第7章 晶体管及其放大电路2

合集下载

电路与模拟电子技术(第二版)第7章习题解答

电路与模拟电子技术(第二版)第7章习题解答

第七章 基本放大电路7.1 试判断题7.1图中各电路能不能放大交流信号,并说明原因。

解: a 、b 、c 三个电路中晶体管发射结正偏,集电结反偏,故均正常工作,但b 图中集电极交流接地,故无交流输出。

d 图中晶体管集电结正偏,故晶体管不能正常工作,另外,交流输入信号交流接地。

因此a 、c 两电路能放大交流信号,b 、d 两电路不能放大交流信号。

7.2 单管共射放大电路如题7.2图所示,已知三极管的电流放大倍数50=β。

(1)估算电路的静态工作点; (2)计算三极管的输入电阻be r ;(3)画出微变等效电路,计算电压放大倍数; (4)计算电路的输入电阻和输出电阻。

解:(1)A A R U U I B BE CC B μ40104103007.01253=⨯≈⨯-=-=-CC +o -题7.2图C CC (a)题7.1图mA A I I B C 210210405036=⨯=⨯⨯==--βV I R U U C C CC CE 61021031233=⨯⨯⨯-=-=-(2)Ω=+=+=9502265030026300C Cbe I r β (3)放大电路的微变等效电路如图所示 电压放大倍数7995.03||350||-=-=-=be L C u r R R A β(4)输入电阻:Ω≈⨯==950950||10300||3be B i r R r输出电阻 Ω==k R r C 307.3 单管共射放大电路如题7.3图所示。

已知100=β (1)估算电路的静态工作点;(2)计算电路的电压放大倍数、输入电阻和输出电阻 (3)估算最大不失真输出电压的幅值;(4)当i u 足够大时,输出电压首先出现何种失真,如何调节R B 消除失真?解:电路的直流通路如图所示,CC BQ E BEQ BQ B U I R U I R =+++)1(βAmA R R U U I EB BEQ CC BQ μβ435.010130015)1(=⨯+≈++-≈由此定出静态工作点Q 为 mA I I BQ CQ 3.4==β,V R R I U U E C C CC CEQ 3.4)5.02(3.415)(≈+⨯-=+-=(2)Ω=⨯+=9053.426100300be r 由于R E 被交流傍路,因此16690.05.1100||-=⨯-=-=be L C u r R R A βΩ≈==k r R r be B i 9.0905.0||300||+u o -CC +u o -题7.3图CCRΩ==k R R C O 2(3)由于U CEQ =4.3V ,故最大不饱和失真输出电压为 V U U CEQ 6.37.03.47.00=-=-=' 最大不截止失真输出电压近似为V R I U L CQ 4.65.13.40=⨯='⋅='' 因此,最大不失真输出电压的幅值为3.6V 。

第七章 场效应管及其基本放大电路

第七章  场效应管及其基本放大电路

N沟道增强型MOS管的输出特性曲线
7
(3) uDS和uGS同时作用时
uDS一定,uGS变化时 给定一个uGS ,就有一条不同的 iD – uDS 曲线。
iD / mA 预夹断临界点轨迹 uDS = uGS - Uth 可变电阻区 7V
8 6 4 2 0 饱和区 6V 5V 4V uGS = 3V 截止区 0 5 10 15 20 uDS / V
低频跨导:
gm iD u GS
U
DS
夹断区(截止区)
常量
不同型号的管子UGS(off)、IDSS将不同。
20
7.3场效应管的分类
工作在恒流区时g-s、d-s间的电压极性
N 沟道 ( u GS < 0, u DS > 0 ) 结型 P 沟道 ( u GS > 0, u DS < 0 ) N 沟道 ( u GS > 0, u DS > 0 ) 场效应管 增强型 P 沟道 ( u GS < 0, u DS < 0 ) 绝缘栅型 N 沟道 ( u GS 极性任意, u DS > 0 ) 耗尽型 P 沟道 ( u GS 极性任意, u DS < 0 )
场效应管工作在恒流区的条件是什么?
17
3. JFET特性
iD / mA 可变电 阻区 -1V 恒流区 -2V -3V -4V -5V 0 (a) 输出特性曲线 夹断区 uDS / V UP -6 -5 -4 -3 -2 -1 0 uGS / V (b) 转移特性曲线 预夹断轨迹 uGS = 0V iD / mA IDSS
各种场效应管的特性比较(2)
结构类型
工作 方式 增 强 型
电路符号
转移特性曲线

晶体管放大电路实验报告

晶体管放大电路实验报告

实验2 晶体管放大电路专业学号姓名实验日期一、实验目的1.掌握如何调整放大电路的直流工作的。

2.清楚放大电路主要性能指标的测量方法。

二、实验仪器1.双踪示波器 1台2.函数发生器 1台3.交流毫伏表 1台4.直流稳压电源 1台三、实验原理和内容1.放大电路的调整按照图1安装电路,输入频率为1kHz、峰值为5m V(由示波器测量)的正弦信号vi,观察并画出输出波形;测量静态集电极电流I CQ和集-射电压V CEQ。

用你的测量数据解释你看到现象。

问题1:如何调整元件参数才能使输出不失真?如果要保证ICQ 约为2.5mA,具体的元件参数值是多少?图1 图2 实际使用电路在电路中换入你调整好数值的元件,保持原信号输入,记下此时的I CQ和V CEQ到表1,观察示波器显示的输出波形,验证你的调整方案,记下v0的峰值(基本不失真)。

注:由于实验中器件限制我们使用图2电路2.放大电路性能指标的测量1)保持调整后的电路元件值不变,保持静态电流I CQ为原来的值,输入信号V im=5mV,测量输入输出电阻,计算电路增益A V,Ri,Ro,并与理论值比较。

其原理如下:输出电阻Ro:测量放大器输出电阻的原理电路如图 2所示,其戴维南等效电压源u o’即为空载时的输出电压,等效内阻Ro即为放大器的输出电阻。

显然图3 图4输入电阻 R i:测量放大器输入电阻的原理电路如图3所示,由图可见2)保持Vim=5mV不变,改变信号频率,将信号频率从1kHz向高处调节,找出上限频率f H;同样向地处调节,找出下限频率f L。

作出幅频特性曲线,定出3dB带宽f BW。

四、仿真放大电路的调整2仿真电路如图4,输入频率为1kHz、峰值为5mV的正弦信号并测量I CQ和V CEQ图5 图6结论:1.示波器输出的波形如图5由图可知,电路产生饱和失真,故此时应该增大I b故应该增大R b。

