5,∴a 1q 2-a 1q 3=2a 1q 4,即1-q=2q 2,解得q=-1(舍去)或q=12, ∴q=12,∴()()6136363331111911112811a q S q q q S q a q q---⎛⎫===+=+= ⎪--⎝⎭-.【答案】C.8.【解析】∵A ,B ,C 三点共线,∴a 1+a 2 020=1.∴()120202020202010102a a S +==.【答案】C.9.【解析】设第n 天所有的蜜蜂都归巢后共有a n 只蜜蜂,则有a n+1=6a n ,a 1=6,则数列{a n }是公比为6的等比数列,故a 6=a 1q 5=6×65=46 656. 【答案】B10.【解析】由a 2 009+a 2 010>0,a 2 009a 2 010<0及a 1>0得a 2 009>0,a 2 010<0,且|a 2 009|>|a 2 010|,于是()14017401720094017401702a a S a +==>.()()1401820092010401840184018022a a a a S ++==>,()14019401920104019401902a a S a +==<.故选B .【答案】B11.【解析】由题意,得a 2 006a 2 012=-1.又数列{a n }是等比数列,故a 2 007a 2 011=a 2 006a 2 012=-1. 【答案】-112.【解析】由题意知352440220a a q a a +===+.∵a 2+a 4=a 2(1+q 2)=a 1q (1+q 2)=20,∴a 1=2. ∴()12122212n n n S +-==--.【答案】2;2n+1-213.【解析】由题中程序框图知a 1=0+1=1,a 2=a 1+2=1+2, a 3=a 2+3=1+2+3,…, a n =a n-1+n ,即a n =1+2+3+…+(n-1)+n=()12n n +.【答案】()12n n +14.【解析】当n=1时,a 1=S 1=12+2×1-1=2;当2n ≥时,S n-1=(n-1)2+2(n-1)-1=n 2-2,所以a n =S n -S n-1=(n 2+2n-1)-(n 2-2)=2n+1.此时若n=1,a n =2n+1=3≠a 1,所以2,121,2n n a n n =⎧=⎨+≥⎩故a 1+a 3+a 5+…+a 25=2+(7+11+15+…+51)=2+()127512⨯+=350.【答案】35015.【解析】()222211111n n f n f n n n⎛⎫+=+ ⎪+⎝⎭+2221111n n n =+=++(n=2,3,4,…). 又()22111112f ==+,故有 ()()()111122019232019f f f f f f ⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1111232019232019f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦()120182018.5f =+=.【答案】2018.516.【解析】设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d=8,(a 1+3d )2=(a 1+d )(a 1+8d ),所以,a 1+d=4,d (d-3a 1)=0,解得a 1=4,d=0或a 1=1,d=3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以,数列{a n }的前n 项和S n =4n 或S n =232n n-.17.【解析】(1)设数列{a n }的公差为d ,由题意,得116418a d a d +=⎧⎨+=⎩ 解得a 1=2,d=4. 故a n =2+4(n-1)=4n-2.(2)当n=1时,b 1=T 1,由T 1+12b 1=1,得b 1=23. 当2n ≥时,∵T n +12b n =1,∴T n =1-12b n ,T n-1=1-12b n-1, ∴T n -T n-1=12(b n-1-b n ).∴b n =12(b n-1-b n ),∴b n =13b n-1.∴数列{b n }是以23为首项,13为公比的等比数列.∴21113311313n n n T ⎛⎫- ⎪⎝⎭==--. 18.【解析】(1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=5314a a =. 又数列{a n }不是递减数列且a 1=32,所以q=12-. 故等比数列{a n }的通项公式为()113131222n n n na --⎛⎫=⨯-=-⋅⎪⎝⎭. (2)由(1)得11,121121,2nn n n n S n ⎧+⎪⎪⎛⎫=--=⎨ ⎪⎝⎭⎪-⎪⎩为奇数为偶数当n 为奇数时,S n 随n 的增大而减小,所以1312n S S <≤=, 故11113250236n n S S S S <-≤-=-=. 当n 为偶数时,S n 随n 的增大而增大,所以2314n S S =≤<, 故221134704312n n S S S S >-≥-=-=-.综上,对于n ∈N *,总有715126n n S S -≤-≤. 所以数列{T n }最大项的值为56,最小项的值为712-. 19.【解析】(1)因为{a n }是首项为19,公差为-2的等差数列,所以a n =19-2(n-1)=-2n+21,即a n =-2n+21, S n =19n+()12n n -×(-2)=-n 2+20n ,即S n =-n 2+20n.(2)因为{b n -a n }是首项为1,公比为3的等比数列, 所以b n -a n =3n-1,即b n =3n-1+a n =3n-1-2n+21,所以T n =b 1+b 2+…+b n =(30+a 1)+(3+a 2)+…+(3n-1+a n )=(30+3+…+3n-1)+(a 1+a 2+…+a n )()21132013n n n ⨯-=-+-231202n n n -=-+.20.【解析】(1)设等差数列{a n }的首项为a 1,公差为d.由S 4=4S 2,a 2n =2a n +1,得()()11114684212211a d a da n d a n d +=+⎧⎪⎨+-=+-+⎪⎩ 解得112a d =⎧⎨=⎩ 因此a n =2n-1,n ∈N *. (2)由题意知12n n nT λ-=-, 所以当2n ≥时,112112222n n n n n n n n n b T T ------=-=-+=. 故()1*2212211,24n n n n n c b n n N ---⎛⎫===-∈ ⎪⎝⎭.所以()01231111110123144444n n R n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯++- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,则()()1234111111110123214444444n nn R n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯++-+- ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭).两式相减得()12313111111444444n nn R n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()1114411414nn n ⎛⎫⎪⎛⎫⎝⎭=-- ⎪⎝⎭-1131334n n +⎛⎫=- ⎪⎝⎭,整理得1131494n n n R -+⎛⎫=- ⎪⎝⎭. 所以数列{c n }的前n 项和1131494n n n R -+⎛⎫=- ⎪⎝⎭.。

