第4章模糊函数PPT课件

合集下载

模糊控制ppt课件

模糊控制ppt课件

可编辑课件PPT
23
5. 建立模糊控制表 模糊控制规则可采用模糊规则表4-5来描述,共
49条模糊规则,各个模糊语句之间是或的关系,由第 一条语句所确定的控制规则可以计算出u1。同理,可 以由其余各条语句分别求出控制量u2,…,u49,则控制 量为模糊集合U可表示为
uu1u2 u49
可编辑课件PPT
规则模型化,然后运用推理便可对PID参数实现最佳
调整。
可编辑课件PPT
32
由于操作者经验不易精确描述,控制过程中各种 信号量以及评价指标不易定量表示,所以人们运用 模糊数学的基本理论和方法,把规则的条件、操作 用模糊集表示,并把这些模糊控制规则以及有关信 息(如初始PID参数等)作为知识存入计算机知识库中 ,然后计算机根据控制系统的实际响应情况,运用 模糊推理,即可自动实现对PID参数的最佳调整,这 就是模糊自适应PID控制,其结构如图4-15所示。
可编辑课件PPT
31
随着计算机技术的发展,人们利用人工智能的
方法将操作人员的调整经验作为知识存入计算机中
,根据现场实际情况,计算机能自动调整PID参数,
这样就出现了智能PID控制器。这种控制器把古典的
PID控制与先进的专家系统相结合,实现系统的最佳
控制。这种控制必须精确地确定对象模型,首先将
操作人员(专家)长期实践积累的经验知识用控制
糊控制的维数。
可编辑课件PPT
10
(1)一维模糊控制器 如图所示,一维模糊控制器的 输入变量往往选择为受控量和输入给定的偏差量E。由 于仅仅采用偏差值,很难反映过程的动态特性品质, 因此,所能获得的系统动态性能是不能令人满意的。 这种一维模糊控制器往往被用于一阶被控对象。
可编辑课件PPT

模糊数学 ppt课件

模糊数学 ppt课件


Ac Bc ((1 A(x)) (1 B(x))) 1
xR
由格贴近度公式,得
(2 1 )2
N( A, B) e 12
模糊数学
xR
xR
可见,内积 A B 是 A(x)与 B(x)相等时的值,这时,x=x*.故令
A(x)=B(x),求 x*,
即从
( xa1 )2
( xa2 )2
e 1 e 2
求得
x1
1 2 1
21 2
,
x2
பைடு நூலகம்
21 2
1 2 1
其中 x2 不是其最大值点,故选 x*=x1.于是
(
2
1
)2
A B A(x1) e 21
当 U 为无限论域时, A B (A(u) B(u)) uU
这里“V”表示取上确界。 注,2.1 节中的海明贴近度、欧几里得贴近度、黎曼贴近度 和本节的格贴近度这些贴近度很难比较,只有在应用时加以 选择。
模糊数学
例 1 设论域 R 为实数域,F 集的隶属函数为
( xa1 )2
A(x) e 1 ,
模糊数学
根据引理 1 和格贴近度的定义,立即得到:
定理 1 设 A, B F(U ) ,则 (A, B) (A B) (A B)c, 是 F 集 A,B 的贴近度,叫做 A、B 的格贴近度。记为
N1(A, B) (A B) (A B)c
n
式中,当 U 为有限论域时, A B (A(ui ) B(ui )) i 1
模糊数学
由性质发现,给定F集A,让F集B靠近A, 会使内积增大而外积减少。即,当内积较 大且外积较小时,A与B比较贴近。
所以,以内外积相结合的“格贴近度” 来刻划两个F集的贴近程度。