2.在电路中由两个万能表测量得到:I CQ=7.214mA V CEQ=762.5mV。

电工电子学第7章习题答案

电工电子学第7章习题答案

7.1.1 选择题.(1)功率放大电路的最大输出功率是在输入电压为正弦波时,输出根本不失真情况下,负载上可能获得的最大 A .A.交流功率B.直流功率C.平均功率(2)功率放大电路的转换效率是指―B.A.输出功率与晶体管所消耗的功率之比B.最大输出功率与电源提供的平均功率之比C.晶体管所消耗的功率与电源提供的平均功率之比(3)在选择功放电路中的晶体管时,应当特别注意的参数有__B D E .A. 3B. I CMC. I CBOD. U (BR) CEOE. P CMF. f T(4)在OCL乙类功放电路中,假设最大输出功率为1 W,那么电路中功放管的集电极最大功耗约为C.A. 1 WB. WC. W(5)与甲类功率放大器相比拟,乙类互补推挽功放的主要优点是B.A.无输出变压器B. 能量转换效率高C.无交越失真(6)所谓能量转换效率是指—B.A.输出功率与晶体管上消耗的功率之比B.最大不失真输出功率与电源提供的功率之比C.输出功率与电源提供的功率之比(7)功放电路的能量转换效率主要与—C _______ 有关.A.电源供应的直流功率B. 电路输出信号最大功率C. 电路的类型(8)乙类互补功放电路存在的主要问题是―C.A.输出电阻太大B. 能量转换效率低C. 有交越失真〔9〕为了消除交越失真,应当使功率放大电路的功放管工作在 B 状态.A.甲类B. 甲乙类C. 乙类〔10〕乙类互补功放电路中的交越失真,实质上就是__C.A.线性失真B. 饱和失真C. 截止失真〔11〕设计一个输出功率为20W勺功放电路,假设用乙类互补对称功率放大,那么每只功放管的最大允许功耗PC"小应有B.A. 8WB. 4WC. 2W〔12〕在题图7.1.1所示功率放大电路中.二极管D1和D2的作用是B.A.增大输出功率B.减小交越失真C.减小三极管的穿透电流题图7.1.17.1.2题图所示为三种功率放大电路. 图中所有晶体管的电流放大系数、饱和管压降的数值等参数完全相同,导通时b-e间电压可忽略不计;电源电压V C C和负载电阻RL均相等.〔1〕分别将各电路的名称〔OCL OTL或BTL〕填入空内,图〔a〕所示为 OTL电路,图〔b〕所示为OCL 电路,图〔c〕所示为BTL 电路.〔2〕静态时,晶体管发射极电位U E为零的电路为有OCL〔由于图〔a〕和〔c〕所示电路是单电源供电,为使电路的最大不失真输出电压最大,静态应设置晶体管发射极电位为V C C/2O因此,只有图〔b〕所示的OCL电路在静态时晶体管发射极电位为零.因此答案为OCL 〕〔3〕在输入正弦波信号的正半周,图〔a〕中导通的晶体管是__T1,图〔b〕中导通的晶体管是—T1 ,图〔c〕中导通的晶体管是T!和T4 .〔根据电路的工作原理,图〔a〕和〔b〕所示电路中的两只管子在输入为正弦波信号时应交替导通,图〔c〕所示电路中的四只管子在输入为正弦波信号时应两对管子〔T i和丁4、T2和交替导通.〕T3〕〔4〕效率最低的电路为—C.题图7.1.27.1.3 电路如题图所示.电源电压V Cc=15V, R L=8Q,U CE S^0,输入信号是正弦波.试问:〔1〕负载可能得到的最大输出功率和能量转换效率最大值分别是多少?〔2〕当输入信号u i = 10sincot V时,求此时负载得到的功率和能量转换效率.题图7.1.3【相关知识】乙类互补推挽功率放大电路性能指标.【解题思路】根据题目给定条件确定输出电压幅值的最大值,计算最大可能的输出功率和能量转换效率;估算电压增益,推算输出电压,求相应的输出功率和能量转换效率.【解题过程】(1)图示电路为乙类互补推挽功率放大电路,最大的输出电压幅值,所以W(2)对每半个周期来说,电路可等效为共集电极电路,所以A J ^ 1Uo= Ui = 10sin w t V即 U om= 10V故W7.1.4 互补对称功放电路如题图 所示,试求:(1)忽略三极管的饱和压降 U CES 时的最大不失真输出功率 Rm .(2)假设设饱和压降 U C E =1V 时的最大不失真输出功率P om.【解】(1 ) P orrf^ 9W (2) Rm27.1.5 功放电路如题图所示,设输入为正弦信号, R.=8 ,要求最大输出功率略三极管的饱和压降 U C E §试求:(1)正、负电源 Me 的最小值.(2)输出功率最大(F 0m =9W 时,电源供应的功率P E O【解】(1)正负电源 Vx 的最小彳1为士 12V .(2)输出功率最大(F 0m =9VV 时,功率:F E =题图7.1.4题图7.1.6 互补对称功放电路如图题 所示,设三极管「、T 2的饱和压降 U C ES =2V,P °m =9W 忽电源供应的(1)当T3管的输出信号U O=10V有效值时,求电路的输出功率、管耗、直流电源供应的功率和效率.(2)该电路不失真的最大输出功率和所需的U O3有效值是多少?(3)说明二极管D、D2在电路中的作用.【解题过程】(1)根据电路有:VP E=P>m+Pn+P T2 = + 5 + 5 =%(2)电路不失真的最大输出电压峰值:Um=V cc—H ES=20-2=18V电路不失真的最大输出功率:U O3的有效值:U>3(3)二极管D、D为输出的BJT提供静态偏置电压,用以克服交越失真.7.1.7 国产集成功率放大器5G31的简化原理图如题图所示,试答复以下问题:(1)电路中有几级电压放大,几级功率放大?他们分别由哪些三极管组成?(2)三极管「、T2组成什么形式的放大电路?(3)两个输入端(1和2)中,哪个是反相输入端,哪个是同相输入端?(4)三极管T3的发射极接至「的集电极,而不是接在V cc上,这样做有什么好处?(5)二极管D和D〜D3各起什么作用?(6)三极管T5、飞和T7、T8、T9是什么接法?它们分别可用一个什么类型的三极管(NPN 或PNB等效?(7)电阻R构成什么支路?有何作用?(8)假设用5G31驱动8扬声器,应如何连接?在图中画出.(9)假设把功放的1端与虚线框中的/端相连,2端与虚线框中的2/端相连,写出电路的电压放大倍数表达式.(10)设V=12V, T6和T9的饱和压降U:ES=2V, R=8 ,输入为正弦信号,求电路的最大不失真输出功率P Omo【解题过程】(1) T 1〜T4管组成三级电压放大电路. T5〜T9管组成一级互补对称功率放大电路.(2)三极管T i、T2组成长尾式差动放大电路.(3) 1端是同相输入端,2端是反相输入端.(4)三极管T3的发射极接至T1的集电极,而不是接在Vx上.这样可以将差动放大器的单端输出信号转换为双端输出信号,使输出信号的幅度加倍.(5)二极管D给T3管提供偏置电压.它同时具有温度补偿作用. D〜Q为输出级提供适当的偏置电流,还能保证T5和T7管的基极交流电位根本相等.另外,它们也有温度补偿作用.(6) 三极管丁5、T6和丁7、丁8、T9是复合管接法.丁5、T6管等效为NPNf , 丁7、丁8、丁9管等效为PNP管.(7)电阻R构成电压串联负反应支路,可以稳定电路的静态工作点,改善交流信号的放大性能.(8)假设用5G31驱动8扬声器,应使其输出端经过一个200 F大电容与负载电阻R L相连. 电容极性左正右负.(9)(10) P om=1W1 .整流的目是A .(a)将交流变为直流;(b)将高频变为低频;(c)将正弦波变为方波2 . 在题图7.2.1示的桥式整流电路中,假设, R L=100W二极管的性能理想.(1)电路输出电压的平均值为―C.(a) (b) 10V (c) 9V(2)电路输出电流的平均值为C.(a) 0.14A (b) 0.1A (c) 0.09A(3)流过每个二极管的平均电流为―C.(a) 0.07A (b) 0.05A (c) 0.045A(4)二极管承受的反向电压最大值 A .(a) (b) 10V (c) 9V(5)假设开路,那么输出A .(a)只有半周波形(b)全波整流波形(c)无波形且变压器被短路(6)如果正负端接反,那么输出(a)只有半周波形(b)全波整流波形(c)无波形且变压器被短路(7)如果被击穿(电击穿),那么输出_C .(a)只有半周波形(b)全波整流波形(c)无波形且变压器被短路(8)如果负载被短路,将会使B.(a)整流二极管被击穿(b)整流二极管被烧坏(c)无法判断3 .直流稳压电源中滤波电路的目的是C .(a)将交流变为直流(b)将高频变为低频(c)将交直流混合量中的交流成分滤掉.4 .在直流稳压电源中的滤波电路应选用旦 .(a)高通滤波器(b)低通滤波器(c)带通滤波器5 .在题图7.2.1.2所示桥式整流电容滤波电路中, 假设二极管具有理想的特性, 那么,当,, 时题图7.2.1.2(1)电路输出电压的平均值约为 C .(a) 9 (b) 10 (c) 12(2)电路输出电流的平均值约为 C mA(a) (b) 1 (c)(3)流过每个二极管的平均电流约为C mA(a) (b) 0.5A (c)(4)二极管承受反向电压的最大值为A .(a) (b) 10V (c) 9V(5)在一个周期内,每只二极管的导通时间C .(a)等于一个周期(b)等于半个周期(c)小于半个周期(6)与无滤波电容的电路相比,二极管将旦.会被击穿(a)会承受更高的反向电压(b)会有较大的冲击电流(c)(7)电容滤波电路只适合于负载电流 A 的场合.(a)比拟小或根本不变(b) 比拟小且可变(c) 比拟大(8)如果滤波电容断路,那么输出电压平均值将会B .(a) 升高(b) 降低(c) 不变(9)如果负载开路,那么输出电压平均值将会 A .(a) 升高(b) 降低(c) 不变6.电路如题图7.2.1.3所示,那么车出电压=B .7.2.2 串联型稳压电路如题图所示.稳压管的稳定电压,负载.(1)标出运算放大器A的同相和反相输入端.(2) 试求输出电压的调整范围.(3) 为了使调整管的,试求输入电压的值.题图7.2.2相关知识】串联型稳压电路.解题思路】(1) 运算放大器的同相和反相输入端的连接要保证电路引入电压负反应.(2) 根据确定输出电压的调整范围.(3) 由,并考虑到电网电压有波动,确定输入电压的值.解题过程】(1) 由于串联型稳压电路实际上是电压串联负反应电路.为了实现负反应,取样网络A+).(2) 根据串联型稳压电路的稳压原理,由图可知式中,为可变电阻滑动触头以下局部的电阻,.当时,最小当时,最大因此,输出电压的可调范围为.3)由于当时,为保证,输入电压假设考虑到电网电压有波动时,也能保证,那么,实际应用中,输入电压应取.【常见的错误】容易无视电网电压有波动.7.2.3某串联反应型稳压电路如题图所示,图中输入直流电压U I=24V,调整管不和误差放大管T2的U BE均等与,稳压管的稳定电压U Z等于,负载电流等于100mA试问:(1)输出电压UO的最大值和最小值各等于多少伏?(2)当Ci的电容量足够大时,变压器副边电压廿等于多少伏?(3)当电位器R W的滑动端处于什么位置(上端或下端)时,调整管T i的功耗最大?调整管「的极限参数P C拴少应选多大(应考虑电网有10%勺波动)?题图7.2.3相关知识】串联反应型稳压电路.解题思路】〔 1 〕由,可求得输出电压的最大值和最小值.〔2〕由关系,确定变压器副边电压的大小.〔3〕调整管T1 的极限参数.解题过程】〔1〕图中,晶体管T2的基极电位故输出电压的最大值与最小值分别为2〕〔3〕 T1的最大功耗出现在Rv的最上端考虑电源10%波动时7.2.4 题图中画出了两个用三端集成稳压器组成的电路,静态电流I Q=2mA.〔1〕写出图〔a〕中电流I.的表达式,并算出其具体数值;(2)写出图(b)中电压UO的表达式,并算出当兄=时的具体数值;3)说明这两个电路分别具有什么功能?图(a)图(b)题图7.2.4【相关知识】三端集成稳压器.【解题思路】(4) 写出图(a) 电路输出电流与稳压器输出电压的表达式.(5) 写出图(b) 电路输出电压与稳压器输出电压的表达式.(6) 由表达式分析各电路的功能.【解题过程】( 1)( 2)(3)图(a)所示电路具有恒流特性,图(b)所示的电路具有恒压特性.。

