电力电子总结
2024年电力电子学知识点总结
2024年电力电子学知识点总结电力电子学是研究将电力进行控制、转换和处理的一门学科。
它广泛应用于电力系统、电气驱动和电力供应等领域。
随着科技的不断发展和创新,电力电子学也在不断演进。
以下是2024年电力电子学的一些重要知识点总结。
1.功率半导体器件:功率半导体器件是电力电子学的基础。
常见的功率半导体器件包括晶闸管、IGBT、MOSFET等。
这些器件具有耐高电压、高电流和高温等特点,可以实现高效的功率转换和控制。
2.开关电源:开关电源是一种将电能进行高效转换和稳定输出的电源系统。
常见的开关电源拓扑结构包括脉冲宽度调制(PWM)控制的单端和双端开关电源,以及谐振开关电源。
开关电源具有高效率、体积小和重量轻的特点,被广泛应用于计算机、通信和工业控制等领域。
3.交流调压:交流调压是将交流电能转换为直流电能的过程。
常见的交流调压技术包括整流和逆变。
整流将交流电转换为脉动的直流电,而逆变将直流电转换为交流电。
交流调压技术被广泛应用于电力系统的输电和配电、电动车充电和可再生能源发电等领域。
4.电力因数校正:电力因数是交流电中有功功率与视在功率之比。
电力因数校正是通过电力电子技术改善电力系统的功率因数。
常见的电力因数校正技术包括有源功率因数校正和无源功率因数校正。
电力因数校正可以提高电力系统的效率、减少系统的损耗,并符合电力系统的标准和规范。
5.电力质量控制:电力质量是指电力系统中电压、电流和频率等参数的稳定性和纯净度。
电力质量控制是通过电力电子技术实现对电力质量的监测、调节和保护。
常见的电力质量控制技术包括谐波滤波、电压调节和无功补偿。
电力质量控制可以提高电力系统的稳定性,减少电力中的谐波和干扰,并保证电力设备的正常运行。
6.电力电子与可再生能源:可再生能源包括太阳能、风能、水能等,它们是未来能源发展的重要方向。
电力电子技术在可再生能源的发电、转换和集成方面发挥着重要作用。
通过电力电子技术,可以实现可再生能源与电力系统的无缝连接,提高能源的利用效率和系统的稳定性。
大二电力电子技术基础知识点总结
大二电力电子技术基础知识点总结如下是大二电力电子技术基础知识点的总结:电力电子技术是电气工程领域的重要分支之一,它主要涉及电力电子器件和电力电子电路的设计与应用。
在大二的学习中,我们接触到了很多电力电子技术的基础知识点,这些知识点对于我们的学习和未来的工作都有着重要的意义。
下面是对这些知识点的总结:1. 电力电子器件电力电子器件是实现电力电子技术的基石,常见的电力电子器件有功率场效应管(MOSFET)、双极型晶体管(BJT)、绝缘栅双极型晶体管(IGBT)等。
这些器件具有不同的特性和应用场景,我们需要掌握它们的工作原理、特性参数以及选型和驱动方法。
2. 电力电子电路电力电子电路是电力电子技术的核心,其中包括直流-直流变换器、直流-交流变换器、交流-交流变换器等。
我们需要了解这些电路的结构和工作原理,掌握它们的控制方法、效率计算以及应用领域。
3. 开关功率器件开关功率器件是电力电子电路的关键组成部分,常见的开关功率器件有晶闸管(SCR)、双向可控硅(Triac)、发光二极管(LED)等。
了解开关功率器件的工作原理、特性和保护方法,能够更好地设计和应用电力电子电路。
4. 电力电子变换器电力电子变换器是实现电能的变换与调控的关键设备,常见的电力电子变换器有直流电压变换器、直流电流变换器、交流电压变换器等。
我们需要了解这些变换器的结构和动作原理,掌握它们的控制策略、效率计算以及在电力系统中的应用。
5. 短路保护与故障诊断在电力电子技术应用中,短路故障是常见的问题。
我们需要学习短路保护的原理和方法,能够设计和应用短路保护电路。
同时,故障诊断技术也十分重要,我们需要了解故障诊断的基本原理和方法,能够快速准确地分析和解决故障问题。
6. 可编程控制器(PLC)在电力电子技术中的应用近年来,可编程控制器在电力电子技术中的应用越来越广泛。
我们需要了解PLC的基本原理和应用技巧,能够利用PLC实现电力电子设备的自动控制和远程监控。
电力电子学知识点总结
电力电子学知识点总结电力电子学是研究电力系统中的电力变换、控制和调节的学科,主要包括功率半导体器件、电力电子器件、电力电子电路、电力电子系统以及其工作原理和应用等方面的内容。
下面将对电力电子学的基本知识点进行总结,以便更好地理解和应用电力电子技术。
一、功率半导体器件功率半导体器件是电力电子电路中的核心部件,其主要作用是实现电能的变换和控制。
常见的功率半导体器件有二极管、晶闸管、可控硅、大功率晶体管和金属氧化物半导体场效应晶体管(MOSFET)等。
这些器件的工作原理、特性和应用有所不同,选择适合的器件对电力电子系统的性能具有重要影响。
1.二极管:二极管是一种具有两个电极的器件,主要用于整流电源电路中。
其工作原理是当正向电压施加在二极管上时,电流可以流过,而反向电压施加时,二极管具有很高的阻抗。
2.晶闸管:晶闸管是一种具有三个电极的器件,主要用于控制高功率交流电流。
其工作原理是通过一个控制电极的信号来控制另外两个电极之间的导通和截止状态。
3.可控硅:可控硅也是一种具有三个电极的器件,其特点是只有在一个特定的触发脉冲下才能开启,一旦开启就可以持续导通。
可控硅主要用于交流电压控制以及电能的调节。
4.大功率晶体管:大功率晶体管是一种可以承受大电流和大功率的晶体管。
它具有高增益和低饱和压降的特点,适用于高频率和高功率的应用。
5.MOSFET:MOSFET是一种依靠电场效应来控制导通的器件。
它具有低导通电阻、高开关速度和优异的抗击穿能力,适用于高频率和高效率的应用。
二、电力电子电路电力电子电路是将功率半导体器件组合成特定功能的电路,用于实现电能的变换、控制和调节。
常见的电力电子电路有整流电路、逆变电路、升压和降压变换器等。
1.整流电路:整流电路是将交流电转换为直流电的电路。
常见的整流电路有单相和三相整流桥电路,可以采用二极管或可控硅进行整流。
2.逆变电路:逆变电路是将直流电转换为交流电的电路。
逆变电路有单相和三相逆变电路,可以采用晶闸管或可控硅进行逆变。
电力电子技术总结
