鲁教版五四制七年级数学上册认识三角形3试卷
初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(2)
章节测试题1.【答题】如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是()A. AC=BDB. OD=OCC. ∠A=∠CD. OA=OB【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:A、添加AC=BD不能判定△OAB≌△COD,故此选项错误;B、添加OD=OC不能判定△OAB≌△COD,故此选项错误;C、添加∠A=∠C,可利用ASA判定△OAB≌△COD,故此选项正确;D、添加AO=BO,不能判定△OAB≌△COD,故此选项错误;选C.2.【答题】如图,下列条件中,不能证明△ABD≌△ACD的是()A. BD=DC,AB=ACB. ∠ADB=∠ADC,∠BAD=∠CADC. ∠B=∠C,BD=DCD. ∠B=∠C,∠BAD=∠CAD【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:A、BD=DC,AB=AC,再加公共边AD=AD可利用SSS定理进行判定,故此选项不合题意;B、∠ADB=∠ADC,BD=DC再加公共边AD=AD可利用SAS定理进行判定,故此选项不合题意;C、∠B=∠C,BD=CD,再加公共边AD=AD不能判定△ABD≌△ACD,故此选项符合题意;D、∠B=∠C,∠BAD=∠CAD再加公共边AD=AD可利用AAS定理进行判定,故此选项不合题意;选C.3.【答题】在△ABC和△A1B1C1中,已知∠A=∠A1,AB=A1B1,下列添加的条件中,不能判定△ABC≌△A1B1C1的是()A. BC=B1C1B. ∠C=∠C1C. AC=A1C1D. ∠B=∠B1【答案】A【分析】根据全等三角形的判定定理解答即可.【解答】解:A、不符合全等三角形的判定定理,即不能推出≌,故本选项正确;B、符合全等三角形的判定定理AAS,即能推出≌,故本选项错误;C、符合全等三角形的判定定理SAS,即能推出≌,故本选项错误;D、符合全等三角形的判定定理ASA,即能推出≌,故本选项错误;选A.4.【答题】如图,已知∠ADB=∠CBD,下列所给条件不能证明△ABD≌△CDB的是()A. ∠A=∠CB. AD=BCC. ∠ABD=∠CDBD. AB=CD【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】A.∵∠A=∠C,∠ADB=∠CBD,BD=BD,∴△ABD≌△CDB(AAS),故正确;B.∵AD=BC,∠ADB=∠CBD,BD=DB,∴△ABD≌△CDB(SAS),故正确;C.∵∠ABD=∠CDB,∠ADB=∠CBD,BD=DB,∴△ABD≌△CDB(ASA),故正确;D.∵AB=CD,BD=DB,∠ADB=∠CBD,不符合全等三角形的判定方法,故不正确;选D.5.【答题】在下列条件中,不能说明△ABC≌△A′B′C′的是()A. ∠C=∠C′,AC=A′C′,BC=B′C′B. ∠B=∠B′,∠C=∠C′,AB=A′B′C. ∠A=∠A′,AB=A′B′,BC=B′C′D. AB=A′B′,BC=B′C′,AC=A′C【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】A、∠C=∠C′,AC=A′C ′,BC=B′C′,根据SAS可以判定△ABC≌△A′B′C′;B、∠B=∠B′,∠C=∠C′,AB=A′B′,根据AAS可以判定△ABC≌△A′B′C′;C、∠A=∠A′,AB=A′B′,BC=B′C′,SSA不能判定两个三角形全等,故C选项符合题意;D、AB=A′B′,BC=B′C′,AC=A′C,根据SSS可以判定△ABC≌△A′B′C′,选C.6.【答题】如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A. AB=ACB. DB=DCC. ∠ADB=∠ADCD. ∠B=∠C【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证:A、∵AB=AC,∴∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴∴△ABD≌△ACD(AAS);故此选项正确.选B.方法总结:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.7.【答题】在下列各组条件中,不能说明的是()A.B.C.D.【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;选B.方法总结:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.【答题】如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,添加下列条件后,仍不能判断△ABC≌△DEF的是()A. BC=EFB. ∠A=∠EDFC. AB∥DED. ∠BCA=∠F【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】解:∵AD=CF,∴AD+CD=CF+DC,∴AC=DF,A、添加BC=EF可利用SSS定理判定△ABC≌△DEF,故此选项不合题意;B、添加∠A=∠EDF可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;C、添加AB∥DE可证出∠A=∠EDC,可利用SAS定理判定△ABC≌△DEF,故此选项不合题意;D、添加∠BCA=∠F不能判定△ABC≌△DEF,故此选项符合题意;选D.9.【答题】如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是()A. SASB. ASAC. AASD. SSS【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,而AC=CA,∴△ABC≌△CDA(ASA).选B.10.【答题】若AD=BC,∠A=∠B,直接能利用“SAS”证明△ADF≌△BCE的条件是()A. AE=BFB. DF=CEC. AF=BED. ∠CEB=∠DFA【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:用边角边证明两三角形全等,已知其中一个对应角相等和一条对应边相等,则还需要的条件是相等角的另外一条临边相等,即AF=BE,选C.11.【答题】如图所示,在△ABC中,BC=AC,BE=AE,则由“SSS”可以判定()A. △ACD≌△BCDB. △ADE≌△BDEC. △ACE≌△BCED. 以上都对【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:三条边对应相等,BC=AC,BE=AE,CE=CE. 所以△ACE≌△BCE,选C.12.【答题】如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A. AB=ACB. BE=CDC. ∠B=∠CD. ∠ADC=∠AEB 【答案】B【分析】根据全等三角形的判定定理解答即可.【解答】A、∵在△ABE和△ACD中,AE=AD、∠A=∠A、AB=AC,∴△ABE≌△ACD (SAS),正确,故本选项不符合题意;B、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项符合题意;C、∵在△ABE和△ACD中,∠A=∠A、∠B=∠C、AE=AD,∴△ABE≌△ACD(AAS),正确,故本选项不符合题意;D、∵在△ABE和△ACD中,∠A=∠A、AE=AD、∠AEB=∠ADC,∴△ABE≌△ACD (ASA),正确,故本选项不符合题意,选B.13.【答题】下列四组条件中, 能使△ABC≌△DEF的条件有()①AB = DE, BC = EF, AC = DF; ②AB = DE, ∠B = ∠E, BC = EF;③∠B = ∠E, BC = EF, ∠C = ∠F; ④AB = DE, AC = DF, ∠B = ∠E.A. 1组B. 2组C. 3组D. 4组【答案】C【分析】根据全等三角形的判定定理解答即可.【解答】解:①AB = DE, BC = EF, AC = DF,边边边;②AB = DE, ∠B = ∠E, BC = EF,边角边;③∠B = ∠E, BC = EF, ∠C = ∠F,角边角;选C.14.【答题】下列判断中错误的是()A. 有两角和一边对应相等的两个三角形全等B. 有两边对应相等的两个直角三角形全等C. 有两边和其中一边上的中线对应相等的两个三角形全等D. 有两边和一角对应相等的两个三角形全等【答案】D【分析】根据全等三角形的判定定理解答即可.【解答】A. 有两角和一边对应相等的两个三角形全等,正确,不符合题意;B. 有两边对应相等的两个直角三角形全等,正确,不符合题意;C. 有两边和其中一边上的中线对应相等的两个三角形全等,正确,不符合题意;D. 有两边和一角对应相等的两个三角形全等,当两边夹一角时,正确,当两边和其中一边的对角时,不正确,故D错误,符合题意,选D.15.【答题】两个三角形有两个角对应相等,正确说法是()。
鲁教版五四制七年级上册数学第一章三角形单元测试卷
鲁教版五四制七年级上册数学第一章三角形单元测试卷第一章测试卷一、选择题(每题3分,共30分)1.若三角形的两个内角的和是85°,那么这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.不能确定2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D,则△ABC中AC 边上的高是线段()A.AE B.CD C.BF D.AF3.如图,△ABC≌△EDF,AF=20,EC=8,则AE等于() A.6 B.8 C.10 D.124.下列各条件中,能作出唯一的△ABC的是()A.AB=4,BC=5,AC=10 B.AB=5,BC=4,∠A=30°C.∠A=90°,AB=10 D.∠A=60°,∠B=50°,AB=5 5.如图,AB∥ED,CD=BF,若要说明△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充6.如图,在△ABC中,∠ABC,∠ACB的平分线分别为BE,CD,BE与CD相交于点F,∠A=60°,则∠BFC等于()A.118°B.119°C.120°D.121°7.如果某三角形的两边长分别为5和7,第三边的长为偶数,那么这个三角形的周长可以是()A.14 B.17 C.22 D.268.如图,下列四个条件:①BC=B′C;②AC=A′C;③∠A′CA=∠B′CB;④AB =A′B′.从中任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1 B.2 C.3 D.49.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC 的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF -S△BEF等于()A.1 B.2 C.3 D.410.如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成7个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成()个互不重叠的小三角形.A.2n B.2n+1 C.2n-1 D.2(n+1)二、填空题(每题3分,共24分)11.一个三角形的其中两个内角为88°,32°,则这个三角形的第三个内角的度数为________.12.要测量河两岸相对的两点A,B间的距离(AB垂直于河岸BF),先在BF上取两点C,D,使CD=CB,再作出BF的垂线DE,且使A,C,E三点在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB.因此测得ED的长就是AB的长.判定△EDC≌△ABC的理由是____________.13.如图,E点为△ABC的边AC的中点,∥AB,若MB=6 cm,=4 cm,则AB =________.14.用直尺和圆规作一个角等于已知角,如图所示,则要说明∠A′O′B′=∠AOB,需要说明△C′O′D′≌△COD,则这两个三角形全等的依据是____________(写出全等的简写).15.已知△ABC的三边长分别为a,b,c,若a=3,b=4,则c 的取值范围是____________;已知四边形EFMN的四边长分别为e,f,m,n,若e=3,f =4,n=10,则m的取值范围是____________.16.如图,在△ABC中,AD是BC边上的高,BE是AC边上的高,且AD,BE 交于点F,若BF=AC,CD=3,BD=8,则线段AF 的长度为________.17.如图是由相同的小正方形组成的网格,点A,B,C均在格点上,连接AB,AC,则∠1+∠2=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12(AB+AD),若∠D=115°,则∠B=________.三、解答题(19题7分,20,21题每题8分,25题13分,其余每题10分,共66分)19.如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC,求∠EDC的度数.20.如图,已知线段m,n,如果以线段m,n分别为等腰三角形的底或腰作三角形,能作出几个等腰三角形?请作出.不写作法,保留作图痕迹.21.如图,在△ABC中,AB=AC,D在AC的延长线上,试说明:BD-BC<AD -AB.22.如图,是一座大楼相邻的两面墙,现需测量外墙根部两点A,B之间的距离(人不能进入墙内测量).请你按以下要求设计一个方案测量A,B的距离.(1)画出测量图案;(2)写出简要的方案步骤;(3)说明理由.23.如图,已知△ABC≌△ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(△ABC≌△ADE除外),并选择其中的一对加以说明.24.如图,在R t△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,求线段AE的长.25.已知点P是R t△ABC斜边AB上一动点(不与点A,B重合),分别过点A,B 向直线CP作垂线,垂足分别为点E,F,点Q为斜边AB的中点.(1)如图①,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________;(2)如图②,当点P在线段AB上且不与点Q重合时,试判断QE 与QF的数量关系,并说明理由.(温馨提示:直角三角形斜边上的中线等于斜边的一半)答案一、1.A2.C:因为BF⊥AC于点F,所以△ABC中AC边上的高是线段BF,故选C. 3.A:因为△ABC≌△EDF,所以AC=EF.所以AE=CF.因为AF=20,EC=8,所以AE=CF=6.故选A.4.D5.B:由已知条件AB∥ED可得,∠B=∠D,由CD=BF可得,BC=DF,再补充条件AB=ED,可得△ABC≌△EDF,故选B.6.C7.C8.B9.B:易得S△ABE=13×12=4,S△ABD=12×12=6,所以S△ADF-S△BEF=S△ABD-S△ABE=2.10.B:△ABC的三个顶点和它内部的点P1,把△ABC分成的互不重叠的小三角形的个数=3+2×0;△ABC的三个顶点和它内部的点P1,P2,把△ABC分成的互不重叠的小三角形的个数=3+2×1;△ABC的三个顶点和它内部的点P1,P2,P3,把△ABC分成的互不重叠的小三角形的个数=3+2×2,所以△ABC 的三个顶点和它内部的点P1,P2,P3,…,P n,把△ABC分成的互不重叠的小三角形的个数=3+2(n-1)=2n+1.二、11.60°12.ASA:由题意可知,∠ECD=∠ACB,∠EDC=∠ABC=90°,CD=CB,故可用ASA说明两个三角形全等.13.10 cm:由∥AB,点E为AC的中点,可得∠EAM=∠E,AE =CE.又因为∠AEM=∠CEN,所以△AEM≌△CEN.所以AM==4 cm.所以AB=AM+MB =4+6=10(cm).14.SSS15.1<c<7;3<m<17:由三角形的三边关系得第三边的取值范围为4-3<c<4+3,即1<c<7.同理,得四边形efmn对角线em的取值范围为4-3<em<4+3,即1<em<7.所以10-7<m<10+7,即3<m<17.< bdsfid="207" p=""></c<7;3<m<17:由三角形的三边关系得第三边的取值范围为4-3<c<4+3,即1<c<7.同理,得四边形efmn对角线em的取值范围为4-3<em<4+3,即1<em<7.所以10-7<m<10+7,即3<m<17.<>16.5:由已知可得,∠ADC=∠BDF=∠BEC=90°,所以∠DAC =∠DBF.又因为AC=BF,所以△ADC≌△BDF.所以AD=BD=8,DF=DC =3.所以AF =AD -DF =8-3=5.17.90° :如图,由题意可知,∠ADC =∠E =90°,AD =BE ,CD =AE ,所以△ADC ≌△BEA .所以∠CAD =∠2.所以∠1+∠2=∠1+∠CAD =90°.18.65° :过点C 作CF ⊥AD ,交AD 的延长线于点F .因为AC 平分∠BAD ,所以∠CAF =∠CAE .又因为CF ⊥AF ,CE ⊥AB ,所以∠AFC =∠AEC =90°.在△CAF 和△CAE 中,∠AFC =∠AEC ,∠CAF =∠CAE ,AC =AC ,所以△CAF ≌△CAE (AAS).所以FC =EC ,AF =AE .又因为AE =12(AB +AD ),所以AF =12(AE +EB +AD ),即AF =BE +AD .又因为AF =AD +DF ,所以DF=BE .在△FDC 和△EBC 中,CF =CE ,∠CFD =∠CEB ,DF =BE ,所以△FDC ≌△EBC (SAS).所以∠FDC =∠EBC .又因为∠ADC =115°,所以∠FDC =180°-115°=65°.所以∠B =65°.三、19.解:(1)因为∠B =54°,∠C =76°,所以∠BAC =180°-54°-76°=50°.因为AD 平分∠BAC ,所以∠BAD =∠CAD =25°.所以∠ADB =180°-54°-25°=101°.所以∠ADC =180°-101°=79°.(2)因为DE ⊥AC ,所以∠DEC =90°.所以∠EDC =180°-90°-76°=14°.20.解:能作出两个等腰三角形,如图所示.21.解:因为AB =AC ,所以AD -AB =AD -AC =CD .因为BD -BC <=""22.解:(1)如图所示.(2)延长BO 至D ,使DO =BO ,连接AD ,则AD 的长即为A ,B 间的距离.(3)因为AO =AO ,∠AOB =∠AOD =90°,BO =DO ,所以△AOB ≌△AOD .所以AD =AB .23.解:△AEM ≌△A ,△BMF ≌△DNF ,△ABN ≌△ADM .(任写其中两对即可)选择△AEM ≌△A :因为△ABC ≌△ADE ,所以AC =AE ,∠C =∠E ,∠CAB =∠EAD .所以∠EAM =∠CAN .在△AEM 和△A 中,∠E =∠C ,AE =AC ,∠EAM =∠CAN ,所以△AEM ≌△A (ASA).选择△ABN ≌△ADM :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN=∠DAM ,所以△ABN ≌△ADM (ASA).选择△BMF ≌△DNF :因为△ABC ≌△ADE ,所以AB =AD ,∠B =∠D .又因为∠BAN =∠DAM ,所以△ABN ≌△ADM (ASA).所以AN =AM .所以BM =DN .又因为∠B =∠D ,∠BFM =∠DFN ,所以△BMF ≌△DNF (AAS).(任选一对进行说明即可)24.解:因为∠ACB =90°,所以∠ECF +∠BCD =90°.因为CD ⊥AB ,所以∠BCD +∠B =90°.所以∠ECF =∠B .在△ABC和△FCE中,∠B=∠ECF,BC=CE,∠ACB=∠FEC=90°,所以△ABC≌△FCE(ASA).所以AC=FE.因为EC=BC=2 cm,EF=5 cm,所以AE=AC-CE=FE-BC=5-2=3(cm).25.解:(1)AE∥BF;QE=QF(2)QE=QF.理由:如图,延长EQ交BF于点D,由题意易得AE∥BF,所以∠AEQ=∠BDQ.在△AEQ和△BDQ中,∠AQE=∠BQD,∠AEQ=∠BDQ,AQ=BQ,所以△AEQ≌△BDQ.所以EQ=DQ.因为∠DFE=90°,所以QE=QF.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(17)
章节测试题1.【答题】如图,△ABC中,点D、E分别在AB、AC边上,DE∥BC,∠A=50°,∠C=70°,那么∠ADE的度数是______.【答案】60°【分析】根据三角形内角和定理解答即可.【解答】∵DE∥BC,∴∠AED=∠C=70°,又∵∠ADE+∠AED+∠A=180°,∴∠ADE=180°−∠A−∠AED=180°−70°−50°=60°,故答案为:60°.2.【答题】如图,∠α=______.【答案】17°【分析】根据三角形内角和定理解答即可.【解答】解:∵三角形内角和是180°,∴40°+32°=55°+α,解得α=17°.3.【答题】三角形中,最大角等于最小角的2倍,最大角又比另一个角大20°,则此三角形的最小角等于______.【答案】40°【分析】根据三角形内角和定理解答即可.【解答】解:设最小角度数为x,则最大角为2x,另一角为2x﹣20°,列方程得,x+2x+2x﹣20°=180°,解得x=40°.答:这个三角形的最小角度数为40°.4.【答题】已知Rt△ABC,,,则______.【答案】60°【分析】根据三角形内角和定理解答即可.【解答】在Rt△ABC中,因为∠C=90°,所以∠A+∠B=90°,又因为∠A−∠B=30°,所以∠A=60°,故答案为:60°5.【答题】在△ABC中,∠B,∠C的平分线交于点O,若∠BOC=132°,则∠A=______度.【答案】84【分析】本题考查了三角形的角平分线概念和三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.【解答】解:∵∠BOC=132°,∴∠OBC+∠OCB=48°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,∴∠A=180°-96°=84°.故答案为:84.6.【答题】如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=______;(2)若∠ABC+∠ACB=120°,则∠BIC= ______;(3)若∠A=60°,则∠BIC=______;(4)若∠A=100°,则∠BIC=______;(5)若∠A=n°,则∠BIC=______.【答案】 120° 120°, 120° 140°, 90°+n°.【分析】根据三角形的角平分线解答即可.【解答】解:(1)∵BI是∠ABC的平分线,∵CI是∠ACB的平分线,在△BCI中,在△BCI中,(3)在△ABC中,∵BI是∠ABC的平分线,CI是∠ACB的平分线,在△BCI中,(4)在△ABC中,在△BCI中,(5)在△ABC中,∵BI是∠ABC的平分线,CI是∠ACB的平分线,在△BCI中,则故答案为120∘,120∘,120∘,140∘,7.【题文】如图,直线a∥b,BC 平分∠ABD,DE⊥BC,若∠1=70°,求∠2 的度数.【答案】55°【分析】根据平行线的性质得到∠1=∠ABD=70°,由角平分线的定义得到∠EBD= ∠ABD=35°,根据三角形的内角和即可得到结论.【解答】解:∵直线a∥b,∴∠1=∠ABD=70°,∵BC平分∠ABD,∴∠EBD=∠ABD=35°,∵DE⊥BC,∴∠BED=90°∴∠2=90°-∠EBD=55°.8.【题文】如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.【答案】38°【分析】根据平行线的性质先求得∠ABD=26°,再根据角平分线的定义求得∠ABC=52°,再根据直角三角形两锐角互余即可得.【解答】解:∵l1∥l2,∠1=26°,∴∠ABD=∠1=26°,又∵l2平分∠ABC,∴∠ABC=2∠ABD=52°,∵∠C=90°,∴Rt△ABC中,∠2=90°﹣∠ABC=38°.9.【题文】如图,∠ABC和∠ACB的平分线交于点O,DE经过点O且平行于BC,分别与AB,AC交于点D、E。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(47)
