最新-江西省丰城中学2018届第二轮复习资料力和物体的平衡专题训练 精品
高中物理力与物体的平衡习题解析与专题训练(附答案)
力与物体的平衡例题解析力的合成与分解1.物体受共点力F1、F2、F3作用而做匀速直线运动,则这三个力可能选取的数值为A.15 N、5 N、6 NB.3 N、6 N、4 NC.1 N、2 N、10 ND.1 N、6 N、8 N解析:物体在F1、F2、F3作用下而做匀速直线运动,则三个力的合力必定为零,只有B选项中的三个力的合力可能为零,故选B.答案:B2.一组力作用于一个物体,其合力为零.现把其中的一个大小为20 N的力的作用方向改变90°而大小不变,那么这个物体所受力的合力大小是_______.解析:由于物体所受的合力为零,则除20 N以外的其他力的合力大小为20 N,方向与20 N的力方向相反.若把20 N的力的方向改变90°,则它与其余力的合力垂直,由平行四边形定则知物体所受力的合力大小为202N.答案:202N3.如图1-2-15所示,物块在力F作用下向右沿水平方向匀速运动,则物块受的摩擦力F f与拉力F的合力方向应该是图1-2-15A.水平向右B.竖直向上C.向右偏上D.向左偏上解析:对物块进行受力分析如图所示:除F与F f外,它还受竖直向下的重力G及竖直向上的支持力F N,物块匀速运动,处于平衡状态,合力为零.由于重力G和支持力F N在竖直方向上,为使这四个力的合力为零,F与F f的合力必须沿竖直方向.由平行四边形定则可知,F与F f的合力只能竖直向上.故B正确.F答案:B4.如图1-2-16所示,物体静止于光滑水平面M 上,力F 作用于物体O 点,现要使物体沿着OO '方向做加速运动(F 和O O '都在M 水平面内).那么,必须同时再加一个力F ',这个力的最小值是图1-2-16A.F cos θB.F sin θC.F tan θD.F cot θ解析:为使物体在水平面内沿着O O '做加速运动,则F 与F '的合力方向应沿着O O ',为使F '最小,F '应与OO '垂直,如图所示.故F '的最小值为F '=F sin θ,B 选项正确.答案:B5 .某运动员在单杠上做引体向上的动作,使身体匀速上升.第一次两手距离与肩同宽,第二次两手间的距离是肩宽的2倍.比较运动员两次对单杠向下的作用力的大小,其结果为_______.解析:由于运动员匀速上升,运动员两次所受单杠的作用力都等于他的重力,故他对单杠向下的作用力都是mg .答案:mg6. 一根轻质细绳能承受的最大拉力是G ,现把一重为G 的物体系在绳的中点,两手先并拢分别握住绳的两端,然后缓慢地左右对称分开.为使绳不断,两绳间的夹角不能超过A.45°B.60°C.120°D.135°解析:当两绳间的夹角为120°时,两绳的拉力等于G ;若两绳的夹角大于120°,两绳的拉力大于G ;若两绳间的夹角小于120°,两绳的拉力小于G ,故选C.答案:C7. 刀、斧、凿、刨等切削工具的刃都叫做劈,劈的截面是一个三角形,如图1-2-17所示,使用劈的时候,在劈背上加力F ,这个力产生的作用效果是使劈的两侧面推压物体,把物体劈开.设劈的纵截面是一个等腰三角形,劈背的宽度是d ,劈的侧面的长度是L .试求劈的两个侧面对物体的压力F 1、F 2.2图1-2-17解析:根据力F 产生的作用效果,可以把力F 分解为两个垂直于侧面的力'1F 、'2F ,如图所示,由对称性可知,'1F ='2F .根据力三角形△O '1F F 与几何三角形△ACB 相似可得L F '1=dFF2'所以'1F ='2F =dLF 由于F 1='1F ,F 2='2F , 故F 1=F 2=dL F . 答案:F 1=F 2=dL F8. 如图1-2-18所示,保持θ不变,将B 点向上移,则BO 绳的拉力将图1-2-18 A.逐渐减小B.逐渐增大C.先减小后增大D.先增大后减小解析:对结点O 受力分析如图甲所示.由于结点O 始终处于平衡状态,合力为零,故F 1、F B 、F A 经过平移可构成一个矢量三角形,其中F 1=mg ,其大小和方向始终不变;F A 方向也不变,大小可变;F B 的大小、方向都在变.在绳向上偏移的过程中,可能作出一系列矢量三角形如图乙所示,显而易见在F B 变化到与F A 垂直前,F B 是逐渐变小的,然后F B 又逐渐变大.同时看出F A 是逐渐变小的,故C 正确.应用此方法可解决许多相关动态平衡问题.AA甲乙答案:C9.用细绳AC 和BC 吊起一重物,两绳与竖直方向的夹角如图1-2-19所示,AC 能承受的最大拉力为150 N ,BC 能承受的最大拉力为100 N.为使绳子不断裂,所吊重物的质量不得超过多少?图1-2-19解析:重物受到的三个力的方向已确定.当AC 、BC 中有一条绳的拉力达到最大拉力时,设F AC 已达到F AC =150 N ,已知F BC =F AC tan30°=86.6 N <100 N.A CG =30cos AC F =22150N =172 N. G =172 N 时,F AC =150 N ,而F BC <100 N ,AC 要断. 所以G ≤172 N ,m ≤17.2 kg. 答案:m ≤17.2 kg10.(2003年高考新课程理科综合,19)如图1-2-20所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球和O 点的连线与水平线的夹角为α=60°.两小球的质量比12m m 为2图1-2-20A.33B.32C.23D.22 解析:由F N 与F T 水平方向合力为零可知,F N =F T ;竖直方向有2F T cos30°=m 1g ,又F T =m 2 g ,从而得2m 2 g ×23=m 1 g ,解得12m m =33.答案:A11.如图1-2-21所示,重为G 的均匀链条,两端用等长的轻绳连接,接在等高的地方,绳与水平方向成θ角.试求:(1)绳子的张力;(2)链条最低点的张力.图1-2-21解析:(1)如图所示,设两端绳的拉力均为F 1,则有2F 1sin θ=G1F 1=θsin 2G. (2)设链条最低点的张力为F 2,则有 F 2=F 1cos θ=21G cot θ. 答案:(1)θsin 2G (2)21G cot θ12. 水平横梁的一端A 插在墙壁内,另一端装有一小滑轮B .一轻绳的一端C 固定在墙壁上,另一端跨过滑轮后悬挂一质量m =10 kg 的重物,∠CBA =30°,如图1-2-22 所示.则滑轮受到绳子的作用力为(g 取10 m/s 2)ABCm图1-2-22A.50 NB.503 NC.100 ND.200 N解析:滑轮所受绳子的作用力是滑轮两侧绳子拉力的合力.根据定滑轮的特点,两侧绳的拉力均为F =mg =100 N.由于两侧绳的夹角为120°,所以,它们的合力也等于100 N ,C 选项正确.答案:C 13.(2003年辽宁大综合,36)如图1-2-23所示,一质量为M 的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a 、b 为两个位于斜面上质量均为m 的小木块.已知所有接触面都是光滑的.现发现a 、b 沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于♋♌Ma b图1-2-23 A.Mg +mgB.Mg +2mgC.Mg +mg (sin α+sin β)D.Mg +mg (cos α+cos β)解析:以楔形木块为研究对象,它受到重力、支持力、两木块的压力,根据平衡条件得F N =Mg +mg cos 2α+mg cos 2β 由于α+β=90°, 故cos 2α+cos 2β=1,所以楔形木块对地面的压力为F N =Mg +mg 正确选项为A. 答案:A14.如图1-2-24所示,用光滑的粗铁丝做成一直角三角形,BC 水平,AC 边竖直,∠ABC =α,AB 及AC 两边上分别套有细线连着的铜环,当它们静止时,细线跟AB 所成的角θ的大小为(细线长度小于BC )图1-2-24A.θ=αB.θ>2π C.θ<αD.α<θ<2π 解析:若铜环Q 质量为零,则它仅受线的拉力和铁丝AC 的弹力,它们是一对平衡力.由于铁丝对Q 环的弹力垂直于AC ,则细线必定垂直于AC ,此时θ=α,由于Q 环的质量大于零,故θ>α.同样的道理,若铜环P 的质量为零,则θ=2π,而铜环P 的质量大于零,则θ<2π,故α<θ<2π.选项D 正确.答案:D15.(2004年天津理综,17)中子内有一个电荷量为+32e 的上夸克和两个电荷量为-31e 的下夸克,一简单模型是三个夸克都在半径为r 的同一圆周上,如图1-2-25所示.图1-2-26给出的四幅图中,能正确表示出各夸克所受静电作用力的是+23e图1-2-25+23e+23e+23e+23eBD图1-2-26解析:电荷量为-31e 的下夸克所受的另一个电荷量为-31e 的下夸克给它的静电力,为电荷量为+32e 的上夸克给它静电力的21,则由受力图及相应的几何知识可得到,两个电荷量为-31e 的下夸克所受的静电力的合力均竖直向上,电荷量为+32e 的上夸克所受的静电力的合力竖直向下,故B 选项正确.答案:B16.有点难度哟!如图1-2-27所示,在倾角α=60°的斜面上放一个质量为m 的物体,用k =100 N/m 的轻质弹簧平行斜面吊着.发现物体放在PQ 间任何位置都处于静止状态,测得AP =22 cm ,AQ =8 cm ,则物体与斜面间的最大静摩擦力等于多少?图1-2-27解析:物体位于Q 点时,弹簧必处于压缩状态,对物体的弹力F Q 沿斜面向下;物体位于P 点时,弹簧已处于拉伸状态,对物体的弹力F P 沿斜面向上,P 、Q 两点是物体静止于斜面上的临界位置,此时斜面对物体的静摩擦力都达到最大值F m ,其方向分别沿斜面向下和向上.根据胡克定律和物体的平衡条件得: k (l 0-l 1)+mg sin α=F m k (l 2-l 0)=mg sin α+F m解得F m =21k (l 2-l 1)=21×100×0.14 N=7 N. 答案:7 N17.有点难度哟!压榨机如图1-2-28所示,B 为固定铰链,A 为活动铰链.在A 处作用一水平力F ,C 就以比F 大得多的力压D .已知L =0.5 m ,h =0.1 m ,F =200 N ,C 与左壁接触面光滑,求D 受到的压力.图1-2-28解析:根据水平力产生的效果,它可分解为沿杆的两个分力F 1、F 2,如图a 所示.则F 1=F 2=αcos 21F=αcos 2FFF F 2F F F 34a b而沿AC 杆的分力F 1又产生了两个效果:对墙壁的水平推力F 3和对D 的压力F 4,如图b 所示,则F 4=F 1sin α=21F tan α而tan α=hL故F 4=hLF 2=1.022005.0⨯⨯ N=500 N. 答案:500 N18.(06广东模拟)如图1-2所示是山区村民用斧头劈柴的剖面图,图中BC 边为斧头背,AB 、AC 边是斧头的刃面。
专题限时集训1 力与物体的平衡 —2021届高三物理二轮新高考复习检测
专题限时集训(一)(建议用时:40分钟)1.如图所示,质量为M的“铁书立”上放置一本书,整体放在水平桌面上,在静止状态下( )A.桌面对书有向上的弹力B.书受到的合外力为零C.书与“铁书立”之间可以无摩擦D.“铁书立”对桌面的压力为MgB[由图知桌面与书没有接触,不会对书有向上的弹力,故A错误;书处于平衡状态,根据平衡条件知合力为0,故B正确;对书受力分析知“铁书立”对书有向上的弹力和向右的弹力,水平方向“铁书立”对书有向左的摩擦力,否则不能保持平衡状态,故C错误;选整体为研究对象知“铁书立”对桌面的压力大于Mg,故D错误。
] 2.如图所示,两梯形木块A、B叠放在水平地面上,A、B之间的接触面倾斜,A的左侧靠在光滑的竖直墙面上,关于两木块的受力,下列说法正确的是( )A.A、B之间一定存在摩擦力作用B.木块A可能受三个力作用C.木块A一定受四个力作用D.木块B受到地面的摩擦力作用方向向右B[由于A、B间接触面情况未知,若A、B接触面光滑,则A、B间没有摩擦力,故A错误;对A受力分析可知,A一定受重力和B对A的支持力,另外受向右的弹力,因为A、B间可能没有摩擦力,故A可能只受三个力,故B正确,C错误;木块B受重力、支持力、A对B的垂直于接触面的压力以及推力F作用,若压力水平向右的分力等于F,则B不受摩擦力,故D错误。
]3.(易错题)如图所示,一木块在垂直于倾斜天花板平面方向的推力F作用下处于静止状态,则下列说法正确的是( )A.天花板与木块间的弹力可能为零B.天花板对木块的摩擦力可能为零C.推力F逐渐增大的过程中,木块将始终保持静止D.木块受天花板的摩擦力随推力F的增大而变化C[木块在重力作用下,有沿天花板下滑的趋势,故一定受到静摩擦力,则天花板对木块一定有弹力,故A、B项错误;设天花板与水平方向夹角为α,木块受到的静摩擦力为f,天花板对木块的支持力为N,木块的重力为G,木块受力如图所示,根据平衡条件得F=N+G cos α①,f=G sin α②,由②式可知,静摩擦力大小为一个定值,与推力F无关,D项错误;由①式可知,逐渐增大F的过程中,N逐渐增大,则最大静摩擦力逐渐增大,而木块受到的静摩擦力f不变,木块将始终保持静止,C项正确。
高三物理第二轮复习:力与运动专题(含答案)
高三物理第二轮专题复习力与运动专题一、要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律作用力与反作用力一定是同种性质的力,作用效果不能抵消.懂得与一对平衡力区分。