电力电子技术总结电力电子技术总结1晶闸管是三端器件,三个引出电极分别是阳极,门极和阴极。
2单向半波可控整流电路中,控制角α最大移相范围是0~180°3单相半波可控整流电路中,从晶闸管开始导通到关断之间的角度是导通角 4在电感性负载三相半波可控整流电路中,晶闸管承受的最大正向电压为√6U2 5在输入相同幅度的交流电压和相同控制角的条件下,三相可控整流电路与单相可控整流电路比较,三相可控可获得较高的输出电压6直流斩波电路是将交流电能转化为直流电能的电路7逆变器分为有源逆变器和无源逆变器8大型同步发电机励磁系统处于灭磁运行时,三相全控桥式变流器工作于有源逆变9斩波器的时间比控制方式分为点宽调频,定频调宽,调宽调频三种 10 DC 变换的两种主要形式为斩波电路控制型和直交直电路 11在三相全控桥式变流电路中,控制角和逆变角的关系为α+β=π12三相桥式可控整流电路中,整流二极管在每个输入电压基波周期内环流次数为6次 13在三相全控桥式整流逆变电路中,直流侧输出电压Ud=-β 14在大多数工程应用中,一般取最小逆变角β的范围是β=30° 15在桥式全控有源逆变电路中,理论上你逆变角β的范围是0~30° 16单相桥式整流电路能否用于有源逆变电路中是17改变SPWM逆变器中的调制比,可以改变输出电压的幅值电流型逆变器中间直流环节贮能元件是大电感19三相半波可控整流电路能否用于有源逆变电路中?能20在三相全控整流电路中交流非线性压敏电阻过电压保护电路的连接方式有星型和三角形 21抑制过电压的方法之一是用储能元件吸收可能产生过电压的能量,并用电阻将其消耗 22为了利用功率晶闸管的关断,驱动电流后延应是一个负脉冲23 180°导电型电压源型三相桥式逆变电路,其换相是在同一桥臂的上下两个开关元件之间进行24改变SPWM逆变器的调制波频率,可以改变输出电压的基波频率。
25恒流驱动电路中抗饱和电路的主要作用是减小器件的存储时间,从而加快关断时间。
电力电子知识点总结
电力电子知识点总结电力电子是一门涉及电力系统中电能的转换和控制的学科。
在电力系统中,电能的转换和控制是实现能量的高效传输和管理的关键。
以下是电力电子的一些主要知识点的总结。
1. 电力电子器件电力电子器件是实现电能转换和控制的核心组成部分。
以下是一些常见的电力电子器件。
1.1 整流器整流器是将交流电转换为直流电的器件。
常见的整流器有单相和三相整流器。
单相整流器单相整流器是将单相交流电转换为直流电的器件。
常见的单相整流器有单相半波整流器和单相全波整流器。
单相半波整流器单相半波整流器通过绝缘栅双极型晶体管(IGBT)或二极管将单相交流电的负半周整流为直流电。
单相全波整流器单相全波整流器通过绝缘栅双极型晶体管(IGBT)或二极管将单相交流电的全周期整流为直流电。
三相整流器三相整流器是将三相交流电转换为直流电的器件。
常见的三相整流器有三相半波整流器和三相全波整流器。
1.2 逆变器逆变器是将直流电转换为交流电的器件。
常见的逆变器有单相和三相逆变器。
单相逆变器单相逆变器通过绝缘栅双极型晶体管(IGBT)或金属氧化物半导体场效应晶体管(MOSFET)将直流电转换为单相交流电。
三相逆变器三相逆变器通过绝缘栅双极型晶体管(IGBT)或金属氧化物半导体场效应晶体管(MOSFET)将直流电转换为三相交流电。
2. 电力电子应用电力电子在电力系统中有广泛的应用。
以下是一些常见的电力电子应用。
2.1 变频调速变频调速是通过电力电子器件控制电机的转速,实现对电机功率的精确控制。
这在许多工业应用中非常重要,例如电梯、风力发电机组和电动汽车。
2.2 可再生能源发电电力电子在可再生能源发电中起到关键作用。
例如,风力发电和太阳能光伏发电系统中的电力电子器件可以将可再生能源转换为交流电并连接到电网。
2.3 电力传输和配电电力电子在电力传输和配电中也发挥着重要的作用。
例如,柔性交流输电系统(FACTS)可以通过调节电力电子组件的参数来提高电力系统的稳定性和可靠性。
电力电子技术总结完整版
电力电子技术总结HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】1、电力电子技术的概念:所谓电力电子技术就是应用于电力领域的电子技术。
2、电力电子技术的诞生是以1957年美国通用电气公司研制出第一个晶闸管为标志的。
3、晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。
对晶闸管电路的控制方式主要是相位控制方式,简称相控方式。
4、70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。
5、全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。
6、把驱动、控制、保护电路和电力电子器件集成在一起,构成电力电子集成电路(PIC)。
第二章1、电力电子器件的特征◆所能处理电功率的大小,也就是其承受电压和电流的能力,是其最重要的参数,一般都远大于处理信息的电子器件。
◆为了减小本身的损耗,提高效率,一般都工作在开关状态。
◆由信息电子电路来控制 ,而且需要驱动电路。
◆自身的功率损耗通常仍远大于信息电子器件,在其工作时一般都需要安装散热器2、电力电子器件的功率损耗3、电力电子器件的分类(1)按照能够被控制电路信号所控制的程度◆半控型器件:主要是指晶闸管(Thyristor )及其大部分派生器件。
器件的关断完全是由其在主电路中承受的电压和电流决定的。
◆全控型器件:目前最常用的是 IGBT 和Power MOSFET 。
通过控制信号既可以控制其导通,又可以控制其关断。
◆不可控器件:电力二极管(Power Diode ) 不能用控制信号来控制其通断。
(2)按照驱动信号的性质◆电流驱动型 :通过从控制端注入或者抽出电流来实现导通或者关断的控制。
通态损耗断态损耗开关损耗 开通损耗关断损耗◆电压驱动型仅通过在控制端和公共端之间施加一定的电压信号就可实现导通或者关断的控制。
电力电子技术实训心得(精选5篇)
电力电子技术实训心得(精选5篇)电力电子技术实训心得(篇1)我从中学到了很多宝贵的经验和知识。