高一数学必修5第二章数列测试题

高一数学必修5第二章数列测试题

新课标数学必修 5 第 2 章数列单元测试题一说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷在各题后直接作答.共 150 分,考试时间 100 分钟.一、选择题(本大题共 11 小题,每题 4 分,共 44 分)1.等差数列 { a n }中, a 1 3, a 57,则数列 { a n } 第9 项等于()A .9B .10C .11D .122.等比数列 a n 中 , a 2 9, a 5 243, 则 a n 的第 4 项为()A .81B.243 C .27 D . 1923. 2 1 与 2 1 ,两数的等比中项是()A .1B .1C .1D .124.已知一等差数列的前三项挨次为 x,2x 2,4x3 ,那么 21 是此数列的第()项A .2B .4C .6D .85.在公比为整数的等比数列 a n 中,若 a 1 a 3 6, a 2 a 4 12, 则该数列的第 3 项为()A .6B .12C .24D .4855556. 数列 a n 的通项公式 a nn 1n ,则该数列的前 9 项之和等于()A .1B .2C .3D .47. 设 {a n } 是由正数构成的等比数列,公比 q=2,且 a 1a 3 =24,则 a 1a 2a 3a 4a 5 等于( )A.2 102015168.已知等差数列 a n 的公差为 2 , 若 a 1 ,a 3 , a 4 成等比数列 , 则 a 2 ( )A .4B .6C .8D. 109.设S n 是等差数列 a n 的前 n 项和,若 S 2 , ,则S 6 等于( )2 S 4 10 A .12 B .18 C .24 D .4210.已知等差数列 {a }的公差为正数,且 a · a =-12, a +a =- 4,则 S 为n 3 7 4 620()A .180B .- 180C .90D .- 9011.现有 200 根同样的钢管,把它们堆放成正三角形垛,要使节余的钢管尽可能的少,那么节余钢管的根数为()A.9B.10C.19D.29二、填空题(本大题共 5 小题,每题 5 分,共 25 分)12.在等比数列a n中,若a33, a975, 则 a15=___________.13在等比数列a n中,若a1 ,a10是方程3x22x 6 0 的两根则a4 a7=___________.14.在- 9 和 3 之间插入 n 个数,使这 n+2 个数构成和为- 21 的等差数列,则 n=_______.15.已知数列a n的前 n 项和 S n 3 2n,求 a n=_______。