章节测试题1.【答题】下列说法错误的是()A. 三角形的角平分线把三角形分成面积相等的两部分B. 三角形的三条中线相交于一点C. 直角三角形的三条高交于三角形的直角顶点处D. 钝角三角形的三条高所在直线的交点在三角形的外部【答案】A【分析】根据三角形的面积公式以及三角形的中线、角平分线、高的概念可知.【解答】A、三角形的中线把三角形的面积分成相等的两部分,错误;B、三角形的三条中线,角平分线都相交于一点,正确;C、直角三角形三条高交于直角顶点,正确;D、钝角三角形的三条高所在直线的交点在三角形的外部,正确.选A.2.【答题】如图,在△ABC中,∠1=∠2,G为AD边上的中点,延长BG交AC于点E,且满足BE⊥AC;F为AB上一点,CF⊥AD于点H.下列判断:①线段AG 是△ABE的角平分线;②BE是△ABD边AD上的中线;③线段AE是△ABG的边BG 上的高;④∠1+∠FBC+∠FCB=90°.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】C【分析】①根据三角形的角平分线、三角形的中线、三角形的高的概念进行判断;②根据三角形的中线定义判断;③根据高线的定义进行判断;④根据外角与内角的关系进行判断.【解答】①∵∠1=∠2,∴AD平分∠BAC.∴AG是△ABE的角平分线,故①正确;②∵G为AD中点,∴AG=DG,∴BG是△ABD边AD上的中线.故②错误;③∵BE⊥AC,∴AE⊥BG,∴线段AE是△ABG的边BG上的高.故③正确;④根据三角形外角的性质,∠1+∠AFH=∠1+∠FBC+∠FCB=90°,∴∠1+∠FBC+∠FCB=90°,故④正确.综上所述,正确的个数是3个.选C.3.【题文】如图,△ABC的边BC上的高为AF,AC边上的高为BG,中线为AD.已知AF=6,BC=10,BG=5.(1)求△ABC的面积;(2)求AC的长;(3)试说明△ABD和△ACD的面积相等.【答案】(1)30;(2)12;(3)见解答.【分析】(1)直接利用三角形的面积计算方法计算得出答案即可;(2)利用三角形的面积计算公式建立方程求得答案即可;(3)利用三角形的面积计算公式以及两个三角形底和高的关系得出答案即可.【解答】(1)∵△ABC的边BC上的高为AF,AF=6,BC=10,∴△ABC的面积为BC·AF=×10×6=30.(2)∵AC边上的高为BG,BG=5,∴△ABC的面积为AC·BG=30,即AC×5=30,∴AC=12.(3)∵△ABC的中线为AD,∴BD=CD.∵△ABD以BD为底,△ACD以CD为底,而且等高,∴S△ABD=S△ACD.4.【答题】下列说法错误的是()A. 三角形的三条高一定在三角形内部交于一点B. 三角形的三条中线一定在三角形内部交于一点C. 三角形的三条角平分线一定在三角形内部交于一点D. 三角形的三条高可能相交于外部一点【答案】A【分析】本题考查了三角形的高、角平分线、中线.【解答】A.三角形的三条高一定在三角形内部交于一点,错误,符合题意;B.三角形的三条中线一定在三角形内部交于一点,正确,不符合题意;C.三角形的三条角平分线一定在三角形内部交于一点,正确,不符合题意;D.三角形的三条高可能相交于外部一点,正确,不符合题意.选A.5.【答题】如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定【答案】B【分析】本题考查了三角形的高.【解答】∵直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,∴如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.选B.6.【答题】能把一个三角形的面积一分为二的线段是()A. 高B. 中线C. 角平分线D. 外角平分线【答案】B【分析】本题考查了三角形的中线.【解答】三角形的中线把三角形分成两个三角形,这两个三角形等底同高,∴这两个三角形的面积相等,∴能把一个三角形的面积一分为二的线段是中线.选B.7.【答题】下列说法不正确的是()A. △ABC的中线AD平分边BCB. △ABC的角平分线BE平分∠ABCC. △ABC的高CF垂直ABD. 直角△ABC只有一条高【答案】D【分析】本题考查了三角形的高、角平分线、中线.【解答】A、∵AD是△ABC的中线,∴D是BC的中点,即AD平分边BC,故此选项正确;B、∵BE是△ABC的角平分线,∴BE平分∠ABC,故此选项正确;C、∵CF是△ABC的高,∴CF⊥AB,故此选项正确;D、直角△ABC有三条高,其中两条是直角边,一条在三角形内部,故此选项错误.选D.8.【答题】画△ABC中AC上的高,下列四个画法中正确的是()A. B.C. D.【答案】C【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.【解答】过点B作直线AC的垂线段,即画AC边上的高BD,∴画法正确的是C.选C.9.【答题】如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A. △ABC中,AD是边BC上的高B. △ABC中,GC是边BC上的高C. △GBC中,GC是边BC上的高D. △GBC中,CF是边BG上的高【答案】B【分析】本题考查了了三角形高的概念,应熟记三角形的高应具备的两个条件:①经过三角形的一个顶点,②垂直于这个顶点的对边.【解答】A、AD经过△ABC的一个顶点,且AD垂直于BC边所在的直线,∴△ABC中AD是边BC上的高,故此选项正确;B、GC没有经过BC所对的顶点A,∴△ABC中,GC不是BC边上的高,故此选项错误;C、GC经过△GBC的一个顶点,且GC垂直于BC,∴△GBC中GC是边BC上的高,故此选项正确;D、CF经过△GBC的一个顶点,且CF垂直于BG,∴△GBC中CF是边BG上的高,故此选项正确.选B.10.【答题】三角形的三条中线的交点的位置为()A. 一定在三角形内B. 一定在三角形外C. 可能在三角形内,也可能在三角形外D. 可能与三角形一条边重合【答案】A【分析】本题考查了三角形的中线.【解答】三角形的三条中线的交点一定在三角形内.选A.11.【答题】三角形的三条高在()A. 三角形的内部B. 三角形的外部C. 三角形的边上D. 三角形的内部、外部或边上【答案】D【分析】本题考查了三角形的高.【解答】锐角三角形的三条高都在三角形内部.直角三角形的三条高,有一条在内部,另外两条高与直角边重合.钝角三角形的三条高,有一条在内部,另外两条高在三角形外部.选D.12.【答题】如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A. AB=2BFB. ∠ACE=∠ACBC. AE=BED. CD⊥BE【答案】C【分析】本题考查了三角形的高、角平分线、中线.【解答】∵CD,CE,CF分别是△ABC的高、角平分线、中线∴CD⊥BE,∠ACE=∠ACB,AB=2BF选C.13.【答题】如图,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAE;②AF平分∠EAC;③AE平分∠DAF;④AF平分∠BAC;⑤AE 平分∠BAC.A. 4个B. 3个C. 2个D. 1个【答案】C【分析】本题考查了三角形的角平分线.【解答】AD不一定平分∠BAF,①错误;AF不一定平分∠DAC,②错误;∵∠1=∠2,∴AE平分∠DAF,③正确;∵∠1=∠2,∠3=∠4,∴∠1+∠3=∠2+∠4,即∠BAE=∠CAE,∴AE平分∠BAC,④正确;选C.14.【答题】下列说法不正确的是()A. 三角形的重心是其三条中线的交点B. 三角形的三条角平分线一定交于一点C. 三角形的三条高线一定交于一点D. 三角形中,任何两边的和大于第三边【答案】C【分析】本题考查了三角形的高、角平分线、中线.【解答】A、三角形的重心是其三条中线的交点,正确;B、三角形的三条角平分线一定交于一点,正确;C、钝角三角形的三条高线不相交,故三角形的三条高线一定交于一点错误;D、根据三角形的三边关系定理可知三角形中,任何两边的和大于第三边,正确.选C.15.【答题】给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形的高、角平分线、中线.【解答】三条线段首尾顺次相接组成的图形叫三角形,故①错误;三角形的角平分线是线段,故②错误;三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故③错误;∴正确的命题是④⑤,共2个.选B.16.【答题】一定在△ABC内部的线段是()A. 锐角三角形的三条高、三条角平分线、三条中线B. 钝角三角形的三条高、三条中线、一条角平分线C. 任意三角形的一条中线、二条角平分线、三条高D. 直角三角形的三条高、三条角平分线、三条中线【答案】A【分析】本题考查了三角形的高、角平分线、中线.【解答】钝角三角形一条高在三角形内部,另两条高在三角形的外部,三条中线和三条角平分线都在三角形的内部,故B、C错误;任意三角形的三条角平分线、三条中线、一条高一定在三角形内部,故D错误.选A.17.【答题】如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD=S△ABC.A. 3个B. 2个C. 1个D. 0个【答案】B【分析】本题考查了三角形中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线,三角形的中线将三角形的面积平分.【解答】∵AD是△ABC的中线,∴BD=CD=BC,故①正确;∵AD与BC不一定互相垂直,∴AB与AC不一定相等,故②错误;设△ABC中BC边上的高为h,则S△ABD=•BD•h=•BC•h=S△ABC,故③正确.选B.18.【答题】如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A. 1cm2B. 2cm2C. 8cm2D. 16cm2【答案】D【分析】本题考查了三角形的中线,根据三角形中线将三角形的面积分成相等的两部分是解题的关键.【解答】∵F是CE中点,∴△BEF的面积与△BCF的面积相等,∴S△BEC=2S△BEF=8(cm2),∵D、E分别为BC、AD的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△ABC=2S△BEC=16(cm2).选D.19.【答题】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC 于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.选B.20.【答题】如图,AD⊥BC于D,那么图中以AD为高的三角形有______个.【答案】6【分析】本题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内.【解答】∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(16)
章节测试题1.【答题】如图,AD⊥BC,垂足为D,∠BAC=∠CAD,下列说法正确的是()A. 直线AD是△ABC的边BC上的高B. 线段BD是△ABD的边AD上的高C. 射线AC是△ABD的角平分线D. △ABC与△ACD的面积相等【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】A. 三角形的高是一条线段,错误;B. BD是B到AD的距离,是△ABD的边AD上的高,正确;C. 三角形的角平分线是线段,错误;D. 只有中线才能得到把一个三角形的面积分成相等的两部分,错误。
选B.2.【答题】可以把一个三角形分成面积相等的两部分的线段是()A. 三角形的高B. 三角形的角平分线C. 三角形的中线D. 无法确定【答案】C【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】由题意画出图形:S△ABD=BD·AH,S△ACD=CD·AH.∵S△ABD=S△ACD,∴BD·AH=CD·AH,∴BD=CD,即AD是中线,故将三角形面积分成面积相等的两部分的线段是三角形的中线. 选C.3.【答题】下面说法错误的是()A. 三角形的三条角平分线交于一点B. 三角形的三条中线交于一点C. 三角形的三条高交于一点D. 三角形的三条高所在的直线交于一点【答案】C【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】A. 三角形的三条角平分线交于一点,是三角形的内心,故命题正确;B. 三角形的三条中线交于一点,是三角形的重心,故命题正确;三角形的三条高所在的直线交于一点,三条高不一定相交,故C错误,D正确。
选C.4.【答题】有一块三角形土地.现在要在这块地上一半种粮食,一半种蔬菜,则下列各线段中,可以把这块地分成面积相等的两部分的是()A. 一边上的中线B. 一边上的高C. 一条角平分线D. 以上都不对【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:根据题意可知,一边上的中线分成相等的两段,然后根据等底同高可知两三角形的面积相等.故选:A5.【答题】给出下列命题①三条线段组成的图形叫三角形,②三角形的三条高相交于三角形内同一点,③任何一个三角形都有三条角平分线、三条中线、三条高④三角形的内角和等于外角和、⑤多边形的内角和大于外角和⑥三角形的三条角平分线相交于形内同一点.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】三条线段组成的图形叫三角形,不正确,应该是由三条不在同一条直线上的线段首尾顺次连接而成的图形叫三角形;②三角形的三条高相交于三角形内同一点,不正确,锐角三角形的三条高相交于三角形内同一点,直角三角形的三条高相交于直角顶点,钝角三角形的三条高相交于三角形外同一点;③任何一个三角形都有三条角平分线、三条中线、三条高,正确;④三角形的内角和等于外角和,不正确,三角形的内角和是180°,外角和是360°;⑤多边形的内角和大于外角和,不正确,理由同④;⑥三角形的三条角平分线相交于形内同一点,正确.选B.6.【答题】如图,△ABC中的边BC上的高是()A. BEB. DBC. CFD. AF【答案】D【分析】根据三角形的高线的定义解答即可.【解答】解:由图可知,△ABC中BC边上的高是AF选D.7.【答题】如图,线段AD把△ABC分为面积相等的两部分,则线段AD是().A. 三角形的角平分线B. 三角形的中线C. 三角形的高D. 以上都不对【答案】B【分析】根据三角形的中线的定义解答即可.【解答】解:三角形的中线将三角形的面积分成相等的两部分,角平分线是指将角分成度数相等的两个角.8.【答题】(2015秋•鄂州校级月考)△ABC的三条线高所在的直线相交于一点H,则点H在()A.△ABC内部B.△ABC边上C.△ABC的外部D.以上都有可能【答案】D【分析】根据三角形的高的定义可知,锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.【解答】解:如果△ABC的三条高线所在的直线相交于一点H,则点H可以在△ABC内部,可以在△ABC的边上,还可以在△ABC的外部.选D.9.【答题】三角形的下列线段中能将三角形的面积分成相等两部分的是()A. 中线B. 角平分线C. 高线D. 中位线【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.选A.10.【答题】下列说法错误的是()A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解: A.三角形的三条高一定在三角形内部交于一点 ,错误,符合题意;B.三角形的三条中线一定在三角形内部交于一点,正确,不符合题意;C.三角形的三条角平分线一定在三角形内部交于一点,正确,不符合题意;D.三角形的三条高可能相交于外部一点,正确,不符合题意.选A.11.【答题】在△ABC中,如果∠A=∠B+∠C,那么△ABC是______三角形.(填“锐角”、“钝角”或“直角”)【答案】直角【分析】由于∠A=∠B+∠C,再结合∠A+∠B+∠C=180°,易求∠A,进而可判断三角形的形状.【解答】解:∵∠A =∠B+∠C,∠A+∠B+∠C=180∘,∴2∠A=180∘,∴∠A=90∘,∴△ABC是直角三角形,故答案是直角.12.【答题】在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为______.【答案】40°【分析】根据三角形内角和定理解答即可.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x.∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.13.【答题】如图,在△ABC中,∠ABC=44°,AD⊥BC于点D,则∠BAD的度数为______度.【答案】46【分析】根据三角形内角和定理和三角形的高线解答即可.【解答】在△ABC中,AD⊥BC于点D,根据垂直的定义可得∠ABC=44°,再由直角三角形的两锐角互余可得∠BAD=90°-∠ABC=90°-44°=46°,故答案为:46.14.【答题】如图,△ABC中,∠B=∠C,FD⊥BC于D,DE⊥AB于E,∠AFD=158°,则∠EDF等于______度.【答案】68【分析】根据三角形内角和定理和余角的性质解答即可.【解答】∵∠B=∠C,∴∠BDE=∠CFD=180°﹣158°=22°,∵FD⊥BC于D,DE⊥AB于E,∴∠EDF=∠C=90°﹣22°=68°,故答案为:68.15.【答题】△ABC的三个内角之比为3:4:5,则最大内角为______.【答案】75°【分析】根据三角形内角和定理解答即可.【解答】360°×=150°.故答案为:150°.16.【答题】如图,、分别是的高和角平分线,已知,,则______.【答案】20°【分析】根据三角形的高线、角平分线和内角和定理解答即可.【解答】∵,,∴,∴在中,.在中,.∵平分,∴,∴.17.【答题】在中,,则= ______. 【答案】60°【分析】根据三角形内角和定理解答即可.【解答】设一份是x°,则∠A=2x°,∠B=3x°,∠C=4x°.则有2x+3x+4x=180,x=20.则∠B=3x°=60°;故答案是:60°.18.【答题】在中,,,则______.【答案】70【分析】根据三角形内角和定理解答即可.【解答】∠C=180°-∠A-∠B=180°-50°-60°=70°,故答案为:70.19.【答题】在△ABC中,∠A=36°,∠C是直角,则∠B=______.【答案】54°【分析】根据直角三角形的两个锐角互余解答即可.【解答】解:根据直角三角形的两个锐角互余得:∠B=90°-∠A=90°-36°=54°.20.【答题】一个三角形中最多有______个内角是钝角,最多可有______个内角是锐角.【答案】1 3【分析】根据三角形内角和定理解答即可.【解答】一个三角形中最多有1个内角是钝角,如果一个三角形中出现2个或3个内角是钝角,那么三角形的内角和就大于180°,不符合三角形内角和是180°;一个三角形中最多有3个内角是锐角,如任意锐角三角形.故答案为:1,3.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(66)