通过这次电子工艺实习,我深刻的认识到了,理论知识和实践相结合是教学环节中相当重要的一个环节,只有这样才能提高自己的实际操作能力,并且从中培养自己的独立思考、勇于克服困难。
这次实习我真的很高兴,主要是自己亲自参与并弄好了一个收音机。
虽然是第一次自己亲手做实验,但是我在这次实习中认识到,只有自己亲手做了,才会明白其实很多事是很简单的,只要你敢做,就没有你做不到的事。
谁都有第一次,谁都会认为第一次是最难的。
在我刚刚拿到零件的时候,看到那么多的东西,还是很手忙脚乱的。
尤其是电阻那么的小,要是丢上一个,那就是前功尽弃了。
通过这一次的电子器件实习我不仅对成功有了更大向往,而且对于失败我也明白坦然的好处和换个角度想的态度。
一切的技术与经验都是在实践中一点一滴的积累来的,这次我又知道了不少电路元件与如何安装的知识。
实习是培养我们动手能力的一个好机会,通过这次的工艺实习,我们学会了基本的焊接技术,收音机的检测与调试,知道了电子产品的装配过程,我们还学会了电子元器件的识别及质量检验,知道了整机的装配工艺,这些为我们的培养动手能力及严谨的工作作风,也为我们以后的工作打下了良好的基矗总之,在实习过成中,要时刻保持清醒的头脑,出现错误,一定要认真的冷静的去检查分析错误!在实习过程中最挑战我动手能力的一项训练就是焊接。
焊接是金属加工的基本方法之一。
其基本操作"五步法"——准备施焊,加热焊件,熔化焊料,移开焊锡,移开烙铁(又"三步法")——看似容易,实则需要长时间练习才能掌握。
但焊接考核逼迫我们用仅仅一天的时间完成考核目标,可以说是必须要有质的飞跃。
于是我耐下心思,戒骄戒躁,慢慢来。
在不断挑战自我的过程中,我拿着烙铁的手不抖了,送焊锡的手基本能掌握用量了,焊接技术日趋成熟。
当我终于能用最短时间完成一个合格焊点时,对焊接的恐惧早已消散,取而代之的是对自己动手能力的信心。
电力电子技术知识点总结
电力电子技术知识点总结一、电力电子器件1. 晶闸管:晶闸管是一种具有双向导电性能的电子器件,可以控制大电流、大功率的交流电路。
其结构简单,稳定性好,具有一定的可逆性,可用作直流电压调节元件、交流电压调节元件、静止开关、逆变器等。
2. 可控硅:可控硅是一种具有双向导电性的半导体器件,具有控制开关特性,可用于控制大电流、大功率的交流电路。
可控硅具有可控性强,工作稳定等特点,适用于电力调节、交流电源、逆变器等领域。
3. MOSFET:MOSFET是一种以金属氧化物半导体栅极场效应晶体管为基础的器件,和普通的MOS晶体管相比,MOSFET在导通电阻上有较低的压降、耗散功率小、寄生电容小、开关速度快等优点,适用于开关电路、逆变器、电源调节等领域。
4. IGBT:IGBT是一种继承了MOSFET和双极晶体管的特点的半导体器件,具有高阻塞电压、低导通压降、大电流、耐脉冲电流等特点,适用于高频开关电路、变频器、电源逆变器、电机调速等领域。
5. 二极管:二极管是最基本的电子元件之一,具有正向导通和反向截止的特点,广泛用于整流、短路保护、开关电源等方面。
以上所述的电力电子器件是电力电子技术的基础,掌握了这些器件的特性和应用,对于电力电子技术的学习和应用具有重要的意义。
二、电力电子拓扑结构1. 变流器拓扑结构:变流器是电力电子技术中的一种重要装置,用于将直流电转换为交流电或者改变交流电的频率、电压和相数等。
常见的变流器拓扑结构包括单相全桥变流器、三相全桥变流器、单相半桥变流器、三相半桥变流器等。
2. 逆变器拓扑结构:逆变器是电力电子技术中的一种重要装置,用于将直流电转换为交流电,逆变器可以选择不同的拓扑结构和控制策略,以满足不同的电力系统需求。
常见的逆变器拓扑结构包括单相全桥逆变器、三相全桥逆变器、单相半桥逆变器、三相半桥逆变器等。
3. 母线型柔性直流输电系统:母线型柔性直流输电系统是一种新型电力电子系统,用于将大容量的交流电转换为直流电进行长距离输电。
电力电子行业工作经验总结
电力电子行业工作经验总结在过去的xxx年里,我在电力电子行业中积累了丰富的工作经验。
通过与各种电力电子设备和技术的接触,我不仅提升了自己的专业能力,还在实践中不断成长和发展。
本文将总结我在电力电子行业的工作经验,并分享一些我所学到的重要教训和感悟。
总结一:技术水平的提升在我的工作经历中,技术水平的提升是我在电力电子行业中最重要的收获之一。
通过参与各类电力电子项目,包括逆变器、变频器和电能质量控制器等,我不仅了解了这些设备的工作原理,还学会了如何进行产品设计、开发和测试。
在不断修正和完善设计方案的过程中,我深刻认识到技术上的细节和严谨性的重要性。
此外,我也了解到电力电子行业的技术发展速度十分迅猛。
为了保持自己的竞争力,我积极学习新的技术知识并跟踪最新的行业动态。
不仅要掌握基础知识,还需要了解行业趋势和市场需求。
这样可以帮助我更好地适应行业的变化并为公司带来创新和竞争优势。
总结二:团队协作的重要性在电力电子项目中,团队协作是非常关键的。
作为一个团队成员,我学会了如何与不同职能部门进行有效的沟通和协调。
通过与工程师、项目经理、市场团队和客户等各种团队成员的合作,我更好地理解了产品的整体开发流程,并提高了自己的团队合作能力和沟通能力。
同时,我也学到了有效领导团队的能力。
在某些项目中,我被委以领导角色,需要协调团队成员、制定计划和解决问题。
通过这些经历,我学会了如何发挥每个团队成员的优势,激发他们的潜力,并最终实现项目目标。
总结三:质量控制与安全意识在电力电子行业中,质量控制和安全意识是非常重要的。
在项目开发和生产过程中,我始终坚持高标准的质量控制,并参与制定和改进相关流程和标准。
通过有效的质量控制措施,我在项目中节省了成本、提高了产品质量,并提高了客户满意度。
同时,我始终将安全放在首位。
在现场安装、调试和维护过程中,我严格遵守相关安全操作规程,确保团队和设备的安全。
我还积极参与安全培训和交流活动,提高自己的安全意识和应急处理能力。
电力电子实训总结和心得体会
电力电子实训总结和心得体会电力电子实训总结和心得体会电子技术的实习要求我们熟悉电子元器件、熟练掌握相关工具的操作以及电子设备的制作、装调的全过程,从而有助于我们对理论知识的理解,帮助我们学习专业的相关知识。