基本 放大电路

基本 放大电路
上一页 下一页
第三节 多级放大电路
四、阻容耦合多级放大电路的分析
由两级共射放大电路采用阻容耦合组成的多级放大电路如 图7-17所示。
由图7-17可得阻容耦合放大电路的特点: (1)优点 因电容具有“隔直”作用,所以各级电路的静态
工作点相互独立,互不影响。这给放大电路的分析、设计和 调试带来厂很大的方便。此外,还具有体积小、质量轻等优 点。 (2)缺点 因电容对交流信号具有一定的容抗,在信号传输 过程中,会受到一定的衰减。尤其对于变化缓慢的信号容抗 很大,不便于传输。此外,在集成电路中,制造大容量的电 容很困难,所以这种祸合方式下的多级放大电路不便于集成。
上一页 下一页
第三节 多级放大电路
三、变压器耦合
我们把级与级之间通过变压器连接的方式称为变压器耦合。 其电路如图7-16所示。
变压器耦合的特点: (1)优点 因变压器不能传输直流信号,只能传输交流信号
和进行阻抗变换,所以,各级电路的静态工作点相互独立, 互不影响。改变变压器的匝数比,容易实现阻抗变换,因而 容易获得较大的输出功率。 (2)缺点 变压器体积大而重,不便于集成。同时频率特性 差,也不能传送直流和变化非常缓慢的信号。
分压偏置共射极放大电路如图7-12 (a)所示,发射极电阻 RE起直流负反馈作用,在外界因素变化时,自动调节工作点 的位置,使静态工作点稳定。
分压偏置共射极放大电路的直流通路如图7-12 (b)所示电路
上一页 返 回
第二节 共集电极电路
一、共集电极放大电路的组成
如图7-13 (a)所示,由于直流电源对交流信号相当于短路, 集电极便成为输入与输出回路的公共端,因此这个电路称为 共集电极放大电路,简称共集放大器,又称射极输出器它的 直流通路如图7-13 ( b)所示,交流通路如图7-13 (c)所示。