第四章计算智能(2)-模糊推理1

第四章计算智能(2)-模糊推理1
模糊计算和模糊推理
经典二值(布尔)逻辑



在经典二值(布尔)逻辑体系中,所有的分类 都被假定为有明确的边界;(突变) 任一被讨论的对象,要么属于这一类,要么不 属于这一类; 一个命题不是真即是假,不存在亦真亦假或非 真非伪的情况。(确定)
1
天气冷热
雨的大小
风的强弱
人的胖瘦
年龄大小
个子高低
2
模糊数学
•模糊概念 模糊概念:从属于该概念到不属于该概念之间 无明显分界线 年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨。 模糊数学就是用数学方法研究模糊现象。
3
模糊数学的产生与基本思想
•产生 1965年,L.A. Zadeh(扎德) 发表了文章《模糊集 》
5
IEEE 系列杂志 主要杂志25种,涉及模糊内容20,000余种 • 国际会议 IFSA (Int. Fuzzy Systems Association) EUFIT、NAFIP、Fuzzy-IEEE、IPMU • 涉及学科 模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支 分类、识别、评判、预测、控制、排序、选择;
并以此数作为 R1°R2 第i行第j列的元素。
R2=
0.2 0.4 0.6
0.8 0.6 0.4
求 R1°R2
42
模糊推理
模糊命题 模糊概念 1 张三是一个年轻人。 2 李四的身高为1.75m左右。模糊数据 3 他考上大学的可能性在60%左右。 对相应事件发生 的可能性或确信 4 明天八成是个好天气。 程度作出判断。 5 今年冬天不会太冷的可能性很大。
33
模糊二元关 系R是以 U×V为论域 的一个模糊 子集,序偶 (u,v)的隶属 度为uR(u,v)

模糊数学ppt课件

模糊数学ppt课件

1 2
,则有rij'
பைடு நூலகம்[0,1]
。也可以
用平移—极差变换将其压缩到[0,1]上,从而得到模糊相似矩阵
R (rij )nm
(2)绝对值指数法. 令
m
rij exp{ xik x jk }(i, j 1, 2, , n) k 1
则 R (rij )nm
(3)海明距离法. 令
rij
1
d (xi , x j )
(6)主观评分法:设有N个专家组成专家组,让每一位专家对
所研究的对象 x i 与 x j 相似程度给出评价,并对自己的自信度
作出评估。如果第k位专家 Pk 关于对象 x i与 x j 的相似度评价
为 rij (k ),对自己的自信度评估为aij (k ) (i, j 1,2,, n),则相关 系数定义为
)2
(i, j 1,2,, n)
其中E为使得所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
(5)切比雪夫距离法. 令
rij
d (xi ,
1 xj)
Q
d
m
k 1
( xi xik
,
x
j ), x jk
(i, j 1,2,, n)
其中Q为使所有 rij [0,1](i, j 1, 2, , n) 的确定常数.则 R (rij )nm
第三步. 聚类 所谓模糊聚类方法是根据模糊等价矩阵将所研究的对象进
行分类的方法。对于不同的置信水平 [0,1] ,可以得到不同 的分类结果,从而形成动态聚类图。 (一)传递闭包法
通常所建立的模糊矩阵R 只是一个模糊相似矩阵,即R 不 一定是模糊等价矩阵。为此,首先需要由R 来构造一个模糊等

模糊数学方法_数学建模ppt课件

模糊数学方法_数学建模ppt课件
相同 • 传递性:如果a和b的关系隶属度大于等于ⅰ,b和
c的关系隶属度大于等于ⅰ,那么a 和c的关系隶属度也大于等于ⅰ
传递性的判断
模糊数学应用
• 模糊聚类 • 模糊综合评判 • 模糊预测 • 模糊层次分析法 • 模糊推理 • 模糊控制 • 模糊约束
模糊聚类
模糊聚类
模糊综合评判
模糊预测
• 元素指标评价向量的距离或相似度
模糊关系
• 定义5 从集合A到集合B的一个模糊关系是指AXB 的一个模糊子集. 特别地
• 定义6 AXA的一个模糊子集称为A上的一个二元模 糊关系.
模糊关系的运算
模糊关系的运算
模糊关系的截集
• 模糊关系的a截集为一个经典关系. • 将模糊关系当成模糊子集来理解,其截集定义可
由模糊子集的定义来刻画. • 通过矩阵理解,a截集表示将矩阵中元素大于等于
n
模糊集合的相似度
• 用1减去相对距离,则可以得到相似度的概念. • 相似度,也可以理解为贴近度.有多种理论模型.
【0,1】区间上的算子
• [0,1]区间上的一个二元运算称为算子. • 这里的二元运算是广义的二元运算.例如常规乘法
运算,取大,取小,加法运算与1的取小复合: Min(a+b,1). • 重要的有两类:三角模,像乘法运算,取小运算; • 三角余模:像取大, Min(a+b,1)等. • 同学们可以查其它的算子
a的数变为1,其余的变为0.
模糊关系的合成
• 一个从X到Y的模糊关系R和一个从Y到Z的关系Q 合成为一个从X到Z的模糊关系Q.R,合成规则为 将常规矩阵乘法运算中的加法用取大,乘法用取 小代替.
论域X上的模糊关系的三大性质
• 自反性:自身和自身的关系隶属度为1 • 对称性: a和b的关系隶属度与b 和a的关系隶属度