高中数学必修5数列单元测试题含解析

高中数学必修5数列单元测试题含解析

新课标数学必修5第2章数列单元试题一、选择题(本大题共10小题,每小题3分,共30分)1.在正整数100至500之间能被11整除的个数为()A.34 B.35 C.36 D.37考查等差数列的应用.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等*,Nn∈≤36.4,·11=11n+99,由a≤500,解得n差数列,公差为11,数a=110+(n-1)nn∴n≤36.【答案】C2-1(n≥1),则a+a+a+a+a=12.在数列{a}中,a,a=a等于()54n+112nn31A.-1 B.1 C.0 D.2考查数列通项的理解及递推关系.2-1=(a+1)(=aaa-1),【解析】由已知:nn+1nn∴a=0,a=-1,a=0,a=-1.5342【答案】A 3.{a}是等差数列,且a+a+a=45,a+a+a=39,则a+a+a的值是()9432n78156A.24 B.27 C.30 D.33考查等差数列的性质及运用.【解析】a+a+a,a+a+a,a+a+a成等差数列,故a+a+a=2×39-45=33.932394576168【答案】D2f(n)?n*)且f(1)=2,则f(20(n∈N+14.设函数f(x)满足f(n)=)为()2192 D..105 B.97 C95 A.考查递推公式的应用.1?1?f(1)?f(2)??2?1?2)(2??f(3)?fn??)f(n=f【解析】(n+1)-2?2? ?1?1919)??f(20)?f(?2?1?.1)=97(20)=95+f20)-f(1)=…(1+2++19)(f相加得f(2B【答案】*)(n≥3=0-6,a,公差d∈N)的最大值为(,则n中,已知5.等差数列{a}a=n1n8 D.B.6 C.7 A.5考查等差数列的通项.6?+1 n(n-1)d=0=-a【解析】=a+(n1)d,即-6+1n d*.=7d=1时,n取最大值n∵d∈N,当C【答案】2 }从首项到第几项的和最大()=6.设a-n,则数列+10n+11{a nn项.第10项或11项D12C项10A.第项B.第11 .第考查数列求和的最值及问题转化的能力.2 S<0a>0a=0a)-(+1-(n-=【解析】由an+10+11=n)n11,得,而,,S=.1110121011n【答案】C7.已知等差数列{a}的公差为正数,且a·a=-12,a+a=-4,则S为()20n4763A.180 B.-180 C.90 D.-90考查等差数列的运用.2+4xxa联立,即,a是方程4与a·a=-12【解析】由等差数列性质,a+a=a+a=-77674333-12=0的两根,又公差d>0,∴a>aa=2,a=-6,从而得a=-10,d=2,S=180.?2033771【答案】A 8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为()A.9 B.10 C.19 D.29考查数学建模和探索问题的能力.n(n?1)<200.【解析】1+2+3+…+n<200,即220?19 根.n=20时,剩余钢管最少,此时用去=190显然2【答案】B9.由公差为d的等差数列a、a、a…重新组成的数列a+a,a+a,a+a…是()611524233A.公差为d的等差数列B.公差为2d的等差数列C.公差为3d的等差数列D.非等差数列考查等差数列的性质.【解析】(a+a)-(a+a)=(a-a)+(a-a)=2d.(a+a)-(a+a)=(a-3456422235151a)+(a-a)=2d.依次类推.562【答案】B10.在等差数列{a}中,若S=18,S=240,a=30,则n的值为()-49nnn A.14 B.15 C.16 D.17考查等差数列的求和及运用.9(a?a)91??2(a+4d)=4.【解析】S=18=a+a=491912)n(a?a n1.=16n=240S+4d=2,又a=a+4d.∴=a∴-nn4n12∴n=15.【答案】B二、填空题(本大题共4小题,每小题4分,共16分)2a2*n),则是这个数列的第_________项.(n∈N=1.在数列11{a}中,a,a=+1nn1a?27n考查数列概念的理解及观察变形能力.111111+,∴{}是以=1【解析】由已知得=为首项,公差d=的等差数列.aaaa221n1?nn1221=1+(n-1),∴a=∴=,∴n=6.n a?172n n【答案】612.在等差数列{a}中,已知S=10,S=100,则S .=_________11010100n考查等差数列性质及和的理解.?a+a=-2.(a+a)=-90=45S-S=a+a+…+a(a+a)=45【解析】11010010011010011111110121(a+a)×110=-=S110.11011102【答案】-11013.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.考查等差数列的前n项和公式及等差数列的概念.(n?2)(?9?3),∴n=5.【解析】-21=25【答案】Sa2n n11=_________.,若=,则、14.等差数列{a},{b}的前n项和分别为ST nnnn bT3n?111n 考查等差数列求和公式及等差中项的灵活运用.(a?a)21(a?a)211211aS2?2121221121???.==【解】(b?b)21(b?b)bT3?21?13212112121112221 【答案】32三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?考查等差数列通项及灵活应用.【解】设这两个数列分别为{a}、{b},则a=3n+2,b=4n-1,令a=b,则3k+2=4m-1.mnnnnk∴3k=3(m-1)+m,∴m被3整除.*),则k=4p-1=3p(p∈N.设m∵k、m∈[1,100].则1≤3p≤100且1≤p≤25.∴它们共有25个相同的项.16.(本小题满分10分)在等差数列{a}中,若a=25且S=S,求数列前多少项和最大.179n1考查等差数列的前n项和公式的应用.9?(9?1)17(17?1)d=1725+×25+d ×S【解】∵S=,a=25,∴9191722n(n?1)2+169.-13)n(-n,∴d解得=-2S=25+2)=-(n2由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d=-2,数列a为递减数列.n a=25+(n-1)(-2)≥0,即n≤13.5.n∴数列前13项和最大.2-5nn+4,问.17(本小题满分12分)数列通项公式为a=n(1)数列中有多少项是负数?(2)n为何值时,a有最小值?并求出最小值.n考查数列通项及二次函数性质.2-5n+4<0,解得1<na【解】(1)由为负数,得n<4.n*项.3项和第2项为负数,分别是第2,即数列有3或=2n,故N∈n∵.59522)-,∴对称轴为n=n+4=(n-=2.(2)∵a=n5 -5n242*2-5×2+4=-2.或n=3时,a 有最小值,最小值为2又∵n∈N,故当n=2n18.(本小题满分12分)甲、乙两物体分别从相距70 m的两处同时相向运动,甲第一分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?考查等差数列求和及分析解决问题的能力.n(n?1)+51次相遇,依题意得2n+n=70 【解】(1)设n分钟后第22+13n-140=0,解得:n=7,n=-20(舍去)整理得:n∴第1次相遇在开始运动后7分钟.n(n?1)+5n+n=3×70 (2)设n分钟后第2次相遇,依题意有:222+13n-6×70=0,解得:n=15或n整理得:n=-28(舍去)第2次相遇在开始运动后15分钟.1.a=n≥2),(n项和为S,且满足a+2S·S=019.(本小题满分12分)已知数列{a}的前1nnnnn1-21}是等差数列;)求证:{ (1S n(2)求a表达式;n222<1.b +…n≥2),求证:b++b(3)若b=2(1-n)a(nn23n考查数列求和及分析解决问题的能力.【解】(1)∵-a=2SS,∴-S+S=2SS(n≥2)1nn1nn1nnn---11111-=2,又==2,∴{}是以S≠0,∴2为首项,公差为2的等差数列.n aSSSS11nnn1?11=2+(n-1)2=2n,∴S= (2)由(1)n Sn2n1当n≥2 时,a=S-S=-1nnn-)n?1(2n1?(n?1)?12?=a S=,∴n=1时,a=?n1112?-(n?2)?2n(n-1)?1 a=-(1n))由((32)知b=2nn n111111222++…++b=…+<++…+ bb ∴+n32222n)(n?1n332?21?2.111111)+(-)+…+(-)=1-(=1-<1.nn1?n322.。

