牛顿运动定律的应用(2)
牛顿三大定律在生活中的应用
牛顿第二定律
•
用力推或拉物体,物体瞬间获得加速度,开始运动
踢足球时足球受到 力后,加速度改变, 从而改变运动状态
牛顿第二定律
• • 适用范围 (1)当物体速度接近光速时,会有很 强的相对论效应,经典力学需要做修改。 • (2)当考察物体的运动线度可以和该 物体的德布罗意波长相比拟时,经典力学不 再适用,需要用量子力学方法。 • (3)经典力学成立的参考系为惯性系。
牛顿第三定律
• 两个物体之间的作用力和反作用力,在同一条 直线上,大小相等,方向相反。
飞机向后喷气, 起飞
牛顿第三定律
跑步时向后蹬踏,人向前跑 用拳头打墙,手会感到疼痛 马拉车时,马同时受到车向后的拉力
牛顿第三定律
注意:
•
• • • •
• •
两个物体间的作用力和反作用力总是大小相等,方向 相反,并且作用在同一直线上 F1=-F2 ①力的作用是相互的。同时出现,同时消失。 ②相互作用力一定是相同性质的力 ③作用力和反作用力作用在两个物体上,产生的作用 不能相互抵消。 ④作用力也可以叫做反作用力,只是选择的参照物不 同 ⑤作用力和反作用力因为作用点不在同一个物体上, 所以不能求合力
牛顿三大定律的演变
牛顿的三大运动定律包括:一切物体在不受外力的情况下,总保持静止或匀 速直线运动状态(惯性定律);物体运动的加速度与物体所受合外力成正比, 与物体质量成反比,加速度方向与合外力方向相同(加速度定律);两个物 体间的作用力与反作用力在同一条直线上,大小相等,方向相反(作用力与 反作用力定律)。 运动三定律虽以英国著名物理学家、天文学家、数学家牛顿(I.Newton, 1643-1727)的名字命名,但它是历史上许多科学家长期探索的结晶。 16世纪末、17世纪初,意大利物理学家伽利略(G.Galilei,1564- 1642)详细研究了落体的运动,对惯性运动、物体运动与加速度的关系进 行了科学的描述。此后,荷兰物理学家惠更斯(C.Huygens,1629-1695) 对惯性运动和碰撞运动进行了深入的研究,并进行了科学的阐释。伽利略、 惠更斯等人的工作为运动三定律奠定了实验和理论的基础。 1684年,牛顿集成并发展了前人的研究成果,科学、系统地定义了惯 性定律、加速度定律、作用力与反作用力定律,合称运动三定律。
牛顿三大定律的概念及应用
牛顿三大定律的概念及应用_牛顿三大定律的概念及应用牛顿三大定律是在力学当中重要的定律,在这里,我们一起来回顾学习一下牛顿三大定律的概念解读及其应用。
一、概念及解读1、牛顿第一定律(惯性定律):任何一个物体在不受外力或受平衡力的作用时,总是保持静止状态或匀速直线运动状态,直到有作用在它上面的外力迫使它改变这种状态为止。
解读:力改变物体的运动状态,惯性维持物体的运动状态,直至受到可以改变物体运动状态的外力为止。
2、牛顿第二定律(加速度定律):物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
解读:(1)适用范围:一般只适用于质点的运动。
(2)表达式为:F=kma(k=1)=ma,这是一个矢量方程,注意规定正方向,一般取加速度的方向为正方向。
(3)牛顿第二定律解题常用的两种方法:①合成法;②正交分解法:已知受力情况时,正交分解力;已知运动情况时,正交分解加速度。
3、牛顿第三定律:两个物体之间的作用力和反作用力,在同一直线上,大小相等,方向相反。
解读:注意相互作用力与平衡力的区别:(1)一对相互作用力大小相等、方向相反、作用在同一直线上、且分别在两个物体上,一定是同性质力。
而一对平衡力是作用在同一个物体上的两个大小相同、方向相反,作用在同一直线上的力,两个力不一定是同性质力。
(2)一对平衡力中的两个力不一定同时存在,可以单独存在,但一对相互作用力同时存在,同时消失。
二、应用例1.(牛顿第一定律)根据牛顿运动定律,以下选项中正确的是( )。
A.人只有在静止的车厢内,竖直向上高高跳起后,才会落在车厢的原来位臵B.人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方C.人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D.人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方答案:C。