模煳控制第四章 模糊控制器设计

模煳控制第四章 模糊控制器设计
整理ppt
4. 模糊PID控制器 PID控制器对不同的控制对象要用不同的PID参
数,而且调整不方便,抗干扰能力差,超调量 差。 模糊控制器是一种语言控制,不依赖被控对象 的数学模型,设计方法简单、易于实现。能够 直接从操作者的经验归纳、优化得到,且适应 能力强、鲁棒性好。
整理ppt
模糊控制也有其局限性和不足,就是它的 控制作用只能按档处理,是一种非线性控 制,控制精度不高,存在静态余差,一般 在语言变量偏差趋于零时有振荡。
整理ppt
2. 模糊自调整控制器 模糊控制器性能的好坏直接影响到模糊控
制系统的控制特性,而模糊控制器的性能 又取决于控制规则的完善与否。 如果在简单模糊控制器的输入输出关系中 加入修正因子,便能对控制规则进行自动 调整,从而可对不同的被控对象获得相对 满意的控制效果。
整理ppt
在简单模糊控制器中,如果将误差e、误 差变化率Δe及控制量u的关系描述为:
整理ppt
在模糊推理机中,模糊推理决策逻辑是核 心,它能模仿人的模糊概念和运用模糊蕴 涵运算以及模糊逻辑推理规则对模糊控制 作用的推理进行决策。
整理ppt
(3) 解模糊接口(Defuzzification) 通过模糊推理得出的模糊输出量不能直接
去控制执行机构,在这确定的输出范围中, 还必须要确定一个最具有代表性的值作为 真正的输出控制量,这就是所谓解模糊判 决。 完成这部分功能的模块就称作解模糊接口, 它的主要功能包括:
整理ppt
4.1 模糊控制器的基本结构及主要类 型
4.1.1 模糊控制器的基本结构
模糊控制的基础是模糊集合理论和模糊逻 辑,是用模糊逻辑来模仿人的思维对那些 非线性、时变的复杂系统以及无法建立数 学模型的系统实现控制的。