(二)牛顿第二定律1.定律内容:物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.二、热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.●例1如图甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t1=2 s后停止,小球沿细杆运动的部分v-t图象如图1-15乙所示.试求:(sin 37°=0.6,cos 37°=0.8)(1)小球在0~2 s内的加速度a1和2~4 s内的加速度a2.(2)风对小球的作用力F的大小.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,整体法与隔离法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.●例2 如图所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k 的轻质弹簧相连,在外力F 1、F 2的作用下运动.已知F 1>F 2,当运动达到稳定时,弹簧的伸长量为( )A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k★同类拓展 如图所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M )三、临界问题●例3 如图所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑块施加一水平方向的恒力F ,要使小球B 能相对斜面静止,恒力F 应满足什么条件?四、超重与失重问题●例4 为了测量某住宅大楼每层的平均高度(层高)及电梯的运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验:质量m =50 kg 的甲同学站在体重计上,乙同学记录电梯从地面一楼到顶层的过程中,体重计的示数随时间变化的情况,并作出了如图所示的图象.已知t =0时,电梯静止不动,从电梯内楼层按钮上获知该大楼共19层.求:(1)电梯启动和制动时的加速度大小.(2)该大楼的层高.三、经典考题在本专题中,正交分解、整体与隔离相结合是最重要也是最常用的思想方法,是高考中考查的重点.1.[2007年·上海物理卷]有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑.AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图所示).现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是 ( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小2.[2004年·全国理综卷]如图所示,在倾角为α的固定光滑斜面上有一块用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变.则此时木板沿斜面下滑的加速度为 ( )A .g 2sin α B .g sin α C .32g sin α D .2g sin α3. [2010年海南卷]如图,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜面以速度v0匀速下滑,斜劈保持静止,则地面对斜劈的摩擦力A.等于零B.不为零,方向向右C.不为零,方向向左D.不为零,v0较大时方向向左,v0较小时方向向右4.[2009年高考·山东理综卷]如图所示,某货场需将质量m 1=100 kg 的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物由轨道顶端无初速度滑下,轨道半径R =1.8 m .地面上紧靠轨道依次排放两块完全相同的木板A 、B ,长度均为l =2 m ,质量均为m 2=100 kg ,木板上表面与轨道末端相切.货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ2=0.2.(最大静摩擦力与滑动摩擦力大小相等,取g =10 m/s 2)(1)求货物到达圆轨道末端时对轨道的压力.(2)若μ1=0.5,求货物滑到木板A 末端时的速度和在木板A 上运动的时间.5.[2009年海南卷]一卡车拖挂一相同质量的车厢,在水平直道上以012/v m s =的速度匀速行驶,其所受阻力可视为与车重成正比,与速度无关。
物理第二轮全面复习精品资料
专题一运动和力【知识结构】【典型例题】例1、如图1—1所示,质量为m=5kg的物体,置于一倾角为30°的粗糙斜面体上,用一平行于斜面的大小为30N 的力F 推物体,使物体沿斜面向上匀速运动,斜面体质量M =10kg ,始终静止,取g =10m/s 2,求地面对斜面体的摩擦力及支持力.例2 、如图1—3所示,声源S 和观察者A 都沿x 轴正方向运动,相对于地面的速率分别为v S 和v A ,空气中声音传播的速率为P v ,设,S P A P v v v v <<,空气相对于地面没有流动.(1)若声源相继发出两个声信号,时间间隔为△t ,请根据发出的这两个声信号从声源传播到观察者的过程,确定观察者接收到这两个声信号的时间间隔△t ′.(2)利用(1)的结果,推导此情形下观察者接收到的声源频率与声源发出的声波频率间的关系式.例3、假设有两个天体,质量分别为m 1和m 2,它们相距r ;其他天体离它们很远,可以认为这两个天体除相互吸引作用外,不受其他外力作用.这两个天体之所以能保持...........距离..r .不变,完全是由于它们绕着共同“中心”(质心)做匀速圆周运动,它们之间的万....................................有引力作为做圆周运动的向心力..............,“中心”O 位于两个天体的连线上,与两个天体的距离分别为r 1和r 2.(1)r 1、r 2各多大?(2)两天体绕质心O 转动的角速度、线速度、周期各多大?例4、A 、B 两个小球由柔软的细线相连,线长l =6m ;将A 、B球先后以相同的初速图1—1v图1—3度v0=4.5m/s,从同一点水平抛出(先A、后B)相隔时间△t =0.8s.(1)A球抛出后经多少时间,细线刚好被拉直?(2)细线刚被拉直时,A、B球的水平位移(相对于抛出点)各多大?(取g=10m/s2)例5、内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在细圆管中有两个直径略小于细圆管管径的小球(可视为质点)A和B,质量分别为m1和m2,它们沿环形圆管(在竖直平面内)顺时针方向运动,经过最低点时的速度都是v0;设A球通过最低点时B球恰好通过最高点,此时两球作用于环形圆管的合力为零,那么m1、m2、R和v0应满足的关系式是____________.例6、有两架走时准确的摆钟,一架放在地面上,另一架放入探空火箭中.假若火箭以加速度a=8g竖直向上发射,在升高时h=64km时,发动机熄火而停止工作.试分析计算:火箭上升到最高点时,两架摆钟的读数差是多少?(不考虑g随高度的变化,取g=10m/s2)例7、光滑的水平桌面上,放着质量M=1kg的木板,木板上放着一个装有小马达的滑块,它们的质量m=0.1kg.马达转动时可以使细线卷在轴筒上,从而使滑块获得v0=0.1m/s的运动速度(如图1—6),滑块与木板之间的动摩擦因数 =0.02.开始时我们用手抓住木板使它不动,开启小马达,让滑块以速度v0运动起来,当滑块与木板右端相距l =0.5m时立即放开木板.试描述下列两种不同情形中木板与滑块的运动情况,并计算滑块运动到木板右端所花的时间.图1—6(1)线的另一端拴在固定在桌面上的小柱上.如图(a).(2)线的另一端拴在固定在木板右端的小柱上.如图(b).线足够长,线保持与水平桌面平行,g=10m/s2.例8、相隔一定距离的A、B两球,质量相等,假定它们之间存在着恒定的斥力作用.原来两球被按住,处在静止状态.现突然松开,同时给A球以初速度v0,使之沿两球连线射向B球,B球初速度为零.若两球间的距离从最小值(两球未接触)在刚恢复到原始值所经历的时间为t0,求B球在斥力作用下的加速度.(本题是2000年春季招生,北京、安徽地区试卷第24题)【跟踪练习】1、如图1—7所示,A 、B 两球完全相同,质量为m ,用两根等长的细线悬挂在O 点,两球之间夹着一根劲度系数为k 的轻弹簧,静止不动时,弹簧位于水平方向,两根细线之间的夹角为θ.则弹簧的长度被压缩了( )A .tan mg kθ B .2tan mg k θC .(tan )2mg k θD .2tan()2mg kθ2、如图1—8所示,半径为R 、圆心为O 的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上,一根轻质长绳穿过两个小圆环,它的两端都系上质量为m 的重物,忽略小圆环的大小.(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图),在两个小圆环间绳子的中点C处,挂上一个质量M 的重物,使两个小圆环间的绳子水平,然后无初速释放重物M ,设绳子与大、小圆环间的摩擦均可忽略,求重物M 下降的最大距离.(2)若不挂重物M ,小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态?3、图1—9中的A 是在高速公路上用超声测速仪测量车速的示意图,测速仪发出并图1—7图1—8接收超声波脉冲信号.根据发出和接收到的信号间的时间差,测出被测物体的速度,图B 中P 1、P 2是测速仪发出的超声波信号,n 1、n 2分别是P 1、P 2由汽车反射回来的信号,设测速仪匀速扫描,P 1、P 2之间的时间间隔△t =1.0s ,超声波在空气中传播的速度v =340m/s ,若汽车是匀速行驶的,则根据图中可知,汽车在接收到P 1、P 2两个信号之间的时间内前进的距离是_________m ,汽车的速度是________m/s .图1—94、利用超声波遇到物体发生反射,可测定物体运动的有关参量,图1—10(a )中仪器A 和B 通过电缆线连接,B 为超声波发射与接收一体化装置,仪器A 和B 提供超声波信号源而且能将B 接收到的超声波信号进行处理并在屏幕上显示其波形.现固定装置B ,并将它对准匀速行驶的小车C ,使其每隔固定时间T 0发射一短促的超声波脉冲,如图1—10(b )中幅度较大的波形,反射波滞后的时间已在图中标出,其中T 和△T 为已知量,另外还知道该测定条件下超声波在空气中的速度为v 0,根据所给信息求小车的运动方向和速度大小.图1—105、关于绕地球匀速圆周运动的人造地球卫星,下列说法中,正确的是( ) A .卫星的轨道面肯定通过地心B .卫星的运动速度肯定大于第一宇宙速度C .卫星的轨道半径越大、周期越大、速度越小D .任何卫星的轨道半径的三次方跟周期的平方比都相等6、某人造地球卫星质量为m ,其绕地球运动的轨道为椭圆.已知它在近地点时距离地面高度为h 1,速率为v 1,加速度为a 1,在远地点时距离地面高度为h 2,速率为v 2,AB(a )设地球半径为R ,则该卫星.(1)由近地点到远地点过程中地球对它的万有引力所做的功是多少? (2)在远地点运动的加速度a 2多大?7、从倾角为θ的斜面上的A 点,以水平初速度v 0抛出一个小球.问: (1)抛出后小球到斜面的最大(垂直)距离多大? (2)小球落在斜面上B 点与A 点相距多远?8、滑雪者从A 点由静止沿斜面滑下,经一平台后水平飞离B 点,地面上紧靠平台有一个水平台阶,空间几何尺度如图1—12所示.斜面、平台与滑雪板之间的动摩擦因数为μ,假设滑雪者由斜面底端进入平台后立即沿水平方向运动,且速度大小不变.求:(1)滑雪者离开B 点时的速度大小;(2)滑雪者从B 点开始做平抛运动的水平距离.9、如图1—13所示,悬挂在小车支架上的摆长为l 的摆,小车与摆球一起以速度v 0匀速向右运动.小车与矮墙相碰后立即停止(不弹回),则下列关于摆球上升能够达到图1—11图1—12的最大高度H 的说法中,正确的是( )A.若0v =H =l B.若0v =H =2lC .不论v 0多大,可以肯定H ≤202v g总是成立的D .上述说法都正确10、水平放置的木柱,横截面为边长等于a 的正四边形ABCD ;摆长l =4a 的摆,悬挂在A 点(如图1—14所示),开始时质量为m 的摆球处在与A 等高的P 点,这时摆线沿水平方向伸直;已知摆线能承受的最大拉力为7mg ;若以初速度.....v .0.竖直向下将摆球.......从.P .点抛出,为使摆球........能始终沿圆弧运动,并最后击中..............A .点..求v 0的许可值范围(不计空气阻力).11、已知单摆a 完成10次全振动的时间内,单摆b 完成6次全振动,两摆长之差为1.6m ,则两摆长a l 与b l 分别为( )A . 2.5m,0.9m a b l l ==B .0.9m, 2.5m a b l l ==C . 2.4m, 4.0m a b l l ==D . 4.0m, 2.4m a b l l ==12、一列简谐横波沿直线传播,传到P 点时开始计时,在t =4s 时,P 点恰好完成了图1—13图1—146次全振动,而在同一直线上的Q 点完成了124次全振动,已知波长为113m 3.试求P 、Q 间的距离和波速各多大.13、如图1—15所示,小车板面上的物体质量为m =8kg ,它被一根水平方向上拉伸了的弹簧拉住而静止在小车上,这时弹簧的弹力为6N .现沿水平向右的方向对小车施以作用力,使小车由静止开始运动起来,运动中加速度由零逐渐增大到1m/s 2,随即以1m/s 2的加速度做匀加速直线运动.以下说法中,正确的是( )A .物体与小车始终保持相对静止,弹簧对物体的作用力始终没有发生变化B .物体受到的摩擦力先减小、后增大、先向左、后向右C .当小车加速度(向右)为0.75m/s 2时,物体不受摩擦力作用D .小车以1m/s 2的加速度向右做匀加速直线运动时,物体受到的摩擦力为8N 14、如图1—16所示,一块质量为M ,长为L 的均质板放在很长的光滑水平桌面上,板的左端有一质量为m 的小物体(可视为质点),物体上连接一根很长的细绳,细绳跨过位于桌边的定滑轮.某人以恒定的速率v 向下拉绳,物体最多只能到达板的中点,而板的右端尚未到达桌边定滑轮处.试求:(1)物体刚达板中点时板的位移.(2)若板与桌面之间有摩擦,为使物体能达到板的右端,板与桌面之间的动摩擦因数的范围是多少.15、在水平地面上有一质量为2kg 的物体,物体在水平拉力F的作用下由静止开始图1—15v图1—16运动,10s 后拉力大小减为3F,该物体的运动速度随时间变化的图像如图1—17所示,求:(1)物体受到的拉力F 的大小;(2)物体与地面之间的动摩擦因数(g 取10m/s 2).16、如图所示,一高度为h =0.8m 粗糙的水平面在B 点处与一倾角为θ=30°的斜面BC 连接,一小滑块从水平面上的A 点以v 0=3m/s 的速度在粗糙的水平面上向右运动.运动到B 点时小滑块恰能沿光滑斜面下滑.已知AB 间的距离S =5m ,求:(1)小滑块与水平面间的动摩擦因数. (2)小滑块从A 点运动到地面所需的时间.(3)若小滑块从水平面上的A 点以v 1=5m/s 的速度在粗糙的水平面上向右运动,运动到B 点时小滑块将做什么运动?并求出小滑块从A 点运动到地面所需时间(取g =10m/s 2)./s8图1—17图1—18专题二动量与机械能动量守恒与能量守恒是近几年高考理科综合物理命题的重点、热点和焦点,也是广大考生普遍感到棘手的难点之一.动量守恒与能量守恒贯穿于整个高中物理学习的始终,是联系各部分知识的主线.它不仅为解决力学问题开辟了两条重要途径,同时也为我们分析问题和解决问题提供了重要依据.守恒思想是物理学中极为重要的思想方法,是物理学研究的极高境界,是开启物理学大门的金钥匙,同样也是对考生进行方法教育和能力培养的重要方面.因此,两个守恒可谓高考物理的重中之重,常作为压轴题出现在物理试卷中,如2004年各地高考均有大题.纵观近几年高考理科综合试题,两个守恒考查的特点是:①灵活性强,难度较大,能力要求高,内容极丰富,多次出现在两个守恒定律网络交汇的综合计算中;②题型全,年年有,不回避重复考查,平均每年有3—6道题,是区别考生能力的重要内容;③两个守恒定律不论是从内容上看还是从方法上看都极易满足理科综合试题的要求,经常与牛顿运动定律、圆周运动、电磁学和近代物理知识综合运用,在高考中所占份量相当大.从考题逐渐趋于稳定的特点来看,我们认为:2005年对两个守恒定律的考查重点仍放在分析问题和解决问题的能力上.因此在第二轮复习中,还是应在熟练掌握基本概念和规律的同时,注重分析综合能力的培养,训练从能量、动量守恒的角度分析问题的思维方法.【典型例题】【例1】(2001年理科综合)下列是一些说法:①一质点受到两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同;②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一时间内做的功或者都为零,或者大小相等符号相反;③在同样时间内,作用力力和反作用力的功大小不一定相等,但正负符号一定相反;④在同样的时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反.以上说法正确的是()A.①②B.①③C.②③D.②④【例2】(石家庄)为了缩短航空母舰上飞机起飞前行驶的距离,通常用弹簧弹出飞机,使飞机获得一定的初速度,进入跑道加速起飞.