解析:AB、除了在静止车厢外,在匀速直线前进的车厢内,跳起后,由于水平方向的惯性,人在水平方向依然保持原来的速度,故也将落在车厢的原来位置。
牛顿运动定律的综合应用
机器人的移动和操作也遵循牛顿第一定律,通过编程控制机器人的运动轨迹和 姿态,实现各种复杂动作。
02
CATALOGUE
牛顿第二定律的应用
牛顿第二定律的基本理解
01
02
03
牛顿第二定律
物体加速度的大小跟它所 受的合力成正比,跟它的 质量成反比,加速度的方 向跟合力的方向相同。
公式
F=ma,其中F代表物体所 受的合力,m代表物体的 质量,a代表物体的加速 度。
轨道力学
火箭发射和卫星入轨需要精确的力学计算,包括牛顿第二定律的应用 ,以确定火箭所需的推力和轨迹。
THANKS
感谢观看
牛顿运动定律的综 合应用
contents
目录
• 牛顿第一定律的应用 • 牛顿第二定律的应用 • 牛顿第三定律的应用 • 牛顿运动定律的综合应用案例
01
CATALOGUE
牛顿第一定律的应用
惯性系与非惯性系
惯性系
一个不受外力作用的参考系,物 体在该参考系中保持静止或匀速 直线运动状态。
非惯性系
一个受到外力作用的参考系,物 体在该参考系中不会保持静止或 匀速直线运动状态。
划船
划桨时水对桨产生反作用力,使船前进。
3
走路
脚蹬地面时,地面给人一个反作用力,使人前进 。
牛顿第三定律在科技中的应用
喷气式飞机
通过燃烧燃料喷气产生反作用力,推 动飞机前进。
火箭推进器
电磁炮
通过电磁力加速弹丸,使其获得高速 ,射出后产生反作用力推动炮身运动 。
火箭向下喷射燃气产生反作用力,推 动火箭升空。
03
转向稳定性
汽车在转弯时,向心力(根据牛顿第二定律)的作用使车辆维持在转弯
牛顿运动定律的应用
牛顿运动定律的应用:1、牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma。
牛顿第三定律:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。
2、应用牛顿运动定律解题的一般步骤①认真分析题意,明确已知条件和所求量;②选取研究对象,所选取的研究对象可以是一个物体,也可以是几个物体组成的系统,同一题,根据题意和解题需要也可先后选取不同的研究对象;③分析研究对象的受力情况和运动情况;④当研究对对象所受的外力不在一条直线上时;如果物体只受两个力,可以用平行四力形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上,分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动方向上;⑤根据牛顿第二定律和运动学公式列方程,物体所受外力,加速度、速度等都可以根据规定的正方向按正、负值代公式,按代数和进行运算;⑥求解方程,检验结果,必要时对结果进行讨论。
牛顿运动定律解决常见问题:Ⅰ、动力学的两类基本问题:已知力求运动,已知运动求力①根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况;根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。
②分析这两类问题的关键是抓住受力情况和运动情况的桥梁——加速度。
③求解这两类问题的思路,可由下面的框图来表示。
Ⅱ、超重和失重物体有向上的加速度(向上加速运动时或向下减速运动)称物体处于超重,处于超重的物体对支持面的压力FN(或对悬挂物的拉力)大于物体的重力mg,即FN=mg+ma;物体有向下的加速度(向下加速运动或向上减速运动)称物体处于失重,处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma。
牛顿运动定律的应用