模糊数学 大连海事大学 于东老师 第四章

模糊数学  大连海事大学  于东老师 第四章

模糊矩阵的运算 定义2 设Mmn 表示m行n列的模糊矩阵 R=(rij )Mmn , S=(sij )Mmn ,规定:
相等 包含 并 交 补(余) R =S rij =sij , R S rij sij , R S =(rij sij ) Mmn , R S =(rij sij ) Mmn , RC=(1-rij ) Mmn ,
0.6 0.9 0.8 1 0.2 0.7 S 例2 设 R 0.4 0.5 0.1 0.8 0.1 0.3 1 0.6 0.2 0.9 0.7 0.8 则 RS 0.8 0.4 0.1 0.5 0.3 0.1
• • • •
客观事物之间的界限往往不清晰,多具有模糊性 如:天气阴与晴转多云之间就没有绝对的界限 传统的基于数理统计原理的聚类分析方法遇到困难 利用模糊数学手段描述和处理分类中的模糊性模 糊聚类分析方法 • 聚类分析还可以用来进行分析和预测 • 如:天气预报中,将历史上的天气形势作为样本先 进行分类,对于将来预报的天气用聚类方法判别它 属于历史上的哪一类天气,从而有助于更好地做出 预报。
1 0.9 0.9 1 0.8 0.5 R (u1 , u1 ) (u 2 , u1 ) (u3 , u1 ) (u 2 , u 2 ) (u3 , u 2 ) (u3 , u3 )
其中rij=R (ui, uj) 表示ui对uj的信任程度。
例3 设U和V是由实数构成的论域,考虑模糊关系 “变量x接近于变量y”。取模糊关系的隶属函数为:
(2)把G1看做新样本,并取样本x1与x2 的指标平均值 1.5看成样本G1的指标。 (3)计算G1 , x3, x4, x5之间的距离,求得结果是x3与 x4 之间的距离1.5为最小。将x3与x4 归为一类,并记为 G2。 (4)把G2看做新样本,求G2中样本x3与x4 的指标平均 值5.25,作为样本G2的指标。 (5)再计算样本G1,G2, x5之间的距离,求得结果以G2 与x5间距离2.5为最小。将样本G2与x5归为一类并记 为G3。 (6)将G1与G3归为一类记为G5,至此分类结束。

模糊数学第四章

模糊数学第四章

经过变换后,每个变量的均值为0,标准差为1, 且消除了量纲的影响。但不一定在[0,1]上。
模糊聚类分析的步骤一
平移-极差变换(变换至0-1区间):
x '' ik
x 'ik min{x 'ik }
1i n
max{x 'ik } min{x 'ik }
1i n 1i n
(k 1,..., m)
R0.5
1 0 1 1 1
0 1 1 1 1 0 0 1 0 1 0 1
0 0 1 1 1 1 1 1
R0.4
1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2、距离法:
绝对值倒数法、绝对值指数法、绝对值减数法、海明 距离法、欧式距离法、切比雪夫距离法。
3、其它方法:主观评分法
模糊聚类分析的步骤二
1、相似系数法: (1)数量积法
1 m rij 1 xik x jk M k 1
i j i j
其中 M max xik x jk
m
x
k 1 m k 1
ik
xi x jk x j
2 2 ( x x ) jk j k 1 m
( xik xi )
1 m 1 m 其中 xi xik , x j x jk , i, j 1,2,L n. m k 1 m k 1
模糊聚类分析的步骤二
模糊聚类分析的步骤二
2、距离法 直接距离法:rij=1-c*d(xi,xj) (11)海明距离: (12)欧式距离: (13)切比雪夫距离:

第四章_模糊控制器的设计

第四章_模糊控制器的设计

2)模糊子集的分布 每个语言变量的取值,对应于其论域上 的一个模糊集合。个数确定以后,需要考 虑模糊子集的分布,即模糊子集在模糊论 域上的分布方式和情况,即确定每个模糊 子集的隶属函数

1
NB NM NS
ZO
PS
PM PB
隶属函数的类型 ① 正态分布型(高斯基函数 )
( x ai )2 bi 2
第4章 模糊控制器的工作原理
一、模糊控制与传统控制 二、模糊控制系统的组成 三、确定量的模糊化 四、模糊控制算法的设计 五、模糊推理 六、输出信息的模糊判决 七、基本模糊控制器的设计 八、模糊模型的建立
4.1 模糊控制系统的基本组成
从传统控制到模糊控制 • 传统控制(Conversional control):经典反馈控 制和现代控制理论。它们的主要特征是基于精确 的系统数学模型的控制。适于解决线性、时不变 等相对简单的控制问题。
• 完备性 属函数的分布必须覆盖语言变量的整个论域,否则,将会出现“空档”, 从而导致失控。