高二数学必修5第二章数列测试题(附有答案)

高二数学必修5第二章数列测试题(附有答案)

高二数学必修5第二章数列测试题一、选择题(共20小题,每小题3分,共60分):1、给出下列数列:(1)0,0,0,0,0,…;(2)1,11,111,1111,…;(3) ,2,2,2,2432;(4) ,3,1,1,3,5---;(5)1,2,3,5,8,…;其中等差数列有( )A 、 1个B 、2个C 、3个D 、4个2、已知=+-=102,31a n n a n 则( )A 、1039B 、10310C 、1009D 、103、在等比数列中,已知13,48,2n a a q ===,则n=( )A 、 3B 、4C 、5D 、64、在等比数列{}n a 中,,3,21==q a 则=4S ( )A 、26B 、27C 、80D 、815、等差数列}{n a 的前10项和===d a S 则公差首项,1,100110( )A 、1B 、2C 、3D 、46、在数列}{n a 中,已知211+=+n n a a ,且21=a ,则101a 等于( )A 、49B 、50C 、51D 、527、已知19,,,4y x 构成等差数列,则y x ,的值分别为( )A 、 9,14B 、8,13C 、7,12D 、6,118、等差数列}{n a 中,已知1,16497==+a a a ,则12a 的值是( )A 、15B 、30C 、31D 、649、在等差数列}{n a 中,9015=S ,则8a =( )A 、3B 、5C 、6D 、1210、在等比数列{}n a 中,0,32,251>==q a a 则=5S ( )A 、60B 、62C 、64D 、6611、在等比数列{}n a 中,,6,584==a a 则=102a a ( )A 、27B 、28C 、29D 、3012、在等差数列{}n a 中,若,1201210864=++++a a a a a 则=-12102a a 的值为() A 、20 B 、22 C 、24 D 、26第1页(试卷共2页)13、等差数列}{n a 的前n 项和为n S ,且 963,7,3S S S 则==的值是( )A 、12B 、15C 、11D 、814、已知等差数列共有10项,其中奇数项之和为15,偶数项之和为45,则其公差是( )A 、3B 、4C 、5D 、615、等差数列{}n a 的公差为2,若842,,a a a 成等比数列,则{}n a 的前n 项和=n S ( )A 、2)1(-n nB 、2)1(+n n C 、)1(-n n D 、)1(+n n16、已知数列{}n a 满足)(1,111*+∈+==N n a a a a n n n ,则数列{}n a 的通项公式为( )A 、n a n =B 、n a n 1=C 、1-=n a nD 、11-=n a n17、已知数列{}n a 的前n 项和为1,2-=n S S n n ,则=2016a ( )A 、4031B 、4032C 、2015D 、201618、在等比数列}{n a 中,各项均为正数,且7,13211=++=a a a a ,则数列}{n a 的通项公式n a =( )A 、n 2B 、12-nC 、n 4D 、14-n19、已知三个数成等差数列,且三个数之和为15,首末两项之积为9,则这三个数为( )A 、2,5,8B 、1,5,9C 、9,5,1D 、1,5,9或9,5,120、在等差数列{}n a 中,121=a ,其前n 项和为n S ,且1510S S =,则n S 的最大值为( )A 、74B 、76C 、78D 、80二、填空题(共4小题,每小题3分,共12分):21、数列1,4,9,16,25…的一个通项公式为 。

最新人教版高中数学必修5第二章数列测评(a卷)(附答案)

最新人教版高中数学必修5第二章数列测评(a卷)(附答案)