下面是带来的五篇电力电子实训总结和心得体会,希望大家喜欢!电力电子实训总结和心得体会1随着大功率半导体开关器件的发明和变流电路的进步和发展,产生了利用这类器件和电路实现电能变换与控制的技术——电力电子技术。
电力电子技术横跨电力、电子和控制三个领域,是现代电子技术的基础之一,是弱电子对强电力实现控制的桥梁和纽带,已被广泛应用于工农业生产、国防、交通、能源和人民生活的各个领域,有着极其广阔的应用前景,成为电气工程中的基础电子技术。
本学期实验课程共进行了四个实验。
包括单结晶体管触发电路实验,单相半波整流电路实验,三相半波有源逆变电路实验,单相交流调压电路实验.单结晶体管触发电路实验实验目的(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。
(2)掌握单结晶体管触发电路的基本调试步骤。
实验线路及原理单结晶体管触发电路利用单结晶体管(又称双基极二极管)的负阻特性和rc充放电特性,可组成频率可调的自激振荡电路。
v6为单结晶体管,其常用型号有bt33和bt35两种,由等效电阻v5和c1组成rc充电回路,由c1-v6-脉冲变压器原边组成电容放电回路,调节rp1电位器即可改变c1充电回路中的等效电阻,即改变电路的充电时间。
由同步变压器副边输出60v 的交流同步电压,经vd1半波整流,再由稳压管v1、v2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过r7及等效可变电阻v5向电容c1充电,当充电电压达到单结晶体管的峰值电压up时,v6导通,电容通过脉冲变压器原边迅速放电,同时脉冲变压器副边输出触发脉冲;同时由于放电时间常数很小,c1两端的电压很快下降到单结晶体管的谷点电压uv,使得v6重新关断,c1再次被充电,周而复始,就会在电容c1两端呈现锯齿波形,在每次v6导通的时刻,均在脉冲变压器副边输出触发脉冲;在一个梯形波周期内,v6可能导通、关断多次,但对晶闸管而言只有第一个输出脉冲起作用。
电力电子装置知识点总结
电力电子装置知识点总结一、电力电子基础知识1. 电力电子的定义电力电子是将电力系统与电子技术结合起来的一门学科,它主要研究在电力系统中利用电子器件进行能量转换、调节和控制的技术。
2. 电力电子的发展历程电力电子技术最早的应用可以追溯到20世纪50年代初,经过半个多世纪的发展,电力电子技术已经得到了广泛的应用,成为了电力系统中不可或缺的一部分。
3. 电力电子的优点电力电子技术在电力系统中的应用具有很多优点,如能量转换效率高、动态性能好、结构灵活、控制精度高等。
4. 电力电子原理电力电子器件的工作原理主要包括整流器、逆变器、开关、电抗器等,其中整流器用于将交流电转化为直流电,逆变器用于将直流电转化为交流电,开关用于控制电路的通断,电抗器用于电流和电压的调节。
二、电力电子器件1. 二极管二极管是一种最基本的电力电子器件,它主要用于整流和开关等应用。
2. 晶闸管晶闸管是一种受控硅器件,具有双向导通性能和触发控制特性,常用于交流电调节、开关和逆变等应用。
3. 可控硅可控硅是一种受控硅器件,具有单向导通性能和触发控制特性,常用于整流和逆变等应用。
4. IGBTIGBT是一种绝缘栅双极晶体管,具有高频调制特性和大功率开关特性,常用于逆变和交流电调节等应用。
5. MOSFETMOSFET是一种金属氧化物半导体场效应管,具有低导通电阻和低驱动功率,常用于低压高频开关电源中。
6. 发光二极管发光二极管是一种电光转换器件,可以将电能转换为光能,广泛应用于指示灯、显示屏、照明等领域。
7. 功率电阻器功率电阻器是一种具有大功率承受能力的电阻器,用于电流和电压的调节、限制。
三、电力电子应用1. 电能转换电力电子技术主要应用于电能的转换过程中,将交流电转化为直流电或将直流电转化为交流电,以满足不同负载对电能形式的需求。
2. 调节与控制电力电子技术可以实现对电能的调节和控制,包括电压、电流、频率等参数的调节和精确控制,以满足不同电力系统的要求。
电力电子技术知识总结
电力电子技术知识总结电力电子技术是一个研究电力系统中能量的电子转换和控制的学科,它在电力系统的输配电过程中发挥着关键作用。
下面将对电力电子技术的基本原理、常用器件和应用领域进行总结。
电力电子技术的基本原理主要涉及能量的转换、控制和变换等方面。
其中,能量转换指的是将电力系统中的电能转换为其他形式的能量,例如机械能或热能;能量控制则是对电力系统中能量的流动进行控制,以保证系统的稳定和可靠运行;能量变换则是将电力系统中的电流和电压进行变换,以满足不同设备的工作需求。
在电力电子技术中,常用的器件有晶闸管、可控硅、IGBT和MOSFET等。
其中,晶闸管是一种具有可控导通能力的开关元件,广泛应用于直流电力传输和交流电功率控制系统中;可控硅是一种三层结构的半导体器件,具有可控导通和导通角的特点,常用于电力系统的调压和调速控制;IGBT是一种由双极性晶体管和MOSFET组成的器件,结合了二者的优点,适用于高压和高频应用;MOSFET则是一种最常用的功率开关管,具有速度快、损耗小和驱动电压低等特点。
电力电子技术在诸多领域有着广泛的应用,其中最常见的是电力变换和传输系统。
例如,直流输电系统中,电力电子技术可以实现高压直流输电,提高输电效率;交流输电系统中,电力电子技术可以实现交流电压和频率的调整,以适应不同工况。
此外,电力电子技术还应用于电力工具、家用电器、工业自动化、电动汽车等领域,提高了系统的效能和可靠性。
此外,电力电子技术还与能源转换和储能技术密切相关。
例如,太阳能光伏系统中,电力电子技术可以对光伏阵列产生的直流电进行变换和控制,以满足不同负载的需求;同时,电力电子技术还可以应用于储能系统,例如电动汽车的电池组和储能电站中,对电能的储存和释放进行控制。
总结来说,电力电子技术在电力系统中的应用十分重要。
它通过能量的转换、控制和变换,实现了电力系统的高效运行和灵活控制。
而晶闸管、可控硅、IGBT和MOSFET等器件则为电力电子技术的实现提供了基础。
电力电子知识点总结
第一章电力电子技术是应用于电力领域的电子技术,也就是使用电力电子器件对电能进行变换和控制的技术。