章节测试题1.【答题】已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=30°+∠B,则∠B=______°.【答案】60【分析】本题考查了三角形的内角和定理.【解答】∵∠A+∠B+∠=180°,∴30°+∠B+30°+∠B=180°,∴∠B=60°.故答案为:60°.2.【答题】AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为______.【答案】15°或35°【分析】本题考查了三角形的内角和定理、三角形的高和角平分线.【解答】本题需要分两种情况进行讨论:如图1所示:根据∠B=40°,∠C=70°可得:∠BAC=70°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=35°,则∠DAE=35°-20°=15°;如图2所示:根据∠B=40°,∠ACD=70°可得:∠BAC=30°,根据高线以及角平分线的性质可得:∠DAC=20°,∠EAC=15°,则∠DAE=15°+20°=35°.3.【题文】已知△ABC中,∠A=105°,∠B比∠C大15°,求:∠B,∠C的度数.【答案】45°【分析】本题考查了三角形的内角和定理.根据三角形的内角和定理得∠A+∠B+∠C=180°,再把∠A=105°,∠B=∠C+15°代入可计算出∠C,然后计算∠B的度数.【解答】∵∠A+∠B+∠C=180°,而∠A=105°,∠B=∠C+15°,∴105°+∠C+15°+∠C=180°,∴∠C=30°,∴∠B=∠C+15°=30°+15°=45°.4.【题文】如图,在△ABC中,∠A=20°,CD是∠BCA的平分线,△CDA中,DE是CA边上的高,又有∠EDA=∠CDB,求∠B的大小.【答案】∠B=60°.【分析】本题考查了三角形的内角和定理、角的平分线.【解答】∵DE是CA边上的高,∴∠DEA=∠DEC=90°.∵∠A=20°,∴∠EDA=90°-20°=70°.∵∠EDA=∠CDB,∴∠CDE=180°-70°×2=40°.在Rt△CDE中,∠DCE=90°-40°=50°.∵CD是∠BCA的平分线,∴∠BCA=2∠DCE=2×50°=100°.∴∠B=180°-∠BCA-∠A=60°.5.【题文】如图,在△ABC中,∠A=36°,∠C=72°,BD平分∠ABC,求∠DBC的度数.【答案】36°【分析】本题考查了三角形的内角和定理.首先根据三角形的内角和定理求得∠ABC的度数,然后利用角的平分线的定义求解.【解答】∵∠A=36°,∠C=72°,∴∠ABC==180°-∠A-∠C=72°,∵BD平分∠ABC,∴∠DBC=∠ABC=×72°=36°.6.【题文】如图所示,在△ABC中,∠A=38°,∠ABC=70°,CD⊥AB于点D,CE 平分∠ACB,DF⊥CE于点F,求∠CDF的度数.【答案】74°【分析】本题考查了三角形的内角和定理、角的平分线.首先根据∠A和∠B的度数以及三角形内角和定理得出∠ACB的度数,然后根据角平分线的性质和垂直的定义得出∠ACE和∠ACD的度数,然后求出∠DCE的度数,最后根据DF⊥CE,∠CDF=90°-∠DCE得出答案.【解答】∵∠A=38°,∠B=70°,∴∠BCA=180°-∠A-∠B=180°-38°-70°=72°,∵CE平分∠ACB,∴∠ACE=36°,∵CD⊥AB,∴∠ACD=90°-∠A=90°-38°=52°,∴∠DCE=∠ACD-∠ACE=52°-36°=16°,∵DF⊥CE,∴∠CDF=90°-∠DCE=90°-16°=74°.7.【答题】Rt△ABC中,∠C=90°,∠B=46°,则∠A=()A. 44°B. 34°C. 54°D. 64°【答案】A【分析】本题考查了三角形的内角和定理.【解答】∵∠C=90°,∠B=46°,∴∠A=90°-46°=44°.选A.8.【答题】如图,AD是Rt△ABC的斜边BC上的高,则图中与∠B互余的角有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形的高线和余角.【解答】∵AD是Rt△ABC斜边上的高,∴∠B+∠C=90°,∠B+∠BAD=90°,∴与∠B互余的角有∠C和∠BAD,共2个.选B.9.【答题】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A. 45°B. 54°C. 40°D. 50°【答案】C【分析】本题考查了三角形的内角和定理、平行线的性质、角的平分线.【解答】∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.选C.10.【答题】如图,AB⊥BD,AC⊥CD,∠D=35°,则∠A的度数为()A. 65°B. 35°C. 55°D. 45°【答案】B【分析】本题考查了三角形的内角和定理.【解答】∵AB⊥BD,AC⊥CD,∴∠B=∠C=90°,∴∠A+∠AEB=∠D+∠CED=90°.又∵∠AEB=∠CED,∴∠A=∠D=35°.选B.11.【答题】直角三角形中两锐角之差为20°,则较大锐角为()A. 45°B. 55°C. 65°D. 50°【答案】B【分析】本题考查了三角形的内角和定理.【解答】设两个锐角分别为x、y,由题意得,,解得,∴最大锐角为55°.选B.12.【答题】如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A. 2α+∠A=180°B. α+∠A=90°C. 2α+∠A=90°D. α+∠A=180°【答案】A【分析】本题考查了三角形的内角和定理.【解答】A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.选A.13.【答题】已知三角形的一个内角是另一个内角的,是第三个内角的,则这个三角形各内角的度数分别为()A. 60°,90°,75°B. 48°,72°,60°C. 48°,32°,38°D. 40°,50°,90°【答案】B【分析】本题考查了三角形的内角和定理.【解答】设第一个内角的度数为x,∵三角形的一个内角是另一个内角的,是第三个内角的,∴另一个内角的度数为x,第三个内角为x,∴x+x+x=180°,解得x=48°,∴三个内角分别为48°,72°,60°,选B.14.【答题】在一个直角三角形中,有一个锐角等于30°,则另一个锐角的大小为______度.【答案】60【分析】本题考查了三角形的内角和定理.【解答】∵三角形是直角三角形,一个锐角等于30°,∴另一个锐角为90°-30°=60°.故答案为:60.15.【答题】一个三角形的三个内角之比为1∶2∶3,则三角形是______三角形.【答案】直角【分析】本题考查了三角形的内角和定理.【解答】设三角形三内角度数分别为x,2x,3x,根据三角形的内角和为180°得:x+2x+3x=180°,即6x=180°,解得x=30°,可得三角形三内角分别为30°,60°,90°,则三角形是直角三角形.故答案为:直角.16.【答题】如图,AC⊥BC于点C,DE⊥BE于点E,BC平分∠ABE,∠BDE=58°,则∠A=______°.【答案】58【分析】本题考查了三角形的内角和定理.【解答】∵BC平分∠ABE,∴∠ABC=∠DBE,∵AC⊥BC,DE⊥BE,∴∠A+∠ABC=90°,∠BDE+∠DBE=90°,∴∠A=∠BDE=58°.故答案为:58.17.【答题】三角形中最大的内角不能小于______度,最小的内角不能大于______度.【答案】60 60【分析】本题考查了三角形的内角和定理.【解答】(1)设三角形中最大的内角为x度,由三角形内角和定理得,3x≥180,则x≥60,即三角形中最大的内角不能小于60°.(2)设三角形中最小的内角为y度,由三角形内角和定理得,3y≤180,则y≤60,即三角形中最小的内角不能大于60°.故答案为:60;60.18.【题文】如图,A点在B点的北偏东40°方向,C点在B点的北偏东75°方向,A点在C点的北偏西50°方向.求从A点观测B,C两点的视角∠BAC的度数.【答案】90°【分析】本题考查了三角形的内角和定理.【解答】∵∠DBA=40°,∠DBC=75°,∴∠ABC=∠DBC−∠DBA=75°−40°=35°,∵DB∥EC,∴∠DBC+∠ECB=180°,∴∠ECB=180°−∠DBC=180°−75°=105°,∴∠ACB=∠ECB−∠ACE=105°−50°=55°,∴∠BAC=180°−∠ACB−∠ABC=180°−55°−35°=90°.19.【题文】(1)如图(1),已知任意三角形ABC,过点C作DE∥AB;①求证:∠DCA=∠A;②求证:∠A+∠B+∠ACB=180°;(2)如图(2),求证:∠AGF=∠AEF+∠F;(3)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=150°,求∠F.【答案】(1)证明见解答;(2)证明见解答(3)29.5°.【分析】(1)①根据“两直线平行,内错角相等”可证明;②结合①的证明,转化为平角的意义证明三角形的内角和;(2)根据平角的意义和三角形的内角和,等量代换即可;(3)先根据两直线平行,内错角相等,同旁内角互补,求得∠AED和∠DEB的度数,再根据平角的意义和角平分线的性质求得∠DEF的度数,结合(2)的结论可求解.【解答】证明:(1)①∵DE∥BC,∴∠DCA=∠A;②如图1所示,在△ABC中,∵DE∥BC,∴∠B=∠ECA,∠DCA=∠A(内错角相等).∵∠ECA+∠BCA+∠DCA=180°,∴∠A+∠B+∠C=180°.即三角形的内角和为180°;(2)∵∠AGF+∠FGE=180°,由(1)知,∠GEF+∠F+∠FGE=180°,∴∠AGF=∠AEF+∠F;(3)∵AB∥CD,∠CDE=119°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.20.【题文】已知凸四边形ABCD中,∠A=∠C=90°.(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.【答案】见解答【分析】(1)DE⊥BF,延长DE交BF于G.易证∠ADC=∠CBM.可得∠CDE=∠EBF.即可得∠EGB=∠C=90゜,则可证得DE⊥BF;(2)DE∥BF,连接BD,易证∠NDC+∠MBC=180゜,则可得∠EDC+∠CBF=90゜,继而可证得∠EDC+∠CDB+∠CBD+∠FBC=180゜,则可得DE∥BF.【解答】解:(1)DE⊥BF.证明如下:延长DE交BF于点G.∵∠A+∠ABC+∠C+∠ADC=360°,∠A=∠C=90°,∴∠ABC+∠ADC=180°.∵∠ABC+∠MBC=180°,∴∠ADC=∠MBC.∵DE、BF分别平分∠ADC、∠MBC,∴∠EDC=∠ADC,∠EBG=∠MBC,∴∠EDC=∠EBG.∵∠EDC+∠DEC+∠C=180°,∠EBG+∠BEG+∠EGB=180°,∠DEC=∠BEG,∴∠EGB=∠C=90°,∴DE⊥BF;(2)DE∥BF.证明如下:连接BD.∵DE、BF分别平分∠NDC、∠MBC,∴∠EDC=∠NDC,∠FBC=∠MBC.∵∠ADC+∠NDC=180°,∠ADC=∠MBC,∴∠MBC+∠NDC=180°,∴∠EDC+∠FBC=90°.∵∠C=90°,∴∠CDB+∠CBD=90°,∴∠EDC+∠CDB+∠FBC+∠CBD=180°,即∠EDB+∠FBD=180°,∴DE∥BF.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(70)
章节测试题1.【答题】在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于()A. 50°B. 100°C. 75°D. 125°【答案】C【分析】本题考查了三角形的内角和定理.【解答】∵∠B比∠C大25°,∴设∠B=x,则∠C=x-25°,∵∠A+∠B+∠C=180°,∠A=55°,∴55°+x+x-25°=180°,解得x=75°,选C.2.【答题】一个三角形的两个内角分别为60°和20°,则这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定【答案】C【分析】本题考查了三角形的内角和定理.【解答】解:∵三角形的两个内角分别为60°和20°,∴第三个角为:180°﹣60°﹣20°=100°,∴是钝角三角形,选C.3.【答题】已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=∠A,则此三角形()A. 一定有一个内角为45°B. 一定有一个内角为60°C. 一定是直角三角形D. 一定是钝角三角形【答案】C【分析】本题考查了三角形的内角和定理.【解答】∵∠A+∠B+∠C=180°,∠B+∠C=∠A,∴2∠A=180°,∴∠A=90°,即△ABC一定是直角三角形;选C.4.【答题】如图,△ABC中,∠B=∠C=∠EDF=α,BD=CF,BE=CD,则下列结论正确的是()A. 2α+∠A=180°B. α+∠A=90°C. 2α+∠A=90°D. α+∠A=180°【答案】A【分析】本题考查了三角形的内角和定理.【解答】A、正确.∵∠A+∠B+∠C=180°,∠B=∠C=α,∴2α+∠A=180°.B、错误.不妨设,α+∠A=90°,∵2α+∠A=180°,∴α=90°,这个显然与已知矛盾,故结论不成立.C、错误.∵2α+∠A=180°,∴2α+∠A=90°不成立.D、错误.∵2α+∠A=180°,∴α+∠A=180°不成立.选A.5.【答题】在△ABC中,若∠A+∠B=90°,则△ABC一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形【答案】B【分析】本题考查了三角形的内角和定理.【解答】在△ABC中,∠A+∠B=90°,根据三角形的内角和定理可得∠C=90°,∴△ABC一定是直角三角形,选B.6.【答题】在△ABC中,∠A=2∠B=80°,则∠C等于()A. 40°B. 60°C. 80°D. 120°【答案】B【分析】本题考查了三角形的内角和定理.【解答】解:∵在△ABC中,∠A=2∠B=80°,∴∠A=80°,∠B=40°,∴∠C=180°﹣∠A ﹣∠B=180°﹣80°﹣40°=60°.选B.7.【答题】如果一个三角形的三个内角都不相等,那么最小角一定小于()A. 60°B. 45°C. 30°D. 59°【答案】A【分析】本题考查了三角形的内角和定理.【解答】假设,最小角度大于或等于60°,则另外两个角一定也大于60°,那么此三角形内角和大于180°,故假设不成立,∴此三角形的最小角一定要小于60°.选A.8.【答题】如图,在△ABC中,D是BC上一点,若∠B=∠C=∠BAD,∠DAC=∠ADC,∠BAC的度数为()A. 36度B. 72度C. 98度D. 108度【答案】D【分析】本题考查了三角形的内角和定理.【解答】∵∠ADC=∠B+∠BAD,∠B=∠C=∠BAD,∠ADC=∠DAC,∴∠B+∠C+∠BAD+∠DAC=180°,∴5∠B=180°,解得∠B=36°,∴∠BAC=180°-2∠B=108°.选D.9.【答题】已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠B等于()A. 40°B. 60°C. 80°D. 90°【答案】C【分析】本题考查了三角形的内角和定理.【解答】解得∠B=80°,,∠C=60°,∴选C.10.【答题】在△ABC中,∠A=40°,∠B=60°,则∠C=()A. 40°B. 80°C. 60°D. 100°【答案】B【分析】本题考查了三角形的内角和定理.【解答】根据三角形的内角和定理得:.选B.11.【答题】直角三角形的一个锐角是40°,则另一个锐角的度数是()A. 50°B. 60°C. 70°D. 90°【答案】A【分析】根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵直角三角形的一个锐角是40°,∴另一个锐角的度数是90°-40°=50°.选A.12.【答题】一个三角形三个内角的度数之比为2:3:5,这个三角形一定是()A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形【答案】B【分析】本题考查了三角形的内角和定理.【解答】解:∵一个三角形三个内角的度数之比为2:3:5,∴这个三角形的最大角为:180°×=90°,∴这个三角形一定是直角三角形.选B.13.【答题】已知∠A:∠B:∠C=1:2:2,则△ABC三个角度数分别是()A. 40°、80°、80°B. 35°、70°70°C. 30°、60°、60°D. 36°、72°、72°【答案】B【分析】本题考查了三角形的内角和定理.【解答】∴设则解得:选D.14.【答题】在△ABC中,若∠C=∠A+∠B,则△ABC是()A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形【答案】C【分析】本题考查了三角形的内角和定理.【解答】∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,、∴△ABC是直角三角形.选C.15.【答题】在△ABC中,∠A=30°,∠B=75°,则△ABC是()A. 直角三角形B. 钝角三角形C. 等边三角形D. 等腰三角形【答案】D【分析】本题考查了三角形的内角和定理.【解答】∵在△ABC中,∠A=30°,∠B=75°,∴∠C=180°-30°-75°=75°,∴△ABC是等腰三角形.选D.16.【答题】如图,已知AB⊥BD,AC⊥CD,∠A=40°,则∠D的度数为()A. 40°B. 50°C. 60°D. 70°【答案】A【分析】本题考查了三角形的内角和定理.【解答】∵AB⊥BD,∠A=40°,∴∠AEB=50°,∴∠DEC=50°,又AC⊥CD,∴∠D=40°,选A.17.【答题】在下列条件中:①②③④中,能确△ABC是直角三角形的定条件有()A. ①②B. ③④C. ①③④D. ①②③【答案】D【分析】本题考查了三角形的内角和定理.【解答】①∠A+∠B=∠C,根据三角形的内角和定理可得2∠C=180°,∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=1:2:3,设∠A=x,根据三角形的内角和定理可得x+2x+3x=180,解得x=30°,∴∠C=30°×3=90°,即△ABC是直角三角形;③∵∠A=90°-∠B,∴∠A+∠B=90°,即可得∠C=180°-90°=90°,∴△ABC是直角三角形;④∵∠A=∠B=∠C,三角形为等边三角形.∴能确定△ABC是直角三角形的有①②③共3个.选D.18.【答题】在△ABC中,∠B﹣∠A=50°,∠B是∠A的3.5倍,则△ABC是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】C【分析】本题考查了三角形的内角和定理.【解答】设∠A=x,则∠B=3.5x,∴3.5x-x=50°,解得x=20°,∴∠A=20°,∠B=70°,∴∠C=180°-20°-70°=90°,∴△ABC是直角三角形.选C.19.【答题】已知一个三角形的两个角是锐角,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定是什么三角形【答案】D【分析】本题考查了三角形的内角和定理.【解答】锐角三角形、直角三角形和钝角三角形中都可以有两个锐角,∴不能判断这个三角形是什么三角形.选D.20.【答题】已知△ABC中,∠A、∠B、∠C对应的比例如下,其中能判定△ABC是直角三角形的是()A. 2:3:4B. 4:3:5C. 1:2:3D. 1:2:2【答案】C【分析】本题考查了三角形的内角和定理.【解答】A.设三个角分别为2x,3x,4x,根据三角形内角和定理得三个角分别为:40°,60°,80°,∴不是直角三角形;B.设三个角分别为3x,4x,5x,根据三角形内角和定理得三个角分别为:45°,60°,75°,∴不是直角三角形;C.设三个角分别为x,2x,3x,根据三角形内角和定理得三个角分别为:30°,60°,90°,∴是直角三角形;D.设三个角分别为x,2x,2x,根据三角形内角和定理得三个角分别为:36°,72°,72°,∴不是直角三角形.选B.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(12)
章节测试题1.【答题】如图,于C,于D,于E,则下列说法中错误的是()A. 中,AC是BC边上的高B. 中,DE是BC边上的高C. 中,DE是BE边上的高D. 中,AD是CD边上的高【答案】C【分析】根据三角形的高线的定义解答即可.【解答】中,AC是BE边上的高,C错.2.【答题】三角形一边上的高()A. 必在三角形内部B. 必在三角形外部C. 必在三角形的边上D. 以上三种情况都有可能【答案】D【分析】根据三角形的高线的定义和特征解答即可.【解答】锐角三角形所有高在内部,直角三角形两条高在边上,钝角三角形两条高在外部.选D.3.【答题】下列叙述中正确的是()A. 三角形一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的射线,叫做三角形的角平分线B. 连结三角形一个顶点和它对边中点的直线,叫做三角形的中线C. 从三角形一个顶点向它的对边画垂线叫做三角形的高D. 三角形的三条中线总在三角形的内部【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】选项A,三角形一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线,A错.选项B, 三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线.B错.选项C, 从三角形一个顶点向它的对边作一条垂线,三角形顶点和垂足之间的线段称三角形这条边上的高.C错误.D正确.所以选D.4.【答题】如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A. 1cm2B. 2cm2C. 8cm2D. 16cm2【答案】D【分析】根据三角形中线的定义解答即可.【解答】解:∵F是CE中点,∴△BEF的面积与△BCF的面积相等,∴S△BEC=2S△BEF=8(cm2),∵D、E分别为BC、AD的中点,∴△ABE、△DBE、△DCE、△AEC的面积相等,∴S△ABC=2S△BEC=16(cm2).选D.5.【答题】如果AD是△ABC的中线,那么下列结论一定成立的有()①BD=CD;②AB=AC;③S△ABD=S△ABC.A. 3个B. 2个C. 1个D. 0个【答案】B【分析】根据三角形的中线定义解答即可.【解答】解:∵AD是△ABC的中线,∴BD=CD=BC,故①正确;∵AD与BC不一定互相垂直,∴AB与AC不一定相等,故②错误;设△ABC中BC边上的高为h,则S△ABD=•BD•h=•BC•h=S△ABC,故③正确.选B.6.【答题】一定在△ABC内部的线段是()A. 锐角三角形的三条高、三条角平分线、三条中线B. 钝角三角形的三条高、三条中线、一条角平分线C. 任意三角形的一条中线、二条角平分线、三条高D. 直角三角形的三条高、三条角平分线、三条中线【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:钝角三角形一条高在三角形内部,另两条高在三角形的外部,三条中线和三条角平分线都在三角形的内部,故B、C错误;任意三角形的三条角平分线、三条中线、一条高一定在三角形内部,故D错误.选A.7.【答题】给出下列说法:①三条线段组成的图形叫三角形;②三角形的角平分线是射线;③三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;④任何一个三角形都有三条高、三条中线、三条角平分线;⑤三角形的三条角平分线交于一点,且这点在三角形内.正确的说法有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三条线段首尾顺次相接组成的图形叫三角形,故①错误;三角形的角平分线是线段,故②错误;三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,故③错误;所以正确的命题是④⑤,共2个.选B.8.【答题】下列说法不正确的是()A. 三角形的重心是其三条中线的交点B. 三角形的三条角平分线一定交于一点C. 三角形的三条高线一定交于一点D. 三角形中,任何两边的和大于第三边【答案】C【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:A、三角形的重心是其三条中线的交点,正确;B、三角形的三条角平分线一定交于一点,正确;C、钝角三角形的三条高线不相交,故三角形的三条高线一定交于一点错误;D、根据三角形的三边关系定理可知三角形中,任何两边的和大于第三边,正确.选C.9.【答题】如图,AD⊥BC,GC⊥BC,CF⊥AB,垂足分别是D、C、F,下列说法中,错误的是()A. △ABC中,AD是边BC上的高B. △ABC中,GC是边BC上的高C. △GBC中,GC是边BC上的高D. △GBC中,CF是边BG上的高【答案】B【分析】根据三角形的高线的定义解答即可.【解答】解:A、AD经过△ABC的一个顶点,且AD垂直于BC边所在的直线,所以△ABC中AD是边BC上的高,故此选项正确;B、GC没有经过BC所对的顶点A,所以△ABC中,GC不是BC边上的高,故此选项错误;C、GC经过△GBC的一个顶点,且GC垂直于BC,所以△GBC中GC是边BC上的高,故此选项正确;D、CF经过△GBC的一个顶点,且CF垂直于BG,所以△GBC中CF是边BG上的高,故此选项正确.