某飞机采用该方法获得的初速度为v0,之后,在水平跑道上以恒定功率P沿直线加速,经过时间t,离开航空母舰且恰好达到最大速度v m.设飞机的质量为m,飞机在跑道上加速时所受阻力大小恒定.求:(1)飞机在跑道上加速时所受阻力f的大小;(2)航空母舰上飞机跑道的最小长度s.【例3】 如下图所示,质量为m =2kg 的物体,在水平力F =8N 的作用下,由静止开始沿水平面向右运动.已知物体与水平面间的动摩擦因数μ=0.2.若F 作用t 1=6s 后撤去,撤去F 后又经t 2=2s 物体与竖直墙壁相碰,若物体与墙壁作用时间t 3=0.1s ,碰墙后反向弹回的速度v '=6m/s ,求墙壁对物体的平均作用力(g 取10m/s 2).【例4】 有一光滑水平板,板的中央有一小孔,孔内穿入一根光滑轻线,轻线的上端系一质量为M 的小球,轻线的下端系着质量分别为m 1和m 2的两个物体,当小球在光滑水平板上沿半径为R 的轨道做匀速圆周运动时,轻线下端的两个物体都处于静止状态(如下图).若将两物体之间的轻线剪断,则小球的线速度为多大时才能再次在水平板上做匀速圆周运动?【例5】 如图所示,水平传送带AB 长l =8.3m ,质量为M =1kg 的木块随传送带一起以v 1=2m/s 的速度向左匀速运动(传送带的传送速度恒定),木块与传送带间的动摩擦因数μ=0.5.当木块运动至最左端A 点时,一颗质量为m =20g 的子弹以0v -=300m/s 水平向右的速度正对射入木块并穿出,穿出速度u =50m/s ,以后每隔1s 就有一颗子弹射向木块,设子弹射穿木块的时间极短,且每次射入点各不相同,g 取10m/s .求:(1)在被第二颗子弹击中前,木块向右运动离A 点的最大距离? (2)木块在传达带上最多能被多少颗子弹击中?(3)从第一颗子弹射中木块到木块最终离开传送带的过程中,子弹、木块和传送带这一系统产生的热能是多少?(g 取10m/s )【例6】 质量为M 的小车静止在光滑的水平面上,小车的上表面是一光滑的曲面,末端是水平的,如下图所示,小车被挡板P 挡住,质量为m 的物体从距地面高H 处自由下落,然后沿光滑的曲面继续下滑,物体落地点与小车右端距离s 0,若撤去挡板P ,物体仍从原处自由落下,求物体落地时落地点与小车右端距离是多少?【例7】 如下图所示,一辆质量是m =2kg 的平板车左端放有质量M =3kg 的小滑块,滑块与平板车之间的动摩擦因数μ=0.4,开始时平板车和滑块共同以v 0=2m/s 的速度在v 0 m ABM光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反.平板车足够长,以至滑块不会滑到平板车右端.(取g =10m/s 2)求:(1)平板车每一次与墙壁碰撞后向左运动的最大距离. (2)平板车第二次与墙壁碰撞前瞬间的速度v .(3)为使滑块始终不会滑到平板车右端,平板车至少多长?【例8】 如图所示,光滑水平面上有一小车B ,右端固定一个砂箱,砂箱左侧连着一水平轻弹簧,小车和砂箱的总质量为M ,车上放有一物块A ,质量也是M ,物块A 随小车以速度v 0向右匀速运动.物块A 与左侧的车面的动摩擦因数为 ,与右侧车面摩擦不计.车匀速运动时,距砂面H 高处有一质量为m 的泥球自由下落,恰好落在砂箱中,求:(1)小车在前进中,弹簧弹性势能的最大值.(2)为使物体A 不从小车上滑下,车面粗糙部分应多长?【跟踪练习】1.物体在恒定的合力F 作用下作直线运动,在时间△t 1内速度由0增大到v,在时间△mHABv 0t 2内速度由v 增大到2v .设F 在△t 1内做的功是W 1,冲量是I 1;在△t 2内做的功是W 2,冲量是I 2,那么( )A .1212,I I W W <=B .1212,I I W W <<C .1212,I I W W ==D .1212,I I W W =<2.矩形滑块由不同材料的上、下两层粘在一起组成,将其放在光滑的水平面上,如图所示.质量为m 的子弹以速度v 水平射向滑块.若射击上层,则子弹刚好不穿出;若射击下层,整个子弹刚好嵌入,则上述两种情况比较,说法正确的是( ) ①两次子弹对滑块做功一样多 ②两次滑块所受冲量一样大 ③子弹嵌入下层过程中对滑块做功多 ④子弹击中上层过程中产生的热量多A .①④B .②④C .①②D .②③3.如图所示,半径为R ,内表面光滑的半球形容器放在光滑的水平面上,容器左侧靠在竖直墙壁.一个质量为m 的小物块,从容器顶端A 无初速释放,小物块能沿球面上升的最大高度距球面底部B 的距离为34R .求: (1)竖直墙作用于容器的最大冲量; (2)容器的质量M .4.离子发动机是一种新型空间发动机,它能给卫星轨道纠偏或调整姿态提供动力,其中有一种离子发动机是让电极发射的电子撞击氙原子,使之电离,产生的氙离子经甲 乙加速电场加速后从尾喷管喷出,从而使卫星获得反冲力,这种发动机通过改变单位时间内喷出离子的数目和速率,能准确获得所需的纠偏动力.假设卫星(连同离子发动机)总质量为M ,每个氙离子的质量为m ,电量为q ,加速电压为U ,设卫星原处于静止状态,若要使卫星在离子发动机起动的初始阶段能获得大小为F 的动力,则发动机单位时间内应喷出多少个氙离子?此时发动机动发射离子的功率为多大?5.如图所示,AB 为斜轨道,与水平方向成45°角,BC 为水平轨道,两轨道在B 处通过一段小圆弧相连接,一质量为m 的小物块,自轨道AB 的A 处从静止开始沿轨道下滑,最后停在轨道上的C 点,已知A 点高h ,物块与轨道间的滑动摩擦系数为 ,求:(1)在整个滑动过程中摩擦力所做的功.(2)物块沿轨道AB 段滑动时间t 1与沿轨道BC 段滑动时间t 2之比值12t t . (3)使物块匀速地、缓慢地沿原路回到A 点所需做的功.6.如图所示,粗糙的斜面AB 下端与光滑的圆弧轨道BCD 相切于B ,整个装置竖直放置,C 是最低点,圆心角∠BOC =37°,D 与圆心O 等高,圆弧轨道半径R =0.5m,斜面长L =2m ,现有一个质量m =0.1kg 的小物体P 从斜面AB 上端A 点无初速下滑,物体P 与斜面AB 之间的动摩擦因数为 =0.25.求:(1)物体P 第一次通过C 点时的速度大小和对C 点处轨道的压力各为多大? (2)物体P 第一次离开D 点后在空中做竖直上抛运动,不计空气阻力,则最高点E和D 点之间的高度差为多大?(3)物体P 从空中又返回到圆轨道和斜面,多次反复,在整个运动过程中,物体P对C 点处轨道的最小压力为多大?7.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点衔接,导轨半径为R .一个质量为m 的静止物块在A 处压缩弹簧,在弹力的作用下获一向右的速度,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点.求:(1)弹簧对物块的弹力做的功. (2)物块从B 至C 克服阻力做的功.(3)物块离开C 点后落回水平面时其动能的大小.8.(’03全国高考,34)[理综·22分]一传送带装置示意如下图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD区域时是倾斜的,AB和CD都与BC相切.现将大量的质量均为m的小货箱一个一个在A处放到传送带上,放置时初速为零,经传送带运送到D处,D和A的高度差为h.稳定工作时传送带速度不变,CD段上各箱等距排列,相邻两箱的距离为L.每个箱子在A处投放后,在到达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段时的微小滑动).已知在一段相当长的时间T内,共运送小货箱的数目为N.这装置由电动机带电,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求电动机的平均输出功率P.9.如图所示,质量M=0.45kg的带有小孔的塑料块沿斜面滑到最高点C时速度恰为零,此时与从A点水平射出的弹丸相碰,弹丸沿着斜面方向进入塑料块中,并立即与塑料块有相同的速度.已知A点和C点距地面的高度分别为:H=1.95m,h=0.15m,弹丸的质量m=0.050kg,水平初速度v0=8m/s,取g=10m/s2.求:(1)斜面与水平地面的夹角θ.(可用反三角函数表示)(2)若在斜面下端与地面交接处设一个垂直于斜面的弹性挡板,塑料块与它相碰后的速率等于碰前的速率,要使塑料块能够反弹回到C点,斜面与塑料块间的动摩擦因数可为多少?10.(’04江苏,18)(16分)一个质量为M的雪橇静止在水平雪地上,一条质量为m的爱斯基摩狗站在雪橇上.狗向雪橇的正后方跳下,随后又追赶并向前跳上雪橇;其后狗又反复地跳下、追赶并跳上雪橇.狗与雪橇始终沿一条直线运动.若狗跳离雪橇时雪橇的速度为V ,则此时狗相对于地面的速度为V +u (其中u 为狗相对于雪橇的速度,V +u 为代数和,若以雪橇运动的方向为正方向,则V 为正值,u 为负值.)设狗总以速度v 追赶和跳上雪橇,雪橇与雪地间的摩擦忽略不计.已知v 的大小为5m/s ,u 的大小为4m/s ,M =30kg ,m =10kg .(1)求狗第一次跳上雪橇后两者的共同速度的大小. (2)求雪橇最终速度的大小和狗最多能跳动上雪橇的次数. (供使用但不一定用到的对数值:lg2=0.301,lg3=0.477)11.(汕头)如下图所示,光滑水平面上,质量为m 的小球B 连接着轻质弹簧,处于静止状态,质量为2m 的小球A 以大小为v 0的初速度向右运动,接着逐渐压缩弹簧并使B 运动,过一段时间,A 与弹簧分离.(1)当弹簧被压缩到最短时,弹簧的弹性势能E p 多大?(2)若开始时在B 球的右侧某位置固定一块挡板,在A 球与弹簧未分离前使B 球与挡板发生碰撞,并在碰后立刻将挡板撤走.设B 球与挡板的碰撞时间极短,碰后B 球的速度大小不变但方向相反.欲使此后弹簧被压缩到最短时,弹簧势能达到第(1)问中E p 的2.5倍,必须使B 球在速度多大时与挡板发生碰撞?12.(’00全国高考,22 )[天津江西·14分]在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”.这类反应的前半部分过程和下述力学模型类似.两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态.在它们左边有一垂直于轨道的固定挡板P ,右边有一个小球C 沿轨道以速度v 0射向B 球,如图所示.C 与B 发生碰撞并立即结成一个整体D .在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变.然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连.这一段时间,突然解除锁定(锁定及解除锁定均无机械能损失).已知A 、B 、C 三球的质量为m .(1)求弹簧长度刚被锁定后A 球的速度;(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能.13.(广州)用轻弹簧相连的质量均为2kg 的A 、B 两物块都以v =6m/s 的速度在光滑的水平地面上运动,弹簧处于原长,质量4kg 的物块C 静止在前方,如下图所示.B 与C 碰撞后二者粘在一起运动.求:在以后的运动中: (1)当弹簧的弹性势能最大时物体A 的速度多大? (2)弹性势能的最大值是多大? (3)A 的速度有可能向左吗?为什么?14.(’04广东,17)(16分)图中,轻弹簧的一端固定,另一端与滑块B 相连,B静止。
01高三物理《创新设计》二轮专题复习专题一 力与物体的平衡
专题一 力与物体的平衡第1课时 重力场中的物体平衡知识规律整合基础回顾1.重力(1)产生:重力是由于地面上的物体受地球的_____________而产生的,但两地得不等价,因为万有引力的一个分力要提供物体随地球自转所需的___________.而另一个分力即重力,如图所示.(2)大小:随地理位置的变化而变化在两极:G F =万在赤道:G F F =万向-一般情况下,在地表附近G =________(3)方向:竖直向下,并不指向地心.2.弹力(1)产生条件:①接触;②挤压;③____________.(2)大小:弹簧弹力F kx =,其它的弹力利用牛顿定律和______________求解.(3)方向:压力和支持力的方向垂直于_____________指向被压或被支持的物体,若接触面是球面,则弹力的作用线一定过___________.绳的作用力_________沿绳,杆的作用力__________沿杆.提醒 绳只能产生接力,杆既可以产生拉力,也可以产生支持力,在分析竖直面内的圆周运动问题应注意二者区别.3.摩擦力(1)产生条件:①接触且挤压;②接触面粗糙;③有_________或______________.(2)大小:滑动摩擦力1N F F μ=,与接触面的___________无关;静摩擦力根据牛顿定律或平衡条件来求.(3)方向:沿接触面的___________方向,并且与相对运动或相对运动趋势方向相反.4.力的合成与分解由于力是矢量,因此可以应用平行四边形定则进行合成与分解,常用___________法和____________法来分析平衡问题.5.共点力的平衡(1)状态:静止或_____________(2)条件:___________思路和方法1.处理平衡问题的基本思路:确定平衡状态(加速度为______)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论.2.常用的方法有:(1)在判断弹力或摩擦力是否存在以及确定方向时常用______法.(2)求解平衡问题常用:正交分解法、力的合成法(在三个共点力作用下的平衡,任意两个合力必与第三个力等大反向)、解矢量三角形法和________法(分析动态平衡问题).自测自查1.用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为x .现用该弹簧沿斜面方向拉住质量为2m 的物体,系统静止时弹簧伸长量也为x .斜面倾角为30°,如图所示.则物体所受摩擦力( )A .等于零B .大小为12mg ,方向沿斜面向上C .大小为32mg ,方向沿斜面向上 D .大小为mg ,方向沿斜面向上 2.如图所示,用细线将A 物体悬挂在顶板上,B 物体放在水平地面上.A 、B 间有一劲度系数为100N/m 的轻弹簧,此时弹簧伸长了2cm .已知A 、B 两物体的重力分别为3N 和5N .则细线的拉力及B 对地面的压力分别是( )A .1N 和0NB .5N 和7NC .5N 和3ND .7N 和7N3.如图所示,物体M 在竖直向上的拉力F 的作用下能静止在斜面上,关于M 受力的个数,下列说法中正确的是( )A .M 一定是受两个力作用B .M 一定是受四个力作用C .M 可能受三个力作用D .M 不是受两个力作用就是受四个力作用4.有一固定斜面的小车在水平面上做直线运动,小球通过细绳与车顶相连.小球某时刻正处于如图所示状态.设斜面对小球的支持力为N F ,细绳对小球的拉力为T F ,关于此时刻小球的受力情况,下列说法正确的是( )A.若小车向左运动,F N可能为零B.若小车向左运动,F T可能为零C.若小车向右运动,F N不可能为零D.若小车向右运动,F T不可能为零重点热点透析题型1 受力分析【例1】如图所示,物体A靠在倾斜的墙面上,在与墙面和B垂直的力F作用下,A、B保持静止,试分析A、B两物体受力的个数.●规律总结1.在分析两个以上相互作用物体的受力时,要整体法和隔离法相互结合.2.确定摩擦力和弹力的方向时,通常根据物体所处的状态,采用“假设法”判断.3.