电子技术包括信息技术和电力电子技术两大分支。
电力电子器件:半控器件:晶闸管( SCR)、门极可关断晶闸管(GTO)。
全控器件:电力晶体管(GTR)、绝缘栅双极晶体管(IGBT)、电力场效应晶体管(电力MOSFET)。
不可控器件:电力二极管(整流二极管)电力电子器件的分类:按照驱动电路信号的性质,分为两类:电流驱动型:晶闸管SCR、门极可关断晶闸管GTO、电力晶体管 GTR电压驱动型:电力场效应晶体管MOSFET、绝缘栅双极晶体管IGBT按照器件内部参与导电的情况分为两类:单极型器件:电力MOSFET双极型器件:电力二极管、晶闸管SCR、门极可关断晶闸管GTO、电力晶体管 GTR混合型器件:绝缘栅双极晶体管IGBT晶闸管正常工作时的特性:承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。
承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。
晶闸管一旦导通,门极就失去控制作用。
若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。
关断时间大于晶闸管的电路换向关断时间,才能可靠关断。
GTO能够通过门极关断的原因是其与普通晶闸管有如下区别:设计α2较大,使晶体管V2控制灵敏,易于GTO关断。
导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
晶闸管非正常导通的几种情况:阳极电压升高至相当高的数值照成雪崩现象;阳极电压上升率过高;结温较高;光直接照射硅片,即光触发;第二章单向可控整流电路:单向半波可控整流电路:A电阻负载:相关概念:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用α表示,也称触发角或控制角。
晶闸管在一个电源周期中处于通态的电角度,用θ表示。
θπα=-通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,简称相控方式。
(整理)电力电子教材重点知识点总结
《电力电子技术》复习题第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现,也叫斩波电路(4)交流变交流AC-AC:可以是电压或电力的变换,一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。
4、相控方式;对晶闸管的电路的控制方式主要是相控方式5、斩空方式:与晶闸管电路的相位控制方式对应,采用全空性器件的电路的主要控制方式为脉冲宽度调制方式。
相对于相控方式可称之为斩空方式。
第2章电力电子器件1 电力电子器件与主电路的关系(1)主电路:电力电子系统中指能够直接承担电能变换或控制任务的电路。
(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。
广义可分为电真空器件和半导体器件。
2 电力电子器件一般特征:1、处理的电功率小至毫瓦级大至兆瓦级。
2、都工作于开关状态,以减小本身损耗。
3、由电力电子电路来控制。
4、安有散热器3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。
(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。
(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。
(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。
4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。
如SCR晶闸管。
(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
如GTO、GTR、MOSFET和IGBT。
(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。
电力电子知识点总结
电力电子知识点总结电力电子知识点总结1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现,也叫斩波电路(4)交流变交流AC-AC:可以是电压或电力的变换,一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。
4、相控方式;对晶闸管的电路的控制方式主要是相控方式5、斩空方式:与晶闸管电路的相位控制方式对应,采用全空性器件的电路的主要控制方式为脉冲宽度调制方式。
相对于相控方式可称之为斩空方式。
电力电子器件1 电力电子器件与主电路的.关系(1)主电路:电力电子系统中指能够直接承担电能变换或控制任务的电路。
(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。
广义可分为电真空器件和半导体器件。
2 电力电子器件一般特征:1、处理的电功率小至毫瓦级大至兆瓦级。
2、都工作于开关状态,以减小本身损耗。
3、由电力电子电路来控制。
4、安有散热器3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。
(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。
(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。
(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。
4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。
如SCR晶闸管。
(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