NB NM 1 NS ZO PS PM PB
0 -6 空档
-4
-2
0
2
4
6
x
不完备的隶属函数分布
一致性:即论域上任意一个元素不得同时是两个F子集的核
交互性:即论域上任何一个元素不能仅属于一个F集合
3)一个确定数的模糊化 一个确定数的模糊化分为两步: (1)根据确定数以及量化因子求在基本论域 上的量化等级。 (2)查找语言变量的赋值表,找出与最大隶 属度对应的模糊集合,该模糊集合就代表 确定数的模糊化结果。

假设E*=-6,系统误差采用三角形隶 属函数来进行模糊化。 E*属于NB的 隶属度最大(为1),则此时,相对 应的模糊控制器的模糊输入量为:

模糊数学概述

模糊数学概述
1 60 1 ( A B) ( B C ), 90 | A 90 |]
26
非典型三角形T= IcRc Ec,因而
T ( A, B, C ) 1 I ( A, B, C ) (1 R( A, B, C )) (1 E ( A, B, C ))
1 180 min[ 3( A B),3( B C ), ( A C ),2 | A 90 |].
则称如下的“序偶”组成的集合 A={(x | A(x))}, xX 为
X 上的模糊子集合,简称模糊集合。
10
称 A(x) 为 x 对 A 的隶属函数,对某个具体的 x 而言, A(x) 称为 x 对 A 的隶属度。 定义 2 设 X 是论域,映射
A(· ):X → [0, 1]
x︱→ A(x) 称为 X 的模糊子集(合) A ( Fuzzy Set ),简称 F 集(合) 。 对 x ∈X, A (x) 称为 x 对 A 的隶属度, A 称为F 集 的隶属函数。
tT tT
B At
tT
x X , B( x) At ( x), (3.1.18).
20
模糊集合的隶属度
模糊集是客观世界数量与质量的统一体,人
们刻画模糊集是通过模糊集的特有的性质,即隶
属度来表现的。隶属度是人们认识客观事物所赋
予的该元素隶属于该集合的程度,带有主观经验
17
由上述定义,易证下面的命题。 命题 1 F ( X ) 上的包含关系 “” 有以下性质: (1) AF ( X ), A X。 (2) 自反性: AF ( X ), A A。 (3) 反对称性: A、BF ( X ),若 A B 且 B A,则 A=B。 (4) 传递性: A、B、CF ( X ),若 A B 且 B C,则 A C 。

现代雷达系统分析与设计(陈伯孝)第4章PPT课件

现代雷达系统分析与设计(陈伯孝)第4章PPT课件

如果实信号
为信号x(t)的傅立叶变换),定义其复解析
信号为
(4.1.7)
第9页/共325页
其中U( f )为频域的阶跃函数。利用傅立叶变换的性质可得
其中,
(4.1.8) 的Hilbert变换式。
第10页/共325页
这样,由式(4.1.8)构成的复信号的频谱就可以满足式(4.1.7)的要求,
即使得原实信号的负频分量相抵消,而正频分量加倍。实信号x(t)的能量 和复解析信号sa(t)的能量分别为
常用的复信号表示,即实信号的复数表示有两种:希尔伯特(Hilbert) 变换表示法和指数表示法。对窄带信号来说,这两种表示方法是近似相同 的。
第8页/共325页
1.希尔伯特(Hilbert)
(4.1.6)
如果要求复信号具有单边频谱,那么就要对虚部有所限制。
本章首先给出雷达信号的数学表示及其分类;然后介绍模糊函数的概 念和雷达分辨理论,重点分析一些典型的常用雷达信号波形及其特征,并 讨论其参数的选取;接着介绍脉冲雷达的距离和多普勒模糊问题以及连续 波雷达的有关内容;最后介绍利用DDS技术产生常用雷达波形的原理和工 程实现方法,并给出本章主要插图的MATL AB程序代码。
带(通)信号。
第5页/共325页
一个实带通信号可表示为 (4.1.3)
其中:a(t)为信号的幅度调制或包络,ψx(t)为相位调制项,f0为载频。 信号包络a(t)的变化与相位调制和载波相比为时间的慢变化过程。对于低 分辨雷达,在一个波位上发射的多个脉冲的目标回波的包络a(t)通常近似
认为不变。
第6页/共325页
的能量或有限的功率。能量有限的信号称为能量信号;能量无限但功率有 限的信号,称为功率信号。描述能量信号的频谱特性通常采用能量谱密度 (EnergySpectrumDensity,ESD)函数(实际应用中常用振幅谱 |S(ω)|)来描述;对于功率信号,则常用功率谱密度 (PowerSpectrumDensity,PSD)函数来描述。