双极型晶体三极管及其基本放大电路

双极型晶体三极管及其基本放大电路
3、三极管放大电路共有三种基本接法:共射、共集和共基电路。 其中共射电路能放大电压和电流,输入与输出反相,应用广 泛。共集电路无电压放大能力,能放大电流,因为其输入电 阻大,输出电阻小,多用作输入级,输出级及缓冲级。共基 电路能放大电压,无电流放大能力,且其输入电阻小,输出 电阻大,一般只用作高频放大。
4、多级放大电路的耦合方式有阻容耦合、变压器耦合、直接耦 合等类型。前级输出即为后级的输入,前级的输出电阻是后 级的信号源内阻,后级的输入电阻是前级的负载电阻。放大 电路的总增益为各级放大倍数的乘积;输入电阻是第一级电 路的输入电阻,输出电阻是最后一级电路的输出电阻。
5、复合管放大电路的分析可以等效成单管放大电路的分析。
模拟电子技术
ห้องสมุดไป่ตู้
双极型晶体三极管及其基本放大电路
晶体管的结构、原理及特性曲线→放大电路的分析方法→由 晶体管构成的三种基本放大电路→多级放大电路和复合管的 分析→放大电路的频率响应。 1、晶体管按照结构分成和两种,按材料分成硅管和锗管,由 于硅管的温度特性较好,所以硅管应用广泛。 晶体管有三种工作状态:
多级放大电路的级数越多,通频带越窄。
模拟电子技术
由于电路中的电抗元件对不同频率的输入信号呈现的电抗值 不同,电路的电压放大倍数是信号频率的函数,即频率响应。 频率响应分为幅频特性和相频特性,可以用波特图表示。
6、单级放大电路的频率响应:在中频段基本与频率无关;在低 频段,电压放大倍数随频率的降低而减小,输出电压与输入 电压之间的相移也发生变化;在高频段,电压放大倍数随频 率的升高而减小,相移也发生变化。
2、放大电路的分析方法有图解法和微变等效模型法两种。图解 法主要用来分析失真和静态工作点,工程计算中主要使用微 变等效模型法。 晶体管的模型有两种,低频为h参数等效模型,高频为混合π 模型。 分析放大电路的步骤为先直流,后交流。即先用直流通路计 算静态工作点,后画出交流通路,用低频小信号模型计算电 压放大倍数、输入电阻和输出电阻等交流参数。 由于静态工作点影响电路的性能,故实用放大电路都要有静 态工作点稳定的措施。

《模拟电子线路实验》实验二 晶体管共射极单管放大器

《模拟电子线路实验》实验二 晶体管共射极单管放大器

模拟电子线路实验实验二晶体管共射极单管放大器【实验名称】晶体管共射极单管放大器【实验目的】1.学习单管放大器静态工作点的测量方法。

2.学习单管放大电路交流放大倍数的测量方法。

3.了解放大电路的静态工作点对动态特性的影响。

4.熟悉常用电子仪器及电子技术实验台的使用。

【预习要点】1.复习课件中有关单管放大电路工作点稳定问题的内容。

2.放大电路输出信号波形在哪些情况下可能产生失真?应如何消除失真?【实验仪器设备】【实验原理】实验电路图如图2-1所示。

温度的变化会导致三极管的性能发生变化,致使放大器的工作点发生变化,R和射极电阻影响放大器的正常工作。

图2-1所示电路中通过增加下偏置电阻B2R来改善直流工作点的稳定性,其工作原理如下:E图2-1 分压偏置共射极放大电路①利用B1R 和B2R 的分压作用固定基极电压V B 。

当B1R 、B2R 选择适当,满足I B1>> I B 时,有B2B CC B1B2R V V R R =+式中B1R 、B2R 和CC V 都是固定的,不随温度变化,所以基极电位V B 基本上为一定值。

②通过E R 的负反馈作用,限制C I 的改变,使工作点保持稳定。

具体稳定过程如下:CT ︒I电容C 1、C 2有隔直通交的作用,C 1滤除输入信号的直流成份,C 2滤除输出信号的直流成份。

射极电容C E 在静态时稳定工作点;动态时短路R E ,增大放大倍数。

当流过偏置电阻B1R (b1R 和电位器W R 的阻值和)的电流I B1远大于晶体管的基极电流B I (一般5~10倍),基极电压V B 远大于V BE 时,它的静态工作点可用下式估算B1B CC B1B2R V V R R =+B BEC E E=V V I I R ≈- CE CC C C E =(+)V V I R R -当放大器的输入端加交流输入信号i v 后,基极回路便有交流输入b i 产生,经过放大在集电极回路产生β倍的c i ,同时在负载输出o c L 'v i R =,从而实现了电压放大。

晶体管及其基本放大电路

晶体管及其基本放大电路
N(发射区) 发射结
E
BJT示意图
BJT结构特点
• 发射区的掺杂浓度最高 ( N+ );
• 集电区掺杂浓度低于发射区,且面积大;
• 基区很薄,一般在几个微米至几十个微米,且掺杂浓 度最低。
BJT三个区的作用:
CB E
发射区:发射载流子
集电区:收集载流子 基区:传送和控制载流子
P N+ N-Si
7.1.1 BJT的结构简介
基区:传送和控制载流子
(以NPN为例)
IE=IB+ IC IC= INC+ ICBO
动画示意
放大状态下BJT中载流子的传输过程
动画演示
7.1.2 放大状态下BJT的工作原理
三极管的放大作用是在一定的外部条件控制下,通
过载流子传输体现出来的。
外部条件:发射结正偏,集电结反偏。
以NPN管为例 发射结正偏 VBE≈ 0.7V; 晶体管发射结导通。
共发射极接法,发射极作为公共电极,用CE表示 ;
共基极接法,基极作为公共电极,用CB表示 ;
共集电极接法,集电极作为公共电极,用CC表示。
7.1.3 BJT的特性曲线
输入特性曲线 BJT的特性曲线
输出特性曲线
输入回路
RB VBB
IB
+ VBE
-
IC +
VCE IE
RC VCC
输出回路
试验电路
晶体管特性图示仪
P N
E
VCE IB 0V 1V 10V
VBE 0
随着VCE电压的增大, 基区IB的电流通道变窄, IB 减小。要 获得同样大的 IB , 必需增大VBE 。表现出曲线右移。
当VCE ≥1V时,特性曲线右移的距离很小。通常将VCE=1V

经典模拟电子技术基础知识总结习题(选择,填空,解答题)

经典模拟电子技术基础知识总结习题(选择,填空,解答题)