当直接分析某一物体的受力不方便时,常通过转移研究对象,先分析与其相互作用的另一物体的受力,然后根据牛顿第三定律分析该物体的受力.上例中就是先分析了B的受力,又分析A的.【强化练习1】质量为m的物体,放在质量为M的斜面体上,斜面体放在粗糙的地面上,m和M均处于静止状态,如图所示,在物体m上施加一个水平力F,在F 由零逐渐加大到F m的过程中,m和M仍保持静止状态,在此过程中,下列判断哪些是正确的()A.斜面体对m的支持力逐渐增大B.物体m受到的摩擦力逐渐增大C.地面受到的压力逐渐增大FD.地面对斜面体的摩擦力由零逐渐增大到m题型2 重力、弹力和摩擦力作用下的物体平衡【例2】我国国家大剧院外部呈椭圆型.假设国家大剧院的屋顶为半球形,一警卫人员为执行特殊任务,必须冒险在半球形屋顶上向上缓慢爬行(如图所示),他在向上爬的过程中()A.屋顶对他的支持力变大B.屋顶对他的支持力变小C.屋顶对他的摩擦力变大D.屋顶对他的摩擦力变小●拓展探究若警卫人员执行完特殊任务后从屋顶A点开始加速滑下,则屋顶对他的支持力和摩擦力又如何变化?●审题指导1.本题考查了力学中的三种力及力的分解、物体平衡条件的应用.2.审题时要注意,“缓慢”常作为平衡状态,受力分析时特别应注意摩擦力的方向沿着接触面的切线方向.3.要注意静摩擦力和滑动摩擦力求解方法不同.当加速下滑时受到的摩擦力是滑动摩擦力,应根据1N F F μ=来求.【强化练习2】如图所示,将半球置于水平地面上,半球的中央有一光滑小孔,柔软光滑的轻绳穿过小孔,两端分别系有质量为m 1、m 2的物体(两物体均可看成质点),它们静止时m 1与球心O 的连线与水平线成45°角,m 1与半球面的动摩擦因数为0.5,m 1所受到的最大静摩擦力可认为等于滑动摩擦力,而12m m 的最小值是( )A .324B .223C .12D .21题型3 连接体的平衡问题【例3】如图所示,两光滑斜面的倾角分别为30°和45°、质量分别为2m 和m 的两个滑块用不可伸长的轻绳通过滑轮连接(不计滑轮的质量和摩擦),分别置于两个斜面上并由静止释放;若交换两滑块位置,再由静止释放,则在上述两种情形中正确的有( )A .质量为2m 的滑块受到重力、绳的张力、沿斜面的下滑力和斜面的支持力的作用B .质量为m 的滑块均沿斜面向上运动C .绳对质量为m 的滑块的拉力均大于该滑块对绳的拉力D .系统在运动中机械能守恒【强化练习3】A 、B 、C 三个物体通过细线和光滑的滑轮相连,处于静止状态,如图所示,C 是一箱砂子,砂子和箱的重力都等于G ,动滑轮的质量不计,打开箱子下端开口,使砂子均匀流出,经过时间t 0流完,则下图中哪个图线表示在这过程中桌面对物体B 的摩擦力F 1随时间的变化关系( )题型4 弹簧连接物体的平衡【例4】如图所示,在一粗糙水平面上有三个质量分别为123m m m 、、的木块1、2和3,中间分别用一原长为l ,劲度系数为k 的轻弹簧连接起来,木块与地面间的动摩擦因数为μ.现用一水平力向右拉木块3,当木块一起匀速运动时,1和3两木块之间的距离是(不计木块2的宽度)( )A .2m g l k μ+B .12()m m g l k μ++C .12(2)2m m g l k μ++D .122(2)2m m g l kμ++ ●规律总结1.弹簧连接的物体平衡和运动是物理中常见的情景,静止时的平衡态即为合力为零时;物体在运动过程中,弹簧弹力的大小、方向是可变的,所以在平衡态时常有最大速度(如简谐振动)出现.2.分析弹簧问题时,特别注意找到原长位置、平衡位置和极端位置.3.在计算题中,弹簧的平衡态以一个知识点出现,列出平衡方程即可以求解.【强化练习4】如图所示,两个弹簧的质量为计,劲度系数分别为12k k 、,它们一端固定在质量为m 的物体上,另一端固定在P 、Q 上,当物体平衡时上面的弹簧(k 2)处于原长,若要把物体的质量换为2m (弹簧的长度不变,且弹簧均在弹性限度内),当物体再次平衡时,物体将比第一次平衡时下降的距离x 为( )A .12mg k k + B .1212()k k k k mg + C .122mg k k + D .1212()2k k k k mg + 备考能力提升1.如图所示,在水平力F 作用下,A 、B 保持静止.若A 与B 的接触面是水平的,且F ≠0.则关于B 的受力个数可能为( )A .3个B .4个C .5个D .6个2.如图所示,两个质量都是m 的小球A 、B 用轻杆连接后斜靠在墙上处于平衡状态,已知墙面光滑,水平地面粗糙,现将A 球向上移动一小段距离,两球再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,地面对B 球的支持力F 1和摩擦力F 2的大小变化情况是( )A .F 1不变,F 2增大B .F 1不变,F 2减小C .F 1增大,F 2增大D .F 1增大,F 2减小3.两个小球A 和B ,质量分别为2m 、m ,用长度相同的两根细线把A、B两球悬挂在水平天花板上的同一点O,并用长度相同的细线连接A、B两小球.用一水平方向的力F作用在小球B上,此时三根细线均处于直线状态,且OA细线恰好处于竖起方向,如图所示.如果不考虑小球的大小,两小球均处于静止状态,则力F的大小为()A.0 B.m C.3mg D.33 mg4.如图所示,物块a、b的质量均为m,水平地面和竖直墙面均光滑,在水平推力F作用下,两物块均处于静止状态,则()A.b受到的摩擦力大小等于mgB.b受到的摩擦力大小等于2mgC.b对地面的压力大小等于mgD.b对地面的压力大小等于2mg5.如图所示,一物体在粗糙水平地面上受斜向上的恒定拉力F作用而做匀速直线运动,则下列说法正确的是()A.物体可能只受两个力作用B.物体可能受三个力作用C.物体可能不受摩擦力作用D.物体一定受四个力作用6.在如图所示的装置中,两物体质量分别为m1、m2,悬点a、b间的距离远大小滑轮的直径,不计一切摩擦,整个装置处于静止状态.由图可知()A.α一定等于βB.m1一定大于m2C.m1一定小于2m2D.m1可能大于m27.如图所示,竖直平面内放一直角杆AOB,杆的水平部分粗糙,竖直部分光滑,两部分各有质量相等的小球A和B套在杆上,A、B间用不可伸长的轻绳相连,用水平拉力F沿杆向右拉A使之缓慢移动的过程中()A.A球受到杆的弹力保持不变B.A球受到的摩擦力逐渐变小C.B球受到杆的弹力保持不变D.力F逐渐增大8.一物块在粗糙斜面上,在平行斜面向上的外力F作用下斜面和物块始终处于静止状态,当F按图所示规律变化时,物块与斜面间的摩擦力大小变化规律可能是下图中的()9.特种兵过山谷的一种方法可简化为图示情景.将一根长为2d的不可伸长的细绳两端固定在相距为d的A、B两等高点,绳上挂一小滑轮P,战士们相互配合,沿着绳子滑到对面.如图所示,战士甲水平拉住滑轮,质量为m的战士乙吊在滑轮上,脚离地,处于静止状态,此时AP竖直,然后战士甲将滑轮从静止状态释放,若不计滑轮摩擦力空气阻力,也不计绳与滑轮的质量,求:(1)战士甲释放前对滑轮的水平拉力F.(2)战士乙滑动过程中的最大速度.第2课时混合场中的物体平衡知识规律整合基础回顾1.电场力(1)电场力的方向:正电荷受电场力方向与场强方向__________,负电荷受电场力方向与场强方向_________.=,若为匀强电场,电场力则为_________,若为非(2)电场力的大小:F qE匀强电场,电场力将与________有关.2.安培力(1)方向:用左手定则测定.F一定垂直于I、B,I、B可以互相垂直也可以互相不垂直,I、B任一量反向,F__________.=.(2)大小:F BIL①此式只适用于B和I互相垂直的情况,且L是导线的_________长度.②当导线电流I与磁场B平行时,F最小=0.3.洛伦兹力(1)洛伦兹力的方向①洛伦兹力方向既与电荷的运动方向垂直,又与磁场方向垂直,所以洛伦兹力方向总是垂直于运动电荷的速度方向和磁场方向所确定的___________.②洛伦兹力方向总垂直于电荷运动方向,当电荷运动方向发生变化时,洛伦兹力的方向也____________.③由于洛伦兹力方向总与电荷运动方向垂直,所以洛伦兹力对电荷永不_______.当θ=90°时,F洛=qvB,此时,电荷受到的洛伦兹力最大;当 =0°或180°时,F洛=0,即电荷在磁场中平行于磁场方向运动时,电荷不受洛伦兹力作用.当v=0时,F洛=0,说明磁场只对__________的电荷产生力的作用.思路和方法1.电场最基本的特征是对放入的电荷有____________,与带电粒子所处的_____________无关.2.带电粒子在电场和重力场中的平衡问题仍然满足__________条件,且电场一般为匀强电场.3.如果带电粒子在重力场、电场和磁场内做直线运动,则一定是_____________,因为F洛⊥v.4.带电粒子在混合场内运动的动力学问题,一般要首先结合粒子的运动状态进行_____________,采用矢量三角形法或正交分解法结合平衡条件列式求解.自测自查1.如图所示,匀强电场方向与倾斜的天花板垂直,一带正电的物体在天花板上处于静止状态,则下列判断正确的是()A.天花板与物体间的弹力一定不为零B.天花板对物体的摩擦力可能为零C.物体受到天花板的摩擦力随电场强度E的增大而增大D.逐渐增大电场强度E的过程中,物体将始终保持静止2.如图所示,上下不等宽的平行金属导轨的EF和GH两部分导轨间的距离为L,导轨竖直放置,整个装置处于水平向里的匀强磁场中,金属杆ab和cd的质量均为m,都可在导轨上无摩擦地滑动,且与导轨接触良好,现对金属杆ab施加一个竖直向上的作用力F,使其匀速向上运动,此时cd处于静止状态,则F的大小为()A.2mg B.3mg C.4mg D.mg3.如图所示,在Oxyz坐标系所在的空间中,可能存在着匀强电场E或匀强磁场B,也可能两者都存在,现有一质量为m、电荷量为+q的点电荷(不计重力),沿x轴正方向射入此空间,发现它做匀速直线运动,则下列关于电场E和磁场B的分布情况可能是()A.E≠0、B=0,且E沿z轴正方向B.E=0、B≠0,且B沿x轴正方向或负方向C.E≠0、B≠0,且B沿x轴正方向,E沿y轴负方向D.E≠0、B≠0,且B沿y轴负方向,E沿z轴负方向4.如图所示,匀强磁场沿水平方向,垂直纸面向里,磁场强度B =1 T ,匀强电场方向水平向右,场强E =103N/C .一带正电的微粒质量6210m -=⨯kg ,电量6210q -=⨯C ,在此空间恰好作直线运动,210m/s g =.问:(1)带电微粒运动速度的大小和方向怎样?(2)若微粒运动到P 点的时刻,突然将磁场撤去,那么经多少时间微粒到达Q 点、(设PQ 连线与电场方向平行)重点热点透析题型1 电场和重力场内的物体平衡【例1】如图所示,倾角为30°的粗糙绝缘斜面固定在水平地面上,整个装置处在垂直斜面向上的匀强电场之中,一质量为m 、电荷量为-q 的小滑块恰能沿斜面匀速下滑,已知滑块与斜面之间的动摩擦因数为34,求该匀强电场场强E 的大小. 满分展示,名师教你如何得分解析:受力分析如下图所示,由题意得:1sin 0mg F θ-=①(2分) cos 0N F mg F θ--=②(2分) F qE =③(1分) 1N F F μ=④(1分) 由①②③得:sin (cos )0mg mg Fq θμθ-+=⑤(2分) 解之得sin cos mg mg E q θμθμ-=⑥(1分)代入数据得36mg E q = ⑦(1分) 答案:36mg q●拓展探究1.上例中若电场方向水平向左,则该匀强电场的场强E 的大小为多少?2.若上例中再加一垂直于纸面向外的匀强磁场B ,已知场强E ,请同学们求和匀速运动速度v .●规律总结1.电场力的方向与电性和场强的方向有关,匀强电场中电场力为恒力.2.正交分解法在处理物体受多个力作用的平衡问题时非常方便,常列两个等式,即0,0x y F F ==∑∑.【强化练习1】如图所示,一质量为m 、带电荷量为q 的小球用细线系住,线的一端固定在O 点,若在空间加上匀强电场,平衡时线与竖直方向成60°角.则电场强度的最小值为( )A .2mg qB .32mg qC .2mg qD .mg q题型2 混合场中平衡问题【例2】如图所示,坐标系xOy 位于竖直平面内,在该区域内有场强E =12N/C 、方向沿x 轴正方向的匀强电场和磁感应强度大小为B =2 T 、沿水平方向且垂直于xOy 平面指向纸里的匀强磁场.一个质量m =4×510-kg ,电荷量q =2.5×510-C 带正电的微粒,在xOy 平面内做匀速直线运动,运动到原点O 时,撤去磁场,经一段时间后,带电微粒运动到了x 轴上的P 点.取g =10m/s 2,求:(1)P 点到原点O 的距离.(2)带电微粒由原点O 运动到P 点的时间.●规律总结1.由于F qvB =洛,方向始终与B 方向垂直,因此带电粒子在混合场内做直线运动时一定是匀速直线运动,即重力电场力和洛伦兹力的合力为零,常作为综合性问题的隐含条件.2.v =0时,0F 洛=,v 变化时,F 洛也变化.【强化练习2】如图所示,竖直放置的两平行金属板A 、B 间分布着垂直纸面向里的匀强磁场,磁感应强度为B .一个质量为m 、带电荷量为q的微粒从M 点沿虚线运动至N 点,MN 与竖直方向夹角为30°,则下面结论正确的是( )A .A 板电势高于B 板电势B .微粒从M 到N 的过程中动能可能不断地减少C .微粒的初速度为2mg qBD .微粒从M 到N 的过程中,微粒的电势能不断增加题型3 重力场、磁场内通电导线的平衡问题【例3】在倾角为θ的斜面上,放置一段通电电流为I 、长度为L 、质量为m 的导体棒a (通电电流方向垂直纸面向里),如图所示,棒与斜面间摩擦因数为μ,μ<tan θ.欲使导体棒静止在斜面上,所加匀强磁场磁感应强度B 的最小值是多少?如果导体棒a 静止在斜面上且对斜面无压力,则所加匀强磁场磁感应强度的大小和方向如何?●规律总结通电导线的安培力与磁场方向、导体放置方向密切相关.而此三者方向不在同一平面内,在平面视图中很难准确画出来,因此选择好观察方位,画出正确的平面视图,能够形象、直观地表达出三者的关系非常重要,是有效解题的关键.【强化练习3】如图所示,足够长的光滑平行导轨MN 、PQ 倾斜放置,两导轨间距离为 1.0m L =.导轨平面与水平面间的夹角为30°,磁感应强度为B 的匀强磁场垂直于导轨平面向上,导轨的M 、P 两端连接阻值为R =3.0Ω的电阻,金属棒ab 垂直于导轨放置并用细线通过光滑定滑轮与重物相连.金属棒ab 的质量m =0.2kg ,电阻r =0.5Ω,重物的质量M =0.60kg .如果将金属棒和重物由静止释放,金属棒沿斜面上滑的距离与时间的关系如下表所示.不计导轨电阻,g =10m/s 2.求:时间t/s0 0.1 0.2 0.3 0.4 0.5 0.6 上滑距离/m 0 0.05 0.15 0.35 0.70 1.05 1.40(1)所加磁场的磁感应强度B 为多大?(2)电阻R 在0.6s 内产生的热量为多少?题型4 电磁感应中的平衡问题【例4】如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m ,导轨平面与水平面成 =30°角,上端连接阻值R =1.5Ω的电阻;质量为m =0.2kg 、阻值r =0.5Ω的金属棒ab 放在两导轨上,距离导轨最上端为L 2=4m ,棒与导轨垂直并保持良好接触,整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面且垂直于ab 棒的外力F ,已知当t =2s 时,F 恰好为零.若g 取10m/s 2,求:(1)当t =2s 时,磁感应强度的大小.(2)当t =3s 时,外力F 的大小和方向.(3)当t =3s 时,突然撤去外力F ,当金属棒下滑速度达到稳定时,导体棒ab 棒ab 端的电压为多大.