牛顿运动定律的应用牛顿运动定律的应用(精选6篇)牛顿运动定律的应用篇1教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇2教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇3教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇4教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇5教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.牛顿运动定律的应用篇6教学目标1、知识目标:(1)能结合物体的运动情况进行受力分析.(2)掌握应用牛顿运动定律解决问题的基本思路和方法,学会用牛顿运动定律和运动学公式解决力学问题.2、能力目标:培养学生审题能力、分析能力、利用数学解决问题能力、表述能力.3、情感目标:培养严谨的科学态度,养成良好的思维习惯.教学建议教材分析本节主要通过对典型例题的分析,帮助学生掌握处理动力学两类问题的思路和方法.这两类问题是:已知物体的受力情况,求解物体的运动情况;已知物体的运动情况,求解物体的受力.教法建议1、总结受力分析的方法,让学生能够正确、快速的对研究对象进行受力分析.2、强调解决动力学问题的一般步骤是:确定研究对象;分析物体的受力情况和运动情况;列方程求解;对结果的合理性讨论.要让学生逐步习惯于对问题先作定性和半定量分析,弄清问题的物理情景后再动笔算,并养成画情景图的好习惯.3、根据学生的实际情况,对这部分内容分层次要求,即解决两类基本问题——→解决斜面问题——→较简单的连接体问题,建议该节内容用2-3节课完成.教学设计示例教学重点:物体的受力分析;应用牛顿运动定律解决两类问题的方法和思路.教学难点:物体的受力分析;如何正确运用力和运动关系处理问题.示例:一、受力分析方法小结通过基本练习,小结受力分析方法.(让学生说,老师必要时补充)1、练习:请对下例四幅图中的A、B物体进行受力分析.答案:2、受力分析方法小结(1)明确研究对象,把它从周围物体中隔离出来;(2)按重力、弹力、摩擦力、外力顺序进行受力分析;(3)注意:分析各力的依据和方法:产生条件;物体所受合外力与加速度方向相同;分析静摩擦力可用假设光滑法.不多力、不丢力的方法:绕物一周分析受力;每分析一力均有施力物体;合力、分力不要重复分析,只保留实际受到的力.二、动力学的两类基本问题1、已知物体的受力情况,确定物体的运动情况.2、已知物体的运动情况,确定物体的受力情况.3、应用牛顿运动定律解题的一般步骤:选取研究对象;(注意变换研究对象)画图分析研究对象的受力和运动情况;(画图很重要,要养成习惯)进行必要的力的合成和分解;(在使用正交分解时,通常选加速度方向为一坐标轴方向,当然也有例外)根据牛顿运动定律和运动学公式列方程求解;(要选定正方向)对解的合理性进行讨论.四、处理连接体问题的基本方法1、若连接体中各个物体产生的加速度相同,则可采用整体法求解该整体产生的加速度.2、若连接体中各个物体产生的加速度不同,则一般不可采用整体法.(若学生情况允许,可再提高观点讲)3、若遇到求解连接体内部物体间的相互作用力的问题,则必须采用隔离法.以上各问题均通过典型例题落实.探究活动题目:根据自己的学习情况,编一份有关牛顿运动定律应用的练习题.题量:4-6道.要求:给出题目详细解答,并注明选题意图及该题易错之处.评价:可操作性、针对性,可调动学生积极性.。
牛顿运动定律及其应用
maM
N
其中 m aM 就是惯性力. 而 mg 和 N 是真实力.
物体相对于斜面有沿斜面方向的加速度 a '
分析物体受力
当m 滑下时,M 加速度方向如图
解:以斜面为参考系(非惯性系)
mg
沿斜面方向:
mgsin+maMcos=ma'
垂直于斜面方向:
N-mgcos+maMsin=0
(1) 弹簧的弹力
(3) 张力 T,内部的弹力
(2) 静摩擦力
(1) 滑动摩擦力
四、摩擦力 (the force of friction)
垂直于接触面指向对方
四种基本相互作用:
1. 引力相互作用
2. 电磁相互作用
3. 强相互作用
4. 弱相互作用
相对强弱: 强相互作用的强度 = 1,电磁相互作用 ≈ 10-2,弱相互作用≈ 10 -5,引力相互作用≈ 10-38。
1.2 牛顿运动定律及其应用
单击此处添加副标题
汇报人姓名
1.2.1 牛顿运动定律
一、牛顿第一定律(惯性定律)
任何物体如果没有力作用在它上面,都将保持静止的或作匀速直线运动的状态。 定义了惯性参考系 定义了物体的惯性和力 惯性系---在该参照系中观察,一个不受力作用的物 体将保持静止或匀速直线运动状态不变. 惯性---物体本身要保持运动状态不变的性质. 力---迫使一个物体运动状态改变的一种作用. (Newtons laws of motion)
解:建坐标
以整个绳子为研究对象,分析受力, 设任意时刻,绳给地面的压力为 N
O
y
l
y
例2: 有阻力的抛体问题 .