1)开关S合上时,电压表V、电流表A1和电流表A2的读数为
多少?
V:12V A1:12mA A2:6mA
2)开关S打开时,流过稳压管的电流为多少? IZ:12mA
3)开关S合上,且输入电压由原来30 V上升到33 V时,
此时电压表V、电流表A1和电流表A2的读数为多少?
V:12V
A1:14mA A2:6mA
7.电路如图所示,试估算输出电压 U o 1 和 U o 2,
并标出输出电压对地极性。
-
-45V
+
+9V
8.电容滤波桥式整流电路及输出电压极性如图所示
u2102si n t( V )试求:
(1)画出图中4只二极管和滤波电容(标出极性);
(2)正常工作时,Uo =? 12V
(3)若电容脱焊,Uo=? 9V
_偏置。
正向
反向
7.当_三_极管工作_在偏_置截_,止_集_电区极时_,_I_C≈偏0置;。发射极_
零或反向
反向
8.当_三正_极向_管_工偏作置在,_集_饱电_和极__区_正时_向,_U偏CE置≈。0。发射极
9.当NPN硅管处在放大状态时,在三个电极电位中, 以____集极电的电位最高,___发_射极电位最低, ____极基和____极发电射位差等于____。
28V
(5)若其中一个二极管开路,Uo =? 20V
10. 试分析图示电路的工作原理, 标出电容电压的极性和 数值,并标出电路能输出约多少大的输出电压和极性。





2 U 2 、 22 U 2 、 32 U 2 、 42 U 2
第二章 半导体三极管
一、填充题
1.三极管从结构上看可以分成__N_PN__和__PN_P__ 两种类型。

第7章 基本放大电路习题与解答

第7章 基本放大电路习题与解答

第7章放大电路基础题解答习题A 选择题7-1在固定式偏置电路中,若偏置电阻R B的值增大了,则静态工作点Q将()。

BA. 上移B. 下移C. 不动D.上下来回移动7-2在图7-5中,若将R B减小,则集电极电流I C、集电极电位U C分别是()。

D A.减小、增大 B. 减小、减小 C.增大、增大 D. 增大、减小7-3在图7-5中的晶体管原处于放大状态,若将R B调到零,则晶体管()。

CA.处于饱和状态B.仍处于放大状态C.被烧毁7-4图7-9中交流分量u o与u i、u o与i c、i b与i c的相位关系分别是是()。

CA同相、反相、反相 B.反相、同相、反相 C.反相、反相、同相 D.反相、同相、同相7-5在共发射极放大电路中,()是正确的。

BA.r be=U BE/i B B.r be=u be/i b C. r be=U BE/I B7-6在图7-17(a)所示的分压式偏置放大电路中,通常偏置电阻R B1( )R B2。

AA. >B. <C. =7-7图7-17(a)所示电路中,若只将交流旁路电容C E出去,则电压放大倍数| A u |()。

AA.减少B.增大C.不变7-8射极输出器()。

BA.有电流放大作用,也有电压放大作用B.有电流放大作用,没有电压放大作用C.没有电流放大作用,也没有电压放大作用7-9射极跟随器适合作多级放大电路的输出级,是因为它的()BA. 电压放大倍数近似为1B. r i很大C. r O很小7-10在甲类工作状态的功率放大电路中,在不失真的条件下增大输入信号,则电源供给的功率、管耗分别是()。

CA.增大、减小B.减小、不变C. 不变、减小D. 不变、增大7-11在共射放大电路中,若测得输入电压有效值U i=5mV时,当未带上负载时U=1V,负载电阻R L值与R C相等,则带上负载输出电压有输出电压有效值'o效值U o=()V。

BA.1B.0.5C.-1D.-0.57-12在NPN型构成CE放大器,在非线性失真中,饱和失真也称为()。

晶体管两级放大电路实验报告

晶体管两级放大电路实验报告

竭诚为您提供优质文档/双击可除晶体管两级放大电路实验报告篇一:实验三晶体管两级放大电路实验报告《模拟电子技术》实验报告篇二:实验四两级放大电路实验报告实验四两级放大电路一、实验目的l、掌握如何合理设置静态工作点。

2、学会放大器频率特性测试方法。

3、了解放大器的失真及消除方法。

二、实验原理1、对于二极放大电路,习惯上规定第一级是从信号源到第二个晶体管bg2的基极,第二级是从第二个晶体管的基极到负载,这样两极放大器的电压总增益Av为:Vo2Vo2Vo2Vo2Vo1VsViVi1Vi2Vi1式中电压均为有效值,且Vo1?Vi2,由此可见,两级放大器电压总增益是单级电压增益的乘积,由结论可推广到多级放大器。

当忽略信号源内阻Rs和偏流电阻Rb的影响,放大器的中频电压增益为:Vo1Vo1?1R?L1Rc1//rbe2AV11VsVi1rbe1rbe1Vo2Vo2?2R?L2Rc2//RLAV22Vi1Vo1rbe2rbe2Rc1//rbe2Rc2//RLAV?AV1?AV2??1??2rbe1rbe2必须要注意的是AV1、AV2都是考虑了下一级输入电阻(或负载)的影响,所以第一级的输出电压即为第二级的输入电压,而不是第一级的开路输出电压,当第一级增益已计入下级输入电阻的影响后,在计算第二级增益时,就不必再考虑前级的输出阻抗,否则计算就重复了。

2、在两极放大器中β和Ie的提高,必须全面考虑,是前后级相互影响的关系。

3、对两级电路参数相同的放大器其单级通频带相同,而总的通频带将变窄。

guo?gu1o?gu2o式中gu?20logAV(db)三、实验仪器l、双踪示波器。

2、数字万用表。

3、信号发生器。

4、毫伏表5、分立元件放大电路模块四、实验内容1、实验电路见图4-1RL3K2、设置静态工作点(l)按图接线,注意接线尽可能短。

(2)静态工作点设置:要求第二级在输出波形不失真的前提下幅值尽量大,第一级为增加信噪比,静态工作点尽可能低。

第7章功率放大电路习题与解答

第7章功率放大电路习题与解答

习题1. 选择题。

(1)功率放大电路的转换效率是指。

A.输出功率与晶体管所消耗的功率之比B.输出功率与电源提供的平均功率之比C.晶体管所消耗的功率与电源提供的平均功率之比(2)乙类功率放大电路的输出电压信号波形存在。

A.饱和失真B.交越失真C.截止失真(3)乙类双电源互补对称功率放大电路中,若最大输出功率为2W,则电路中功放管的集电极最大功耗约为。

A.0.1W B.0.4W C.0.2W(4)在选择功放电路中的晶体管时,应当特别注意的参数有。

A.βB.I CM C.I CBO D.U(BR)CEO E.P CM(5)乙类双电源互补对称功率放大电路的转换效率理论上最高可达到。

A.25% B.50% C.78.5%(6)乙类互补功放电路中的交越失真,实质上就是。

A. 线性失真B. 饱和失真C. 截止失真(7) 功放电路的能量转换效率主要与有关。

A. 电源供给的直流功率B. 电路输出信号最大功率C. 电路的类型解:(1)B (2)B (3)B (4)B D E (5)C (6)C (7)C2. 如图7.19所示电路中,设BJT的β=100,U BE=0.7V,U CES=0.5V,I CEO=0,电容C对交流可视为短路。