第二章 数列测评(A 卷)(总分:120分 时间:90分钟)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分) 1.等差数列-2,0,2,…的第15项为A .11 2B .12 2C .13 2D .142 答案:C ∵a 1=-2,d =2,∴a n =-2+(n -1)×2=2n -2 2. ∴a 15=152-22=13 2.2.等比数列{a n }的首项a 1=1002,公比q =12,记p n =a 1·a 2·a 3·…·a n ,则p n 达到最大值时,n 的值为A .8B .9C .10D .11答案:C a n =1002×(12)n -1<1⇒n>10,即等比数列{a n }前10项大于1,从第11项起小于1,故p 10最大.3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于 A .64 B .81 C .128 D .243答案:A 公比q =a 2+a 3a 1+a 2=63=2.由a 1+a 2=a 1+2a 1=3a 1=3,得a 1=1,a 7=26=64.4.设{a n }是等差数列,a 1+a 3+a 5=9,a 6=9,则这个数列的前6项和等于 A .12 B .24 C .36 D .48答案:B {a n }是等差数列,a 1+a 3+a 5=3a 3=9,a 3=3,a 6=9.∴d =2,a 1=-1,则这个数列的前6项和等于6(a 1+a 6)2=24.5.数列{a n }的通项公式为a n =(-1)n -1(4n -3),则它的前100项之和S 100等于 A .200 B .-200 C .400 D .-400答案:B 设数列可记为1,-5,9,-13,…,393,-397.其奇数项与偶数项分别是公差为8,-8的等差数列.于是,S 100=(1+9+13+…+393)-(5+13+…+397)=50×(1+393)2-50×(5+397)2=-200.6.各项都是正数的等比数列{a n }的公比q ≠1,且2a 2,a 3,a 1成等差数列,则a 5+a 6a 3+a 4的值为A .1+32B .1-32 C.1-52 D.5+12答案:A 由2a 2,a 3,a 1成等差数列得2a 3=2a 2+a 1,∴2a 1q 2=2a 1q +a 1,整理得2q 2-2q -1=0,解得q =1+32或q =1-32<0(因等比数列各项都是正数,故舍去).∴a 5+a 6a 3+a 4=a 3q 2+a 4q 2a 3+a 4=q 2=(1+32)2=1+32.7.(2009广东高考,理4)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于A .n(2n -1)B .(n +1)2C .n 2D .(n -1)2 答案:C 由{a n }为等比数列,则a 5·a 2n -5=a 1·a 2n -1=22n , 则(a 1·a 3·a 5·…·a 2n -1)2=(22n )n ⇒a 1·a 3·…·a 2n -1=2n 2, 故log 2a 1+log 2a 3+…+log 2a 2n -1=log 2(a 1·a 3·…·a 2n -1)=n 2.8.在各项均不为零的等差数列{a n }中,若a n +1-a n 2+a n -1=0(n ≥2),则S 2n -1-4n 等于 A .-2 B .0 C .1 D .2 答案:A 由a n +1-a n 2+a n -1=0(n ≥2),2a n =a n +1+a n -1,得a n 2=2a n ,即a n =2或a n =0(舍去),所以S 2n -1-4n =(2n -1)×2-4n =-2.9.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是A .i<4?B .i<5?C .i ≥5?D .i<6? 答案:D 该程序的功能是求和∑i =1n1i(i +1),由输出结果56=11×2+12×3+…+1n ×(n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,得n =5. 10.(2009山东潍坊高三第二次质检,11)已知函数f(x)=log 2x 的反函数为f -1(x),等比数列{a n }的公比为2,若f -1(a 2)·f -1(a 4)=210,则2f(a 1)+f(a 2)+…+f(a 2009)等于A .21004×2008B .21005×2009C .21005×2008D .21004×2009答案:D 由题意,得f -1(x)=2x ,故f -1(a 2)·f -1(a 4)=4222aa ⋅=210, ∴a 2+a 4=10,即2a 1+8a 1=10. ∴a 1=1.则f(a 1)+f(a 2)+…+f(a 2009)=log 2(a 1·a 2·…·a 2009)=log 220+1+2+…+2008=1+20082×2008=1004×2009.第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上) 11.若等差数列{a n }中,a 1+4a 7+a 13=96,则2a 2+a 17的值是__________. 答案:48 ∵a 1+4a 7+a 13=96,a 1+a 13=2a 7, ∴a 7=16.∴2a 2+a 17=a 1+a 3+a 17=a 7+a 11+a 3=a 7+2a 7=3a 7=48.12.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k(k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④等差比数列中可以有无数项为0,其中正确判断的序号是__________.答案:①④ 从定义可知,数列{a n }若构成“等差比数列”,则相邻两项不可能相等,所以①正确;而等差数列与等比数列均可能为常数列,就有可能不能构成“等差比数列”,所以②③错误;如数列为{2,0,2,0,2,0,…},则能构成“等差比数列”,所以④正确.综上所述,正确的判断是①④.13.在等比数列{a n }中,若a 5+a 6=a(a ≠0),a 15+a 16=b ,则a 25+a 26等于__________.答案:b 2a 由a 15+a 16a 5+a 6=(a 5+a 6)q 10a 5+a 6=b a ,则q 10=ba ,则a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)(q 10)2=a ×(b a )2=b 2a.14.对于一切实数x ,令[x]为不大于x 的最大整数,则函数f(x)=[x]称为高斯函数或取整函数.若a n =f(n3),n ∈N *,S n 为数列{a n }的前n 项和,则S 3n =__________.答案:3n 2-n 2 ∵f(x)=[x],∴a n =f(n 3)=[n3],n ∈N *.于是,S 3n =(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 3n -2+a 3n -1+a 3n ) =(0+0+1)+(1+1+2)+…+[(n -1)+(n -1)+n]=1+4+…+(3n -2)=n[1+(3n -2)]2=3n 2-n 2.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、解题步骤或证明过程)15.(本小题满分10分)(2009福建高考,文17)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .答案:解:(1)设{a n }的公比为q. 由已知得16=2q 3,解得q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. ∴数列{b n }的前n 项和S n =n(-16+12n -28)2=6n 2-22n.16.(本小题满分10分)已知数列{a n }的前n 项和S n =n(2n -1)(n ∈N *). (1)证明数列{a n }为等差数列;(2)设数列{b n }满足b n =S 1+S 22+S 33+…+S nn(n ∈N *),试判定:是否存在自然数n ,使得b n =900,若存在,求出n 的值;若不存在,请说明理由.答案:(1)证明:当n ≥2时,a n =S n -S n -1=n(2n -1)-(n -1)(2n -3)=4n -3, 当n =1时,a 1=S 1=1,适合. ∴a n =4n -3.∵a n -a n -1=4(n ≥2),∴{a n }为等差数列.(2)解:由(1)知,S n =2n 2-n ,∴S nn=2n -1.∴b n =S 1+S 22+S 33+…+S nn=1+3+5+7+…+(2n -1)=n 2.由n 2=900,得n =30,即存在满足条件的自然数,且n =30.17.(本小题满分10分)在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n}是等比数列;(2)求数列{a n }的前n 项和S n .答案:(1)证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n),n ∈N *. 又a 1-1=1,所以数列{a n -n}是首项为1,且公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n ,所以数列{a n }的前n 项和S n =(1+4+…+4n -1)+(1+2+…+n)=4n -13+n(n +1)2.18.(本小题满分12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求和:1S 1+1S 2+…+1S n.答案:解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧S 3b 3=(9+3d)q 2=960,S 2b 2=(6+d)q =64.解得⎩⎪⎨⎪⎧d =2,q =8或⎩⎨⎧d =-65,q =403(舍去).故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n(n +2), ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n(n +2) =12(1-13+12-14+13-15+…+1n -1n +2) =12(1+12-1n +1-1n +2) =34-2n +32(n +1)(n +2). 19.(本小题满分12分)在数列{a n }中,a 1=2,a 4=8,且满足a n +2=2a n +1-a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2n -1·a n ,求数列{b n }的前n 项和S n .答案:解:(1)∵a n +2=2a n +1-a n (n ∈N *), ∴a n +2-a n +1=a n +1-a n . ∴{a n }为等差数列.设公差为d ,则由题意,得8=2+3d ,∴d =2. ∴a n =2+2(n -1)=2n.(2)∵b n =2n -1·2n =n·2n ,∴S n =b 1+b 2+b 3+…+b n =1×21+2×22+3×23+…+n ×2n .①∴2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1.②①-②,得-S n =21+22+23+…+2n -n ×2n +1=2×(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n)×2n +1-2.∴S n =(n -1)·2n +1+2.。