如GTO、GTR、MOSFET和IGBT。
(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。
电力电子技术知识点自己总结
电力电子技术知识点自己总结电力电子技术知识是现代电子工程技术中非常重要的一个分支,它涵盖了广泛的领域,包括电力电子电路、功率半导体器件、数字控制技术、电力传输、节能技术等多个方面。
下面,我将根据自己的经验,为大家总结一些电力电子技术知识点,希望对大家的学习有所帮助。
1.功率半导体器件功率半导体器件是电力电子技术的核心,在电力电子电路中扮演着非常重要的角色。
常见的功率半导体器件有MOSFET、IGBT、二极管等。
MOSFET具有独特的低电阻、高开关速度、无反向恢复能力等特点,在逆变器、转换器等电路中被广泛应用。
IGBT则是介于MOSFET和普通开关二极管之间的半导体器件,具有高电压、大电流能力、可控制等优点,被广泛用于交流变直流、直流变交流等电力电子应用中。
2.电力电子电路电力电子电路是电力电子技术研究的核心内容,常见的电力电子电路有整流器、逆变器、升压转换器、降压转换器等多个类型。
整流器可以将交流电转换为直流电,逆变器可以将直流电转换为交流电,升压转换器可以将电压升高,降压转换器可以将电压降低。
这些电力电子电路在电力电子技术应用中发挥着至关重要的作用。
3.数字控制技术数字控制技术在电力电子技术中有着非常广泛的应用,它主要是指使用微处理器、单片机等数字化器件控制电力电子电路的开关,实现从电源到负载的实时控制。
数字控制技术能够实现电压、电流、功率等的精确控制,提高设备的性能和可靠性,同时还能实现通讯、监测等功能。
4.电力传输电力传输是电力电子技术的另一个重要领域,其主要目的是将电能从发电站向终端用户传输。
电力传输可以通过输电线路、变电站等多种方式实现,其中电力电子技术在电力传输中的作用愈发重要。
电力传输中的电力损耗和电压降都是需要解决的问题,而在电力电子技术中有着多种方法能够有效地降低电量损耗和电压降低问题。
5.节能技术节能技术是当前社会非常重要的关键词之一,也是电力电子技术所追求的目标之一。
在电力电子技术中,节能技术通常是指降低设备的能耗,减少能源浪费。
电力电子技术总结
电力电子技术总结1. 引言电力电子技术是应用于能量转换、控制与调节的一门关键技术。
随着能源需求的不断增加和环境保护意识的增强,电力电子技术在电力系统、可再生能源和电动汽车等领域中的应用越来越广泛。
本文将对电力电子技术的基本原理、应用领域以及未来发展趋势进行总结和分析。
2. 电力电子技术概述电力电子技术是利用半导体器件和电磁元器件将电能转化为所需的形式,并进行各种功能的控制和调节的技术。
它包括直流/交流变换、能量调节、频率调节、电力质量改善等方面。
电力电子技术广泛应用于电力系统、工业控制和电动交通等领域。
主要的电力电子器件有晶闸管、功率场效应管、不可控硅、可控硅等。
这些器件通过电压和电流的控制来实现电能的转换和调节。
同时,电力电子技术也离不开控制电路、滤波电路和保护电路等配套技术。
3. 电力电子技术的应用3.1 电力系统电力电子技术在电力系统中的应用非常广泛。
它可以提供稳定的电压和频率,并对电力质量进行改善。
使用电力电子技术的设备,如交流输电系统、变压器和静止无功补偿装置,可以提高电力系统的稳定性、效率和可靠性。
3.2 可再生能源随着可再生能源的快速发展,电力电子技术在太阳能光伏、风能和潮汐能等领域的应用越来越重要。
通过电力电子转换器,可以将不稳定的可再生能源转化为稳定的电能,以满足电网的需求。
此外,电力电子技术还可以实现能量回馈和储能,提高可再生能源的利用效率。
3.3 电动交通电动汽车作为一种清洁能源车辆,正逐渐成为未来交通运输的主流。
电力电子技术在电动汽车中起到关键作用,包括电池充电器、电机驱动器和能量回馈装置等。
借助电力电子技术,电动汽车可以实现高效、安全和可持续的能源利用。
4. 电力电子技术的发展趋势4.1 高效能量转换未来的电力电子技术将更加注重能量转换的效率,以减少能源浪费和减少对自然资源的依赖。
高效能量转换器件的研发,如功率场效应管和新型半导体材料,将成为发展的重点。
4.2 多能源互联随着多能源系统的普及,电力电子技术也将面临更多的挑战。
电力电子知识点总结
电力电子知识点总结一、电力电子的基本原理电力电子是运用半导体器件实现电能的变换、控制和调节的技术领域。
在电力电子领域中最常用的器件是晶闸管、可控硅、晶闸管二极管、IGBT等。
它们通过对电压和电流的控制,实现将电能从一种形式转换为另一种形式。
电力电子的基本原理可以分为电力电子器件、电力电子电路和电力电子系统三个方面。
1. 电力电子器件电力电子器件是实现电力电子技术的基础。
常见的电力电子器件有晶闸管、可控硅、三端闭管、IGBT等,在电力电子中起着至关重要的作用。
晶闸管是一种四层结构的半导体器件,能够控制电流的导通和截止,实现电能的控制和调节。
可控硅是一种三端器件,具有双向导通特性,广泛应用于交流电路中。
IGBT集结了MOS管和双极型晶体管的优点,具有高开关速度、低导通压降等特点,是目前应用范围最广泛的功率器件之一。
2. 电力电子电路电力电子电路是利用电力电子器件构成的电路,实现对电能的控制和调节。
常见的电力电子电路包括整流电路、逆变电路、斩波电路等。
整流电路能够将交流电转换为直流电,逆变电路能够将直流电转换为交流电,斩波电路能够实现对电压和频率的调节。
这些电路在各种电力电子设备中得到了广泛应用,如变频调速器、逆变焊接电源等。
3. 电力电子系统电力电子系统是由多个电力电子电路组成的系统,实现对电能的复杂控制和转换。
常见的电力电子系统包括交流电调压系统、柔性直流输电系统、电能质量调节系统等。
这些系统在能源转换、传输和利用方面发挥着关键作用,是现代电力系统中不可或缺的一部分。
二、电力电子的常见器件和应用电力电子领域中常见的器件有晶闸管、可控硅、IGBT等。
而在现代工业中,电力电子技术得到了广泛的应用,如变频调速器、逆变焊接电源、电动汽车充电设备等。
1. 变频调速器变频调速器是一种能够实现电机转速调节的设备,它利用电力电子技术对电机供电进行控制,实现对电机转速的调节。