输入信号u i为正弦波。

(1)计算电路可能达到的最大不失真输出功率P om?(2)此时R B应调节到什么数值?(3)此时电路的效率η=?ou 12V+图7.19 题2图解:(1)先求输出信号的最大不失真幅值。

由解题2图可知:ωt sin om OQ O U U u += 由C C om OQ V U U ≤+与C ES om OQ U U U ≥-可知:C ES C C om 2U V U -≤即有2C ESC C om U V U -≤因此,最大不失真输出功率P om 为:()W 07.2818122C ES C C L2om om ≈⨯-=⎪⎪⎭⎫ ⎝⎛=U V R U P (2)当输出信号达到最大幅值时,电路静态值为: ()C ES C C C ES C ES C C OQ 212U V U U V U +=+-= 所以 A 72.0825.0122L CES CC L OQ CC CQ≈⨯-=-=-=R U V R U V Im A 2.7CQ BQ==βII k Ω57.12.77.012BQ BE CC B ≈-=-=I U V R (3) %24%10072.01207.2CQ CC om V om ≈⨯⨯===I V P P P η 甲类功率放大电路的效率很低。

电路与电子技术基础第7章习题参考答案

电路与电子技术基础第7章习题参考答案

Ic<βIb
βIb,而在转折区以下部分 Ic<βIb,此段为饱和区。 1
0
《电路与电子技术基础》第七章参考答案
第2页
图(e)的静态工作点
UB
=
(30
+
24 60) ×103
× 3 ×103
= 8(V)
Ie
=
8 − 0.7 2 ×103
=
3.85(mA)
Ic ≈ Ie
Ib
=
Ie β +1
=
3.85 80 + 1
0 2 4 6 8 10 12
(a) 电路图
(b) 输出特性曲线
题图 7-5 习题 7-9 电路与特性曲线
uCE(V)
《电路与电子技术基础》第七章参考答案
第5页
解:(1)直流负载线方程为:U ce = 12 − 5I c ,直流负载线见图。
(2)由图(b)可知,Ib=40μA
IC=2mA。所以 β
+10V
390kΩ
Uo I 2.2kΩ
对于图(b),
Ib
=
10 − 0.7 390 ×103
= 23.8 ×10−6
(A)
所以:
(a)
(b)
题图 7-4 习题 7-6 电路
I = I c = βI b = 100 × 23.8 ×10−6 = 2.38 ×10−3 (A)
U o = 2.2 ×103 × 2.38 ×10−3 = 5.24 (V)
Ib
= 24 − 0.7 120 ×103
≈ 0.194mA = 194μA
I c = βI b = 50 × 0.194 = 9.7(mA)

第七章 MOS管模拟集成电路设计基础

第七章 MOS管模拟集成电路设计基础

2. 以多晶硅作为下极板的MOS电容器 以多晶硅作电容器下极板所构造的MOS电容器是无极性电
容器,如下图所示。这种电容器通常位于场区,多晶硅下极板 与衬底之间的寄生电容比较小。
(a)金属做上极板 (b)多晶硅做上极板 图7.2.3 多晶硅为下极板的MOS电容器结构
3.薄膜电容器 在某些电路中,需用较大的电容或对电容有某些特殊要求,
7.2 MOS模拟集成电路中的基本元器件
7.2.1 模拟集成电路中电阻器----无源电阻和有源电阻
1. 掺杂半导体电阻 (1)扩散电阻
所谓扩散电阻是指采用热扩散掺杂的方式构造而成的电阻。 这是最常用的电阻之一,工艺简单且兼容性好,缺点是精度稍 差。 (2)离子注入电阻
同样是掺杂工艺,由于离子注入工艺可以精确地控制掺杂 浓度和注入的深度,并且横向扩散小,因此,采用离子注入方 式形成的电阻的阻值容易控制,精度较高。
社,2004年5月(21世纪高等学校电子信息类教材).
第七章 MOS管模拟集成电路设计基础 7.1 引言
1、采用数字系统实现模拟信号处理 现实世界中的各种信号量通常都是以模拟信号的形式出现
的,设计一个电路系统的基本要求,就是采集与实现系统功能 相关的模拟信号,按系统的功能要求对采集的信号进行处理, 并输出需要的信号(通常也是模拟量)。
1、电流偏置电路
在模拟集成电路中,电流偏置电路的基本形式是电流
镜。所谓的电流镜是由两个
或多个并联的相关电流
支路组成,各支路的电
流依据一定的器件比例
关系而成比例。
Hale Waihona Puke 1) NMOS基本电流镜NMOS基本电流镜
由两个NMOS晶体管组 成,如图7.3.1所示。
图7.3.1 NMOS基本电流镜

双极型晶体管及其放大电路

双极型晶体管及其放大电路
IEP << IEN ,可忽略不计。因此,发射极电流IE≈IEN, 其方向与电子注入方向相反。
第2章 双极型晶体管及其放大电路
二、电子在基区中边扩散边复合
,成为基区中的非平衡少子,它在e结 处浓度最大,而在c结处浓度最小(因c结反偏,电子浓 度近似为零)。因此,在基区中形成了非平衡电子的浓 度差。在该浓度差作用下,注入基区的电子将继续向c 结扩散。在扩散过程中,非平衡电子会与基区中的空 穴相遇,使部分电子因复合而失去。但由于基区很薄 且空穴浓度又低,所以被复合的电子数极少,而绝大 部分电子都能扩散到c结边沿。基区中与电子复合的空 穴由基极电源提供,形成基区复合电流IBN,它是基极 电流IB的主要部分。
(2―4)
称为穿透电流。因ICBO很小,在忽略其影响时,则有
IC IB IE (1 )IB
(2―5a) (2―5b)
式(2―5)是今后电路分析中常用的关系式。
第2章 双极型晶体管及其放大电路
为了反映扩散到集电区的电流ICN与射极注入电流
IEN的比例关系,定义共基极直流电流放大系数 为
第2章 双极型晶体管及其放大电路
为了反映扩散到集电区的电流ICN与基区复合电流 IBN之间的比例关系,定义共发射极直流电流放大系数

ICN IC ICBO
I BN I B ICBO
(2―2)
其含义是:基区每复合一个电子,则有
个电子扩散到集电区去。 之间。
值一般在20~200
确定了 值之后,由式(2―1)、(2―2)可得
IC IB (1 )ICBO IB ICEO (2―3) IE (1 )IB (1 )ICBO (1 )IB ICEO