高一数学必修五第二章试题——数列(带答案)

高一数学必修五第二章试题——数列(带答案)

高一数学必修五第二章试题一一数列一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 数列3, 5, 9, 17, 33,…的通项公式a n等于()A. 2n B . 2n+1 C . 2n- 1 D . 2n+12.记等差数列的前n项和为S,若4,S= 20,则该数列的公差d=()A. 2 B . 3 C . 6 D . 73. 在数列{a n}中,a1 = 2, 2a n+1 —2a n= 1,贝U a101 的值为()A . 49B . 50C . 51D . 524 .在等差数列{a n}中,若a1+ a2 + a3= 32, an + a12+ a13= 118,贝U a4 + ae= ()A . 45B . 50C . 75D . 605.公差不为零的等差数列{a n}的前n项和为S .若a4是a3与a7的等比中项,S B= 32,则So等于()A . 18B . 24C . 60D . 906 .等比数列{a n}的通项为a n = 2・3n_二现把每相邻两项之间都插入两个数,构成一个新的数列{b n},那么162是新数列{b n}的()A.第5项B .第12项C .第13项D .第6项7 .《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何”其意思为:“已知甲、乙丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱”(“钱”是古代的一种重量单位).这个问题中,甲所得为()5 4 3 5A . 4钱B . 3钱C . 2钱D . §钱8 .已知{a n}是等差数列,a a= 5, &= 17,数列{b n}的前n项和S= 3n,若a m=b1 + b4,则正整数m等于()A . 29B . 28C . 27D . 269. 在各项均为正数的等比数列{a n}中,a1 = 2且a?,色+ 2, a§成等差数列,记S是数列{a n}的前n项和,贝U S5=( )A. 32 B . 62 C . 27 D . 8110. 已知数列{a n}前n 项和为S= 1-5+ 9- 13+ 17-21 +…+ ( —1)宀(4n —3),则S15+ S22—S31 的值是()A. 13 B . —76 C . 46 D . 76x2 —1, x w 0,11 .已知函数f (X)= 把方程f (x) = x的根按从小f x—1 + 1,x>0,到大的顺序排列成一个数列{a n},则该数列的通项公式为()n n—1 *A . a n= (n€ N)B. a n= n(n—1)( n€ N)C. a n= n—1(n € N)D. a n= n —2(n€ N)12 .已知数列{a n}满足a n+1+ ( —1) n a n= 2n—1 ,S为其前n项和,则( )A. 3690 B . 1830 C . 1845 D . 3660二、填空题(本大题共4小题,每小题5分,共20分)113 .已知数列{a n}中,a1 = 10,&+1 = a n—q,则它的前n项和S n的最大值为14 .已知等比数列{a n}为递增数列,若a〉0,且2(a n+ a n+ 2) = 5a n+1,则数列{a n}的公比q = ______ .15 .在数列{a n}中,a1= 1,a2= 2,且a n+2 —a n= 1 + ( —1) n( n€ N),贝U a1 +a?+…+ a51 = __________________ .16 .某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元.设该设备使用了n(n€ N)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n等于___________________ .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)117. (本小题满分10分)设a , b , c 是实数,3a , 4b , 5c 成等比数列,且-, a1a c -成等差数列,求-+-的值. c c a 18. (本小题满分12分)数列{a n }的前n 项和为S,数列{b n }中,b = a 1, b n —a n— a n —1 (n A 2),右 a n + S = n , C n = a n — 1.(1) 求证:数列{C n }是等比数列;⑵求数列{b n }的通项公式.19. (本小题满分 12 分)已知数列{a n }满足 a 1— 1, a ?— 3, a n + 2 — 3a n +1 — 2a n (n * € N).(1)证明:数列{a n +1 — a n }是等比数列;⑵ 求数列{a n }的通项公式.20. (本小题满分12分)2010年4月14日,冰岛南部艾雅法拉火山喷发, 弥漫在欧洲上空多日的火山灰严重影响欧洲多个国家的机场正常运营.由于风 向,火山灰主要飘落在该火山口的东北方向与东南方向之间的地区.假设火山喷1 b ‘发停止后,需要了解火山灰的飘散程度,为了测量的需要,现将距离火山喷口中心50米内的扇形面记为第1区、50米至100米的扇环面记为第2区、…、50(n —1)米至50n米的扇环面记为第n 区,若测得第1区的火山灰每平方米的平均质量为1吨、第2区每平方米的平均质量较第1区减少了2%第3区较第2区又减少了2%依此类推,问:(1) 离火山口1225米处的火山灰大约为每平方米多少千克(结果精确到1千克)(2) 第几区内的火山灰总质量最大提示:当n较大时,可用(1 —x)n〜1-nx进行近似计算.21. (本小题满分12分)设数列{a n}的前n项和为S = 2n2,数列{b n}为等比数列,且ap b1, b2(a2—a" = b.(1)求数列{a n}和{ b n}的通项公式;a n⑵设C n=,求数列{C n}的前n项和T n.b n222. (本小题满分12分)已知a1 = 2,点(a n,a n+1)在函数f (x) = x + 2x的图象上,其中1, 2, 3,….(1) 证明:数列{lg (1 + a n)}是等比数列;(2) 设T n = (1 + aj • (1 + a2)…(1 + a n),求T n;1 1(3) 记b n=- + 0+3,求数列{b n}的前n项和S,并证明s<1.a n a n 十2、选择题1.