FAHPPPT课件

FAHPPPT课件
2021
模糊数简介
模糊集:
明确集合A:元素 x 要么属于A,要么不属于A。
A(x) 10,,
xA xA
模糊集合
~
A
:在论域U内,对任意
x U ,x
常以某个程

(0,1)
属于
~
A
,而非 x
~
A
或x
~
A

全体模糊集用 F (U ) 表示。
2021
模糊数简介
隶属函数: 设论域U,如果存在
A(x):U [0,1]
Step1.专家评估模糊判断
供应 B1
B2
B3

B1 (1,1,1)
(1,2,3) (2,3,4) (1,1,2)
(1,1,2) (1,1,2) (1,2,3)
B2 (1/3,1/2,1/1) (1,1,1,) (1/2,1/1,1/1) (1/3,1/2,1/1)
(1,1,2) (1,2,3) (1,1,2)
0,
uA (x)
2
1
x
1.60 0.2
2
,
2
x
1.80 0.2
2
,
1,
x 1.60 1.60 x 1.70
1.70 x 1.80 1.80 x
取x分别等于1.65m、1.70m、1.75m,则 A ( x ) 分别等于0.125、 0.50、0.875。即身高1.65m、1.70m、1.75m的男生,分别以
2021
❖ 同理:可以计算出C2,C3,C4的初始权重如下
D (0.169,0.331,0.670) c2
D (0.1368,0.2731,0.5314) c3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、变换关系
1、组合关系 若:(t)1(t)2(t)
(,)1(,)2(,)12(,)
*12精( 选 ,)ej2
17
2、共轭关系 若:(t) 1*(t) ,(f)1*(f)
(,) 1 * (, ) e j2 1 ( ,),(,) 1 * ( ,) e j2 1 * (, )
精选
3
2、准则(均方差)
2
2
sr1(t) sr2(t) dt
4E 2 (,) cos[2 f0 arctg(,)]
(,) u(t)u(t )ej2tdt u( f )u( f )e j2 f df
(,) (,) 2 (,)•(,)
(,) u(t)u(t )ej2tdt
距离、速度均相同, 2 最小,即 (0,0) 最大,无法分辨。
3、模糊图的体积
(体积不变性)(,)2dd(2E )2
➢ 体积是固定的,与能量有关,与信号形式无关 ➢ 不同信号形式只能改变模糊图表面形状
精选
6
二、模糊函数与二维分辨力的关系
( , ) 2
1
(0,0) 2
组合时间-频率分辨常数:
(,) (,)2dd(0,0)2 Nhomakorabea(,)1
雷达模糊原理:改变发射信号形式→ 改变模糊曲面→
不能改变组合分辨常数→即距离速度组合分辨力受限→
模糊图体积无论哪个轴减小另一必增大!
精选
7
模糊度图:
等效模糊面 等差图:
(A,0)2 (B,0)2 (C,C)2 (A,A)2
模糊度图
精选
8
三、模糊函数与一维分辨力的关系
(,0 ) u (t)u (t)ej2 td 2tC ()2 (,0)((0 ,0 ,0 ))22 dd C C(2(0 ))2dA
精选
11
精选
12
精选
13
精选
14
(,)2(,)•[(,)](,)2
(, )2u(t)u(t)ej2td 2tu(f)u(f)ej2fd2 f
精选
15
4.4 模糊函数的主要性质
一、本身的性质
1、原点对称性 (,)2(,)2
2、峰值在原点 (,)2(0,0)2(2E)2
3、体积不变性 (,)2d d (2 E )2
'
b '
(,)ej21(,)
① 0,' b'
② 0, '
6、相乘特性
(t)1(t)2(t) (f)1(f)2(f)