(4)请画出前4s 外力F 随时间的变化图象.●规律总结1.通电导线(或导体棒)切割磁感线时的平衡问题,一般要综合应用受力分析、法拉第电磁感应定律,左、右手定则和电路的知识.在这类问题中,感应电流的产生和磁场对电流的作用这两种现象总是相互联系的,而磁场力又将电和力两方面问题联系起来.2.感应电流在磁场中受到的安培力对导线(或导体棒)的运动起阻碍作用,把机械能转化为电能.【强化练习4】如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端固定一个半径为r 的四分之三金属光滑圆环,两圆环平行且竖直.在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m ,电阻均为R ,其余电阻不计.整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中.当用水平向右的恒力3F mg =拉细杆a ,达到匀速运动时,杆b 恰好静止在圆环上某处,试求:(1)杆a 做匀速运动时,回路中的感应电流.(2)杆a 做匀速运动时的速度.(3)杆b 静止的位置距圆环最低点的高度.备考能力提升1.如图所示真空中三个点电荷q1、q2、q3固定在一条直线上,q2与q3间距离为q1与q2间距离的2倍,每个电荷所受静电力的合力均为零,由此可以判定,三个电荷的电荷量之比为()A.(-9)∶4 ∶(-36)B.9∶4 ∶36C.(-3)∶2 ∶(-6)D.3∶2 ∶62.水平放置的金属框架处于如图所示的匀强磁场中,金属棒ab置于光滑的框架上且接触良好,从某时刻开始磁感应强度均匀增加,现施加一外力使金属棒ab保持静止,则金属棒ab受到的外力是()A.方向向右,且为恒力B.方向向右,且为变力C.方向向左,且为恒力D.方向向左,且为变力3.如何所示,平行板电容器竖直放置,A板上用绝缘线悬挂一带电小球,静止时绝缘线与固定的A板成θ角,移动B板,下列说法正确的是()A.S闭合,B板向上平移一小段距离,θ角变大B.S闭合,B板向左平移一小段距离,θ角变大C.S断开,B板向上平移一小段距离,θ角变大D.S断开,B板向左平移一小段距离,θ角不变4.如图所示,两平行导轨与水平面成θ角倾斜放置,电源、电阻、金属细杆及导轨组成闭合回路,细杆与导轨间的摩擦不计.整个装置分别处在下列图所示的匀强磁场中,其中可能使金属细杆处于静止状态的是()5.如图所示,两条平行的足够长的光滑金属导轨与水平面成α=53°角,导轨间距离L=0.8m.其上端接一电源和一固定,电源的电动势E=1.5 V,其内阻及导轨的电阻可忽略不计.固定电阻R=4.5Ω,导体棒ab与导轨垂直且水平,其质量m=3×10-2kg,电阻不计.整个装置处于竖直向上的匀强磁场中,磁感应B=0.5T.(g =10m/s2,sin53°=0.8,cos53°=0.6)(1)将ab棒由静止释放,最终达到一个稳定的速度,求此时电路中的电流.(2)求ab稳定时的速度.(3)求ab棒以稳定速度运动时电路中产生的焦耳热功率P Q及ab棒重力的功率P G.从计算结果看两者大小关系是怎样的?请解释为什么有这样的关系?6.质量都是m的两个完全相同带等量异种电荷的小球A和B,分别用长均为l的绝缘细线悬挂在同一水平面上相距为2l的M、N两点,平衡时小球A、B的位置如图甲所示,线与竖直方向的夹角θ=30°.当外加水平向左的匀强电场时,两小球的平衡位置如图乙所示,线与竖直方向的夹角也为θ,小球可视为质点,已知静电力常量为k.求:(1)A、B两小球的电性及所带的电荷量q.(2)外加匀强电场的场强E.7.如图所示,MON是光滑的祼导线围成的线框,∠MON=60°,线框处在水平面内且置于竖直向下、磁感应强度为B的匀强磁场中,祼导线ab与线框良好接触,接触点a、b与线框顶点O构成等边三角形,祼导线ab能在弹簧S的作用下沿线框匀速向左移动,运动到顶点O以后继续在光滑绝缘导轨上向左运动(绝缘导轨与光滑的祼导线围成的线框在同一水平面内,且光滑连接);已知弹簧的劲度系数为k,导线单位长度的电阻为r,祼导线ab的质量为m.(1)求ab向左做匀速运动的速度v.(2)从祼导线ab第一次运动到顶点O开始计算,直到祼导线静止,电路中所产生的焦耳热Q是多少?8.如图甲所示,PQNM是表面粗糙的绝缘斜面,abcd是质量m=0.5kg、总电阻R=0.5Ω、边长L=0.5m的正方形金属线框,线框的匝数N=10.将线框放在斜面上,使斜面的倾角θ由0°开始缓慢增大,当θ增大到37°时,线框即沿斜面下滑.假设最大静摩擦力与滑动摩擦力大小相等,现保持斜面的倾角θ=37°不变,在OO'NM 的区域加上垂直斜面方向的匀强磁场,使线框的一半处于磁场中,磁场的磁感应强度B随时间t变化的图象如图乙所示.(重力加速度g取10m/s2,sin37°=0.6)(1)试根据图乙写出B随时间t变化的函数关系式.。
高中物理竞赛辅导 力、物体的平衡
力、物体的平衡§1.1常见的力1、1、1力的概念和量度惯性定律指出,一个物体,如果没有受到其他物体作用,它就保持其相对于惯性参照系的速度不变,也就是说,如果物体相对于惯性参照系的速度有所改变,必是由于受到其他物体对它的作用,在力学中将这种作用称为力。
凡是讲到一个力的时候,应当说清楚讲到的是哪一物体施了哪一个物体的力。
一个物体,受到了另一物体施于它的力,则它相对于惯性参照系的速度就要变化,或者说,它获得相对于惯性参照系的加速度,很自然以它作用于一定的物体所引起的加速度作为力的大小的量度。
实际进行力的量度的时候,用弹簧秤来测量。
重力由于地球的吸引而使物体受到的力,方向竖直向下,在地面附近,可近似认为重力不变(重力实际是地球对物体引力的一个分力,随纬度和距地面的高度而变化弹力物体发生弹性变形后,其内部原子相对位置改变,而对外部产生的宏观反作用力。
反映固体材料弹性性质的胡克定律,建立了胁强(应力S F=σ与胁变(应变l l ∆=ε之间的正比例关系,如图所示εσE =式中E 为杨氏弹性模量,它表示将弹性杆拉长一倍时,横截面上所需的应力。
弹力的大小取决于变形的程度,弹簧的弹力,遵循胡克定律,在弹性限度内,弹簧弹力的大小与形变量(伸长或压缩量成正比。
F=-kx式中x 表示形变量;负号表示弹力的方向与形变的方向相反;k 为劲度系数,由弹簧的材料,接触反力和几何尺寸决定。
接触反力—限制物体某些位移或运动的周围其它物体在接触处对物体的反作用力实质上是一种弹性力,常见如下几类:1、柔索类(图1-1-2如绳索、皮带、链条等,其张力⎩⎨⎧拉物体指向沿柔索方位::T一般不计柔索的弹性,认为是不可伸长的。
滑轮组中,若不计摩擦与滑轮质量,同一根绳内的张力处处相等。
2、光滑面(图1-1-3接触处的切平面方位不受力,其法向支承力F图1-1-1CcA图1-1-3图1-1-2G⎩⎨⎧压物体指向沿法线方位::N3、光滑铰链物体局部接触处仍属于光滑面,但由于接触位置难于事先确定,这类接触反力的方位,除了某些情况能由平衡条件定出外,一般按坐标分量形式设定。
[精品]2019高考物理二轮复习专题限时集训(一)力与物体的平衡
专题限时集训(一)力与物体的平衡1.如图Z1-1所示,一机械臂铁夹竖直夹起一个金属小球,小球在空中处于静止状态,铁夹与球接触面保持竖直,则()图Z1-1A.小球受到的摩擦力方向竖直向下B.小球受到的摩擦力与重力大小相等C.若增大铁夹对小球的压力,小球受到的摩擦力变大D.若铁夹水平移动,小球受到的摩擦力变大2.如图Z1-2所示是悬绳对称且长度可调的自制降落伞,用该伞挂上重为G的物体进行两次落体实验,悬绳的长度l1<l2,匀速下降时每根悬绳的拉力大小分别为F1、F2,则()图Z1-2A.F1<F2B.F1>F2C.F1=F2<GD.F1=F2>G3.如图Z1-3所示,在粗糙水平面上放置A、B、C、D四个小物块,各小物块之间由四根完全相同的轻橡皮绳相互连接,正好组成一个菱形,∠ABC=60°,整个系统保持静止状态.已知D物块所受的摩擦力大小为F,则A物块所受的摩擦力大小为()图Z1-3A.FB.FC.FD.2F4.用轻弹簧竖直悬挂质量为m的物体,静止时弹簧伸长量为L.现用该弹簧沿斜面方向拉住质量为2m的物体,系统静止时弹簧伸长量也为L,斜面倾角为30°,如图Z1-4所示,则斜面上物体所受摩擦力(重力加速度为g) ()图Z1-4A.大小为mg,方向沿斜面向上B.大小为mg,方向沿斜面向下C.大小为mg,方向沿斜面向上D.等于零5.假如要撑住一扇用弹簧拉着的门,在门前地面上放一块石头,门往往能推动石头慢慢滑动.然而,在门下缝隙处塞紧一个木楔(侧面如图Z1-5所示),虽然木楔比石头的质量更小,却能把门卡住.下列分析正确的是()图Z1-5A.门能推动石头是因为门对石头的力大于石头对门的力B.将门对木楔的力正交分解,其水平分力与地面给木楔的摩擦力大小相等C.若门对木楔的力足够大,门就一定能推动木楔慢慢滑动D.塞在门下缝隙处的木楔,其顶角θ无论多大都能将门卡住6.(多选)把a、b两个完全相同的导体小球分别用长为l的绝缘细线拴接,小球质量均为m.先让a球带上电荷量为q 的正电荷并悬挂于O点,再将不带电的小球b也悬挂于O点,两球接触后由于静电斥力分开,平衡时两球相距为l,如图Z1-6所示.已知重力加速度为g,静电力常量为k,带电小球可视为点电荷.当两球平衡时,a球所受的静电力大小为F,O点的场强大小为E,则下列判断正确的是()图Z1-6A.F=B.F=C.E=D.E=7.(多选)如图Z1-7所示,有两个完全相同的带电小球A和B,小球A带电荷量为+Q,小球B带电荷量为+7Q,小球A固定在绝缘细杆上,小球B用绝缘细线悬挂在天花板上,此时细线与竖直方向的夹角为θ,两球球心的高度相同、间距为d.现让两个带电小球接触一下,然后再让两个小球球心的高度相同、间距仍为d,已知静电力常量为k,重力加速度为g,两带电小球可视为点电荷,则()图Z1-7A.细线与竖直方向的夹角变大B.两球之间的库仑力变小C.两球之间的库仑力变为原来的D.细线的拉力变大8.(多选)如图Z1-8所示,质量为m1=0.1 kg的不带电小环A套在粗糙的竖直杆上,小环A与杆间的动摩擦因数μ=,假设最大静摩擦力等于滑动摩擦力.一质量为m2=0.2 kg、电荷量为q=0.3 C的带正电的小球B与A用一绝缘细线相连,整个装置处于匀强电场中,恰好保持静止.下列说法正确的是(g取10 m/s2) ()图Z1-8A.电场强度E值最小时,其方向与水平方向的夹角θ=30°B.电场强度E值最小时,其方向与水平方向的夹角θ=60°C.电场强度E的最小值为10 N/CD.电场强度E的最小值为5 N/C9.(多选)如图Z1-9所示,倾斜的木板上有一静止的物块,水平向右的恒力F作用在该物块上,在保证物块不相对木板滑动的情况下,现以过木板下端点O的水平轴为转轴,使木板在竖直面内顺时针缓慢旋转一个小角度.在此过程中,下列说法正确的是()图Z1-9A.物块所受支持力一定变大B.物块所受支持力和摩擦力的合力一定不变C.物块所受摩擦力可能变小D.物块所受摩擦力一定变大10.(多选)质量均为m的两物块A和B之间连接着一个轻质弹簧,弹簧劲度系数为k,现将物块A、B放在水平地面上一斜面体的斜面上等高处,如图Z1-10所示,弹簧处于压缩状态,且物块与斜面体均能保持静止.已知斜面的倾角为θ,两物块和斜面间的动摩擦因数均为μ,设最大静摩擦力等于滑动摩擦力.下列说法正确的是(重力加速度为g) ()图Z1-10A.斜面体和水平地面间一定有静摩擦力B.斜面对A、B组成的系统的静摩擦力为2mg sin θC.若将弹簧拿掉,物块有可能发生滑动D.弹簧的最大压缩量为(μ2cos2θ-sin2θ11.如图Z1-11所示,竖直墙壁与光滑水平地面交于B点,质量为m1的光滑半圆柱体O1紧靠竖直墙壁置于水平地面上,质量为m2的均匀小球O2用长度等于A、B两点间距离l的细线悬挂于竖直墙壁上的A点,小球O2静置于半圆柱体O1上,当半圆柱体质量不变而半径改变时,细线与竖直墙壁的夹角θ就会跟着发生改变.已知重力加速度为g,不计各接触面间的摩擦,则()图Z1-11A.当θ=60°时,半圆柱体对地面的压力大小为m1g+m2gB.当θ=60°时,小球对半圆柱体的压力大小为m2gC.改变半圆柱体的半径,半圆柱体对竖直墙壁的最大压力为m2gD.半圆柱体的半径增大时,其对地面的压力保持不变12.如图Z1-12所示,重物恰好能在倾角为30°的木板上匀速下滑.当木板水平放置时,若用与水平方向成30°角斜向下的推力作用在重物上时,仍可使重物匀速运动.求:(1)重物与木板间的动摩擦因数;(2)推力与重物的重力大小之比.图Z1-1213.如图Z1-13所示,两根直金属导轨MN、PQ平行放置,它们所构成的平面与水平面间的夹角θ=37°,两导轨间的距离L=0.50 m.一根质量m=0.20 kg的直金属杆ab垂直放在两导轨上且与导轨接触良好,整套装置处于与ab垂直的匀强磁场中.在导轨的上端接有电动势E=36 V、内阻r=1.6 Ω的直流电源和电阻箱R.已知导轨与金属杆的电阻均可忽略不计,sin 37°=0.60,cos 37°=0.80,重力加速度g取10 m/s2.(1)若金属杆ab和导轨间的摩擦可忽略不计,磁场方向竖直向下,磁感应强度B1=0.30 T,要使金属杆ab静止在导轨上,求电阻箱接入电路中的电阻.(2)若金属杆ab与导轨间的动摩擦因数μ=0.30,且最大静摩擦力等于滑动摩擦力,匀强磁场方向垂直于导轨平面向下,磁感应强度B2=0.40 T,欲使金属杆ab静止,则电阻箱接入电路中的阻值R应满足什么条件?图Z1-13专题限时集训(一)1.B[解析] 对小球,由平衡条件知,竖直方向上,摩擦力与重力平衡,与压力大小、水平运动状态等无关,选项B正确.2.B[解析] 设每根绳与竖直方向的夹角为θ,绳子根数为n,则nF cos θ=G,绳长变大时,夹角θ变小,F变小,选项B正确.3.C[解析] 设每根橡皮绳的拉力为F0,由平衡条件知,A所受的摩擦力f A=2F0cos 60°=F0,D所受的摩擦力f D=F=2F0cos 30°=F0,则f A=F,选项C正确.4.D[解析] 弹簧竖直悬挂物体时,对物体受力分析,根据平衡条件得F=mg,对放在斜面上的物体受力分析,此时弹簧的拉力大小仍为F=mg,设物体所受的摩擦力沿斜面向上,根据平衡条件得F+f-2mg sin 30°=0,解得f=0,选项D正确.5.B[解析] 门对石头的力与石头对门的力是一对相互作用力,选项A错误;对木楔,由平衡条件得F sin θ=f,F N=mg+F cos θ,选项B正确;当F sin θ>μ(mg+F cos θ)时,木楔才能被推动,若sin θ<μcos θ,即tan θ<μ,则无论F为多大,都推不动木楔,选项C、D错误.6.BC[解析] 对小球a,静电力F=k=,由平衡条件得tan 60°=,O点的场强大小E=2×k cos30°==,选项B、C正确.7.AD[解析] 两小球接触前,两球之间的库仑力F=,两小球接触后,两球之间的库仑力变为原来的,选项B、C错误;对小球B,由平衡条件得tan θ==,两小球接触后,q A q B增大,库仑力增大,细线与竖直方向的夹角θ变大,选项A正确;细线的拉力F T=随夹角θ增大而增大,选项D正确.8.BD[解析] 对A、B整体,由平衡条件得Eq cos θ=F N,μF N+Eq sin θ=(m1+m2)g,联立可得E==,tan φ=,当cos(φ-θ)=1时,电场强度E最小,且最小值E m=5 N/C,此时cos φ=cos θ=,即θ=60°,选项B、D正确.9.BD[解析] 对物块,外力F和重力mg的合力恒定,由平衡条件知,物块所受支持力和摩擦力的合力恒定,选项B正确;同理,f=mg sin θ+F cos θ,mg cos θ=F sin θ+F N,随着木板倾角θ增大,物块所受支持力减小,支持力与摩擦力的合力恒定,摩擦力与该合力的夹角减小,故摩擦力增大,选项A、C错误,D正确.10.BD[解析] 对斜面体和物块A、B整体分析,可知斜面体和水平地面间没有静摩擦力,选项A错误;对A、B整体分析,由平衡条件知,静摩擦力f=2mg sin θ,选项B正确;对A分析,当A受到最大静摩擦力时,弹簧被压缩至最短,此时(kx)2+(mg sin θ)2=(μmg cos θ)2,解得最大压缩量x=,选项D正确;若将弹簧拿掉,静摩擦力减小,物块继续保持静止,选项C错误.11.C[解析] 对均匀小球进行受力分析如图所示.