选B.10.【答题】下列说法不正确的是()A. △ABC的中线AD平分边BCB. △ABC的角平分线BE平分∠ABCC. △ABC的高CF垂直ABD. 直角△ABC只有一条高【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:A、∵AD是△ABC的中线,∴D是BC的中点,即AD平分边BC,故此选项正确;B、∵BE是△ABC的角平分线,∴BE平分∠ABC,故此选项正确;C、∵CF是△ABC的高,∴CF⊥AB,故此选项正确;D、直角△ABC有三条高,其中两条是直角边,一条在三角形内部,故此选项错误.选D.11.【答题】能把一个三角形的面积一分为二的线段是()A. 高B. 中线C. 角平分线D. 外角平分线【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:三角形的中线把三角形分成两个三角形,这两个三角形等底同高,所以这两个三角形的面积相等,所以能把一个三角形的面积一分为二的线段是中线.选B.12.【答题】如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:因为直角三角形的三条高线的交点是直角顶点,而其他三角形三条高线的交点都不在顶点上,所以如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,那么这个三角形是直角三角形.选B.13.【答题】如图,△ABC的角平分线BD与中线CE相交于点O.有下列两个结论:①BO是△CBE的角平分线;②CO是△CBD的中线.其中()A. 只有①正确B. 只有②正确C. ①和②都正确D. ①和②都不正确【答案】A【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:BD是△ABC的角平分线,所以OBE=OBC,所以BO是△CBE的角平分线,CE平分AB,但不平分BD,所以CO不是△CBD的中线.选A.14.【答题】如图,△ABC中∠C=90°,CD⊥AB,图中线段中可以作为△ABC的高的有()A. 2条B. 3条C. 4条D. 5条【答案】B【分析】根据三角形的高的定义:三角形的顶点到对边的垂直距离.得到可以作为△ABC的高的条数.【解答】解:可以作为△ABC的高的有AC,BC,CD,共3条.选B.15.【答题】如下图中的最右图:在△ABC中,AD平分∠BAC交BC于D,AE⊥BC于E,∠B=40°,∠BAC=80°,则∠DAE=()A. 7B. 8°C. 9°D. 10°【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】∵AD平分∠BAC,又∵∠BAC=80°,∴.∵AE⊥BC,又∵∠B=40°,即∠ABE=40°,∴在Rt△AEB中,∠BAE=90°-∠ABE=90°-40°=50°,∴∠DAE=∠BAE-∠BAD=50°-40°=10°.故本题应选D.16.【答题】三角形的高线是()A. 直线B. 线段C. 射线D. 三种情况都可能【答案】B【分析】根据三角形高线的定义解答即可.【解答】由三角形高的定义:“过三角形的一个顶点向对边或对边所在的直线引垂线,顶点到垂足之间的线段叫三角形的高线”可知:三角形的高线是线段.选B.17.【答题】在△ABC中,AD为中线,BE为角平分线,则在以下等式中:①∠BAD=∠CAD;②∠ABE=∠CBE;③BD=DC;④AE=EC. 正确的是()A. ①②B. ③④C. ①④D. ②③【答案】D【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】如下图,∵AD是△ABC的中线,BE是△ABC的角平分线,∴BD=CD,∠ABE=∠CBE,∴上述结论中正确的是②③.选D.18.【答题】如图所示,AD是△ABC的角平分线,AE是△ABD的角平分线.若∠BAC=80°,则∠EAD的度数是()A. 20°B. 30°C. 45°D. 60°【答案】A【分析】根据三角形角平分线的定义解答即可.【解答】∵AD△ABC的角平分线,∠BAC=80°,∴∠BAD=∠BAC=40°.又∵AE是△ABD的角平分线,∴∠EAD=∠BAD=20°.选A.19.【答题】如图,D、E分别是△ABC的边AC、BC的中点,那么下列说法中不正确的是()A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.AD=EC,DC=BE【答案】D【分析】根据三角形的中线的定义解答即可.【解答】∵D、E分别是△ABC的边AC、BC的中点,∴DE是△BCD的中线,BD是△ABC的中线,AD=DC,BE=EC.但不能得到AD=EC和DC=BE.选D.20.【答题】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的中线、角平分线和高线的定义解答即可.【解答】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.选B.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(31)
章节测试题1.【答题】以下列各组线段为边,能组成三角形的是()A. 2cm,3cm,5cmB. 3cm,3cm,6cmC. 5cm,8cm,2cmD. 4cm,5cm,6cm【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A选项:2+3=5,不能组成三角形;B选项:3+3=6,不能组成三角形;C选项:2+5<8,不能够组成三角形;D选项:4+5>6,能组成三角形.选D.2.【答题】下列长度的三条线段中,能组成三角形的是()A. 3cm、4cm、8cmB. 3cm、5cm、8cmC. 5cm、6cm、10cmD. 5cm、6cm、11cm【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A、∵3+4=7<8,∴不能组成三角形,故本选项错误;B、∵3+5=8,∴不能组成三角形,故本选项错误;C、∵6﹣5<10<6+5,∴能组成三角形,故本选项正确;D、∵5+6=11,∴不能组成三角形,故本选项错误.选C.3.【答题】下列长度的三条线段中,能组成三角形的是()A. 3cm,4cm,8cmB. 3cm,4cm,7cmC. 5cm,6cm,10cmD. 5cm,6cm,11cm【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A.∵3+4=7<8,∴不能组成三角形,故本选项错误;B.∵3+4=7,∴不能组成三角形,故本选项错误;C.∵6−5<10<6+5,∴能组成三角形,故本选项正确;D.∵5+6=11,∴不能组成三角形,故本选项错误.选C.4.【答题】一个三角形的两条边分别为3cm和7cm,第三边为整数,这样的三角形有()A. 4个B. 5个C. 6个D. 7个【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:∵7-3=4,7+3=10,∴4<第三边<10,∵第三边为整数,∴第三边可以为:5,6,7,8,9共5个,选B.5.【答题】以下列各组线段长为边,能组成三角形的是()A. 1cm,2cm,4cmB. 8cm,6cm,4cmC. 12cm,5cm,6cmD. 2cm,3cm,5cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A、∵1+2=3<4,∴不能组成三角形,故本选项错误;B、∵8-6<4<8+6,∴能组成三角形,故本选项正确;C、∵5+6=11<12,∴不能组成三角形,故本选项错误;D、∵2+3=5,∴不能组成三角形,故本选项错误.选B.6.【答题】现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;根据三角形三边之间的关系:任意两边之和大于第三边,任意两边之差小于第三边;可知只有3,7,9和4,7,9能组成三角形.7.【答题】如果三角形的两边长分别为3和6,第三边长是奇数,则第三边长可以是()A. 3B. 4C. 5D. 9【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边的长为x,根据三角形的三边关系,得6﹣3<x<6+3,即3<x <9,又∵第三边长是奇数,∴x=5或7.选C.8.【答题】已知不等边三角形的一边等于5,另一边等于3,若第三边长为奇数,则周长等于()A. 13B. 11C. 11,13或15D. 15【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:设这个三角形的第三边长为x,则5-3<x<5+3,即2<x<8,∵第三边长为奇数,∴x=3或5或7,∵此三角形为不等边三角形,∴周长为3+5+7=15.选D.9.【答题】如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A. 20米B. 15米C. 10米D. 5米【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】∵5<AB<25,∴A、B间的距离不可能是5,选D.10.【答题】在下列各组线段中,不能构成三角形的是()A. 5,7,10B. 7,10,13C. 5,10,13D. 5,7,13【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A.∵5+7>10,∴5,7,10能构成三角形;B.∵7+10>13,∴7,10,13能构成三角形;C.∵5+10>13,∴5,10,13能构成三角形;D.∵5+7<13,∴5,7,13不能构成三角形;选D.11.【答题】三角形是()A. 连接任意三角形组成的图形B. 由不在同一条直线上的三条线段首尾顺次相接所组成的的图形C. 由三条线段组成的图形D. 以上说法均不对【答案】B【分析】根据三角形的定义判断即可.【解答】解:∵三角形的定义是:由不在同一条直线上的三条线段首尾顺次相接所成的图形.选B.12.【答题】已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()A. 2B. 9C. 10D. 11【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:第三边的取值范围为:.选B.13.【答题】下列长度的三条线段能构成三角形的是()A. 3,4,8B. 3,4,7C. 5,6,10D. 5,6,11【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形任意两边的和大于第三边,可得选项A∵3+4<8,不能组成三角形;选项B∵3+4<8,不能组成三角形;选项C∵5+6>10,能组成三角形;选项D∵5+6=11,不能组成三角形,选C.14.【答题】已知三角形的三边长分别为3、4、x,则x不可能是()A. 2B. 4C. 5D. 8【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】已知三角形的两边时,第三边的范围是大于两边的差,小于两边的和,由此可得4-3<x<3+4,即1<x<7,则x的不可能的值是8,选D.方法总结:已知三角形的两边,确定第三边的范围是大于已知的两边的差,而小于两边的和是解决本题的关键.15.【答题】已知一个三角形的两边长分别为3和4,则第三边的长不可能的是()A. 2B. 3C. 4D. 1【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,可得1<第三边<7,因此可知1不可能.选D16.【答题】下列每组数据表示3根小木棒的长度,其中能组成一个三角形的是()A. 3cm,4cm,7cmB. 3cm,4cm,6cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.A.3+4=7,不符合;B.3+4=7>6,符合;C.5+4=9<10,不符合;D.5+3=8,不符合.选B.17.【答题】一个三角形的三条边长分别为1、2,则x的取值范围是()A. 1≤x≤3B. 1<x≤3C. 1≤x<3D. 1<x<3【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:根据三角形第三边的长度应是大于两边的差而小于两边的和得2﹣1<x<2+1,即1<x<3.选D.18.【答题】下列各组线段的长为边,能组成三角形的是()A. 2cm,3cm,4cmB. 2cm,3cm,5cm【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,得A、2cm,3cm,4cm满足任意两边之和大于第三边,任意两边之差小于第三边,能组成三角形,故本选项正确;B、2cm+3cm=5cm,不能组成三角形,故本选项错误;C、2cm+5cm<10cm,不能够组成三角形,故本选项错误;D、4cm+4cm=8cm,不能组成三角形,故本选项错误.选A.19.【答题】以下列各组线段为边,不能组成三角形的是()A. 2cm,3cm,4cmB. 1cm,2cm,3cmC. 3cm,4cm,5cmD. 4cm,2cm,3cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A.2+3>4,能组成三角形;B.1+2=3,不能组成三角形;C.3+4>5,能组成三角形;D.2+3>5,能组成三角形.选B.20.【答题】小明现有两根长度为4cm和9cm的小木棒,他想钉一个三角形木框,还差一根木棒,如果有下列长度的四根木棒供他选择,则他应该选的是()A. 3cmB. 5cmC. 17cmD. 10cm【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形三边关系定理,设第三边长为xcm,则9-4<x<9+4,即5<x <13,由此选择符合条件的线段.解:设第三边长为xcm,由三角形三边关系定理可知,5<x<13,∴x=10cm.选D.。
初中数学鲁教版(五四制)七年级上册第一章 三角形3 探索三角形全等的条件-章节测试习题(5)
章节测试题1.【答题】如图,AB=DB,∠ABD=∠CBE,请添加一个适当的条件:______(只需添加一个即可),使△ABC≌△DBE.理由是______.【答案】BC=BE SAS【分析】式先计算乘运算,再利用单式乘以多项式法则算即可得到果;原式第一用完全方公式展开第二项利用平差式化简,去括号并即可得结果.【解答】解:原式=4a2b4•(3a2b2ab-=2ab-8a3b-4a24;原式=9a-1ab+b2-(9a2-b2)a2-8ab+b2-2b2=8b2-8ab.2.【答题】如图,AB∥CD,C是BE的中点,要想使得△ABC≌△DCE,还需要添加的条件是______(添加一个即可)【答案】BA=CD或∠A=∠D或AC∥DE或∠ACB=∠DEC【分析】由AB平行CD,由两直线平行同位角相等得∠B=∠DCE,C为BE的中点,得BC=CE,根据现有的两个条件,结合边角边,角边角和角角边定理,添加一个条件证明△ABC和△DCE全等即可.【解答】解:若添加的条件是BA=CD,∵AB∥CD,∴∠B=∠DCE,∵C为BE的中点,∵BC=CE,∴△ABC≌△DCE(SAS);若∠A=∠D,∵AB∥CD,∴∠B=∠DCE,∵C为BE的中点,∵BC=CE,∴△ABC≌△DCE(AAS);若AC∥DE∴∠ACB=∠DEB,∵AB∥CD,∴∠B=∠DCE,∵C为BE的中点,∵BC=CE,∴△ABC≌△DCE(ASA);若∠ACB=∠DEC∵AB∥CD,∴∠B=∠DCE,∵C为BE的中点,∵BC=CE,∴△ABC≌△DCE(ASA);3.【答题】如图,点B、E、F、C在同一直线上,已知AB=DC,AF=DE,要使△ABF≌△DCE,应添加的一个条件是______.【答案】BE=CF或∠A=∠D【分析】此题是一道开放型的题目,答案不唯一,只要添加一个条件符合全等三角形的判定定理即可.【解答】解:BE=CF或∠A=∠D,理由是:∵BE=CF,∴BE+EF=EF+CF,∴BF=CE,在△ABF和△DCE中,,∴△ABC≌△DEF(SSS).或:在△ABF和△DCE中,∴△ABC≌△DEF(SAS).故答案为:BE=CF或∠A=∠D.4.【答题】如图,线段AB,CD相交于点O,AO=BO,添加一个条件,能使△AOC≌△BOD,所添加的条件可以是______【答案】OC=OD或∠A=∠B或∠C=∠D【分析】利用对顶角相等得到∠AOC=∠BOC,加上AO=BO,当OC=OD时,根据"SAS"可判断△AOC≌△BOD;当∠A=∠B时,可根据"ASA"判断△AOC≌△BOD;当∠C=∠D时,根据"AAS"可判断△AOC≌△BOD.【解答】解:∵∠AOC=∠BOC,AO=BO,∴当OC=OD时,△AOC≌△BOD;当∠A=∠B时,△AOC≌△BOD;当∠C=∠D时,△AOC≌△BOD.故答案为OC=OD或∠A=∠B或∠C=∠D.5.【答题】如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还须补充一个条件______.(只要填一个)【答案】AC=DF【分析】要使△ABC≌△DEF,已知∠1=∠2,BC=EF,添加边的话应添加对应边,符合SAS来判定.【解答】解:补充AC=DF.∵∠1=∠2,BC=EF,AC=DF∴△ABC≌△DEF,故填AC=DF.6.【答题】如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE≌△ACD,添加的条件是:______.【答案】∠B=∠C【分析】添加条件是∠B=∠C,根据全等三角形的判定定理ASA推出即可,此题是一道开放型的题目,答案不唯一.【解答】解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.7.【答题】已知A(0,1),B(3,1),C(4,3),如果在平面直角坐标系中存在一点D,使得△ABD与△ABC全等,那么点D的坐标为______.【答案】(﹣1,3)或(﹣1,﹣1)或(4,﹣1)【分析】根据三边对应相等的三角形全等可确定D的位置,再根据平面直角坐标系可得D的坐标.【解答】解:如图所示:点D的坐标为(﹣1,3)或(﹣1,﹣1)或(4,﹣1).故答案为(﹣1,3)或(﹣1,﹣1)或(4,﹣1).8.【答题】如图,已知AB=AD,那么添加下列一个条件______后,使它们能判定△ABC≌△ADC.【答案】CB=CD【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:CB=CD,根据SSS,能判定△ABC≌△ADC,故答案为:CB=CD.9.【答题】如图,AD=BC,要使△ABC≌△BAD,还需添加的个条件是______(填一个即可).【答案】AC=BD或∠ABC=∠BAD【分析】由于AB=BA,AD=BC,则根据"SSS"和"SAS"添加条件.【解答】解:∵AB=BA,AD=BC,∴当AC=BD时,利用"SSS"可判断△ABC≌△BAD;当∠ABC=∠BAD时,利用"SAS"可判断△ABC≌△BAD.故答案为AC=BD或∠ABC=∠BAD.故答案为AC=BD或∠ABC=∠BAD.10.【答题】如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,BF=CE,AB∥DE,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是______(只需写一个,不添加辅助线).【答案】AB=ED【分析】根据等式的性质可得BC=EF,根据平行线的性质可得∠B=∠E,再添加AB=ED可利用SAS判定△ABC≌△DEF.【解答】解:添加AB=ED,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB∥DE,∴∠B=∠E,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故答案为:AB=ED.11.【答题】如图,∠BAC=∠DAC,要使△ABC≌△ADC,要补充的一个条件是______(写出一个即可).【答案】AB=AD【分析】要使△ABC≌△ADC,已知∠BAC=∠DAC,AC是公共边,具备了一组边和一组角对应相等,再选一组边相等,利用SAS证明两三角形全等即可.【解答】解:添加:AB=AD,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:AB=AD12.【答题】如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是______(填上你认为适当的一个条件即可).【答案】∠B=∠C或BE=CE或∠BAE=∠CAE【分析】根据题意,易得∠AEB=∠AEC,又AE公共,∴根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13.【答题】如图,AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,还需添加一个条件,这个条件可以是______.【答案】AE=AC【分析】求出∠BAC=∠DAE,根据全等三角形的判定定理SAS推出即可.【解答】解:AE=AC.理由是:∵∠BAE=∠DAC,∴∠BAE+∠EAC=DAC+∠EAC,∴∠BAC=∠DAE,在△ABC和△ADE中∴△ABC≌△ADE,故答案为:AE=AC.14.【答题】如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB 上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为______①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.【答案】①②④【分析】要得到OE=OF,就要让△OCE≌△OCF,①②④都行,只有③EC=FC不行,∵证明三角形全等没有边边角定理.【解答】解:①若①∠OCE=∠OCF,根据三角形角平分线的性质可得,∠EOC=∠COF,故居ASA定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;②若∠OEC=∠OFC,根据AAS可得△OEC≌△OFC,由三角形全等的性质可知OE =OF.正确;③若EC=FC条件不够不能得出.错误;④若EF⊥OC,设EF与OC交点为D,根据ASA可得△OED≌△OFD,由三角形全等的性质可知OE=OF.正确.故填①②④.15.【答题】如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC≌△DEF,还需要添加一个条件是______.(只需添加一个即可)【答案】AB=DE或∠B=∠E或∠ACB=∠F【分析】利用全等三角形的判定定理,AAS定理,ASA定理,SAS定理可得结果.【解答】解:①添加AB=DE,∵AB∥DE,∴∠A=∠EDF,∵AD=CF,∴AD+DC=CF+DC,∴AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS);②添加∠B=∠E,,∴△ABC≌△DEF(AAS);③添加∠ACF=∠F,,△ABC≌△DEF(ASA),故答案为:AB=DE或∠B=∠E或∠ACB=∠F.16.【答题】如图,线段AC、BD相交于点O,且AO=OC,请添加一个条件使△ABO≌△CDO,应添加的条件为______.(添加一个条件即可)【答案】OB=OD.【分析】线段AC、BD相交于点O,且AO=OC,有一对对顶角∠AOB与∠COD,添加OB=OD,就能证出△ABO≌△CDO.【解答】解:∴0A=0C,OB=OD,∠AOB=∠COD(对顶角相等),∴△ABO≌△CDO(SAS).故答案为OB=OD.17.【答题】如图,已知AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是______.(填一个即可)【答案】此题答案不唯一:如AB=DC或∠ACB=∠DBC.【分析】由AC=BD,BC是公共边,即可得要证△ABC≌△DCB,可利用SSS或SAS证得.【解答】解:∵AC=BD,BC是公共边,∴要使△ABC≌△DCB,需添加:①AB=DC(SSS),②∠ACB=∠DBC(SAS).故答案为:此题答案不唯一:如AB=DC或∠ACB=∠DBC.18.【答题】如图,∠1=∠2,BC=EC,请补充一个条件:______能使用"AAS"方法判定△ABC≌△DEC.【答案】∠A=∠D.【分析】已知∠1=∠2,就是已知∠ACB=∠DCE,则根据三角形的判定定理AAS即可证得.【解答】解:可以添加∠A=∠D,理由是:∵∠1=∠2,∴∠ACB=∠DCE,∴在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).故答案是:∠A=∠D.19.【答题】如图,AB=AE,AC=AD,要使△ABC≌△AED,应添加一个条件是______.【答案】∠1=∠2或∠BAC=∠EAD或BC=ED【分析】根据全等三角形的判定方法即可解决问题;【解答】解:∵AB=AE,AC=AD,∴若根据SAS判断,只要添加∠1=∠2或∠BAC=∠EAD,若根据SSS判断,只要添加BC=DE,故答案为∠1=∠2或∠BAC=∠EAD或BC=ED.20.【答题】如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:______或______.【答案】∠B=∠E,ASA∠ACB=∠DFE,AAS【分析】题目现有的条件是:DE=AB,∠D=∠A,补充一个条件时,第三个条件可以是边,用SAS判断全等,也可以是角,用AAS或者ASA判断全等,所补充的条件一定要符合全等三角形的判定定理.【解答】解:∵已知DE=AB,∠D=∠A,∴根据ASA判断全等添加∠B=∠E;根据AAS判断全等添加∠ACB=∠DFE;根据SAS判断全等添加AF=CD.故填空答案:∠B=∠E或∠ACB=∠DFE或AF=CD.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(43)