第7章-半导体元件及其应用

第7章-半导体元件及其应用

2.光敏性:在无光照时电阻率很高,但一有光照电阻 率则显著下降。
利用这个特性可以制成光敏元件。 3.杂敏性:在纯净的半导体中加入杂质,导电能力猛
增几万倍至百万倍。
2019/11/2
广东海洋大学
主讲:张波
电工电子学
第七章 半导体元件及其应用
本征半导体:纯净的半导体
硅和锗,它们的最外层电子(价电子)都是四个。在本征半导 体中有电子和空穴2种载流子,而金属导体中只有电子一种载流 子。
五个价电子,其中四个与相邻的半导体原子形成共价键,必
定多出一个电子,成为自由电子
因为掺杂浓度远 大于本征半导体 中载流子浓度, 所以,自由电子 浓度远大于空穴 浓度。自由电子 称为多数载流子 (多子),空穴 称为少数载流子 (少子)。 2019/11/2
广东海洋大学
杂质原子提供 的多余电子
杂质原子失去一个 电子成为正离子
发射结正偏,集电结反偏:放大模式(最常用)
发射结正偏,集电结正偏:饱和模式 (用于开关电路中)
发射结反偏,集电结反偏:截止模式
2019/11/2
广东海洋大学
主讲:张波
电工电子学
第七章 半导体元件及其应用
总结:在放大电路中三极管主要工作于放大状态,
即要求,发射结正偏(正偏压降近似等于其 PN结的导通压降),集电结反偏(反偏压降
电工电子学
第七章 半导体元件及其应用
2、PN结的单向导电性
2019/11/2
广东海洋大学
主讲:张波
电工电子学
第七章 半导体元件及其应用
PN 结加正向电压(正向偏置) : P 区接电压正极和 N 区接电压负极。
PN 结加反向电压(反向偏置): P 区接电压负极和N 区接电压正极。

电工与电子技术基础课件第七章晶闸管电路

电工与电子技术基础课件第七章晶闸管电路
约,最后稳定值为IA=(UA-UT)/R。
结论 2.晶闸管的导通与关断条件
(1)导通条件
1)阳极加适当的正向电压,即UA>0。 2)门极加适当的正向触发电压,即U G>0。 3)电路参数必须保证晶闸管阳极工作电流大于维 持电流,即IA>IH,维持电流IH是维持晶闸管导通的最 小阳极电流。
(2)关断条件
特点
单相半波可控整流电路具有线路简单,只需要一个晶闸管, 调整也很方便。整流输出的直流电压脉动大、设备利用率不 高等缺点。故只适用于要求不高的小功率整流设备上。
【例7-1】在图7-5a所示电路中,变压器二次电压U2=100V,
当控制角α分别为0º、90º、120º、180º时,负载上的平均电 压是多少?
晶闸管
例如KP10-20表示额定通态平均电流为10A,正反向重复峰值电压为 2000V的普通反向阻断型晶闸管。
五、晶闸管使用注意事项
晶闸管特点:具有体积小、损耗小、无声、控制灵 敏度高等许多优点的半导体变流器件,但它对过流 和过压承受能力比其他电器产品要小得多。
使用时应注意以下几点:
1)在选择晶闸管额定电压、电流时,应留有足够的安 全余量。
1)撤除阳极电压,即UA≤ 0。 2)阳极电流减小到无法维持导通的程度,即IA<IH。 常采用的方法有:降低阳极电压,切断电流或给阳极 加反向电压。
想一想
1)根据晶闸管的结构图7-2a所示,可将其看成是 ( )型和( )型两个晶体三极管的互连。
2)有人说:“晶闸管只要加上正向电压就导通, 加上反向电压就关断,所以晶闸管具有单向导电性 能。”这句话对吗?
第二节 晶闸管可控整流电路
晶闸管可控整流与二极管整流有所不同,它不仅能将 交流电变成直流电,且改变的直流电的大小是可调的、可控的。