(,) 1 (,q )2(, q )d q
(f)1(f)2(f) (t)1(t)2(t)
( ,) 1 (,)2 ( 精选 ,)d
19
7、周期信号模糊函数
(,)
u(t)u(t
)ej2
t d
2
t
u( f )u( f
2
)ej2f df
4、对称型
(,)
u(t
2)u(t
2)ej2td
2
t
u(f
2)u(f
2)ej2fdf2
精选
5
4.2 模糊函数与分辨力的关系
一、模糊函数的图形 1、概述
主峰、边峰和小突起(自杂波/旁瓣)
2、主峰 (,)2(0,0)24E2
分辨力、精度、模糊度、抑制杂波能力,统一数学工具。
2、模糊函数(平均模糊函数)的概念
在感兴趣的时间间隔和多普勒频移上的固有“模糊性”的 度量,对随机信号采用平均模糊函数。
3、研究模糊函数的条件
➢ 窄带信号 ➢ 点目标 ➢ 无加速度
➢ fd<<f0
精选
2
一、从二维分辨力导出
1、条件
➢ 距离速度不同(二维) ➢ 目标2大于1 ➢ 距离速度取正 ➢ 不考虑噪声(分辨) ➢ 回波强度一样
3、比例关系
(t)1(at)
(,)
1 a
1(a,a)
(f)1(af)
(,)
1 a
1(a,a)
4、时间、频率偏移的影响
(t)1(t0)ej20(t 0) (,) e j2 (0 0 ) 1 (,)
5、时/频域平方相位的影响
(t)1(t)ejbt2
(,) ejb 21(, b )
精选
18
f1fejf 2
u( f )u( f )ej2 fdf
精选
4
二、模糊函数的表示法
1、 、 为正
(,)
u(t)u(t
2
)e j2 t d t
u( f )u( f
2
)ej2f df
2、 为正, 为负
(,)
u(t)u(t
)ej2
t d
2
t
u( f )u( f
2
)ej2f df
3、 为负, 为正
B目标回波:u B (t) u (tB )e j2 B ( t B )
精选
10
匹配滤波器输出:
gC (t)
1 2
u( ' )u( '
t)e j2
' d ' e j2 At
V( ,) u(t)u(t )e j2tdt
(,) 2 V(,) 2
V( ,) u( f )u( f )e j2f df
4、自变换性 (,)2 e j2 Z e j2 Y dd(Z ,Y )2
模糊函数的二维付氏变换仍为模糊函数。
精选
16
5、体积分布的限制
(,)2d (,0)2ej2d
(,)2d (0,)2ej2d
(,0 )2t* td t2 f2 e j2 fd f2
( 0 ,)2f* fd f2 t2 e j2 td t2
(0 , ) u (t)u (t)ej2 td 2tK ()2
(0,) (0 (,0 ,0 ))22 dd K K (2(0 ))2dA
精选
9
4.3 模糊函数与匹配滤波器输出响应的关系
研究的目的:
➢ 运算 ➢ 检测、估计、分辨 ➢ 物理意义 ➢ 信号处理与AF关系
A目标回波:u A ( t ) u ( t A ) e j 2 A ( t A ) h A ( t ) m u A ( t 0 t A ) e j 2 A ( t 0 t A )
u(t)
C0
C1
C2
C3
….
t T
N1
(t) cn1(tnT) n0
N1
N1m
, ej2mT1m,T cici*mej2iT
m1
i0
N1
N1m
1m,T cici*mej2iT
4 模糊函数
4.1 模糊函数的推导 4.2 模糊函数与分辨力的关系 4.3 模糊函数与匹配滤波器输出响应的关系 4.4 模糊函数的主要性质 4.5 模糊图的切割 4.6 模糊函数与精度的关系 4.7 利用模糊函数对单载频矩形脉冲雷达
信号进行分析
精选
1
4.1 模糊函数的推导
1、为什么要研究模糊函数?
相关文档
最新文档