章节测试题1.【答题】如图,点为的重心,则的值是()A. 1∶2∶3B. 2∶1∶2C. 1∶1∶1D. 无法确定【答案】C【分析】本题考查了三角形的中线.【解答】如图,分别延长、、,交、、于点、、,根据三角形重心的定理得到、、是的中线,根据三角形的中线把三角形分为面积相等的两个三角形可得,即可得,同理可得,∴,即=1∶1∶1,选C.2.【答题】如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A. 三边中线的交点B. 三条角平分线的交点C. 三边高的交点D. 三边垂直平分线的交点【答案】A【分析】本题考查了三角形的中线.【解答】∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,选A.3.【答题】如图,AD,BE,CF是△ABC的三条中线,则AB=2______,BD=______,AE=______.【答案】AF;CD;AC【分析】本题考查了三角形的中线.【解答】∵CF是AB边上的中线,∴AB=2AF=2BF.∵AD是BC边上的中线,∴BD=CD.∵BE是AC边上的中线,∴AE=AC.故答案为:AF;CD;AC.4.【答题】如图,△ABC的面积为12cm2,点D在BC边上,E是AD的中点,则△BCE的面积是()A. 4cm2B. 6cm2C. 8cm2D. 6cm2【答案】B【分析】本题考查了三角形的中线.【解答】∵E是AD的中点,∴S△BDE=S△ABD,S△DEC=S△ADC,∴△BCE的面积=S△BDE+S△DEC=×(S△ABD+S△ADC)=×△ABC的面积=6,选B.5.【答题】三角形的下列线段中一定能将三角形的面积分成相等的两部分的是()A. 中线B. 角平分线C. 高D. 垂线【答案】A【分析】本题考查了三角形的中线.【解答】∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.选A.6.【答题】如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,若S△DEF=2,则S△ABC等于()A. 16B. 14C. 12D. 10【答案】A【分析】本题考查了三角形的中线.【解答】∵DF是△CDE的中线,∴S△CDE=2S△DEF,∵CE是△ACD的中线,∴S△ACD=2S△CDE=4S△DEF,∵AD是△ABC的中线,∴S△ABC=2S△ACD=8S△DEF,∵△DEF的面积是2,∴S△ABC=2×8=16.选A.7.【答题】如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为()A. 2B. 3C. 4D. 6【答案】A【分析】本题考查了三角形的中线.【解答】∵AE是△ABC的中线,EC=4,∴BE=EC=4,∵DE=2,∴BD=BE-DE=4-2=2.选A.8.【答题】如图,BD是△ABC的中线,AB=8,BC=6,△ABD和△BCD的周长的差是______.【答案】2【分析】本题考查了三角形的中线.【解答】∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差=(AB+BD+AD)-(BC+BD+CD)=AB+BD+AD-BC-BD-CD=AB-BC=8-6=2.故答案为:2.9.【题文】如图,已知△ABC的周长为24cm,AD是BC边上的中线,AD=AB,AD=5cm,△ABD的周长是18cm,求AC的长.【答案】6cm.【分析】本题考查了三角形的中线.【解答】∵AD=AB,AD=5cm,∴AB=8cm.又∵△ABD的周长是18cm,∴BD=5cm.又∵D是BC的中点,∴BC=2BD=10cm.又∵△ABC的周长为24cm,∴AC=24-8-10=6cm.10.【题文】已知:△ABC中,AB=AC,BD是AC边上的中线,如果D点把三角形ABC的周长分为12cm和15cm两部分,求此三角形各边的长.【答案】三角形的三边可能是8厘米,8厘米,11厘米或10厘米,10厘米,7厘米.【分析】本题考查了三角形的中线.【解答】如图,∵AB=AC,BD是AC边上的中线,∴AB=2AD=2CD,∴AB+AD=3AD.①当AB与AD的和是12厘米时,AD=12÷3=4(厘米),∴AB=AC=2×4=8(厘米),BC=12+15-8×2=12+15-16=11(厘米);②当AB与AD的和是15厘米时,AD=15÷3=5(厘米),∴AB=AC=2×5=10(厘米),BC=12+15-10×2=12+15-20=7(厘米).∴三角形的三边可能是8厘米,8厘米,11厘米或10厘米,10厘米,7厘米.11.【题文】张大爷的四个儿子都长大成人了,也该分家了,于是张大爷准备把如图所示的一块三角形的田地平均分给四个儿子,四个儿子要求田地的形状仍然是三角形,请你帮助张大爷提出一种平分的方案.【答案】见解答.【分析】本题考查了三角形的中线.【解答】答案不唯一,第一种方案:如图1,四等分一条边构成的四个三角形;第二种方案:如图2,作△ABC的一条中线,再作由中线分出的两个三角形的中线就可分成四个面积相等的三角形.12.【答题】如图,∠1=∠2,∠3=∠4,下列结论错误的是()A. BD是△ABC的角平分线B. CE是△BCD的角平分线C. ∠3=∠ACBD. CE是△ABC的角平分线【答案】D【分析】本题考查了三角形的角平分线.【解答】∵∠1=∠2,∴BD是△ABC的角平分线,∵∠3=∠4,∴CE是△BCD的角平分线,∠3=∠ACB,∴A、B、C正确.CE不是△ABC的角平分线,故D错误.选D.13.【答题】下列关于三角形角平分线的说法错误的是()A. 两角平分线交点在三角形内B. 两角平分线交点在第三个角的平分线上C. 两角平分线交点到三边距离相等D. 两角平分线交点到三顶点距离相等【答案】D【分析】本题考查了三角形的角平分线.【解答】A、两角平分线交点在三角形内,正确;B、两角平分线交点在第三个角的平分线上,正确;C、根据角平分线的性质,两角平分线交点到三边距离相等,正确;D、根据角平分线的性质,两角平分线交点到三边距离相等,不是到三顶点距离相等,故本选项错误.选D.14.【答题】如图,BD平分∠ABC,CD平分∠ACB,若∠A=50°,则∠D等于()A. 120°B. 130°C. 115°D. 110°【答案】C【分析】本题考查了三角形的角平分线.【解答】∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠BDC=180°-∠DBC-∠DCB=180°-(∠ABC+∠ACB).∵∠ABC+∠ACB=180°-∠A,∴∠BDC=180°-(180°-∠A)=90°+∠A=90°+×50°=115°.选C.15.【答题】如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B=______.【答案】30°【分析】本题考查了三角形的角平分线和高线.【解答】∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1-∠2=40°-20°=20°,∵AD⊥BC,∴∠ADB=90°,Rt△ABD中,∠B=90°-∠BAD=90°-40°-20°=30°,故答案为:30°.16.【题文】如图,在△ABC中,∠B=60°,∠C=30°,AD和AE分别是△ABC的高和角平分线,求∠DAE的度数.【答案】15°【分析】本题考查了三角形的角平分线和高线、三角形的内角和定理.【解答】在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°-∠B-∠C=180°-30°-60°=90°,∵AE是的角平分线,∴∠BAE=∠BAC=45°,∵AD是△ABC的高,∴∠ADB=90°,∴在△ADB中,∠BAD=90°-∠B=90°-60°=30°,∴∠DAE=∠BAE-∠BAD=45°-30°=15°.17.【题文】如图,在△ABC中,BE,CD分别为其角平分线且交于点O.(1)当∠A=60°时,求∠BOC的度数;(2)当∠A=100°时,求∠BOC的度数;(3)当∠A=α时,求∠BOC的度数.【答案】(1)∠BOC=120°.(2)∠BOC=140°.(3)∠BOC=90°+α.【分析】本题考查了三角形的角平分线、三角形的内角和定理.【解答】(1)∵∠A=60°,∴∠ABC+∠ACB=120°.∵BE,CD为△ABC的角平分线,∴∠EBC=∠ABC,∠DCB=∠ACB.∴∠EBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=60°,∴∠BOC=180°-(∠EBC+∠DCB)=180°-60°=120°.(2)∵∠A=100°,∴∠ABC+∠ACB=80°.∵BE,CD为△ABC的角平分线,∴∠EBC=∠ABC,∠DCB=∠ACB.∴∠EBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=40°,∴∠BOC=180°-(∠EBC+∠DCB)=180°-40°=140°.(3)∵∠A=α,∴∠ABC+∠ACB=180°-α.∵BE,CD为△ABC的角平分线,∴∠EBC=∠ABC,∠DCB=∠ACB.∴∠EBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=90°-α,∴∠BOC=180°-(∠EBC+∠DCB)=180°-(90°–α)=90°+α.18.【题文】如图,∠AOB是直角,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)当∠AOC=40°,求出∠MON的大小,并写出解答过程理由;(2)当∠AOC=50°,求出∠MON的大小,并写出解答过程理由;(3)当锐角∠AOC=α时,求出∠MON的大小,并写出解答过程理由.【答案】见解答.【分析】本题考查了角的平分线.【解答】(1)∠AOC=40°时,∠MON=∠MOC-∠CON=(∠BOC-∠AOC)=∠AOB=45°.(2)当∠AOC=50°,∠MON=45°.理由同(1).(3)当∠AOC=α时,∠MON=45°.理由同(1).19.【题文】(1)如图,在△ABC中,D,E,F是边BC上的三点,且∠1=∠2=∠3=∠4,以AE为角平分线的三角形有______;(2)如图,已知AE平分∠BAC,且∠1=∠2=∠4=15°,计算∠3的度数,并说明AE 是△DAF的角平分线.【答案】见解答.【分析】本题考查了三角形的角平分线.【解答】(1)△ABC和△ADF.(2)∵AE平分∠BAC,∴∠BAE=∠CAE.又∵∠1=∠2=15°,∴∠BAE=∠1+∠2=15°+15°=30°.∴∠CAE=∠BAE=30°,即∠4+∠3=30°.又∵∠4=15°,∴∠3=15°.∴∠2=∠3.∴AE是△DAF的角平分线.20.【答题】如图,在△ABC中,∠1=∠2,G为AD的中点,BG的延长线交AC于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH是△ACD的边AD上的高;④AH是△ACF的角平分线和高A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形的高线、中线和角平分线.【解答】①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.选B.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(28)
章节测试题1.【答题】如图所示,CD是△ABC的中线,AC=9cm,BC=3cm,那么△ACD和△BCD的周长差是______cm.【答案】6【分析】根据三角形的中线的概念,由CD是△ABC中AB边上的中线得BD=AD.∴△ACD与△BCD的周长之差为AC与BC的差.【解答】解:∵CD是△ABC的中线,∴BD=AD,∴△ACD和△BCD的周长差是AC与BC的差,∵AC=9cm,BC=3cm,∴△ACD和△BCD的周长差是6cm.2.【答题】如图,AD是△ABC的中线,AB=5,AC=3,△ABD的周长和△ACD的周长相差______.【答案】2【分析】根据三角形的周长的计算方法得到△ABD的周长和△ACD的周长的差就是AB与AC的差.【解答】解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差,=(AB+BC+AD)-(AC+BC+AD),=AB-AC,=5-3,=2,故答案为:2.3.【答题】图中可数出的三角形个数为______个.【答案】48【分析】∵图中线段DE上的每条线段都对着两个三角形,故数出线段条数即可求出三角形的个数,以及以AC为轴,左右还有6个,即可得出总数.【解答】解:如图,共有6+5+4+3+2+1=21条线段,则有三角形21×2=42个.以AC为轴,左右还有6个,∴三角形个数一共有48个,故答案为:48.4.【答题】阅读材料,并填表:在△ABC中,有一点P1,当P1,A,B,C没有任何三点在同一直线上时,可构成三个不重叠的小三角形(如图).当△ABC内的点的个数增加时,若其它条件不变,三角形内互不重叠的小三角形的个数情况如下表所示:ABC内点的个数 1 2 3 (1002)构成不重叠的小三角形的个数 3 5 …按表格顺序填入为______,______.【答案】7 2005【分析】当△ABC内的点是1个时,三角形内互不重叠的小三角形有3个;当△ABC内的点是2个时,三角形内互不重叠的小三角形有5个;依此类推得到当△ABC内的点是3个时,三角形内互不重叠的小三角形有7个;当△ABC内的点是n个时,三角形内互不重叠的小三角形有2n+1个;∴当△ABC内的点是1002个时,三角形内互不重叠的小三角形有2×1002+1=2005个.【解答】解:当△ABC内的点的个数是n个时,三角形内互不重叠的小三角形有2n+1个.∴按表格顺序填入为7,2005.5.【答题】如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依此类推,则第6个图中共有三角形______个.【答案】21【分析】根据前边的具体数据,再结合图形,不难发现:后面的图形比前面的多4个,即第n个图形中,三角形共有1+4(n-1)=(4n-3)个.∴当n=6时,4n-3=21.【解答】解:第n个图形中,三角形共有1+4(n-1)=(4n-3)个.∴当n=6时,4n-3=21,故填21.6.【答题】图1是一个三角形,分别连接这个三角形三边的中点得到图2;再分别连接图2中间小三角形的中点,得到图3.(若三角形中含有其它三角形则不记入)(1)图2有______个三角形;图3中有______个三角形(2)按上面方法继续下去,第20个图有______个三角形;第n个图中有______个三角形.(用n的代数式表示结论)【答案】5 9 77 4n-3【分析】正确数一下(2)(3)中,三角形的个数,可以得到(3)比(2)增加了4个三角形,同理后面的图形都比前面增加了4个三角形,依此类推即可求解.【解答】解:(1)图2有5个三角形;图3中有9个三角形;(2)按上面方法继续下去,可以得到后面的图形都比前面增加了4个三角形,依此类推,第20个图有1+(20-1)×4=77个三角形;第n个图中有4(n-1)+1=(4n-3)个三角形.7.【答题】原三角形如图所示,如图1,原三角形内部有1个点时,原三角形可被分成3个三角形;如图2,原三角形内部有2个不同点时,原三角形可被分成5个三角形;如图3,原三角形内部有3个不同点时,原三角形可被分成7个三角形;…以此类推,原三角形内部有n个不同点时,原三角形可被分成______个三角形.【答案】2n+1【分析】认真审题可以发现:在三角形内部每增加一个点,就会增加两个三角形,以此类推,即可发现三角形的个数正好是比点的个数的2倍还多1个.∴原三角形内部有n个不同点时,答案即现.【解答】解:观察发现,三角形的个数正好是比点的个数的2倍还多1个.故答案为:2n+1.8.【答题】在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,如果b=4,则这样的三角形共有______个.【答案】10【分析】先根据三角形的三边关系得出c<a+b,再根据b=4可求出a的值,进而得出结论.【解答】解:∵在△ABC中,三边长分别为正整数a、b、c,且c≥b≥a>0,∴c<a+b∵b=4,∴a=1,2,3,4,a=1时,c=4,a=2时,c=4,5a=3时,c=4,5,6a=4时,c=4,5,6,7∴这样的三角形共有1+2+3+4=10个.故答案为10.9.【答题】两条平行直线上各有n个点,用这n对点按如下的规则连接线段;①平行线之间的点在连线段时,可以有共同的端点,但不能有其它交点;②符合①要求的线段必须全部画出;图1展示了当n=1时的情况,此时图中三角形的个数为0;图2展示了当n=2时的一种情况,此时图中三角形的个数为2;(1)当n=3时,请在图3中画出使三角形个数最少的图形,此时图中三角形的个数为______个;(2)试猜想当有n对点时,按上述规则画出的图形中,最少有______个三角形;(3)当n=2006时,按上述规则画出的图形中,最少有______个三角形.【答案】4,2(n-1),4010【分析】(1)根据题意,作图可得答案;(2)分析可得,当n=1时的情况,此时图中三角形的个数为0个,有0=2×(1-1);当n=2时的一种情况,此时图中三角形的个数为2个,有2=2×(2-1);…故当有n对点时,最少可以画2(n-1)个三角形;(3)当n=2006时,按上述规则画出的图形中,最少有2×(2006-1)=4010个三角形.【解答】解:(1)4个;(2)当有n对点时,最少可以画2(n-1)个三角形;(3)2×(2006-1)=4010个,即当n=2006时,最少可以画4010个三角形.10.【答题】观察下表中三角形个数变化规律,填表并回答下面问题.问题:如果图中三角形的个数是102个,则图中应有______条横截线.【答案】16【分析】观察图形,不难发现:当横线是0条的时候,有6个三角形;当横线是1条的时候有6+6=12个三角形,即多一条横线,多6个三角形;∴当有n条横线的时候,有(6+6n)个三角形.根据这一规律,得当有1条横线时,有12个三角形;当有2条横线时,有18个三角形;当有102个三角形的时候,即6+6n=102,n=16.【解答】解:表格中应是12,18;有n条横线的时候,有(6+6n)个三角形,∴6+6n=102,n=16,有16条横线.11.【答题】一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为______.【答案】8【分析】首先设第三边长为x,根据三角形的三边关系可得3-2<x<3+2,然后再确定x的值,进而可得周长.【解答】解:设第三边长为x,∵两边长分别是2和3,∴3-2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8,故答案为:8.12.【答题】如果一个三角形的两边长分别为3和5,那么这个三角形的周长可能是()A. 9B. 12C. 16D. 18【答案】B【分析】根据三角形三边关系定理求出第三边的范围,得到三角形的周长的范围,判断即可.【解答】解:∵三角形的两边长为3和5,∴第三边x的长度范围是5-3<x<5+3,即2<x<8,∴这个三角形的周长a范围是2+5+3<a<5+3+8,即10<a<16,选B.13.【答题】用长分别为5,7,9,13(单位:厘米)的四段木棒为边摆三角形,可摆出不同的三角形的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】①5,7,9时,能摆成三角形;②5,7,13时,∵5+7=12<13,∴不能摆成三角形;③5,9,13时,能摆成三角形;④7,9,13时,能摆成三角形;∴,可以摆出不同的三角形的个数为3个.选C.14.【答题】以长为3cm,5cm,7cm,10cm的四条线段中的三条线段为边,可以构成三角形的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】从3cm,5cm,7cm,10cm的四条线段任选3条,有3,5,7;3,5,10;3,7,10;5,7,10四种情况,根据三角形的三边关系,则其中的3,5,7和5,7,10能组成三角形.选B.15.【答题】已知等腰三角形的其中二边长分别为4,9,则这个等腰三角形的周长为()A. 17B. 22C. 17或22D. 无法确定【答案】B【分析】根据三角形的三边关系和等腰三角形的定义进行判断.【解答】解:①若4是底边,则三角形的三边分别为4、9、9,能组成三角形,周长=4+9+9=22;②若4是腰长,则三角形的三边分别为4、4、9,∵4+4=8<9,∴不能组成三角形,综上所述,这个等腰三角形的周长为22.选B.16.【答题】任取长度分别为4cm,5cm,6cm,7cm四根细木棍中的三根,首尾顺次相接组成三角形,则三角形的个数最多为()A. 1个B. 2个C. 3个D. 4个【答案】D【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】解:任取三根,共有4cm,5cm,6cm;4cm,5cm,7cm;4cm,6cm,7cm;5cm,6cm,7cm四种情况,它们都满足三角形三边关系,则三角形的个数最多4个.选D.17.【答题】下列每组数分别表示三根小棒的长度,将它们首尾连接后,能摆成三角形的一组是()A. 1、2、3B. 2、3、5C. 2、3、6D. 3、5、7【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】选项A,1+2=3,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,2+3<6,根据三角形的三边关系可知,不能够组成三角形;选项D,3+5>7,根据三角形的三边关系可知,能够组成三角形;选D.18.【答题】两根木棒分别长5cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长是偶数(单位:cm),则一共可以构成不同的三角形有()A. 4个B. 5个C. 8个D. 10个【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】根据三角形的三边关系,得第三根木棒的长大于2cm而小于12cm.又第三根木棒的长是偶数,则应为4cm,6cm,8cm,10cm.共可以构成4个不同的三角形选A.19.【答题】下列长度的三条线段能组成三角形的是()A. 2,3,5B. 7,4,2C. 3,4,8D. 3,3,4【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;选D.20.【答题】长度为3cm、4cm两根木棒,与它们首尾相接能构成三角形的第三根木棒长度是()A. 1cmB. 5cmC. 7cmD. 9cm【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三根木棒长度是xcm,∴4-3<x<4+3,即1<x<7,选B.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(63)