通过变频调速器,可以实现电机的恒流恒功率调节,使得电动汽车、电梯、风力发电机等设备具有更加灵活和高效的性能。
2024年电力电子学知识点总结
2024年电力电子学知识点总结随着科技的不断发展,电力电子学在能源转换与控制领域发挥着重要的作用。
2024年,电力电子学领域的研究和应用已经取得了许多重要的进展。
本文将总结2024年电力电子学的一些关键知识点,以帮助读者了解电力电子学的最新进展。
1. 功率半导体器件:功率半导体器件是电力电子学的基础。
2024年,主要有IGBT(绝缘栅双极结型晶体管)、MOSFET(金属氧化物半导体场效应晶体管)和SiC(碳化硅)等功率半导体器件得到广泛应用。
这些器件具有低导通压降、高开关速度和高温特性等优点,适用于各种功率电子应用。
2. 电力电子转换拓扑:电力电子转换系统的拓扑结构是电力电子学研究的重点之一。
2024年,常见的拓扑结构包括桥式整流器、逆变器、变换器和多电平逆变器等。
这些拓扑结构常用于变换、传递和调节电能,以满足不同应用场景对电能的需求。
3. 智能电力电子系统:智能电力电子系统是电力电子学的发展趋势之一。
2024年,随着人工智能和大数据技术的不断发展,电力电子系统的智能化程度得到了提高。
智能电力电子系统具有自适应、自优化和自保护等特性,在电力转换和控制过程中能够实现更高效、更可靠的能量转换和管理。
4. 新型电力电子应用:2024年,电力电子学在新型应用领域的研究得到了迅速发展。
例如,电动车、可再生能源发电和电网储能等领域对电力电子技术的需求不断增加。
这些应用对功率半导体器件、电力转换拓扑和智能电力电子系统等方面提出了新的挑战,同时也为电力电子学的发展提供了新的机遇。
5. 高效低功耗设计:节能和环保是电力电子学研究的重要目标。
2024年,研究人员在功率半导体器件的材料和结构设计、电力电子转换拓扑的优化和能耗管理技术等方面取得了重要进展,以实现高效低功耗的电力电子系统设计。
这将有助于推动可再生能源的广泛应用和提升能源利用效率。
综上所述,2024年电力电子学领域的关键知识点包括功率半导体器件、电力电子转换拓扑、智能电力电子系统、新型电力电子应用和高效低功耗设计等方面。
电力电子复试知识点总结
电力电子复试知识点总结一、基本理论1. 电力电子的基本概念和发展历史电力电子是指利用电子器件和电磁器件来实现对电力的转换和控制的技术领域。
它主要包括了电力电子器件、电力电子系统、电力电子技术和应用、电力电子工程设计等多个方面。
而电力电子的发展历史可以追溯到二十世纪初,但是它的真正兴起并成为一个独立的学科领域,是在二战结束之后。
从那时起,电力电子技术成为了电力系统工程中的一个重要分支,它的研究和应用得到了快速的发展。
2. 电力电子的基本原理和特点电力电子技术是利用各种电子器件和电磁器件来实现对电能的控制和转换的技术。
它有着以下几个特点:(1)高效率、高可靠性、快速的动态响应能力;(2)它能够实现电力的高效转换和稳定控制,同时可以应用在各种电力系统和电力设备中;(3)电力电子技术对环境友好,可以减少电力系统的能耗和对环境的影响;(4)它对于电力系统的工作稳定性和可靠性有着重要意义。
3. 电力电子的应用领域电力电子技术在电力系统工程中有着广泛的应用领域,主要包括了:(1)电力转换和控制技术,这是电力电子技术最主要的应用领域。
它包括了各种电力转换器、逆变器、整流器、变压器等设备的应用和设计;(2)电力系统的调节和稳定控制,电力电子技术可以用来实现对电力系统的调节和稳定控制;(3)可再生能源系统,包括太阳能、风能、生物质能等各种可再生能源系统的变流器和逆变器设计等。
4. 电力电子技术的发展趋势随着电力系统工程的发展和可再生能源技术的快速发展,电力电子技术也在不断的发展和完善。
未来电力电子技术的发展趋势可能包括:(1)更高效率的电力转换和控制技术,像GaN、SiC等新型半导体材料的应用将会大大提高电力转换和控制技术的效率;(2)大容量、高性能的电力电子器件的研发和应用,这对于可再生能源系统和大型电力设备来说有着重要的意义;(3)智能化的电力电子系统设计和应用,包括了智能控制、智能监测、智能保护和故障诊断等方面的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
升压斩波器
升压斩波器的原理电路及电压、电流波形分析。
升压斩波器
2)输出电压平均值ULD的计算 斩波器导通期间电感储存的电能为Win U s I s ton 斩波器关断期间电感释放的电能为 Wout U LD U S I S toff 在无损系统中有 U s I s ton U LD U s I s toff
脉冲宽度调制(PWM控制)
1)脉冲幅值调制(PAM)控制方式
在传统的逆变电路中,对于输出电压的控 制多采用脉冲幅值调制(PAM)的控制方式, 即电压控制与频率控制分开进行,通过调节直 流电源电压来改变逆变器的输出电压的大小。 采用PAM控制存在的一些问题主要包括: ①输出电压为矩形波,其谐波含量大; ②电压或电流的改变所需时间长,动态响应特 性差; ③电压和频率分开控制,系统的结构和控制复 杂,电路效率低。
电压的纹波因数
斩波电路
1)理解降压斩波电路和升压斩波电路的工作原 理,掌握这两种电路的输入输出关系、电路 分析方法、工作特点。 2)了解斩波电路的控制方式。 3)了解晶闸管斩波器的两种换流电路结构和工 作原理。
斩波电路
(1)定频调宽控制(脉冲宽度调制) 保持斩波周期T不变,只改变斩波器的导通时间 ton。脉冲宽度ton越宽,ULD越大。 (2)定宽调制(脉冲频率调制) 保持导通时间ton不变,只改变斩波周期T。 (3)调频调宽混合控制 同时改变斩波周期T和导通时间ton,从而大幅度 改变输出电压。
阻性负载 假设条件
电路中开关器件为理想器件,即器件通态压 降为零,阻断状态下电流为零,且动态响应 是瞬时的,另外也不考虑变压器漏抗对电路 的影响。变压器起变换和隔离的作用。
控整流电路带大电感负载
半波可控整流电路带大电感负载时,不管怎 样调节控制角,其输出直流电压平均值总是 很小,平均电流值也很小。所以此电路是无 法使用的。 为了解决这个问题,通常是在整流电路的负 载两端并联一个硅整流二极管DR,称为续流 二极管。