晶体管放大电路

晶体管放大电路

U CEQ VCC I CQ Rc
列晶体管输入、输出回路方程,将UBEQ作为已知
条件,令ICQ=βIBQ,可估算出静态工作点。
15
阻容耦合共射放大电路的直流通路和交流通路
直流通路
I
=VCC-U
BQ
Rb
BEQ
I CQ I BQ
U CEQ VCC I CQ Rc
当VCC>>UBEQ时,
I BQ
Re起直流负反馈作用,其值越大,反馈越强,Q点越稳定。
32
3. Q 点分析
分压式电流负反馈工作点稳定电路
VBB IBQ Rb U BEQ IEQ Re
VBB
Rb1 Rb1 Rb2
VCC
Rb Rb1 ∥ Rb2
U BQ
Rb1 Rb1 Rb2
VCC
I EQ
U BQ
U BEQ Re
判断方法: Rb1 ∥ Rb2 (1 )Re ?
以N沟道为例
单极型管∶噪声小、抗辐射能力强、低电压工作
场效应管有三个极:源极(s)、栅极(g)、漏极(d),对应于晶体
管的e、b、c;有三个工作区域:截止区、恒流区、可变电阻区,对应于
晶体管的截止区、放大区、饱和区
1. 结型场效应管
结构示意图
3. 通频带
衡量放大电路对不同频率信号的适应能力
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低
和较高时电压放大倍数数值下降,并产生相移。
下限频率
f bw f H f L
上限频率
4. 最大不失真输出电压Uom:交流有效值 5. 最大输出功率Pom和效率η:功率放大电路的参数
6
§2 基本共射放大电路的工作原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Von v /V Vth BE 1.0
(2)饱和区(Saturation region) 饱和区内的vCE称为饱和压降,小 vCE=0.5V 100 功率硅管的饱和压降典型值为0.3V, 锗管为0.1V。 80 vCE=0V
iC vCE≥1V 60 iB(A) iC /mA 饱和区 4 3 放 100 80 60
由于基区掺杂浓度比发射区小2~3个数量级, 基区注入发射区的空穴电流可以忽略不计
c ICBO ICN b IB
IBN
(2)载流子在基区中的扩散与复合
IC
N +
P
Rc
vCE VCC
电子不断地向集电结方向扩散, 扩散过程中少量电子与空穴复合, 形成基极电流的一部分IBN。 由于基区宽度很窄,且掺杂浓度 很低,从而大大地减小了电子与 空穴复合的机会,使注入基区的 95%以上的电子都能到达集电结, 它们将形成集电极电流的一部分 ICN。
1.载流子的传输过程
c ICBO ICN b IB
IBN
(1)发射区向基区注入载流子
IC N +
Rc
P
vCE VCC
Rb VBB
+
N _ vBE IEP IEN _ e IE
由于发射结正向偏置,发射 区的电子源源不断地注入基区, 基区的空穴也要注入发射区, 二者共同形成发射极电流IE。
I E I EN I EP I EN
iB
iC
c +
vBE
Von
vCE
iB
e
0.5
(a) 恒压降输入特性曲线
在输入特性曲线中,用垂足为导通电压(Von)的垂直线段逼近输入特性的导通 区,用过原点的水平线段逼近输入特性的死区,如图7.2.2(a)所示。 在输出特性曲线中,用一组水平直线段逼近晶体管的放大区特性,用垂足为原点 的垂直线段逼近晶体管的饱和特性,如图7.2.7(b)所示。
I C I B
vCE const
I C I B I B I B
7.1.3 晶体管的伏安特性
1.输入特性曲线
输入特性曲线描述了在集射电压vCE一定的情况下,基极电流 iB与基射电压vBE之间的函数关系,即
iB f (v BE ) v
iB(A) 100 80 iC iB + vBE _ + vCE _ 60 40 20 0 (a) 共射极连接 图 7.1.6 Vth Von v /V Vth BE 1.0 vCE=0.5V vCE=0V vCE≥1V
3.静态工作点的计算
+VCC(12V) -VCC(-12V)
Rb IB VBE +
Rc
IC T + VCE
Rb IB
VBE
V BE Von Rc I VCC VBE IB C Rb I I T + C C + VCE VCE Rc I C VCC
I CEO (1 ) I CBO
当温度升高时,ICEO的增大体现为整个输出特性曲线族向上平移
(2) 温度对β的影响
温度升高时,晶体管内部载流子的扩散能力增强,使基区内载流子的复合概率减 小,因而温度升高时放大倍数β随之增大。 以 25 C 时测得的β值为基数,温度每升高 ,β增加约(0.5~1)%。 1 C
7.2.1 基本偏置电路和静态工作点分析方法 1.基本偏置电路
Rb
+V CC(12V) -VCC(-12V)
Rc
IC
T + VCE
Rb IB + VBE
Rc
IC T + VCE
IB
+ VBE
(a)NPN 管
(b)PNP 管
直流电压和电流在其特性曲线上组成静态工作点,分别是 (VBE,IB)和(VCE,IC),通常用Q表示。
80
vCE=0V
region) Vth
放大区的特点是: 2 4 6 8 vCE / V 0 0 0.5 ① 发射结正偏,集电结反偏; (c)输出特性曲线 (b)输入特性曲线 (a) 共射极连接 ② iC=βiB,体现了晶体管的放大 图 7.1.6 NPN 管的共射极特性曲线 作用(电流控制作用),曲线的间 隔越大,β值越大; ③iC 随vCE增加很小,呈恒流特性。
Rb VBB
+
N _ vBE IEP IEN _ e IE
所以
I EN I BN ICN
c
IC N + P
(3)集电区收集载流子
Rc
ICBO ICN
b IB
IBN
vCE VCC
Rb VBB
+
N _ vBE IEP IEN _ e IE
集电结外加反向电压,基区中扩散 到集电结边缘的电子,受电场的作 用,漂移越过集电结形成集电极电 流的一部分ICN。 另一方面,集电结两边的少数载流 子漂移形成反向饱和电流,记为 ICBO。通常,ICBO<<ICN。
2.极间反向电流
极间反向电流是由少数载流子形成的,其大小表征了晶体管的温度特性。
(1)集电结反向饱和电流ICBO:发射极开路时,集电极和基极之 间的反向饱和电流。
(2)穿透电流ICEO:基极开路时,通过集电极和发射极回路的电 流,ICEO=(1+β)ICBO。
3.极限参数 (1)集电极最大允许电流ICM ICM是指当β下降到正常β值的2/3时所对应的IC值。当IC超过ICM时, 晶体管的放大性能下降,但不一定损坏。 (2)反向击穿电压(Reverse breakdown voltage)
第7章 晶体管及其放大电路 本章主要内容:
7.1 晶体管
7.2 放大电路的直流偏置 7.3 共射极放大电路 7.4 共集电极和共基极放大电路 7.5组合放大电路 7.6放大电路的频率响应
7.1 晶体管 本节主要内容: 7.1.1 晶体管的结构 7.1.2 晶体管的工作原理 7.1.3 晶体管的伏安特性 7.1.4 晶体管的主要参数 7.1.5 温度对晶体管特性和参数的影响
iB 大 2 40 饱和区的特点: + 40 + vCE ①发射结和集电结均为正偏置; 区 20 Vth vBE 1 _ 20 _ Von 截止区 ②iC不受iB控制,而近似随vCE线v /V ICEO iB=0μA BE Vth 性增长。由于vCE小、而iC大,故 2 4 6 8 vCE / V 0 0 0.5 1.0 ce(集电极和发射极)之间等效 (c)输出特性曲线 (b)输入特性曲线 (a) 共射极连接 为开关的导通,或等效为一个小 图 7.1.6 NPN 管的共射极特性曲线 电阻,称为导通电阻。
(3)截止区(Cutoff region)
特点:①发射结和集电结都是反向偏置;②iC=ICEO≈0,故ce之间 等效为开关的断开,或等效为一个大电阻,称为截止电阻。
7.1.4 晶体管的主要参数 1.电流放大系数(Current amplification factor)
电流放大系数是表征晶体管放大能力的参数。有共发射极直流电流放大系数 、共发射极交 流电流放大系数 、共基极直流电流放大系数 和共基极交流放大系数 α。它们的含义见 7.1.2 节。
值越大,发射极电流对集电极电流的控制能力越强。
因为I E I B IC

I C I E I CBO ( I B I C ) I CBO

1 IC IB I CBO 1 1
令 1
1 则I C I B I CBO I B 1
CE const
小功率硅管的门坎电压vth 约为0.5V,锗管约为0.1V。 小功率硅管的导通压降 Von约为0.6~0.8V,一般 取0.7V;小功率锗管约为 0.2~0.3V,一般取0.2V。
0.5
(b)输入特性曲线
NPN 管的共射极特性曲线
2.输出特性曲线
输出特性曲线描述了在基极电流iB一定的情况下,集电极电流iC与集射电压vCE 之间的函数关系,即 i /mA

为共射极直流电流放大系数
定义集电极电流变化量 ΔIC 与射极电流变化量 ΔIE 之比为共基极交流放大系数 α,即

I C I E
vCE const
I C I E I E I E
即共基极交流放大系数 近似等于共基极直流电流放大系数 定义集电极电流变化量ΔIC与基极电流变化量ΔIB之比为共射极交流 放大系数β,即
发射结反向击穿电压V(BR)EBO:集电极开路时,发射极与基极之间允许施加的 最高反向电压。超过此值,发射结发生反向击穿。
集电结反向击穿电压V(BR)CBO:发射极开路时,集电极与基极之间允许施加的 最高反向电压。超过此值,集电结发生反向击穿。
(3)集电极最大允许耗散功率PCM
P iC vCE CM
IC ICN ICBO ICN
I B I BN I EP ICBO
由基尔霍夫电流定律: I E I B I C 显然,电子和空穴都参与电流传导过程,因此,称为双极结型三 极管(Bipolar Junction Transistor,BJT),简称晶体管。
2.电流控制作用 定义ICN与IE之比为晶体管的共基极直流电流放大系数 ,即 I CN IE 得 IC I E ICBO
图 7.1.11 温度对三极管输入特性的影响
(4) 温度对输出特性的影响
温度升高时,晶体管的ICBO、ICEO、β都将增大,导致晶体管的输出特性曲线向上移
(5) 温度对反向击穿电压的影响
温度升高,V(BR)CEO和V(BR)CBO都增大
7.2 放大电路的直流偏置
将晶体管偏置在放大状态:发射结正偏,集电结反偏。
相关文档
最新文档