章节测试题1.【题文】已知如图,在△ABC中,AD是角平分线,AE是高,∠ABC=30°,∠ACB=70°.(1)求∠DAE的度数.(2)如图2,若点F为AD延长线上一点,过点F作FG⊥BC于点G,求∠AFG的度数.【答案】见解答.【分析】(1)先利用三角形内角和定理求出∠BAC=80°,再利用角平分线求出∠BAD=40°,进而求出∠ADC=∠BAD+∠ABD=70°,最后用三角形的内角和定理即可得出结论;(2)先判断出FG∥AE,即可得出结论.【解答】解:(1)在△ABC中,∵∠ABC=30°,∠ACB=70°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣30°﹣70°=80°∵AD平分∠BAC∴∠BAD=∠CAD=∠BAC=×80°=40°,在△ABD中,∠ADC=∠BAD+∠ABD=40°+30°=70°∵AE为三角形的高,∴∠AED=90°.在△AED中,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣70°﹣90°=20°.(2)∵FG⊥BC∴∠FGD=90°∵∠AED=90°∴∠FGD=∠AED∴FG∥AE∴∠AFG=∠DAE由(1)可知∠DAE=20°∴∠AFG=20°.2.【题文】如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=64°,求∠BAC的度数.【答案】58°.【分析】由已知条件,首先得出∠DAC=20°,再利用∠ABE=∠EBD,进而得出∠ABE+∠BAE=64°,求出∠EBD=26°,进而得出答案.【解答】解:∵AD是△ABC的高,∠C=70°,∴∠DAC=20°,∵BE平分∠ABC交AD于E,∴∠ABE=∠EBD,∵∠BED=64°,∴∠ABE+∠BAE=64°,∴∠EBD+64°=90°,∴∠EBD=26°,∴∠BAE=38°,∴∠BAC=∠BAE+∠CAD=38°+20°=58°.3.【题文】已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.【答案】见解答.【分析】(1)根据平行线的性质得出∠ABC+∠DAB=180°,求出∠ABC+∠DCB=180°,根据平行线的判定推出即可;(2)求出∠EAF和∠AEF的度数,即可求出答案.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.4.【答题】如图,将△ABC沿MN折叠,使MN∥BC,点A的对应点为点A',若∠A'=32°,∠B=112°,则∠A'NC的度数是()A. 114°B. 112°C. 110°D. 108°【答案】D【分析】由MN∥BC,可得出∠MNC与∠C互补,由三角形的内角和为180°可求出∠C的度数,从而得出∠MNC的度数,由折叠的性质可知∠A′NM与∠MNC互补,而∠A′NC=∠MNC﹣∠A′NM,套入数据即可得出结论.【解答】解:∵MN∥BC,∴∠MNC+∠C=180°,又∵∠A+∠B+∠C=180°,∠A=∠A′=32°,∠B=112°,∴∠C=36°,∠MNC=144°.由折叠的性质可知:∠A′NM+∠MNC=180°,∴∠A′NM=36°,∴∠A′NC=∠MNC﹣∠A′NM=144°﹣36°=108°.5.【答题】下列条件中,不能确定△ABC是直角三角形的是()A. ∠A﹣∠B=90°B. ∠B=∠C=∠AC. ∠A=90°﹣∠BD. ∠A+∠B=∠C【答案】A【分析】根据三角形的内角和定理对各选项进行逐一判断即可.【解答】解:A.由∠A﹣∠B=90°不能确定△ABC是直角三角形,符合题意;B.由∠B=∠C=∠A可得,∠B=∠C=45°,∠A=90°,能确定△ABC是直角三角形,不合题意;C.由∠A=90°﹣∠B可得,∠A+∠B=90°,能确定△ABC是直角三角形,不合题意;D.由∠A+∠B=∠C可得,∠A+∠B=90°,能确定△ABC是直角三角形,不合题意;选:A.6.【答题】如图,将三角形ABC纸片沿MN折叠,使点A落在点A′处,若∠AMN =50°,∠A′MB的度数是()A. 20°B. 120°C. 70°D. 80°【分析】根据折叠的性质和平角的定义即可得到结论.【解答】解:∵将三角形ABC纸片沿MN折叠,使点A落在点A′处,∴∠A′MN=∠AMN=50°,∴∠A′MB=180°﹣50°﹣50°=80°,选:D.7.【答题】如图,是一块三角形木板的残余部分,量得∠A=110°,∠B=30°,这块三角形木板缺少的角是()A. 30°B. 40°C. 50°D. 60°【答案】B【分析】根据三角形的内角和定理计算即可.【解答】解:根据三角形的内角和定理第三个角=180°﹣110°﹣30°=40°,选:B.8.【答题】下列说法中错误的是()A. 一个三角形中至少有一个角不小于60°B. 直角三角形只有一条高C. 三角形的中线不可能在三角形外部D. 三角形的中线把三角形分成面积相等的两部分【答案】B【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、直角三角形有三条高,故本选项错误;C、三角形的中线一定在三角形的内部,故本选项正确;D、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确.选:B.9.【答题】在△ABC中,∠ABC和∠ACB的平分线交于点O,且∠BOC=110°,则∠A=()A. 70°B. 55°C. 40°D. 35°【答案】C【分析】根据三角形内角和定理列式求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和定理列式计算即可得解.【解答】解:在△BOC中,∵∠BOC=110°,∴∠OBC+∠OCB=180°﹣110°=70°,∵OB、OC分别是∠ABC和∠ACB的平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2×70°=140°,在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=180°﹣140°=40°.选:C.10.【答题】一个三角形三个内角的度数之比为4:5:6,这个三角形一定是()A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形【答案】C【分析】利用三角形内角和定理求出三角形的内角即可判断.【解答】解:∵三角形三个内角的度数之比为4:5:6,∴这个三角形的内角分别为180°×=48°,180°×=60°,180°×=72°,∴这个三角形是锐角三角形,选:C.11.【答题】如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F.∠F的度数为()A. 120°B. 135°C. 150°D. 不能确定【答案】B【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【解答】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°﹣90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°﹣90°=45°,∴∠F=180°﹣(∠FAD+∠FDA)=180﹣45°=135°.选:B.12.【答题】如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=43°,则∠B=()A. 43°B. 57°C. 47°D. 45°【答案】C【分析】利用平行线的性质和三角形内角和定理计算即可.【解答】解:∵BC⊥AE,∴∠ACB=90°,∵CD∥AB,∴∠ECD=∠A=43°,∴∠B=90°﹣∠A=47°,选:C.13.【答题】如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于()A. 95°B. 120°C. 135°D. 无法确定【答案】C【分析】先根据三角形内角和定理求出∠OBC+∠OCB的度数,再根据∠BOC+(∠OBC+∠OCB)=180°即可得出结论.【解答】解:∵∠A=80°,∠1=15°,∠2=40°,∴∠OBC+∠OCB=180°﹣∠A﹣∠1﹣∠2=180°﹣80°﹣15°﹣40°=45°,∵∠BOC+(∠OBC+∠OCB)=180°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣45°=135°.选:C.14.【答题】如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A. 100°B. 115°C. 130°D. 140°【答案】B【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质求出∠PBC+∠PCB的度数,进而可得出结论.【解答】解:∵在△ABC中,∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°.∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB=(∠ABC+∠ACB)=×130°=65°,∴∠BPC=180°﹣65°=115°.选:B.15.【答题】如图所示,y与x的关系式为()A. y=-x+120B. y=120+xC. y=60-xD. y=60+x【答案】A【分析】根据三角形内角和定理建立等量,求出y即可.【解答】解:根据三角形内角和定理可知:x+y+60=180,则y=-x+120,故答案为:A.16.【答题】若三角形有两个内角的和是90°,那么这个三角形是()A. 钝角三角形B. 直角三角形C. 锐角三角形D. 不能确定【答案】B【分析】根据三角形的内角和即可得到结论.【解答】解:∵三角形有两个内角的和是90°,∴三角形的第三个角=180°﹣90°=90°,∴这个三角形是直角三角形,选:B.17.【答题】如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()A. 90°B. 135°C. 270°D. 315°【答案】C【分析】先根据直角三角形的性质求得两个锐角和是90度,再根据四边形的内角和是360度,即可求得∠1+∠2的值.【解答】解:∵∠C=90°,∴∠A+∠B=90°.∵∠A+∠B+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°.选:C.18.【答题】下列条件,可以确定△ABC是直角三角形的是()A. ∠A+∠B+∠C=180°B. ∠A+∠B=∠CC. ∠A=∠B=∠CD. ∠A=∠B=2∠C【答案】B【分析】根据三角形内角和定理计算,根据直角三角形的定义判断.【解答】解:∠A+∠B+∠C=180°,∠A,∠B,∠C的度数不确定,A不能确定△ABC 是直角三角形;∠A+∠B=∠C,根据三角形内角和定理得到∠C=90°,B可以确定△ABC是直角三角形;∠A=∠B=∠C,则△ABC是等边三角形,C不能确定△ABC是直角三角形;∠A=∠B=2∠C,则△ABC是等腰三角形,D不能确定△ABC是直角三角形;选:B.19.【答题】如图,点D在△ABC的AB边上,∠ADC=80°,则下列结论正确的是()A. ∠A+∠ACD=80°B. ∠B+∠ACD=80°C. ∠A+∠ACD=100°D. ∠B+∠ACD=100°【答案】C【分析】根据三角形内角和定理计算,得到答案.【解答】解:∠A+∠ACD=180°﹣∠ADC=100°,A错误,C正确,∠B+∠ACD无法确定,B、D错误,选:C.20.【答题】如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P的度数是()A. 30°B. 45°C. 55°D. 60°【答案】B【分析】由OA⊥OB即可得出∠OAB+∠ABO=90°、∠AOB=90°,再根据角平分线的定义以及三角形内角和定理即可求出∠P的度数.【解答】解:∵OA⊥OB,∴∠OAB+∠ABO=90°,∠AOB=90°.∵PA平分∠MAO,∴∠PAO=∠OAM=(180°﹣∠OAB).∵PB平分∠ABO,∴∠ABP=∠ABO,∴∠P=180°﹣∠PAO﹣∠OAB﹣∠ABP=180°﹣(180°﹣∠OAB)﹣∠OAB﹣∠ABO =90°﹣(∠OAB+∠ABO)=45°.选:B.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(53)
章节测试题1.【题文】如图,AD是∠CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是∠EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.【答案】是,理由见解答【分析】由DE∥AB,DF∥AC,可得∠EDA=∠DAF,∠FDA=∠EAD,再结合∠EAD=∠FAD,就可得∠EDA=∠FDA,从而得到DO平分∠EDF.【解答】DO是∠EDF的角平分线,理由如下:∵AD是∠CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,∴DO是∠EDF的角平分线.2.【题文】如图,在3×2的正方形网格中,小正方形的边长为1,以图中A,B,C,D,E中的三点为顶点的三角形中,面积为1的三角形有哪些?【答案】△ABC,△ADE,△BCE,△ACD.【分析】根据不在同一直线上的三个点可构成一个三角形分析可知,以A、B、C、D、E中的三点为顶点的三角形共有9个,再根据题目中的已知条件计算每个三角形的面积可得答案.【解答】以A、B、C、D、E中的三点为顶点的三角形有:△ABC,△ABD,△ABE,△ACD,△ACE,△ADE,△BCD,△BCE,△BDE,共9个;再根据小正方形的边长为1,计算可得其中面积为1的三角形有:△ABC,△ADE,△BCE,△ACD.3.【题文】如图,在△ABC中,CD、CE分别是△ABC的高和角平分线.(1)若∠A=30°,∠B=50°,求∠ECD的度数;(2)试用含有∠A、∠B的代数式表示∠ECD(不必证明)【答案】见解答【分析】(1)利用高的定义和互余得到∠BCD=90°-∠B,再根据角平分线定义得到∠BCE=∠ACB,接着根据三角形内角和定理得到∠ACB=180°-∠A-∠B,于是得到∠BCE=90°-(∠A+∠B),然后计算∠BCE-∠BCD得到∠ECD=(∠B-∠A),再把∠A=30°,∠B=50°代入计算即可;(2)直接由(1)得到结论.【解答】(1)∵CD为高,∴∠CDB=90°,∴∠BCD=90°-∠B,∵CE为角平分线,∴∠BCE=∠ACB,而∠ACB=180°-∠A-∠B,∴∠BCE=(180°-∠A-∠B)=90°-(∠A+∠B),∴∠ECD=∠BCE-∠BCD=90°-(∠A+∠B)-(90°-∠B)=(∠B-∠A),当∠A=30°,∠B=50°时,∠ECD=×(50°-30°)=10°;(2)由(1)得∠ECD=(∠B-∠A).4.【题文】如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.【答案】∠ADB=100°.【分析】根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.【解答】∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.5.【题文】如图,已知在中,,AD是BC边上的高,AE是的平分线,求证:.【答案】证明见解答.【分析】根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°-∠B,再根据AE平分∠BAC,求得∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C,最后根据∠DAE=∠BAE-∠BAD即可求解.【解答】∵AD是BC边上的高,∴∠BAD=90°-∠B.∵AE平分∠BAC,∴∠BAE=∠BAC=(180°-∠B-∠C)=90°-∠B-∠C.∵∠DAE=∠BAE-∠BAD,∴∠DAE=(90°-∠B-∠C)-(90°-∠B)=∠B-∠C=(∠B-∠C).6.【题文】如图,AD是△ABC边上的高,BE平分∠△ABC交AD于点E.若∠C=60°,∠BED=70°.求∠ABC和∠BAC的度数.【答案】∠ABC=40°,∠BAC=80°【分析】先根据AD是△ABC的高得出∠ADB=90°,再由三角形内角和定理及三角形外角的性质可知∠DBE+∠ADB+∠BED=180°,故∠DBE=180°-∠ADB-∠BED=20°.根据BE平分∠ABC得出∠ABC=2∠DBE=40°.根据∠BAC+∠ABC+∠C=180°,∠C=60°即可得出结论.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,又∵,∠°BED=70°,∴.∵BE平分∠ABC,∴∠ABC=2∠DBE=40°.又∵∠BAC+∠ABC+∠C=180°,∠C=60°,∴∠BAC=180°-∠ABC-∠C=80°.7.【答题】如图.在Rt△ABC中,∠ABC=90°,AB=12cm,BC=5cm,AC=13cm,若BD是AC边上的高,则BD的长为______cm.【答案】【分析】本题考查了三角形的高线.【解答】∵S△ABC=AB•BC=AC•BD,∴12×5=13BD,∴BD=cm.故答案为.8.【答题】如图所示,已知点G为Rt△ABC的重心,∠ABC=90°,若AB=12cm,BC=9cm,则△AGD的面积是______ cm2.【答案】9【分析】本题考查了三角形的中线.【解答】∵G为直角△ABC的重心,∴BG=2GD,AD=DC,∴S△AGD=S△ABD=•S△ABC=S△ABC,而S△ABC=AB×BC=54,∴S△AGD=9cm2故答案为:9cm29.【答题】如图,AD、AF分别是△ABC的高和角平分线,已知∠B=36°,∠C=76°,则∠DAF=______.【答案】20°【分析】本题考查了三角形的高线、角平分线及三角形的内角和定理.【解答】∵AD⊥BC,∠B=36°,∴∠ADB=90°,∴在△ABD中,∠BAD=180°-∠ADB-∠B=180°-90°-36°=54°.在△ABC中,∠BAC=180°-∠B-∠C=180°-36°-76°=68°.∵AF平分∠BAC,∴∠BAF=∠BAC=×68°=34°,∴∠DAF=∠BAD-∠BAF=54°-34°=20°.10.【答题】如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为______.【答案】7.5【分析】本题考查了三角形的中线.【解答】根据题意,阴影部分的面积为三角形面积的一半,阴影部分面积为:故答案为:11.【答题】如图,△ABC中,点D、E分别是BC,AD的中点,且△ABC的面积为8,则阴影部分的面积是______.【答案】2【分析】本题考查了三角形的中线.【解答】∵点D是BC的中点,∴.∵点E是AD的中点,∴.12.【答题】如图,在△ABC中,∠B=63°,∠C=51°,AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数______°【答案】6【分析】本题考查了三角形的高线、角平分线、及三角形的内角和定理.【解答】∵在△ABC中,∠B=63°,∠C=51°,∴∠BAC=180°-∠B-∠C=180°-63°-51°=66°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=33°,在直角△ADC中,∠DAC=90°-∠C=90°-51°=39°,∴∠DAE=∠DAC-∠EAC=39°-33°=6°.故答案为:6.13.【答题】已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是______.【答案】4【分析】本题考查了三角形的中线.【解答】由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.故答案为:4.14.【答题】如图,在△ABC中,CD是AB边上的中线,E是AC的中点,已知△DEC的面积是4cm2,则△ABC的面积是______ cm2.【答案】16【分析】本题考查了三角形的中线.【解答】由E是AC的中点,△DEC的面积是4cm2,根据“等底同高”可得△ADC的面积为8cm2,然后同理,可由CD是AB边上的中线,求得△ABC的面积为16cm2.故答案为:16.15.【答题】三角形的三条角平分线在三角形的______部.【答案】内【分析】本题考查了三角形的角平分线.【解答】三角形的三条角平分线在三角形的内部.16.【答题】已知:如图,AC为的角平分线,AE为的角平分线,则有,______;______.【答案】CAD DAF【分析】本题考查了三角形的角平分线.【解答】AC为的角平分线,,AE为的角平分线,.17.【答题】如图,已知BE和CF是△ABC的两条高,∠ABC=48°,∠ACB=76°,则∠FDE=______.【答案】124°【分析】本题考查了三角形的高、三角形的内角和定理.【解答】在△ABC中,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣48°﹣76°=56°,在四边形AFDE中,∵∠A+∠AFC+∠AEB+∠FDE=360°,又∵∠AFC=∠AEB=90°,∠A=56°,∴∠FDE=360°﹣90°﹣90°﹣56°=124°.18.【答题】三角形一边上的中线把三角形分成的两个三角形的面积关系为______.【答案】相等【分析】根据等底等高的三角形面积相等可知,中线能把一个三角形分成两个面积相等的部分.【解答】解:三角形一边上的中线把三角形分成的两个三角形的面积相等.故答案为:相等.19.【答题】如图所示:(1)在△ABC中,BC边上的高是______;(2)在△AEC中,AE边上的高是______.【答案】AB CD【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据三角形高的概念即可得出答案.【解答】解:(1)在△ABC中,BC边上的高是AB;(2)在△AEC中,AE边上的高是CD.故答案为:(1)AB;(2)CD.20.【答题】如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE 的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有______个.【答案】2【分析】本题考查了三角形的中线、角平分线.【解答】(1)∵AD是△ABC的角平分线,可得∠BAO=∠CAO,∴①“AO是△ABE的角平分线”这种说法是正确的;(2)由BE是△ABC的中线可得AE=CE,但不能确定AO=DO,∴②“BO是△ABD 的中线”这种说法是错误的;(3)由BE是△ABC的中线可得AE=CE,∴③“DE是△ADC的中线”这种说法是正确的;(4)∵由题中条件不能得到∠ADE=∠CDE,∴④“ED是△EBC的角平分线”这种说法是错误的;即上述说法中正确的个数为:2.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(36)