整流电路
整流概念 AC---DC 交流转变成直流 控制方式 核心是相位控制 控制相位 达 到输 出直流电压控制 分析方法 电路形式 负载关系 单相整流电路 三相整流电路
单相整流电路
单相半控整流电路 单相全控整流电路 单相桥式全控整流电路 单相全波整流电路 单相桥式半控整流电路 单相桥式不可控整流电路 电路特点 输出特性 计算
通态平均电流(续)
由于晶闸管的过载能力比一般电机、电器元 件小,因而选用晶闸管时,应使其通态平均 电流为实际所需最大电流(折算成正弦半波) 的1.5-2倍,使其有一定的裕量,即:
第一章 电力电子器件
器件个概况:发展 现状 分类 电流控制 电压控制 不可控 半控 全控 特性 开关特性 驱动 压降 损耗 开关时间 参数 主要参数 额定电流 , 额定电压 , 开关时间,PCM 选择 选择依据
斩波电路分析
斩波电路控制方式 占空比定义 1)理解降压斩波电路和升压斩波电路的工作原 理,掌握这两种电路的输入输出关系、电路 分析方法、工作特点。 2)了解斩波电路的控制方式。
1 降压斩波器
降压斩波器的原理电路及电压、电流波形分析。 输出电压平均值ULD=αUs,由于α<1, 所以ULD< Us,称为降压斩波器或Buck斩波电路。
单相交流调压电路带感性负载
二)α的取值范围分析:
1)当α=φ时,导通角θ=π,电流连续,调压器 处于直通状态,不起调压作用,u0=u1。 2)当φ<α<π时,导通角θ在(0,π)的范围内 变化。当α=π时,θ=0,u0=0;当α=φ时, θ=π, u0=u1;当α从π变化到φ时,θ从0逐渐 增大到π,负载电压有效值也随之从0逐渐增 大到U1。这就是带感性负载的交流调压器的 调压原理。即带感性负载的交流调压器能起调 压作用的控制角α的移相范围是φ<α<π。
以单相桥式逆变电路为例来说明逆变电路 最基本的工作原理。 当T1T3闭合, T2T4断开时, uo为正; 当T2T4闭合, T1T3断开时, uo为负。
逆变电路的基本工作原理
当负载为电阻时,负载电流io和电压uo的 波形相同,相位也相同;当负载为感性时, 负载电流io将滞后电压uo一个相位角,所以, 在逆变电路两组开关进行换流时,必须给电 流提供一条续流通路。这时,采用有无功反 馈二极管的逆变电路。
电路在交流电压的正、负半周都能实现整流, 所以为全波可控整流电路 带大电感负载时L 大 电流连续
常用单相可控整流电路比较表
三相桥式全控整流电路
三相桥式全控整流电路接反电动势阻感负载时, 在负载电感足够大足以使负载电流连续的情 况下,电路工作情况与带感性负载时相似, 电路中各处电压、电流波形均相同,只在计 算负载电流平均值时有所不同,此时为
Id Ud E R
可控整流电路的外特性
直流输出电压
U d U d 0 cos nU T Rc I d
按照驱动电路加在电力电子器件控制 端和公共端之间信号的性质不同分类
电流控制型 GTR SCR GTO 电压控制型 VMOS IGBT
第二章 整流及逆变电路
整流电路概况 单相整流电路 三相整流电路 不可控整流电路 变压器漏抗的影响 有源逆变电路控制 谐波分析 功率因数
4.1.1 单相交流调压电路带阻性负载
1)电路结构: ①交流电源 u1 2U1 sin t ; ②一对反并联晶闸管T1、T2; 也可以用一个双向晶闸管代替; ③阻性负载R。
4.1.1 单相交流调压电路带阻性负载
4)电路综合评价 ①α的移相范围为0≤α≤π。 α=0时,相当于晶闸管一直接通,输出电压为 最大值,U0=U1; α=π时,U0=0。 ② α=0时,功率因数λ=1,随着α的增大,输入 电流滞后于电压且发生畸变, λ也逐渐降低。
有源逆变电路控制
有源逆变的概念 条件 控制角 90---180 有源逆变电路逆变失败 最小逆变角
谐波分析 功率因数
谐波分析 概念 基本方法
功率因数 定义 与控制角的关系
斩波电路
斩波电路概念 基本斩波电路 降压斩波电路 升压斩波电路 升降压斩波电路 CUK斩波电路 DC---DC
U LD ton toff toff 1 Us Us 1
因为α<1,所以ULD>US,称为升压斩波器或 Boost变换器。
斩波电路
3 CUK斩波电路 4 复合展波电路 5 隔离型斩波电路
无源逆变电路
无源逆变电路的原理
1)逆变的基本概念 2)逆变电路的应用领域 3)逆变电路的分类
逆变电路分类
三相整流电路
三相半控整流电路 三相桥式全控整流电路 三相桥式半控整流电路 电路特点 输出特性 计算 输出电压 器件承受电流 器件承受电压
不可控整流电路
单相桥式不可控整流电路 单相全波不可控整流电路 三相桥式不可控整流电路
变压器漏抗的响
变压器漏抗对换流的影响 变压器漏抗对输出电压的影响 重叠角的定义 重叠角的大小与那西因素有关
单相逆变电路
半桥 全桥 推挽
三相电压型逆变电路的结构与工作原理
1)电路结构
①直流电源侧实际上 只需要一个直流电压 源,但为了分析方便, 可将该电源看成是两 个电源的串联,并有 一个假想的中点“o”。
脉冲宽度调制(PWM控制)
3)PWM控制的基本原理
在采样控制理论中有一个重要的结论:冲 量相等而形状不同的窄脉冲加在具有惯性的环 节上时,其效果基本相同。这也被称为面积等 效原理。 PWM控制技术的理论基础正是基于面积等 效原理。
(有源逆变电路 无源逆变电路)
无源逆变
单相逆变电路 三相逆变电路
电流型
电压型
单波
PWM
逆变电路
逆变电路的分类
逆变电路可以从不同的角度进行分类。如 可以按换流方式分,按输出的相数分,也可 按直流电源的性质分。比如,按直流电源的 性质,可以把逆变电路分为电压型和电流型 逆变电路。
逆变电路的基本工作原理
电力电子总结
序言 第一章 第二章 第三章 第四章 第五章
电力电子器件 整流及逆变电路 斩波电路 交流调压 无源逆变
断态重复平均电流IDR和反向重复平均 电流 IRR:额定结温和门极开路时,对应于断态重 复峰值电压和反向重复峰值电压下的平均漏 电流。 浪涌电流ITSM :在规定条件下,工频正弦波 半周期内所允许的最大过载峰值电流。