答案B解析由于3 = 2+ 1,5 = 2 + 1,9= 2 + 1,…,所以通项公式是a n = 2 + 1.(或特值法,当n= 1时只有B项符合.)2.答案B解析S— S2= a3 + a4= 20—4= 16,a3+ a4 — S= (a3 —aj + (a4 —a2) = 4d= 16—4 = 12,—d = 3.3.答案D1解析-2a n+1 —2a n = 1 ,• • a n+1 —a n = 2.1•••数列{a n}是首项a1= 2,公差d=㊁的等差数列.1 a101 = 2+ q X (101 —1) = 52.4.答案B解析a1 + a2 + a3 = 3a2 = 32, an + a12+ a13= 3a12= 118,—3(a2+ a12)= 150, 即a2 + a12= 50,--a4 + a10= a2 + a12 = 50.5.答案C解析由a2= a3a?得(a1 + 3d)2= (a1+ 2d)( a^6d),即2a1+ 3d = 0. ①又S8 = 8a1+ 56d = 32,则2a1+ 7d = 8.②由①②,得d= 2, a1 = —3.90所以So= 10a1 + ~d = 60.故选 C.答案C6.解析162是数列{a n}的第5项,则它是新数列{b n}的第5+ (5 - 1) X 2= 13项.7.答案B解析依题意设甲、乙、丙、丁、戊所得钱分别为a —2d,a—d,a,a+ d, a+ 2d,则由题意可知,a —2d+ a—d= a+ a+ d + a+ 2d,即卩a= —6d,又a—2d+ a — d + a+ a+ d + a+ 2d= 5a = 5,二a= 1,a 4 4则a—2d = a —2X —百=§a = 3.故选 B.8.答案A解析因为{a n}是等差数列,a9 = 17,a3= 5,所以6d= 17 —5,得d= 2,a n =2n—1 .又因为S = 3,所以当n= 1 时,4= 3,当n》2 时,S—1 = 3 1, b n= 3n—3 1 = 2・3 1,由a m= b1 + b4,得2m— 1 = 3+ 54,得m= 29,故选 A.9.答案B解析设各项均为正数的等比数列{a n}的公比为q,又a1 = 2,贝U a2= 2q,a4+ 2= 2q3+ 2,a5=2q4,••• a2,a4 + 2,a s成等差数列,二4q3+ 4 = 2q+ 2q4, ••• 2(q3+ 1) = q(q3+ 1),由q>0,解得q = 2,2 1 —2585= = 62.故选B.1 —210.答案B解析•/ S= 1 —5+ 9—13+ 17—21 +…+ (—1) 1(4n-3),• 814= 7X (1 —5) = —28,a15= 60—3 = 57,$2= 11 X (1 —5) = —44,$0= 15X (1 —5) = —60,二S15= S14+ a15=29, S31= S30+a31=61.a31= 124—3=121,二S15+ S22 —S31 = 29—44 —61 = —76 .故选 B.11.答案C解析令2x— 1 = x(x<0),易得x= 0.当0<x<1时,由已知得f (x —1) + 1 = x, 即2x—1—1+ 1 = 2x—1= x,贝U x= 1. 当1<x<2时,由已知得f(x) = x,即f(x —1) + 1= x,即f(x —2) + 1 + 1= x, 故2x —2+ 1 = x,则x = 2.因此,a1= 0,a2= 1 ,a3= 2,结合各选项可知该数列的通项公式为a n= n —1(n € N).故选C.12.答案B解析①当n 为奇数时, a n+1—a n= 2n—1,a n+2+ a n+1= 2n+ 1 ,两式相减得a n+2+ a n= 2;②当n 为偶数时, a n+1+ a n=2n—1, a n+2—a n+1= 2n+ 1 ,两式相加得a n+ 2 + a n= 4n,^故S60 = a1 + a3 + a5+…+ a59+ (a2 + a4 + ◎ + …+ 36。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修五第二章《数列》测试题 姓名_________________班级______________________一.选做题:1、已知数列5,11,17,23,29,,则55是它的第( )项 A 、 19 B 、20 C 、21 D 、222.若数列{}n a 中,n a =43-3n ,则n S 最大值n=( )A .13B .14C .15D .14或153.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )A .64B .81C .128D .2434.已知数列{n a }既是等差数列又是等比数列,则这个数列的前n 项和为A.0 B .n C.n a 1 D.a 1n 5.如果,,1)()1(*∈+=+N n n f n f 且,2)1(=f 则=)100(f102.101.100.99.D C B A6.已知数列{n a }的前n 项和n S =3n a -2,那么下面结论正确的是A.此数列为等差数列 .此数列为等比数列C.此数列从第二项起是等比数列 D.此数列从第二项起是等差数列7.已知等差数列{n a }满足,0101321=++++a a a a 则有57.0.0.0.5199310021011==+<+>+a D a a C a a B a a A8.如果数列{n a }的前n 项和323-=n n a S ,那么这个数列的通项公式是 A.n a =2(n 2+n .n a =3·2n C.n a =3nD.n a =2·3n 9.在等比数列{n a }中,,60,482==n n S S 则n S 3等于63.62.27.26.D C B A10.已知等比数列{n a }中,n a =2×31-n ,则由此数列的偶数项所组成的新数列的前n 项和n S 的值为A.3n -.3(3n -C.419-n D.4)19(3-n11.实数等比数列{n a },n S =n a a a +++ 21,则数列{n S }中A.任意一项都不为零 .必有一项为零C.至多有有限项为零 D.可以有无数项为零12.△ABC 的内角C B A ,,的对边分别为c b a ,,,且c b a ,,成等比数列,a c 2=,则 B cos =A.14B.12C.12- D.34 二、填空题:13.等差数列{}n a 中,n S =40,1a =13,d =-2 时,n =______________。