章节测试题1.【答题】若等腰三角形的周长为,其中一边长为,则该等腰三角形的底边长为()A. B. C. 或 D.【答案】B【分析】本题考查了了等腰三角形的计算,正确理解分两种情况讨论,并且注意到利用三角形的三边关系定理,是解题的关键.【解答】解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是:13-3-3=7cm,而3+3<7,不满足三角形的三边关系.故底边长是:3cm.选B.2.【答题】下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A. 1,2,1B. 1,2,3C. 1,2,2D. 1,2,4【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:三角形的三边关系为:任意两边之和大于第三边.A.不能构成三角形.B.不能构成三角形.C.能构成三角形.D.不能构成三角形.选C.3.【答题】△ABC的三条边长分别是、、,则下列各式成立的是()A. B.C. D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】对于任意一个三角形,三角形的三边关系满足:两边之和大于第三边.选B.4.【答题】如果一个三角形的两边长分别为和,则第三边长可能是()A. B. C. D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:设第三边长为x,则由三角形三边关系定理得4-2<x<4+2,即2<x <6.因此,本题的第三边应满足2<x<6,把各项代入不等式符合的即为答案.2,6,8都不符合不等式2<x<6,只有4符合不等式.选B.5.【答题】下列各数可能是一个三角形的边长的是().A. 1,3,5B. 3,4,5C. 2,2,4D.【答案】B【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.A、∵1+3<5,∴本组数不能构成三角形.故本选项错误;B、∵3+4>5,∴本组数能构成三角形.故本选项正确;C、∵2+2=4,∴本组数可以构成三角形.故本选项正确;D、∵,∴本组数不能构成三角形.故本选项错误;6.【答题】若a,b,c为△ABC的三边长,且满足a-4+(b-2)2=0,则c的值可以为()A. 5B. 6C. 7D. 8【答案】A【分析】根据非负数的性质和三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:∵∴a−4=0,a=4;b−2=0,b=2;则4−2<c<4+2,2<c<6,5符合条件;选A.7.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】D【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】解:A.5+5>5,能构成三角形;B.5+7>7,能构成三角形;C.5+12>13,能构成三角形;D.7+5=12,不能构成三角形.8.【答题】下列长度的四根木棒中,能与长为,的两根木棒围成一个三角形的是().A. B. C. D.【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】设第三边长为,则,即.选C.9.【答题】下列各组数不可能是一个三角形的边长的是().A. ,,B. ,,C. ,,D. ,,【答案】A【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】三角形中任意两边和需大于第三边,任意两边之差小于第三边,可知A选项:1+2=3,构不成三角形,选.10.【答题】以下列长度的线段为边,能组成三角形的是()A. ,,B. ,,C. ,,D. ,【答案】C【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】A、1+2=3,构不成三角形,不符合题意;B、6+8<15,构不成三角形,不符合题意;C、4+7>10,10-7<4,能构成三角形,符合题意;D、3+3<7,构不成三角形,不符合题意,选C.11.【答题】下列长度的三条线段能组成三角形的是()A. 3,4,8B. 2,5,3C. ,,5D. 5,5,10【答案】C【分析】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.【解答】选项A,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C,+>5,根据三角形的三边关系可知,能够组成三角形;选项D,5+5=10,根据三角形的三边关系可知,不能够组成三角形;选C.12.【答题】等腰三角形的周长为13cm,其中一边长为3cm.则该等腰三角形的底长为()A. 3cm或5cmB. 3cm或7cmC. 3cmD. 5cm【分析】根据三角形的三边关系进行判断,若任意两边之和大于第三边,则能组成三角形.【解答】①3cm是腰长时,底边=13﹣3×3=7cm,此时,三角形的三边分别为3cm、3cm、7cm,∵3+3=6<7,∴不能组成三角形;②3cm是底边时,腰长=(13﹣3)=5cm,此时,三角形的三边分别为5cm、5cm、3cm,能够组成三角形,∴等腰三角形的底长为3cm,选C.13.【答题】至少有两边相等的三角形是()A. 等边三角形B. 等腰三角形C. 等腰直角三角形D. 锐角三角形【答案】B【分析】本题考查了三角形的分类.本题属于易错题,同学们往往忽略了等边三角形是一特殊的等腰三角形,且等腰三角形也可以是锐角三角形、钝角三角形以及直角三角形.【解答】解:本题需要分类讨论:两边相等的三角形称为等腰三角形,该等腰三角形可以是等腰直角三角形,该等腰三角形有可能是锐角三角形,也有可能是钝角三角形;当有三边相等时,该三角形是等边三角形.等边三角形是一特殊的等腰三角形.14.【答题】图中三角形的个数是()A. 8个B. 9个C. 10个D. 11个【分析】本题考查了三角形,注意要不重不漏地找到所有三角形,一般从一边开始,依次进行.【解答】解:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.15.【答题】以下三条线段为边,能组成三角形的是()A. 1cm、2cm、3cmB. 2cm、2cm、4cmC. 3cm、4cm、5cmD. 4cm、8cm、2cm【答案】C【分析】本题考查三角形的三边关系:任何两边的和大于第三边;做本题题目的关键是直接判断较小的两条边的和与最长边的和的大小关系,如果前者大,说明这三条边能组成三角形,否则,不能组成三角形.【解答】解:根据三角形的三边关系,得:A项,1+2=3,不能组成;B项,2+2=4,不能组成;C项,3+4>5,能组成;D项,4+2=8,不能组成.选C.16.【答题】已知三角形的三边为4、5、x,则不可能是()A. 6B. 5C. 4D. 1【答案】D【分析】根据“三角形两边的和大于第三边”和“三角形两边的差小于第三边”可得第三条边的取值范围.【解答】解:根据三角形三边关系,可得,即,则x不能取1.17.【答题】若三角形的三边长分别为3,4,x-1,则x的取值范围是()A. 0<x<8B. 2<x<8C. 0<x<6D. 2<x<6【答案】B【分析】根据“三角形两边的和大于第三边”和“三角形两边的差小于第三边”可得第三条边的取值范围;当然,本题不要忘了第三条边长为(x-1).【解答】解:这里第三边长为x-1,根据三角形三边关系,可得,即,选B.18.【答题】如图,过A、B、C、D、E五个点中任意三点画三角形,(1)其中以AB为一边可以画出______个三角形;(2)其中以C为顶点可以画出______个三角形.【答案】3 6【分析】(1)根据以AB为一边,分别得出符合题意的三角形即可;(2)根据以C为顶点,分别得出符合题意的三角形即可.【解答】解:(1)其中以AB为一边可以画出3个三角形为:△ABE,△ABD,△ABC;(2)其中以C为顶点可以画出6个三角形为:△ABC,△BCD,△BCE,△ADC,△DEC,△ACE.故答案为:(1)3;(2)6.19.【答题】一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长______ cm.【答案】18【分析】本题考查了一元一次方程在三角形中的应用,解答本题的关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.【解答】解:设三角形的三边长为2x,3x,4x,由题意,得2x+3x+4x=81,解得x=9,则三角形的三边长分别为:18cm,27cm,36cm,∴,最长边比最短边长:36-18=18(cm).20.【答题】小华要从长度分别是5cm,6cm,11cm,16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是______ cm、______ cm、______ cm(按照从小到大的顺序填写).【答案】6 1116【分析】按顺序写出4种取法,然后根据三角形的三边关系再判断;判断是注意技巧,即符合“两条较短边长的和大于较大的边长”的就能组成三角形.【解答】解:从这四根小木棒取出三根有以下取法:①5cm,6cm,11cm;②5cm,6cm,16cm;③5cm,11cm,16cm;④6cm,11cm,16cm,一共有4种选法.其中,①5+6=11,不能;②5+6<16,不能;③5+11=16,不能;④6+11<16,能.综上,能摆成三角形的只有④.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(51)
章节测试题1.【答题】一个等腰但不等边的三角形,它的角平分线、高、中线的总条数为______条.【答案】7【分析】根据等腰三角形的性质进行分析即可得到答案.【解答】解:等腰但不等边的三角形底边上的角平分线、中线、高线三线重合成一条;腰上的三条线不重合,因而共有7条线,故答案为:72.【题文】如图,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为13cm,求AC的长.【答案】9m【分析】根据中线的定义知CD=BD.结合三角形周长公式知AC﹣AB=5cm;又AC+AB=13cm.易求AC的长度.【解答】解:∵AD是BC边上的中线,∴D为BC的中点,CD=BD.∵△ADC的周长﹣△ABD的周长=5cm.∴AC﹣AB=5cm.又∵AB+AC=13cm,∴AC=9cm.即AC的长度是9m.3.【题文】已知△ABC中,∠ABC=∠ACB,D为线段CB上一点(不与C,B重合),点E为射线CA上一点,∠ADE=∠AED,设∠BAD=α,∠CDE=β.(1)如图(1),①若∠BAC=42°,∠DAE=30°,则α=______,β=______.②若∠BAC=54°,∠DAE=36°,则α=______,β=______.③写出α与β的数量关系,并说明理由;(2)如图(2),当E点在CA的延长线上时,其它条件不变,请直接写出α与β的数量关系.【答案】(1)12°;6°;18°;9°;α=2β(2)α=2β﹣180°.【分析】(1)①先根据角的和与差求α的值,根据等腰三角形的两个底角相等及顶角为30°得:∠ADE=∠AED=75°,同理可得:∠ACB=∠B=69°,根据外角性质列式:75°+β=69°+12°,可得β的度数;②同理可求得:α=54°﹣36°=18°,β=9°;③设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,分别求出∠ADE和∠B,根据∠ADC=∠B+α列式,可得结论;(2)α=2β﹣180°,理由是:如图(2),设∠E=x°,则∠DAC=2x°,根据∠ADC=∠B+∠BAD,列式可得结论.【解答】解:(1)①∵∠DAE=30°,∴∠ADE+∠AED=150°,∴∠ADE=∠AED=75°,∵∠BAC=42°,∴α=42°﹣30°=12°,∴∠ACB=∠B==69°,∵∠ADC=∠B+α,∴75°+β=69°+12°,β=6°;故答案为:12°,6°;②∵∠DAE=36°,∴∠ADE+∠AED=144°,∴∠ADE=∠AED=72°,∵∠BAC=54°,∴α=54°﹣36°=18°,∴∠ACB=∠B==63°,∵∠ADC=∠B+α,∴72°+β=63°+18°,β=9°;故答案为:18°,9°;③α=2β,理由是:如图(1),设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β+∠ADE=α+∠ABC,β+=α+,∴α=2β.如图(2),设∠E=x°,则∠DAC=2x°,∴∠BAC=∠BAD+∠DAC=α+2x°,∴∠B=∠ACB=,∵∠ADC=∠B+∠BAD,∴β﹣x°=+α,∴α=2β﹣180°.4.【答题】如图,D,E,F分别是边BC,AD,AC上的中点,若S阴影的面积为3,则△ABC的面积是()A. 5B. 6C. 7D. 8【答案】D【分析】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.三角形的中线将三角形分成面积相等的两部分.【解答】∵为的中点,∴∵,分别是边,上的中点,∴,,,∴,∴阴影部分选.5.【答题】已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为()A. 2cmB. 3cmC. 4cmD. 6cm【答案】B【分析】本题考查了三角形的中线,熟记概念并求出两三角形周长的差等于AB-AC是解题的关键.【解答】解:∵AD是△ABC的中线,∴BD=DC,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.选B.6.【答题】如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是()A. ∠AOD+∠BOE=60°B. ∠AOD=∠EOCC. ∠BOE=2∠CODD. ∠DOE的度数不能确定【答案】A【分析】本题是对角平分线的性质的考查.然后根据角平分线定义得出所求角与已知角的关系转化求解.【解答】A、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=(∠BOC+∠AOC)=∠AOB=60°.故本选项叙述正确;B、∵OD是∠AOC的角平分线,∴∠AOD=∠AOC.又∵OC是∠AOB内部任意一条射线,∴∠AOC=∠EOC不一定成立.故本选项叙述错误;C、∵OC是∠AOB内部任意一条射线,∴∠BOE=∠AOC不一定成立,∴∠BOE=2∠COD不一定成立.故本选项叙述错误;D、∵OD、OE分别是∠AOC、∠BOC的平分线,∴∠DOE=(∠BOC+∠AOC)=∠AOB=60°.故本选项叙述错误;选A.7.【答题】已知∠BOC=60°,OF平分∠BOC. 若AO⊥BO,OE平分∠AOC,则∠EOF的度数是()A. 45°B. 15°C. 30°或60°D. 45°或15°【答案】A【分析】本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差,正确地进行分类讨论、准确画出图形是解题的关键.【解答】如图1,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°,∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC=×150°=75°,∠COF=∠BOC=×60°=30°,由角的和差,得∠EOF=∠COE-∠COF=75°-30°=45°;如图2,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB-∠BOC=30°,∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC=×30°=15°,∠COF=∠BOC=×60°=30°,由角的和差,得∠EOF=∠COE+∠COF=15°+30°=45°,选A.8.【答题】已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=则∠BOE的度数是()A. B. C. D.【答案】C【分析】本题考查了角的计算,正确运用角的平分线的定义是解答本题的关键.【解答】设∠DOE=x,则∠BOD=3x,∴∠AOD=180°-∠BOD=180°-3x.∵OC平分∠AOD,∴∠COD=∠AOD=(180°-3x)=90°-x.∵∠COE=∠COD+∠DOE=90°-x+x=90°-,由题意可得,90°-=m,解得x=180°-2m,即∠DOE=180°-2m,∴∠BOE=360°-4m,选C.9.【答题】如图,在中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,,,,则的面积是()A. 16B. 19C. 22D. 30【答案】D【分析】本题考查三角形的面积,解题关键在于由这些三角形的底边的比例关系来求面积【解答】三角形BDG和CDG中,BD=2DC.根据这两个三角形在BC边上的高相等,那么S△BDG=2S△GDC,因此S△GDC=4,同理S△AGE=S△GEC=3,S△BE C=S△BGC+S△GEC=8+4+3=15,∴三角形ABC的面积=2S△BEC=30.选D.10.【答题】如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,图中哪两个角不是互为余角()A. ∠AOD和∠BOEB. ∠AOD和∠COEC. ∠DOC和∠COE D. ∠AOC和∠BOC【答案】D【分析】本题考查了角平分线的性质,余角的判断.【解答】解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠AOD=∠DOC,∠COE=∠EOB,∵∠AOB=180°,∴∠DOC+∠COE=90°,∠AOD+∠BOE=90°,∠AOD+∠COE=90°,选D.11.【答题】下列说法错误的是()A. 三角形的角平分线把三角形分成面积相等的两部分B. 三角形的三条中线相交于一点C. 直角三角形的三条高交于三角形的直角顶点处D. 钝角三角形的三条高所在直线的交点在三角形的外部【答案】A【分析】掌握三角形的中线、角平分线、高的概念.以及三角形的中线、角平分线、高的交点的位置.【解答】A、三角形的中线把三角形的面积分成相等的两部分,错误;B、三角形的三条中线,角平分线都相交于一点,正确;C、直角三角形三条高交于直角顶点,正确;D、钝角三角形的三条高所在直线的交点在三角形的外部,正确.选A.12.【答题】三角形的三条高所在的直线相交于一点,此点在()A. 三角形的内部B. 三角形的外部C. 三角形的边上D. 不能确定【答案】D【分析】本题考查了三角形的高线,熟记三类三角形的高线的交点的位置是解题的关键.【解答】锐角三角形三条高所在直线的交点在三角形内部,直角三角形三条高所在直线的交点在直角顶点,钝角三角形三条高所在直线的交点在三角形外部,选B.13.【答题】如图,已知D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长为()A. 6B. 8C. 10D. 12【答案】B【分析】本题考查了三角形的重心的性质和应用,解题的关键是要明确:三角形的重心是三角形三边中线的交点.【解答】∵D是△ABC的重心,∴BE是AC边的中线,E是AC的中点;又∵AE=4,∴AC=8.选B.14.【答题】如图,AD是△ABC的角平分线,AE是△ABD的角平分线,若∠BAC=76°,则∠EAD的度数是()A. 19°B. 20°C. 18°D. 28°【答案】A【分析】本题考查了三角形的角平分线.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.【解答】∵AD是△ABC的角平分线∠BAC=76°,∴∠DAC=∠DAB=38°,∵AE是△ABD的角平分线,∴∠BAE=19°,∴∠EAD=∠BAD-∠BAE=19°.选A.15.【答题】已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是()A. 22°B. 46°C. 68°D. 78°【答案】C【分析】本题考查了垂直的定义,角平分线的定义.【解答】解:∵BO⊥AO,∴∠AOB=90°,∵OB平分∠COD,∴∠BOC=∠BOD=22°,∴∠AOC=90°-22°=68°.选C.16.【答题】如图,△ABC中,点D在BC上,且BD=2DC,点E是AC中点,若△CDE面积为1,则△ABC的面积为______.【答案】6【分析】考查了三角形的面积,熟记等底同高、同底等高三角形面积间的数量关系即可解答.【解答】∵△CDE面积为1,点E是AC中点,∴S△ADC=2S△CDE=2.又∵BD=2DC,∴S△ABC=3S△ADC=6.故答案是:6.17.【答题】如图,在中,已知,,分别为,,的中点,且,则图中阴影部分的面积等于______.【答案】2【分析】本题考查了三角形中线的性质,熟知三角形的中线将三角形分成面积相等的两部分是解题关键.【解答】解:∵E是AD的中点,∴S△BDE=S△ABD,S△CDE=S△ACD,∴S△BDE+S△CDE=S△ABC=(cm2),即S△BCE=4(cm2).∵F为CE中点,∴S△BEF=S△BCE=(cm2).故答案为2.18.【答题】已知:分别是的高,角平分线,,则的度数为______度.【答案】20或50【分析】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.【解答】解:如图,当△ABC是钝角三角形时,∵AD⊥BD,∴∠ADC=90°,∵∠ACD=60°,∠ACD=∠B+∠BAC,∠B=20°,∴∠BAC=∠ACD-∠B=40°,∠CAD=90°-∠ACD=90°-60°=30°∵AE平分∠BAC,∴∠BAE=∠CAE=∠BAC=20°,∴∠EAD=∠CAD+∠CAE=30°+20°=50°.如图,当△ABC是锐角三角形时,∵∠C=60°,∠B=20°,∴∠BAC=100°,∠BAD==90°-20°=70°,∵AE平分∠BAC,∴∠BAE=∠BAC=50°,∴∠EAD=∠DAB-∠BAE=70°-50°=20°.,综上所述:∠EAD=50°或20°.故答案为:50或20.19.【答题】如图,在△ABC中,若D、E、F分别是AB、AC、CD边上的中点,S△DEF=4,则S△ABC=______【答案】32【分析】本题考查了三角形的面积,正确的识别图形是解题的关键.【解答】解:∵F是CD边上的中点,S△DEF=4,∴S△DEC=2S△DEF=8,∵E是AC边上的中点,∴S△ADC=2S△DEC=16,∵D是AB边上的中点,∴S△ABC=2S△ACD=32.20.【答题】在△ABC中,AD为BC边上的高,∠B=50°,∠CAD=15°,则∠BAC=______.【答案】55°或25°【分析】本题考查了三角形内角和定理,解决问题的关键是进行分类讨论,解题时注意:三角形的内角和为180°.【解答】①如图,当AD在△ABC的内部时,∵AD⊥BC,∠B=50°,∴∠BAD=40°,∴∠BAC=∠BAD+∠CAD=40°+15°=55°;②如图,当AD在△ABC的外部时,∵AD⊥BC,∠B=50°,∴∠BAD=40°,∴∠BAC=∠BAD-∠CAD=40°-15°=25°;故答案为:25°或55°。