连接O2B和O1O2,设O2B与水平地面之间的夹角为β,O1O2与水平地面之间的夹角为α;当θ=60°时,由几何关系可知,由于AB=AO2,所以△ABO2为等边三角形,β=90°-60°=30°,由圆心角与圆周角之间的关系可知α=2β=60°,可知小球受到的细线的拉力T与半圆柱体对小球的支持力N相互垂直,水平方向上有T sin θ=N cos α,竖直方向上有T cos θ+N sin α=m2g,联立得T=m2g,N=m2g,以小球与半圆柱体组成的整体为研究对象,竖直方向上有m1g+m2g=T cos θ+N',所以N'=m1g+m2g-T cos θ=m1g+m2g,根据牛顿第三定律可知,半圆柱体对地面的压力大小为m1g+m2g,小球对半圆柱体的压力大小为m2g,A、B错误;若改变半圆柱体的半径,当小球平衡时,小球的位置在以A为圆心、l为半径的圆弧上,由几何关系可知,直线O1O2是该圆弧的切线,所以AO2⊥O1O2,则T=m2g cos θ,以小球与半圆柱体组成的整体为研究对象,在水平方向上有F N=T sin θ=m2g sin θcos θ=m2g sin 2θ,当θ=45°时,墙对半圆柱体的弹力最大,为m2g,由牛顿第三定律知,C正确;半圆柱体在竖直方向上受到的支持力N'=m1g+m2g-T cos θ=m1g+m2g-m2g cos 2θ=m1g+m2g sin2θ,由几何关系可知,增大半圆柱体的半径,则θ增大,N'将增大,根据牛顿第三定律可知,半圆柱体对地面的压力将增大,D错误.12.(1)(2)1∶1[解析] (1)设重物的质量为m,重物与木板间的动摩擦因数为μ.木板倾角为30°时,由平衡条件得F N1=mg cos 30°f1=mg sin 30°又知f1=μF N1联立解得μ=tan 30°=(2)木板水平时,设推力大小为F,由平衡条件得F N2=mg+F sin 30°f2=F cos 30°又知f2=μF N2联立解得F==mg所以推力与重物的重力大小之比为1∶113.(1)2.0 Ω(2)2.7 Ω≤R≤8.4 Ω[解析] (1)根据受力分析可得=tan θ则F A=mg=1.5 N由F A=B1LI=B1L解得R=2.0 Ω.(2)静摩擦力最大且沿导轨向下时,有B2I max L=f+mg sin θ即B2L=μmg cos θ+mg sin θ解得R min≈2.7 Ω静摩擦力最大且沿导轨向上时,有B2I min L+f=mg sin θ即B2L+μmg cos θ=mg sin θ解得R max=8.4 Ω电阻箱接入电路中的阻值R应满足的条件是2.7 Ω≤R≤8.4 Ω.。
2023届高考物理二轮专题:物体的平衡专项训练
物体的平衡专项训练一、单选题1、如图所示,在倾角为θ的斜面上,放着一个质量为m的光滑小球,小球被竖直的木板挡住,则小球对木板的压力大小为()A.mg cos θB.mg tanθC.mgcos θD.mgtan θ2、一只蚂蚁从半球形小碗内的最低点沿碗壁向上缓慢爬行,在其滑落前的爬行过程中受力情况是()A.弹力逐渐增大B.摩擦力逐渐增大C.摩擦力逐渐减小D.碗对蚂蚁的作用力逐渐增大3、质量m1=10 kg和m2=30 kg的两物体,叠放在动摩擦因数为0.50的粗糙水平地面上,一处于水平位置的轻弹簧,劲度系数为k=250 N/m,一端固定于墙壁,另一端与质量为m1的物体相连,弹簧处于自然状态,现用一水平推力F作用于质量为m2的物体上,使它缓慢地向墙壁一侧移动,当移动0.40 m时,两物体间开始相对滑动,这时水平推力F的大小为()A.100 N B.300 N C.200 N D.250 N4、如图所示,a、b是两个位于固定斜面上的完全相同的正方形物块,它们在水平方向的外力F的作用下处于静止状态.已知a、b与斜面的接触面都是光滑的,则下列说法正确的是()A.物块a所受的合外力大于物块b所受的合外力B.物块a对斜面的压力大于物块b对斜面的压力C.物块a、b间的相互作用力等于FD.物块a对斜面的压力等于物块b对斜面的压力5、如图所示,轻绳一端系在质量为m的物体A上,另一端与套在粗糙竖直杆MN上的轻圆环B相连接.用水平力F拉住绳子上一点O,使物体A及圆环B静止在图中虚线所在的位置.现稍微增加力F使O点缓慢地移到实线所示的位置,这一过程中圆环B仍保持在原来位置不动.则此过程中,圆环对杆的摩擦力F1和圆环对杆的弹力F2的变化情况是()A.F1保持不变,F2逐渐增大B.F1逐渐增大,F2保持不变C.F1逐渐减小,F2保持不变D.F1保持不变,F2逐渐减小二、双选题6、如图,用两根细线把A、B两小球悬挂在天花板上的同一点O,并用第三根细线连接A、B两小球,然后用某个力F作用在小球A上,使三根细线均处于直线状态,且OB细线恰好沿竖直方向,两小球均处于静止状态.则该力可能为图中的()A.F1B.F2 C.F3D.F47、如图所示,物块a、b的质量均为m,水平地面和竖直墙面均光滑,在水平推力F作用下,两物块均处于静止状态.则()A.b受到的摩擦力大小等于mg B.b受到的摩擦力大小等于2mgC.b对地面的压力大小等于mg D.b对地面的压力大小等于2mg8、如图所示,轻质光滑滑轮两侧用细绳连着两个物体A与B,物体B放在水平地面上,A、B均静止.已知A和B的质量分别为m A、m B,绳与水平方向的夹角为θ,则()A.物体B受到的摩擦力可能为0 B.物体B受到的摩擦力为m A g cosθC.物体B对地面的压力可能为0 D.物体B对地面的压力为m B g-m A g sinθ9、在粗糙水平地面上放着一个截面为半圆的柱状物体A ,A 与竖直墙之间放一光滑半圆球B ,整个装置处于平衡状态。
2018年八年级物理下册 8.2二力平衡同步精练(含解析)(新版)新人教版
第2节二力平衡一、知能演练提升1.(2017·福建中考)如图所示,体操运动员静止在平衡木上时,与运动员所受重力是一对平衡力的是()A.平衡木对运动员的支持力B.运动员对平衡木的压力C.平衡木受到的重力D.运动员对地球的吸引力2.下图是向空中抛出实心球到实心球落地而停止运动的场景。
下列情况中实心球受到平衡力作用的是()A.实心球在空中上升B.实心球从空中下落C.实心球在地上越滚越慢D.实心球停在地面上3.作用在某一物体上的两个力,如果这两个力的三要素完全相同,则这两个力()A.一定是平衡力B.可能是平衡力C.一定不是平衡力D.无法确定4.(2016·江苏扬州中考)小华静止站在水平地面上,下列说法正确的是()A.他对地面的压力和他所受到的重力二力平衡B.他对地面的压力和地面对他的支持力二力平衡C.他受到的重力和地面对他的支持力是相互作用力D.他对地面的压力和地面对他的支持力是相互作用力5.如图所示,火车在行驶过程中有时需要改变轨道,俗称火车变轨,火车变轨实际是()A.平衡力作用的结果B.非平衡力作用的结果C.因为火车受到惯性力作用的结果D.因为火车具有惯性6.如图所示,放手后纸片不能保持静止,这样的操作是为了探究物体在平衡状态下所受的两个力()A.大小是否相等B.方向是否相反C.是否作用在同一物体上D.是否作用在同一直线上7.如图所示,三个钩码的重力均为1 N,用三根轻绳连接悬挂着,那么a绳受到的拉力为N,b 绳受到的拉力为N,c绳受到的拉力为N。
8.科学研究表明:空气对运动物体的阻力与物体速度的大小有关,物体速度越大,其受到的空气阻力越大。
若不考虑雨滴质量的变化和风速的影响,雨滴由云层向地面下落的过程中,其运动情况是先做运动,后做运动。
(均选填“加速”“减速”或“匀速”)9.起重机的钢绳吊着5×103 N 的重物,先以0.5 m/s的速度匀速上升,后静止在空中,再以1 m/s的速度匀速下降,在这三个运动状态下,钢绳对重物的拉力分别为F1、F2、F3,则F1F2F3。
2018届高考物理二轮复习 专题整合高频突破: 专题一 力与运动 1 力与物体的平衡课件
乙),mg大小、方向不变,FN1方向不变,角A在逐渐变 小,则FN1逐渐变小直至为0,FN2'也在变小,直至木板
水 求平出F时N,1F=Nm2'g减ta小n θ为, FmNg2。'=本c���o���题s������������也,其可中以θ利为用FN力2'与的竖合直成
考情分析·备考定向
命题热点
考题统计 命题规律
第1 讲 力与 物体 的平 衡
热点一 物 体的受力分 析及静态平 衡
热点二 共 点力作用下 物体的动态 平衡
2016Ⅰ
卷,19;2016
Ⅲ
卷,17;2017
Ⅲ卷,17
2016Ⅱ
卷,14;2017
Ⅰ卷,21
近几年高考命题点主要有:①匀变
速直线运动规律及其公式、图象。
a、b、c都处于平衡状态,分别列三个平衡方程FT=mgsin θ+F安a,F安 b以=m上g四sin个θ方,FT程=,m可cg得,而F且安aa=、F安bb中=m电g流sin相θ等,m,c所=2以msFi安n aθ=,电F安流b=大B小Il,联为立���������������解s������i���n, ������ 所以A、D正确,C错误。
-20-
命题热点一
命题热点二
命题热点三
例4(多选)如图所示,在倾角为θ的斜面上固定两根足够长的光滑 平行金属导轨PQ、MN,相距为l,导轨处于磁感应强度为B的匀强磁 场中,磁场方向垂直导轨平面向下。有两根质量均为m的金属棒a、 b,先将a棒垂直导轨放置,用跨过光滑定滑轮的细线与物块c连接,连 接a棒的细线平行于导轨,由静止释放c,此后某时刻,将b也垂直导轨 放置,a、c此刻起做匀速运动,b棒刚好能静止在导轨上。a棒在运 动过程中始终与导轨垂直,两棒与导轨接触良好,导轨电阻不计。 则( AD )
新教材2024高考物理二轮专题复习第一编专题复习攻略专题一力与运动第1讲力与物体的平衡教师用书
第1讲力与物体的平衡知识网络构建命题分类剖析命题点一静态平衡问题1.共点力平衡的常用处理方法(1)研究对象的选取:①整体法与隔离法(如图甲);②转换研究对象法(如图乙).(2)画受力分析图:按一定的顺序分析力,只分析研究对象受到的力.(3)验证受力的合理性:①假设法(如图丙);②动力学分析法(如图丁).例 1[2023·山东卷]餐厅暖盘车的储盘装置示意图如图所示,三根完全相同的弹簧等间距竖直悬挂在水平固定圆环上,下端连接托盘.托盘上叠放若干相同的盘子,取走一个盘子,稳定后余下的正好升高补平.已知单个盘子的质量为300 g,相邻两盘间距1.0 cm,重力加速度大小取10 m/s2.弹簧始终在弹性限度内,每根弹簧的劲度系数为( )A.10 N/m B.100 N/mC.200 N/m D.300 N/m例 2[2023·河北保定一模]质量为M的正方体A与质量为m的圆球B在水平向右的外力F作用下静止在墙角处,它们的截面图如图所示,截面正方形的对角线与截面圆的一条直径恰好在一条直线上,所有摩擦忽略不计,重力加速度为g.则( )A.F=(M+m)gB.F=mgC.地面受到的压力为F N,F N<(M+m)gD.地面受到的压力为F N,F N>(M+m)g提升训练1. [2023·广东省中山市测试]如图甲为明朝《天工开物》记载测量“弓弦”张力的插图,图乙为示意图.弓的质量为m =5 kg ,弦的质量忽略不计,悬挂点为弦的中点.当在弓的中点悬挂质量为M =15 kg 的重物时,弦的张角为θ=120°,g =10 m/s 2,则弦的张力为( )A .50 NB .150 NC .200 ND .200√3 N 2.[2023·浙江6月]如图所示,水平面上固定两排平行的半圆柱体,重为G 的光滑圆柱体静置其上,a 、b 为相切点,∠aOb =90°,半径Ob 与重力的夹角为37°.已知sin 37°=0.6,cos 37°=0.8,则圆柱体受到的支持力F a 、F b 大小为( )A .F a =0.6G ,F b =0.4GB .F a =0.4G ,F b =0.6GC .F a =0.8G ,F b =0.6GD .F a =0.6G ,F b =0.8G 3.[2023·河南省洛阳市模拟]如图所示,一光滑球体放在支架与竖直墙壁之间,支架的倾角θ=60°,光滑球体的质量为m ,支架的质量为2m ,已知最大静摩擦力等于滑动摩擦力,整个装置保持静止,则支架和地面间的动摩擦因数至少为( )A .√39B .√34C .√32 D .√33命题点二 动态平衡问题(含临界、极值问题)1.解决动态平衡问题的一般思路化“动”为“静”,多个状态下“静”态对比,分析各力的变化或极值. 2.“缓慢”移动的三类经典模型图例分析求力F的最小值F min=mg sin θ,结论:sin θ=dLF=mg,2cosθ绳子端点上下移动,力F不变N1、N2始终减小斜面对球的支持力F1逐渐减小,挡板对球的弹力F2先减小后增大考向1 共点力作用下的动态平衡例 1[2023·四川省成都市检测](多选)某中学举行趣味运动会时,挑战用一支钢尺取出深盒子(固定不动)中的玻璃球,该游戏深受大家喜爱,参与者热情高涨.游戏中需要的器材和取球的原理分别如图甲和图乙所示.若忽略玻璃球与盒壁、钢尺间的摩擦力,在不损坏盒子的前提下,钢尺沿着盒子上边缘某处旋转拨动(钢尺在盒内的长度逐渐变短),使玻璃球沿着盒壁缓慢上移时,下列说法正确的是( )A.钢尺对玻璃球的弹力逐渐减小B.钢尺对玻璃球的弹力先增大后减小C.盒壁对玻璃球的弹力逐渐减小D.盒壁对玻璃球的弹力先减小后增大例 2[2023·河北唐山三模]如图所示,木板B放置在粗糙水平地面上,O为光滑铰链.轻杆一端与铰链O固定连接,另一端固定连接一质量为m的小球A.现将轻绳一端拴在小球A 上,另一端通过光滑的定滑轮O′由力F牵引,定滑轮位于O的正上方,整个系统处于静止状态.现改变力F的大小使小球A和轻杆从图示位置缓慢运动到O′正下方,木板始终保持静止,则在整个过程中( )A.外力F大小不变B.轻杆对小球的作用力变小C.地面对木板的支持力逐渐变小D.地面对木板的摩擦力逐渐减小思维提升三力作用下的动态平衡考向2 平衡中的极值或临界值问题例 3[2023·山东菏泽市模拟]将三个质量均为m的小球a、b、c用细线相连后(bc间无细线相连),再用细线悬挂于O点,如图所示.用力F拉小球c,使三个小球都处于静止状态,且细线Oa与竖直方向的夹角保持为θ=30°,则F的最小值为( ) A.1.5mg B.1.8mgC.2.1mg D.2.4mg例 4[2023·陕西省汉中市联考]在吊运表面平整的重型板材(混凝土预制板、厚钢板)时,如因吊绳无处钩挂而遇到困难,可用一根钢丝绳将板拦腰捆起(不必捆的很紧),用两个吊钩勾住绳圈长边的中点起吊(如图所示),若钢丝绳与板材之间的动摩擦因数为μ,为了满足安全起吊(不考虑钢丝绳断裂),需要满足的条件是( )A.tan α>μ B.tan α<μC.sin α>μ D.sin α<μ提升训练1.[2023·湖南张家界模拟考](多选)利用物理模型对问题进行分析,是一种重要的科学思维方法.如图甲所示为拔河比赛时一位运动员的示意图,可以认为静止的运动员处于平衡状态.该情形下运动员可简化成如图乙所示的一质量分布均匀的钢管模型.运动员在拔河时身体缓慢向后倾倒,可以认为钢管与地面的夹角θ逐渐变小,在此期间,脚与水平地面之间没有滑动,绳子的方向始终保持水平.