14.在等比数列{}n a 中,34151211-=-==n n S a a ,,,则=q ______________,=n ______________。

15.三个数成等比数列,它们的积为512,如果中间一个数加上2,则成等差数列,这三个数是 .16.若数列{}n a 是等差数列,103,a a 是方程0532=--x x 的两根,则=+85a a 。

三、解答题:17.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .18.已知数列{n a }满足)2(3,1111≥+==--n a a a n n n ,(1)求.,42a a(2)求证213-=n n a 。

19.求和:)2(111411311212222≥-++-+-+-n n20.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+(I )设12n n n b a a +=-,证明数列{}n b 是等比数列 (II )求数列{}n a 的通项公式。

21、(本小题16分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .22.观察下面的数阵, 容易看出, 第n 行最右边的数是2n , 那么第20行最左边的数是几?第20行所有数的和是多少?12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 … … … … … … … … …答案:一、C B A C C B C D D D D D二、13.4或10 14.-2 、10 15.4,8,16 或 16,8,4 16.3 三、17.解:设{}n a 的公差为d ,则()()11112616350a d a d a d a d ⎧++=-⎪⎨+++=⎪⎩即22111812164a da d a d ⎧++=-⎨=-⎩解得118,82,2a a d d =-=⎧⎧⎨⎨==-⎩⎩或因此()()()()819819n n S n n n n n S n n n n n =-+-=-=--=--,或18.(1)解:.40133,1343,413,1342321=+==+==+==a a a a(2)证明:由已知113--=-n n n a a ,得11232211)()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----13333321+++++=--- n n n 213-=n ; 213-=∴nn a 。

19.解:)1111(21)1)(1(1112+--=-+=-n n n n n 111411311212222-++-+-+-∴n)]1111()5131()4121()311[(21+--++-+-+-=n n )2.()1(21243)111211(21≥++-=+--+=n n n n n n19.(I )证明:由11,a =及142n n S a +=+,有12142,a a a +=+2112325,23a a b a a =+=∴=-=由142n n S a +=+,...① 则当2n ≥时,有142n n S a -=+.....②②-①得111144,22(2)n n n n n n n a a a a a a a +-+-=-∴-=-又12n n n b a a +=-,12n n b b -∴={}n b ∴是首项13b =,公比为2的等比数列.(II )解:由(I )可得11232n n n n b a a -+=-=⋅,113224n n n n a a ++∴-= ∴数列{}2n na 是首项为12,公差为34的等比数列. ∴1331(1)22444n n a n n =+-=-,2(31)2n n a n -=-⋅21、解:设数列{}n a 的公差为d ,则3410a a d d =-=-,642102a a d d =+=+,1046106a a d d =+=+.····························································································3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+,整理得210100d d -=,解得0d =或1d =. ··································································································7分 当0d =时,20420200S a ==. ···············································································9分 当1d =时,14310317a a d =-=-⨯=,22. 第20行最左边的数为2191362+=,第20行共有220139⨯-=个连续的自然数,它们的和是()39362400148592⨯+=. 于是2012019202S a d ⨯=+207190330=⨯+=. 1。

相关文档
最新文档