鲁教版(五四制)数学七年级上册第一章《三角形》3.1认识三角形同步练习(含答案)
初中数学鲁教版七年级上册第一章《三角形》3.1认识三角形学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.给出下列长度的三条线段,能组成三角形的是()A.3cm,4cm,5cmB.8cm,7cm,15cmC.13cm,12cm,25 cmD.5cm,5cm,11cm2.若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cmB.3cmC.6cmD.9cm3.下列长度的三条线段能组成三角形的是()A.2,2,6B.3,4,8C.4,6,10D.5,6,104.在△ABC中,AB=1,BC=,下列选项中,可以作为AC长度的是()A.2B.4C.5D.65.如果三角形的两边长分别为5和7,第三边长为偶数,那么这个三角形的周长可以是()A.15B.16C.19D.266.若三角形的两边a、b的长分别为3和5,则其第三边c的取值范围是()A.2<c<5B.3<c<8C.2<c<8D.2≤c≤87.如图,一个三角形只剩下一个角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能8.下列说法中,正确的个数有()①三角形具有稳定性;②如果两个角相等,那么这两个角是对顶角;③三角形的角平分线是射线;④直线外一点到这条直线的垂线段叫做这点到直线的距离;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内;A.2B.3C.4D.59.下列四个图形中,线段BE是△ABC的高的图形是()A.B. C. D.10.已知三角形的三边长分别为2、x、3,则x可能是()A.1B.4C.5D.6二、填空题(本大题共5小题,共15分)11.若三角形的三边长分别为3,x,5,请写出x可能的整数值______。
(只要写一个)12.△ABC中三边长分别为a,b,c,已知a=5,b=8,则第三边c的取值范围是______。
鲁教版五四制七年级数学上册三角形综合测评
初中数学试卷第一章三角形综合测评时间:分钟满分:120分班级:姓名:得分:一、选择题(每小题4分,共32分)1.已知三角形的两边长分别为3cm和5cm,则此三角形的第三边长可能是()A.1cmB.2cmC.7cmD.10cm2.在△ABC中,若∠A+∠B<∠C,则三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.下列说法不正确的是()A.三角形的三条中线交于三角形内一点B.三角形的三条角平分线交于三角形内一点C.三角形的三条高交于三角形内一点D.三角形的中线、角平分线和高都是线段4.在同一平面内有4个点,且任意三点都不在同一条直线上,以其中三点为三角形的顶点可作出所有三角形的个数为()A.4B.6C.7D.85.已知△ABC≌△DEF,AB=4cm,AC=6cm,DE+EF=9cm,则EF的长为()A.3cmB.4cmC.5cmD.6cm6.如图1,已知BD平分∠ABC,DE⊥AB,DF⊥BC,则下列结论不正确的是()A.AD=CDB.DE=DFC.BE=BFD.∠BDE=∠BDF7.如图2,小聪想作∠MAN的平分线,但手边仅有一条细线,于是他用细线量取AB=AC,然后截取一段长为BC的细线,将截得的细线对折,再在线段BC上量取BD,使BD等于对折后的细线长,过A,D作射线AD,则射线AD就是∠MAN的平分线,很显然,小聪是通过△ABD≌△ACD得出的结论,则△ABD≌△ACD的条件是()A.SSSB.SASC.ASAD.AAS8.如图3,在四边形ABCD中,连接AC,BD交于点E,若AB=AD,CB=CD,则图中全等三角形共有()A.1对B.2对C.3对D.4对二、填空题(每题4分,共32分)9.图4是活动挂架,挂架不做成三角形的理由是____________.10.如图5,△ABC的高AD和BE交于点F,若∠C=70°,则∠AFB=_______°.11.若三角形三个内角的度数比为3:5:10,则这个三角形中最大的角的度数为_______°,这个三角形是________三角形.12.如图6,点B,E,C,F在同一条直线上,BE=CF,AC∥DF,要使△ABC≌△DEF,则还需要添加一个条件____________.13.如图7,△ABC≌△ADE,若∠BAD=40°,则∠CAE的度数为________°.14.如图8所示,要测量池塘的宽AB,亮亮在地面上确定一条直线AC,使AC⊥AB,连接BC,作∠ACD=∠ACB,交BA的延长线于点D,此时,亮亮测得AD=30m,AC=40m,CD=50m,则池塘的宽AB为________m.15.若等腰三角形的底边长为10cm,腰长为偶数,则满足条件的腰长的最小值为____cm.16.如图9,在△ABC中,∠C=90°,∠B=30°,AD平分∠BAC,DE⊥AB于E,有下列结论:①DE=DC;②∠BDE=∠ADC;③AB=2AC;④图中共有两对全等三角形.其中正确的是:____________(填序号即可).三、解答题(共56分)17.(8分)在△ABC中,∠B比∠A的4倍少10°,∠C比∠A的4倍多10°,你知道△ABC是什么三角形吗?请你简单说明理由.18.(9分)如图10,在△ABC中,D为AC的中点,F为AB上任意一点,CE∥AB,CE与直线DF交于点E,问:△ADF与△CDE全等吗?请说明理由.19.(9分)如图11,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.(1)求△ABC的周长;(2)求△ACE的面积.20.(9分)如图12,已知线段AB,利用尺规作图,作出一个以线段AB为边的等边三角形ABC.(保留作图痕迹,不写作法)21.(9分)仔细阅读下面的解题过程,并完成填空:如图13,AD为△ABC的中线,已知AD=4cm,试确定AB+AC的取值范围.解:延长AD到E,使DE = AD,连接BE.因为AD为△ABC的中线,所以BD=CD.在△ACD和△EBD中,因为AD=DE,∠ADC=∠EDB,CD=BD,所以△ACD≌△EBD(__________).所以BE=AC(_____________________).因为AB+BE>AE(_____________________),所以AB+AC>AE.因为AE=2AD=8cm,所以AB+AC>_______cm.22.(12分)如图14,已知△ABC≌△BAD,AD与BC交于点E,试说明△ABE是等腰三角形.参考答案一、1.C 2. C 3.C 4.A 5.C 6.A 7.A 8.C二、9.三角形具有稳定性 10.110 11.100 钝角 12.答案不唯一,如AC=DF等 13.4014.30 15.6 16.①②③三、17.解:直角三角形.理由如下:设∠A=x,则∠B=4x-10,∠C=4x+10,由三角形内角和为180°,得x+4x-10+4x+10=180. 解方程,得x=20.所以4x+10=90.所以∠C=90°.所以△ABC 是直角三角形.18.解:△ADF ≌△CDE.理由如下:因为CE ∥AB ,所以∠A=∠DCE.因为D 为AC 的中点,所以AD=CD.又因为∠ADF=∠CDE ,所以△ADF ≌△CDE.19.解:(1)因为△ABC ≌△CDE ,所以AC=CE=10.所以△ABC 的周长为AB+BC+AC=6+8+10=24.(2)因为△ABC ≌△CDE ,所以∠ACB=∠CED ,AC=CE=10.因为∠CED+∠ECD=90°,所以∠ACB+∠ECD=90°.所以∠ACE=90°.所以S △ACE =21AC ·CE=21×10×10=50.20. 解:如图所示:21. 解:依次填SAS 全等三角形对应边相等三角形两边之和大于第三边 822.解:因为△ABC ≌△BAD ,所以∠C=∠D,AC=BD.又因为∠AEC=∠BED ,所以△AEC ≌△BED.所以AE=BE.所以△ABE 是等腰三角形.。
初中数学鲁教版(五四制)七年级上册第一章 三角形1 认识三角形-章节测试习题(50)
章节测试题1.【答题】已知AD是△ABC的中线,且△ABD比△ACD的周长大3cm,则AB与AC的差为()A. 2cmB. 3cmC. 4cmD. 6cm【答案】B【分析】根据三角形中线的定义可得BD=CD,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AD是△ABC的中线,∴BD=DC,∴△ABD与△ACD的周长之差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵△ABD比△ACD的周长大3cm,∴AB与AC的差为3cm.选B.2.【答题】钝角三角形的高线在三角形外的数目有()A. 3B. 2C. 1D. 0【答案】B【分析】本题考查了三角形的高.【解答】作出钝角三角形的三条高线即可得出结果.钝角三角形有3条高,其中两条在外部,一条在内部.选B.3.【答题】三角形的三条中线的交点的位置为()A. 一定在三角形内B. 一定在三角形外C. 可能在三角形内,也可能在三角形外D. 可能在三角形的一条边上【答案】A【分析】根据三角形的中线的定义解答.【解答】解:三角形的三条中线的交点一定在三角形内.选A.4.【答题】三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点【答案】A【分析】对于一个质地均匀的三角形,三条边上中线的交点就是其重心.【解答】解:三角形的重心是三条中线的交点,故答案为:A.5.【答题】如图,△ABC中BC边上的高为()A. AEB. BFC. ADD. CF 【答案】A【分析】根据三角形的高线的定义解答.【解答】根据高的定义,AE为△ABC中BC边上的高.故答案为:A.6.【答题】下列说法正确的是()A. 三角形的中线就是过顶点平分对边的直线B. 三角形的三条角平分线的交点有可能在三角形外部C. 三角形的三条高线的交点必在三角形内部D. 以上说法都错【答案】D【分析】本题考查了三角形的角平分线、中线和高.【解答】三角形的中线就是过顶点和对边的中点的线段,故A不正确.三角形的三条角平分线的交点有可能在三角形内部,故B不正确.锐角三角形的三条高线的交点在内部;直角三角形的三条高线的交点在顶点上;钝角三角形的三条高线的交点在外部.故C不正确.选D.7.【答题】三角形的角平分线是()A. 射线B. 直线C. 线段D. 线段或射线【答案】C【分析】本题考查了三角形的角平分线、中线和高.【解答】三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线.据此得出.三角形的角平分线是线段,选C.8.【答题】三角形一边上的中线把原三角形分成两个()A. 形状相同的三角形B. 面积相等的三角形C. 直角三角形D. 周长相等的三角形【答案】B【分析】根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.【解答】解:三角形一边上的中线把原三角形分成两个面积相等的三角形.选B.9.【答题】如图,在△ABC中,BD,CE分别为AC,AB边上的中线,BD⊥CE,若BD=4,CE=6,则△ABC的面积为()A. 12B. 24C. 16D. 32【答案】C【分析】根据题意得到点O是△ABC的重心,得到OC=CE=4,根据三角形的面积公式求△BDC的面积,根据三角形的中线的性质计算即可.【解答】解:∵BD,CE分别为AC,AB边上的中线,∴点O是△ABC的重心,∴OC=CE=4,∴△BDC的面积=×BD×OC=8,∵BD为AC边上的中线,∴△ABC的面积=2×△BDC的面积=16,选C.10.【答题】下列说法错误的是().A. 锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B. 钝角三角形有两条高线在三角形外部C. 直角三角形只有一条高线D. 任意三角形都有三条高线、三条中线、三条角平分线【答案】C【分析】根据三角形的高线、中线、角平分线的性质逐一判断即可.【解答】解:A、正确,锐角三角形的三条高线、三条中线、三条角平分线分别交于一点;B、正确,钝角三角形有两条高线在三角形的外部;C、错误,直角三角形也有三条高线;D、正确.故答案为:C11.【答题】在下图中,正确画出AC边上高的是()A. B.C. D.【答案】C【分析】根据三角形的高的意义可知,AC边上的高是过B作直线AC的垂线,垂足落在AC所在直线上.【解答】解:AC边上的高是过B作直线AC的垂线,直角落在AC边上,只有C 满足条件.故答案为:C.12.【答题】如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】B【分析】易得∠BAD=∠CAD,AE=CE,根据这两个条件判断所给选项是否正确即可.【解答】∵△ABC的角平分线AD、中线BE相交于点O,∴∠BAD=∠CAD,AE=CE,①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,故①正确;②AO≠OD,∴BO不是△ABD的中线,故②错误;③在△ADC中,AE=CE,DE是△ADC的中线,故③正确;④∠ADE不一定等于∠EDC,那么ED不一定是△EBC的角平分线,故④错误;正确的有2个选项.选B.13.【答题】如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A. AC是△ABC的高B. DE是△BCD的高C. DE是△ABE 的高D. AD是△ACD的高【答案】C【分析】根据三角形的高的概念判断即可;选项A的说法符合高的概念,选项B 的说法符合高的概念,C选项中,DE是△BDC、△BDE、△EDC的高,不是△ABE的高,选项D的说法符合高的概念.【解答】解:选项A的说法符合高的概念,故正确;选项B的说法符合高的概念,故正确;C选项中,DE是△BDC、△BDE、△EDC的高,故错误;选项D的说法符合高的概念,故正确.故答案为:C.14.【答题】三角形的角平分线、中线和高()A. 都是线段B. 都是射线C. 都是直线D. 不都是线段【答案】A【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.【解答】解:三角形的角平分线、中线和高都是线段.选A15.【答题】如图,在△ABC中,CD⊥AB于点D,则CD是△ABC()A. BC边上的高B. AB边上的高C. AC边上的高D. 以上都不对【答案】B【分析】本题考查了三角形的高.【解答】根据三角形的高的概念可得,CD是△ABC的AB边上的高.选B.16.【答题】如图,下面的四个图形中,线段BE是△ABC的高的图是()A. B.C. D.【答案】A【分析】根据三角形的高的定义即可判断.【解答】解:三角形的高是过其中一个顶点先对边所在直线作垂线,顶点与垂足的连线段就是三角形的高.选A.17.【答题】AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,△ABD与△ACD的周长之差为______cm.【答案】2【分析】此题考查三角形的中位线的性质.此题的关键是将求△ABD与△ACD的周长之差,转化为求AB与AC的差.【解答】∵AD是边BC上的中线,∴BD=CD.∵△ABD的周长为:AB+BD+AD,△ACD的周长为:AC+CD+AD,∴△ABD与△ACD的周长之差为:(AB+BD+AD)-(AC+CD+AD)=AB-AC,又∵AB=5cm,AC=3cm,∴AB-AC=2(cm).即△ABD与△ACD的周长之差为2cm.18.【答题】如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP 平分∠ACB,则∠BPC的大小是______度.【答案】115【分析】直接根据角平分线平分对应角,三角形内角和为180度进行计算.【解答】BP平分∠ABC,CP平分∠ACB,故答案为115.19.【答题】如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC 于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有______.【答案】③④【分析】本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.【解答】①根据三角形的角平分线的概念,知AD是△ABC的角平分线,故此说法不正确;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法不正确;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.20.【答题】如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=______.【答案】50°【分析】由AE平分∠BAC,可得角相等,由∠1=30°,∠2=20°,可求得∠EAD的度数,在直角三角形ABD在利用两锐角互余可求得答案.【解答】解:∵AE平分∠BAC,∴∠1=∠EAD+∠2,∴∠EAD=∠1﹣∠2=30°﹣20°=10°,Rt△ABD中,∠B=90°﹣∠BAD=90°﹣30°﹣10°=50°.故答案为50°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认识三角形3测试题
1.下列长度的三条线段能组成三角形的是().
A.1,1,2 B.3,4,5
C.1,4,6 D.2,3,7
2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为().A.2 B.3 C.5 D.13
3.如图,为估计池塘岸边A,B两点的距离,小方在池塘的一侧选取一点O,测得OA=15 m,OB=10 m,则A,B间的距离不可能是( ).
A.5 m B.10 m C.15 m D.20 m
4.现有四根木棒,长度分别为 4 cm,6 cm,8 cm,10 cm,从中任取三根木棒,能组成三角形的个数为().
A.1 B.2 C.3 D.4
5.如图,以AB为边的三角形有 3 个,以∠C为内角的三角形有______个.
6.一个三角形中,有两条边相等,一边长为2 cm,一边长为6 cm,则它的周长是______cm. 7.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为______. 8.如果等腰三角形的一边长是5 cm,另一边长是9 cm,求这个等腰三角形的周长.
9.某市在“建设新农村,塑造新风貌”的活动中,把农村道路硬化作为重点内容.为节约资金,现把四根长分别为30 cm,50 cm,70 cm,100 cm的铝材剩余料,选其中三根焊成三角形混凝土模型,准备倒灌成形状不同的小水泥块用于铺乡间泥泞小路,问可以焊成几种模子?请说明理由.10.已知P是△ABC内任意一点.
(1)如图甲,试判断PB+PC<BA+AC是否成立?若成立,请说明理由.
(2)如图乙,若连接PA,试比较PA+PB+PC与AB+AC+BC的大小关系,并说明理由.
参考答案
1.答案:B
2.答案:B
3.答案:A
4.答案:C
5.答案:2
6.答案:14
7.答案:2
8.解:当腰长为5 cm时,三角形的三边长为5 cm,5 cm,9 cm,符合三角形的三边关系,所以这个等腰三角形的周长为5+5+9=19(cm);
当腰长为9 cm时,三角形的三边长为9 cm,9 cm,5 cm,符合三角形的三边关系,所以这个等腰三角形的周长为5+9+9=23(cm).
所以这个等腰三角形的周长为19 cm或23 cm.
9.解:根据三角形的任意两边的和大于第三边,满足条件的有:①30 cm,50 cm,70 cm;
②50 cm,70 cm,100 cm,所以有两种模子.
10.解:(1)成立.延长BP交AC于点D.
在△ABD中,AB+AD>BD;在△DPC中,DP+CD>PC.
两式相加,则有PB+PC<BA+AC成立.
(2)PA+PB+PC<AB+BC+AC.
理由:由(1)可知,PB+PA<CB+CA,PA+PC<BA+BC,PB+PC<AB+AC,
三式相加,得PA+PB+PC<AB+BC+AC.
初中数学试卷。