已知当钢管受到同一平面内不平行的三个力而平衡时,三个力的作用线必交于一点.根据上述信息,当钢管与地面的夹角θ逐渐变小时,下列说法正确的有( )A.地面对钢管支持力的大小不变B.地面对钢管的摩擦力变大C.地面对钢管作用力的合力变大D.地面对钢管作用力的合力大小不变2.(多选)在如图所示的装置中,两物块A、B的质量分别为m A、m B,而且m A>m B,整个系统处于静止状态,设此时轻质动滑轮右端的轻绳与水平面之间的夹角为θ,若小车向左缓慢移动一小段距离并停下来后,整个系统再次处于静止状态,则下列说法正确的是( )A.物块A的位置将变高B.物块A的位置将变低C.轻绳与水平面的夹角θ将变大D.轻绳与水平面的夹角θ将不变3.长沙某景区挂出32个灯笼(相邻两个灯笼由轻绳连接),依次贴上“高举中国特色社会主义旗帜,为全面建设社会主义现代化国家而团结奋斗”,从高到低依次标为1、2、3、…、32.在无风状态下,32个灯笼处于静止状态,简化图如图所示.与灯笼“斗”右侧相连的轻绳处于水平状态,已知每一个灯笼的质量m=0.5 kg,重力加速度g=10 m/s2,悬挂灯笼的轻绳最大承受力T m=320 N,最左端连接的轻绳与竖直方向的夹角为θ.下列说法正确的是( )A.θ最大为53°NB.当θ最大时最右端轻绳的拉力为F2=160√33C.当θ=53°时第8个灯笼与第9个灯笼间轻绳与竖直方向的夹角为45°D.当θ=37°时第8个灯笼与第9个灯笼间轻绳与竖直方向的夹角为45°命题点三电场力、磁场力作用下的平衡问题1.电场力.(1)大小:F=Eq,F=kq1q2r2(2)方向:正电荷所受电场力的方向与电场强度的方向相同;负电荷所受电场力的方向与电场强度的方向相反.2.磁场力(1)大小:①安培力F=BIL;②洛伦兹力F洛=qv B.(2)方向:用左手定则判断.3.电磁学中平衡问题的处理方法处理方法与力学中平衡问题的分析方法一样,把方法和规律进行迁移应用即可.考向1 电场中的平衡问题例 1[2023·浙江模拟预测]如图所示,A、C为带异种电荷的带电小球,B、C为带同种电荷的带电小球.A、B被固定在绝缘竖直杆上,Q AQ B =3√38时,C球静止于粗糙的绝缘水平天花板上.已知L ACL AB=√3,下列说法正确的是( )A.C处的摩擦力不为零B.杆对B的弹力为零C.缓慢将C处点电荷向右移动,则其无法保持静止D.缓慢将C处点电荷向左移动,则其一定会掉下来考向2 磁场中的平衡问题例 2 如图所示,竖直平面内有三根轻质细绳,绳1水平,绳2与水平方向成60°角,O为结点,绳3的下端拴接一质量为m、长度为l的导体棒,棒垂直于纸面静止,整个空间存在竖直向上、磁感应强度大小为B的匀强磁场.现向导体棒通入方向向里、大小由零缓慢增大到I0的电流,可观察到导体棒缓慢上升到与绳1所处的水平面成30°角时保持静止.已知重力加速度为g.在此过程中,下列说法正确的是( )A.绳1受到的拉力先增大后减小B.绳2受到的拉力先增大后减小C.绳3受到的拉力的最大值为√3mgD.导体棒中电流I0的值为√3mglB提升训练1.[2024·山西省翼城中学模拟预测]如图甲所示,一通电导体棒用两根绝缘轻质细线悬挂在天花板上并静止在水平位置.当导体棒所在空间加上匀强磁场,再次静止时细线与竖直方向成θ角,如图乙所示(图甲中从左向右看).已知导体棒长度为L、质量为m、电流为I,重力加速度大小为g.关于图乙,下列说法正确的是( )A.当磁场方向斜向右上方且与细线垂直时磁感应强度最小B.磁感应强度的最小值为mg sinθILC.磁感应强度最小时,每根细线的拉力大小为mg2cosθD.当磁场方向水平向左时,不能使导体棒在图示位置保持静止2.如图所示,一绝缘细线竖直悬挂一小球A,在水平地面上固定一根劲度系数为k′的绝缘轻质弹簧,弹簧上端与小球C相连,在小球A和C之间悬停一小球B,当系统处于静止时,小球B处在AC两小球的中间位置.已知三小球质量均为m,电荷量均为q,电性未知.则下列判断正确的是( )A.相邻两小球之间的间距为q√kmgB.弹簧的形变量为11mg8k′C.细线对小球A的拉力大小为11mg8D.小球C受到的库仑力大小为5mg8素养培优·情境命题利用平衡条件解决实际问题联系日常生活,创新试题情境化设计,渗透实验的思想,考查考生分析解决实际问题的能力,引导学生实现从“解题”到“解决问题”的转变情境1 工人推车——科学思维[典例1] [2023·四川省成都市联测]如图甲所示,工人用推车运送石球,到达目的地后,缓慢抬起把手将石球倒出(图乙).若石球与板OB、OA之间的摩擦不计,∠AOB=60°,图甲中BO 与水平面的夹角为30°,则在抬起把手使OA 变得水平的过程中,石球对OB 板的压力大小N 1、对OA 板的压力大小N 2的变化情况是( )A .N 1减小、N 2先增大后减小B .N 1减小、N 2增大C .N 1增大、N 2减小D .N 1增大、N 2先减小后增大情境2 悬索桥——科学态度与责任[典例2] [2023·江苏省无锡市测试]图a 是一种大跨度悬索桥梁,图b 为悬索桥模型.六对轻质吊索悬挂着质量为M 的水平桥面,吊索在桥面两侧竖直对称排列,其上端挂在两根轻质悬索上(图b 中只画了一侧分布),悬索两端与水平方向成45°,则一根悬索水平段CD 上的张力大小是( )A .14Mg B .16MgC .112Mg D .124Mg情境3 瓜子破壳器——科学探究[典例3] [2023·福建福州4月检测]有一种瓜子破壳器如图甲所示,将瓜子放入两圆柱体所夹的凹槽之间,按压瓜子即可破开瓜子壳.破壳器截面如图乙所示,瓜子的剖面可视作顶角为θ的扇形,将其竖直放入两完全相同的水平等高圆柱体A 、B 之间,并用竖直向下的恒力F 按压瓜子且保持静止,若此时瓜子壳未破开,忽略瓜子自重,不计摩擦,则( )A .若仅减小A 、B 距离,圆柱体A 对瓜子的压力变大 B .若仅减小A 、B 距离,圆柱体A 对瓜子的压力变小C .若A 、B 距离不变,顶角θ越大,圆柱体A 对瓜子的压力越大D.若A、B距离不变,顶角θ越大,圆柱体A对瓜子的压力越小第1讲力与物体的平衡命题分类剖析命题点一[例1] 解析:由题知,取走一个盘子,稳定后余下的正好升高补平,则说明一个盘子的重力使弹簧形变量为相邻两盘间距,则有mg=3·kx,解得k=100 N/m,故选B.答案:B[例2] 解析:对圆球B受力分析如图,β=45°A对B的弹力T=mg,cosβ根据牛顿第三定律,B对A的弹力T′=T=mg,F=T′sin β=mg,故A错误,B正cosβcos β=Mg+mg,故C、D 确;对AB整体地面受到的压力为F N=Mg+T′cos β=Mg+mgcosβ错误.故选B.答案:B[提升训练]1.解析:整体法对弓和物体受力分析如图:=(M+m)g竖直方向上由受力平衡可得:2F cos θ2解得:F=(M+m)g=200 N,故C正确,A、B、D错误.2cosθ2答案:C2.解析:对光滑圆柱体受力分析如图由题意有F a=G sin 37°=0.6GF b=G cos 37°=0.8G故选D.答案:D3.解析:对光滑球体受力分析如图所示根据平衡条件可得N2cos θ=mg对支架受力分析如图所示根据牛顿第三定律可知N3=N2对支架由平衡条件可得N4=2mg+N3cos θ,f=N3sin θ又f=μN4联立解得μ=√33.故选D.可知支架和地面间的动摩擦因数至少为√33答案:D命题点二[例1] 解析:对玻璃球的受力分析如图所示,玻璃球受重力G,左侧钢尺对玻璃球的弹力F1,盒壁对玻璃球的弹力F2,玻璃球在3个力作用下处于动态平衡,玻璃球沿着纸盒壁缓慢上移时,θ角变大,利用图解法可知,F1和F2均逐渐减小,A、C项正确,B、D项错误.故选AC.答案:AC[例2] 解析:对小球A进行受力分析,三力构成矢量三角形,如图所示根据几何关系可知两三角形相似,因此mgOO′=FO′A=F′OA,缓慢运动过程中,O′A越来越小,则F逐渐减小,故A错误;由于OA长度不变,杆对小球的作用力F′大小不变,故B 错误;由于杆对木板的作用力大小不变,方向向右下,但杆的作用力与竖直方向的夹角越来越小,所以地面对木板的支持力逐渐增大,地面对木板的摩擦力逐渐减小,故C错误,D正确.答案:D[例3] 解析:取整体为研究对象,当F垂直于Oa时,F最小,根据几何关系可得,拉力的最小值F=3mg sin 30°=1.5mg,故选A.答案:A[例4] 解析:要起吊重物,只需满足绳子张力T的竖直分量小于钢丝绳与板材之间的最大静摩擦力,一般情况认为最大静摩擦力等于滑动摩擦力,如图所示即T cos αμ>T sin α,化简可得tan α<μ,故B正确,A、C、D错误.故选B.答案:B[提升训练]1.解析:对钢管受力分析,钢管受重力mg、绳子的拉力T、地面对钢管竖直向上的支持力F N、水平向右的摩擦力F f,可知F N=mg,F f=T=mgtanθ即随着钢管与地面夹角的逐渐变小,地面对钢管支持力的大小不变,地面对钢管的摩擦力变大,故A、B正确;对钢管受力分析,可认为钢管受到重力mg、绳子的拉力T和地面对钢管作用力的合力F 三个力,钢管平衡,三个力的作用线必交于一点,由此可知F方向沿钢管斜向上,与水平面夹角为α(钢管与水平面的夹角为θ),根据共点力平衡条件可知F=mgsinα,T=mgtanα,当钢管与地面的夹角θ逐渐变小,同时α也减小,地面对钢管作用力的合力变大,C正确,D 错误.答案:ABC2.解析:以轻质动滑轮与轻绳的接触点O为研究对象,分析O点的受力情况,作出O 点的受力分析图,如图所示设绳子的拉力大小为F,动滑轮两侧绳子的夹角为2α,由于动滑轮两侧绳子的拉力关于竖直方向对称,则有2F cos α=m B g,又小车向左缓慢移动一小段距离后,轻绳中的拉力大小与小车移动前相同,即F=m A g保持不变,可知α角保持不变,由几何知识得,α+θ=90°,则θ保持不变,当小车向左缓慢移动一小段距离后,动滑轮将下降,则物块A 的位置将变高,故选项A、D正确,B、C错误.答案:AD3.解析:当最左端连接的轻绳的拉力大小为T m=320 N时,θ最大,此时灯笼整体受力如图所示由平衡条件T m sin θm=F2T m cos θm=32mg解得θm=60°,F2=160√3 NA、B错误;当θ=53°时,灯笼整体受力分析如图由平衡条件知,最右端轻绳的拉力F21=32mg tan 53°=6403N对第9个灯笼至第32个灯笼整体,其受力情况跟灯笼整体的受力情况类似,由平衡条件tan α=F21(32−8)mg≠1则第8个灯笼与第9个灯笼间轻绳与竖直方向的夹角α≠45°,C错误;当θ=37°时,此时灯笼整体受力如图所示由平衡条件知,最右端轻绳的拉力F22=32mg tan 37°=120 N对第9个灯笼至第32个灯笼整体,其受力情况跟灯笼整体的受力情况类似,由平衡条件tan β=F22(32−8)mg=1则第8个灯笼与第9个灯笼间轻绳与竖直方向的夹角β=45°,D正确.答案:D命题点三[例1] 解析:对C进行受力分析,A对C有吸引力,B对C有排斥力,及其重力,与水平天花板对C 可能有竖直向下的压力,如图所示由平衡条件,结合矢量合成法则,若不受摩擦力得F AC=F BC cos θ由几何知识可得cos θ=√32依据库仑定律有kQ A Q CL AC2=√32kQ B Q CL BC2,Q AQ B=3√38Q A Q B =3√38时恰好处于平衡状态;C球静止没有运动趋势,C处的摩擦力为零,故A错误;缓慢将C处点电荷向右移动,平衡状态被打破,其无法保持静止,故C正确;缓慢将C处点电荷向左移动,F BC变大,其竖直方向上的分量变大,C球一定不会掉下来,故D错误;B球如果不受杆的力,则C球给B球的排斥力在水平方向的分量无法平衡,因此杆对B 一定有弹力作用,故B错误.答案:C[例2] 解析:对整体分析,重力大小和方向不变,绳1、2弹力方向不变,根据左手定则,安培力水平向右且逐渐增大,由平衡条件得水平方向F1=F2cos 60°+BIl竖直方向F 2sin 60°=mg电流逐渐变大,则F 1增大、F 2不变,故A 、B 错误;当电流增大到I 0时,安培力与重力的合力最大,即绳3的拉力最大sin 30°=mg F 3最大值为F 3=2mg ,故C 错误;对导体棒受力分析得tan 30°=mg BI 0l ,得I 0=√3mg Bl,故D 正确.答案:D [提升训练] 1.解析:对导体棒受力分析如图所示,导体棒在重力、拉力和安培力的作用下处于平衡状态.由平衡条件可知,导体棒所受拉力和安培力的合力与重力等大反向,拉力和安培力可能的方向如图所示,当安培力方向斜向右上方且与细线垂直时安培力最小,此时磁场方向沿着细线斜向左上方,A 错误;设磁感应强度大小为B ,由平衡条件得mg sin θ=BIL ,解得B =mg sin θIL ,B 正确;设每条细线拉力大小为F T ,由平衡条件得mg cos θ=2F T ,解得F T =12mg cos θ,C 错误;当磁场方向水平向左时,安培力竖直向上,如果安培力与重力大小相等,可以使导体棒在图示位置保持静止,D 错误.答案:B2.解析:如图甲所示,以小球B 为研究对象,小球A 和小球C 分别对小球B 的库仑力大小相等,且小球A 和小球C 对小球B 的合力与小球B 的重力等大反向,所以小球A 和小球B 带异种电荷,小球B 和小球C 带同种电荷,即小球A 和小球C 对小球B 的库仑力大小均为F A =F C =mg2,由库仑定律可得kq 2r 2=12mg ,解得小球A 和小球B 之间距离为r =q √2kmg ,故A 错误;如图乙所示,以小球A 为研究对象,受到小球B 向下的库仑力为F B =mg 2,受到小球C向下的库仑力是受到小球B 的14,即为F C ′=mg 8,所以小球A 受到的拉力为F T A =mg +F B +F ′C=13mg 8,故C 错误;如图丙所示,以小球C 为研究对象,小球C 受到小球B 向下的库仑力为F ′B =mg2,受到A 向上的库仑力为F ′A =mg8,则小球C 对弹簧的压力为F 压=F ′B -F ′A +mg=11mg 8,小球C 受到向上的弹力为F 弹=F 压=11mg 8,由胡克定律得F 弹=k ′x ,解得弹簧的形变量为x =11mg8k ′,故B 正确,D 错误.答案:B 素养培优·情境命题[典例1] 解析:在倒出石球的过程中,两个支持力的夹角是个确定值,为α=120°,根据力的示意图可知N 1sin β=N 2sin γ=Gsin α,在转动过程中β从90°增大到180°,则sin β不断减小,N 1将不断减小;γ从150°减小到60°,其中跨过了90°,因此sin γ 先增大后减小,则N 2将先增大后减小,选项A 正确.答案:A[典例2] 解析: 对整体分析,根据平衡条件,2F T AC sin 45°=Mg ,F T AC =√22Mg .对悬索左边受力分析,受A 左上绳的力F T AC ,CD 上水平向右的拉力为F T ,根据平衡条件,F T =F T AC cos 45°=12Mg ,一根悬索水平段CD 上的张力大小是14Mg ,故选A.答案:A[典例3] 解析:瓜子处于平衡状态,若仅减小A 、B 距离,A 、B 对瓜子的弹力方向不变,则大小也不变,A 、B 错误;若A 、B 距离不变,顶角θ越大,则A 、B 对瓜子弹力的夹角减小,合力不变,则两弹力减小,C 错误,D 正确.故选D.答案:D。
2018届高三物理高考二轮复习 第一部分 专题一 第1讲 力与物体的平衡
考向二 共点力作用下物体的静态平衡
研考向 融会贯通
提能力 强化闯关
限时 规范训练
考向一 考向二 考向三 考向四
1.共点力的平衡条件 F 合=0(或 Fx=0,Fy=0),平衡状态是指物体处于匀速直线运动状态或静止 状态. 2.解决共点力静态平衡问题的典型方法 力的合成法、正交分解法、整体法和隔离法.
考向二
考向一 考向二 考向三 考向四
研考向 融会贯通
提能力 强化闯关
限时 规范训练
试题 解析 答案
3.(2016·西安高三二模)将一横截面为扇形的物体 B 放在水平面上,一小滑
块 A 放在物体 B 上,如图所示,除了物体 B 与水平面间的摩擦力之外,其
余接触面的摩擦力均可忽略不计,已知物体 B 的质量为 M、滑块 A 的质量
考向三 考向四
物体 D.已知图中 2l=1.0 m,b=0.05 m,F=400 N,B 与左壁接触,接触面
光滑,则 D 受到向上顶的力为(滑块和杆的重力不计)( B )
A.3 000 N
B.2 000 N
C.1 000 N
D.500 N
考向二
研考向 融会贯通
提能力 强化闯关
限时 规范训练
试题
解析
研考向 融会贯通
提能力 强化闯关
限时 规范训练
研考向 融会贯通
提能力 强化闯关
限时 规范训练
研考向 融会贯通
提能力 强化闯关
限时 规范训练
研考向 融会贯通
提能力 强化闯关
限时 规范训练
第 1 讲 力与物体的平衡
研考向 融会贯通
提能力 强化闯关
限时 规范训练
微网构建
研考向 融会贯通
2023届高考物理二轮专题卷:力与物体的平衡
一、选择题(第1~10题为单选题,第10~15题为多选题)1.如图甲所示,用瓦片做屋顶是我国建筑的特色之一。
铺设瓦片时,屋顶结构可简化为图乙所示,建筑工人将瓦片轻放在两根相互平行的檩条正中间,若瓦片能静止在檩条上。
已知檩条间距离为d ,以下说法正确的是()A .瓦片总共受到4个力的作用B .减小檩条间的距离d 时,瓦片与檩条间的弹力增大C .减小檩条间的距离d 时,瓦片可能会下滑D .增大檩条间的距离d 时,瓦片与檩条间的摩擦力增大【答案】C【解析】瓦片受重力、两侧的支持力和摩擦力,共5个力,故A 错误;根据题图可知,两檩条对瓦片的弹力与垂直于檩条方向的夹角为 ,有2cos cos N mg ,减小檩条间的距离d 时,夹角 变小,则瓦片与檩条间的弹力变小,最大静摩擦力变小,则瓦片可能会下滑,故B 错误,C 正确;增大檩条间的距离d 时,瓦片仍然静止,瓦片与檩条间的摩擦力不变,故D 错误。
2.2020年的春节刚刚来临,国内多地发生新型冠状病毒肺炎疫情,许多医务工作者自愿放弃休假为抗击疫情奋战。
在药物使用中就应用到很多物理知识。
甲、乙图分别是用注射器取药的情景和针尖刺入瓶塞的物理图样,针尖的顶角很小,医生沿着注射器施加一个较小的力F ,针尖会对瓶塞产生很大的推力。
现只分析如图的针尖倾斜侧面与直侧面对瓶塞产生的两个推力,则()A .针尖在两个侧面上对瓶塞的两个推力是等大的B .针尖在倾斜侧面上对瓶塞的推力比直侧面的推力小C .若F 一定,使用顶角越小的针尖,则两个侧面对瓶塞产生的推力就越大D .针尖在倾斜侧面上对瓶塞的推力F N =F cos θ【答案】C【解析】根据平行四边形定则可知针尖在两个侧面上对瓶塞的两个推力不等,故A 错误;设顶角为 ,则针尖在倾斜侧面上对瓶塞的推力1sin F F ,直侧面的推力2tan F F,当 大于45°,针尖在倾斜侧面上对瓶塞的推力比直侧面的推力大,故B 、D 错误;由上述两式可知,若F 一定,使用顶角越小的针尖,则两个侧面对瓶塞产生的推力就越大,故C 正确。
高考物理二轮复习专项训练突破—三大力场中物体的平衡问题(含解析)
高考物理二轮复习专项训练突破—三大力场中物体的平衡问题(含解析)一、单项选择题1.如图所示,学校门口水平地面上有一质量为m 的石墩,石墩与水平地面间的动摩擦因数为μ,工作人员用轻绳按图示方式匀速移动石墩时,两平行轻绳与水平面间的夹角均为θ,则下列说法正确的是()A .轻绳的合拉力大小为cos mgμθB .轻绳的合拉力大小为cos sin mgμθμθ+C .减小夹角θ,轻绳的合拉力一定减小D .轻绳的合拉力最小时,地面对石墩的摩擦力也最小【答案】B【详解】AB .对石墩受力分析,由平衡条件可知cos T f θ=;f N μ=;sin T N mg θ+=联立解得cos sin μθμθ=+mgT 故A 错误,B 正确;C .拉力的大小为cos sin mg T μθμθ==+1tan ϕμ=,可知当90θϕ+=︒时,拉力有最小值,即减小夹角θ,轻绳的合拉力不一定减小,故C 错误;D .摩擦力大小为cos cos cos sin 1tan mg mg f T μθμθθμθμθ===++可知增大夹角θ,摩擦力一直减小,当θ趋近于90°时,摩擦力最小,故轻绳的合拉力最小时,地面对石墩的摩擦力不是最小,故D 错误;故选B 。
2.如图甲所示,上端安装有定滑轮、倾角为37°的斜面体放置在水平面上,滑轮与斜面体的总质量为m =0.5kg 。
轻质细线绕过定滑轮,下端连接质量为m =0.5kg 的物块,上端施加竖直向上的拉力,斜面体处于静止状态,物块沿着斜面向上做匀速运动,物块与斜面之间的动摩擦因数为μ=0.6。
如图乙所示,上端安装有定滑轮、倾角为37°的斜面体放置在粗糙的水平面上,滑轮与斜面体的总质量为m =0.5kg 。
斜面体的上表面光滑,轻质细线压在定滑轮上,下端连接质量为m =0.5kg 的物块,上端与竖直的墙壁连接,物块放置在斜面上,整体处于静止状态,墙壁和滑轮间的细线与竖直方向的夹角为60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丰城中学2018届第二轮复习资料力和物体的平衡专题训练命题:钱新富班级 姓名 学号 评分一、选择题(每小题只一个答案正确,每小题 3 分,共 30 分)1.两个重叠在一起的滑块,置于倾角为θ的固定斜面上,滑块A 、B 的质量分别为M 和m ,如图所示,A 与斜面的动摩擦因数为μ1,B 与A 间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,则滑块A 受到的摩擦力:A.等于零B.方向沿斜面向上C.大小等于θμcos mg 1D.大小等于θμcos mg 22.如图,放在水平地面上的物体M 上叠放物体m ,两者间有一条处于压缩状态的弹簧,整个装置相对地面静止,则下列说法不正确的是( )A .M 对m 的摩擦力方向向右B .m 对M 的摩擦力方向向左C .地面对M 的摩擦力向右D .地面对M 没有摩擦力3.一根细绳能承受的最大拉力是G .现把一重力G 的物体拴在绳的中点,两手靠拢分别握住绳的两端,再慢慢地沿水平方向左、右分开.当绳断裂时,两段绳间的夹角应稍大于 ( )A .30°B .60°C .90°D .120°4.A 、B 两木块重分别为30N 和90N ,用细线绕过滑轮连结在一起并叠放在水平桌面上.A 与B 、B 与桌面C 之间的动摩擦因数均为0.3.当对滑轮施以水平力F=30N 时,则 ( )A .A 对B 的摩擦力为15N B .A 对B 的摩擦力为9NC .B 对C 的摩擦力为27ND .B 对C 的摩擦力为36N5.如图所示,某人通过定滑轮拉住一重物,当人向右跨出一步后,人与物仍保持静止,则 ( )A .地面对人的摩擦力减小B .地面对人的摩擦力增大C .人对地面的压力不变D .人对地面的压力减小6.一个质量3kg 的物体,放在倾角α=30°的固定斜面上,物体与斜面间的动摩擦因数为μ=, 如图甲、乙、丙三种情况下处于平衡状态的是 ( )A .仅甲图B .仅乙图C .仅丙图D .甲、乙、丙三图7.如图所示,轻杆OP 可绕O 轴在竖直平面内自由转动,P 端挂一重物,另用一轻绳通过滑轮系住P 端.当OP 和竖直方向间的夹角α缓慢增大时(0<α<1800),则OP 杆所受作用力的大小 ( )A .恒定不变B .逐渐增大C .逐渐减小D .先增大、后减小33A 8.五本书相叠放在水平桌面上,用水平力F 拉中间的书C 但未拉动,各书均仍静止(如图)。
关于它们所受摩擦力的情况,以下判断中正确的是 ( )A. 书e 受一个摩擦力作用B. 书b 受到一个摩擦力作用C. 书c 受到两个摩擦力作用D. 书a 不受摩擦力作用9.如图,水平的皮带传送装置中,O 1为主动轮,O 2为从动轮,皮带在匀速移动且不打滑。
此时把一重10N 的物体由静止放在皮带上的A 点,若物体和皮带间的动摩擦因数μ=0.4.则下列说法正确的是 ( )(1)刚放上时,物体受到向左的滑动摩擦力4N (2)达到相对静止后,物体在A 点右侧,受到的是静摩擦力 (3)皮带上M 点受到向下的静摩擦力(4)皮带上N 点受到向下的静摩擦力 (5)皮带上各处的拉力相等A .(2)(3)(4)(5) B.(1)(3)(4) C.(1)(2)(4) D.(1)(2)(3)(4)(5)10.有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑.AO 上套有小环P ,OB 上套有小环Q ,两球质量均为m ,两环间由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡(如图).现将P 环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO 杆对P 环的支持力N 和细绳上的拉力T 的变化情况是( )A .N 不变,T 变大B .N 不变,T 变小C .N 变大,T 变大D .N 变大,T 变小二、填空题(每空3分,共24分)11.三个互成角度的水平共点力作用于一物体,使其在光滑的水平面上作匀速直线运动.已知F 1=9N ,F 2=12N ,则F 3的大小范围是_______________,F 2与F 3的合力的大小为_______N .12.一个重G=60N 的物体放在水平地面上,受到两个与水平面间夹角分别为450和300的斜向上拉力F 1=202N ,F 2=40N ,物体仍保持静止,则物体对地面的压力为________N ;地面对物体的摩擦力为________N 。
13.重G=100N 的木块放在倾角α=30°的玻璃板上,恰能匀速下滑.若将玻璃板水平放置,用跟水平方向成α=30°角的斜向上拉力拉木块沿玻璃板匀速运动,则拉力F=__________.14.如图所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B .绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体.平衡时,绳中的张力T=______N.若A点向下移动达到新的平衡后,绳的张力将_________(填:变大、变小、不变)15.劲度系数为100N/ m的弹簧上端固定,下端挂一个放在面上的物体。
已知物体可在PQ两点间的任何位置处于静止态,如图所示。
若物体与斜面间的最大静摩擦力为6N,则P、Q两点间的距离最大是________ cm .三、解答题(共60分)16(12分).如图所示,重G=100N的木块放在倾角θ=20°的斜面上静止不动,现用平行于斜面底边、沿水平方向的外力F拉木块,则F为多少时,可使木块沿斜面匀速滑下,已知木块与斜面间动摩擦因数μ=0.5,取sin20°=0.34,cos20°=0.94.17(16分).一光滑圆环固定在竖直平面内,环上套着两个小球A和B(中央有孔),A、B间由细绳连接着,它们处于如图中所示位置时恰好都能保持静止状态。
此情况下,B球与环中心O处于同一水平面上,A、B间的细绳呈伸直状态,与水平线成300夹角。
已知B球的质量为m,求细绳对B球的拉力和A球的质量。
18如图所示,两个完全相同的小球,重力大小为G.两球与水平地面间的动摩擦因数都为μ.一根轻绳两端固结在两个球上.在绳的中点施加一个竖直向上的拉力,当绳被拉直时,两段绳间的夹角为α,问当F至少多大时,两球将会发生滑动?19如图所示,一直角斜槽(两槽面夹角为900)对水平面夹角为300,一个横截面为正方形的物块恰能沿此槽匀速下滑,假定两槽面的材料和表面情况相同,问物块和槽面间的动摩擦因数是多少?20如图所示,重8.0N的球静止在与水平成37°的光滑斜面上,并通过定滑轮与重4N 的物体A相连,光滑档板与水平垂直,不计滑轮与绳子的摩擦,不计绳子的质量,求斜面和挡板所受的压力。
(Sin37°=0.6 Cos37°=0.8)21如图1-5所示,匀强电场方向向右,匀强磁场方向垂直于纸面向里,一质量为m带电量为q的微粒以速度v与磁场垂直、与电场成45˚角射入复合场中,恰能做匀速直线运动,求电场强度E的大小,磁感强度B的大小22.如图1-6所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为l,导轨平面与水平面的夹角为θ。
在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B。
在导轨的A、C端连接一个阻值为R的电阻。
一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑。
求ab棒的最大速度。
(已知ab和导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计)<力和物体平衡专题训练>参考答案一、1.BC . 2.C . 3.D . 4.B . 5.B . 6.D . 7.A .8.D . 9.B . 10.B .二、11.3~21N ,9N . 12.20N ;14.6N , 13.50N .(提示:木块匀速下滑时,Gsin α=μGcos α;得μ=tgα.拉木块匀速运动时,应有Fcos α=μ(G-Fsin α))14.10N .不变. 15. 12三、(12+12+16+20=60分) 16.32.4N .17.解:对B 球,受力分析如图所示。
T cos300=N A sin300 ………….①(4分)∴ T =2mg ………………….(1分)对A 球,受力分析如图D-1所示。
在水平方向T cos300=N A sin300 …………………..② (5分)在竖直方向 N A cos300=m A g +T sin300 …………………③ (5分) 18 由以上方程解得:m A =2m ……………..(1分)19.直角槽对物体的支持力FN1 = FN2,正交分解:FN1cos450+ FN2cos450=mgcos300;μFN1 + μFN2 = mgsin300;解得μ = tan300cos450 = 66. 20.解析:以A 为对象,根据力的平衡有T =4N ,对B 受G B 、T 、N 1和N 2四个力作用下平衡沿斜面方向和垂直斜面方向正交分解的N 2cos37°+T -G B sin37°=0 (1)N 1-G B cos37°-N 2sin37°=0 (2)由(1)式得N 2=(G B ×0.6-4)/cos37°=(8×0.6-4)/0.8=0.8/0.8=1N 代入(2)N1=8×0.8+1×0.6=6.4+0.6=7N21.由于带电粒子所受洛仑兹力与v 垂直,电场力方向与电场线平行,知粒子必须还受重力才能做匀速直线运动。
假设粒子带负电受电场力水平向左,则它受洛仑兹力f 就应斜向右下与v 垂直,这样粒子不能做匀速直线运动,所以粒子应带正电,画出受力分析图根据合外力为零可得,︒=45sin qvB mg (1) ︒=45cos qvB qE (2)由(1)式得qvmg B 2=,由(1),(2)得q mg E /= 22.本题的研究对象为ab 棒,画出ab 棒的平面受力图,如图1-7。
ab 棒所受安培力F 沿斜面向上,大小为R v l B BIl F /22==,则ab 棒下滑的加速度m F mg mg a /)]cos (sin [+θμ-θ=。
ab 棒由静止开始下滑,速度v 不断增大,安培力F 也增大,加速度a 减小。
当a =0时达到稳定状态,此后ab 棒做匀速运动,速度达最大。
0)/cos (sin 22=+-R v l B mg mg θμθ。
解得ab 棒的最大速度22/)cos (sin l B mgR v m θμθ-=。
μαμ+=22tg G F 37°。