己知: 质量为m的炮弹,以初速度v0与水平方向成仰角射出. 若空气阻力与速度成正比, 即
牛顿运动定律的应用
牛顿运动定律的应用一、动力学的两类基本问题:1、已知物体的受力情况,求解物体的运动情况:解决这类题目,一般是应用牛顿运动定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况,即求出物体在任意时刻的位置、速度及运动轨迹。
过程如下:2、已知物体的运动情况,求解物体的受力情况解决这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的其他外力。
3、解题思路及步骤首先要对所确定的研究对象作出受力情况、运动情况的分析,把题中所给的物理情景弄清楚,然后由牛顿第二定律,通过加速度这个联系力和运动的“桥梁”,结合运动学公式进行求解。
这是用牛顿运动定律解题的基本思路和方法。
⑴由物体的受力情况求解物体的运动情况的一般方法和步骤①确定研究对象,对研究对象进行受力分析,并画出物体的受力分析图。
②根据力的合成与分解的方法,求出物体所受的合外力(包括大小和方向)。
③根据牛顿第二定律列方程,求出物体的加速度。
④结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量。
⑵由物体的运动情况求解物体的受力情况解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤与上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆。
②题目中求的力可能是合力,也可能是某一特定的作用力,即使是后一种情况,也必须先求出合力的大小和方向,再根据力的合成与分解知识求各个分力。
例1:如图所示,质量m=2 kg的物体静止在水平地面上,物体与水平面间的滑动摩擦力大小等于它们间弹力的0.25 倍,现对物体施加一个大小F =8 N、与水平方向成θ=37°角斜向上的拉力,已知sin 37°=0.6,cos 37°=0.8,g取10 m/s2.求:⑴画出物体的受力图,并求出物体的加速度;⑵物体在拉力作用下5 s末的速度大小;⑶物体在拉力作用下5 s内通过的位移大小.例2质量为0.1 kg的弹性球从空中某高度由静止开始下落,该下落过程对应的v-t图象如图2所示.弹性球与水平地面相碰后离开地面时的速度大小为碰撞前的34.设球受到的空气阻力大小恒为F f,取g=10 m/s2,求:⑴弹性球受到的空气阻力F f的大小;⑵弹性球第一次碰撞后反弹的高度h.例3如图所示,水平传送带以2 m/s的速度运动,传送带长AB=20 m,今在其左端将一工件轻轻放在上面,工件被带动,传送到右端,已知工件与传送带间的动摩擦因数μ=0.1,(g=10 m/s2)试求:⑴工件开始时的加速度a;⑵工件的速度为2 m/s时,工件运动的位移;⑶工件由传送带左端运动到右端的时间.针对训练1.如图所示,质量m=10 kg的物体在水平面上向左运动,物体与水平面间的动摩擦因数为0.2,与此同时物体受到一个水平向右的推力F=20 N的作用,则物体产生的加速度是(g取10 m/s2) ( )A.0 B.4 m/s2,水平向左C.2 m/s2,水平向左D.4 m/s2,水平向右2.假设洒水车的牵引力不变且所受阻力与车重成正比,未洒水时,车匀速行驶,洒水时它的运动将是() A.做变加速运动B.做初速度不为零的匀加速直线运动C.做匀减速运动D.继续保持匀速直线运动3.某火箭发射场正在进行某型号火箭的发射试验,该火箭起飞时质量为2.02×103 kg,起飞推力为2.75×106 N,火箭发射塔高100 m,则该火箭起飞时的加速度大小为________m/s2;在火箭推力不变的情况下,若不考虑空气阻力及火箭质量的变化,火箭起飞后,经________s飞离火箭发射塔.(g取10 m/s2)4.一物体沿斜面向上以12 m/s的初速度开始滑动,它沿斜面向上以及沿斜面向下滑动的v-t图象如图所示,求斜面的倾角以及物体与斜面间的动摩擦因数.(g取10 m/s2)5、质量为m=2 kg的物体静止在水平面上,物体与水平面之间的动摩擦因数μ=0.5,现在对物体施加如图所示的力FF=10 N,θ=37°(sin 37°=0.6),经t1=10 s后撤去力F,再经一段时间,物体又静止,(g取10 m/s2)则:⑴说明物体在整个运动过程中经历的运动状态.⑵物体运动过程中最大速度是多少?⑶物体运动的总位移是多少?二、连接体问题⑴连接体与隔离体:两个或两个以上物体相连接组成的物体系统称为连接体。
人教版高考物理一轮总复习课后习题 第3单元 牛顿运动定律 作业8牛顿第二定律的应用2
作业8牛顿第二定律的应用2A组基础达标微练一连接体问题1.(多选)(浙江淳安中学高二期末)质量为m'的小车上放置质量为m的物块,水平向右的牵引力作用在小车上,二者一起在水平地面上向右运动。
下列说法正确的是( )A.如果二者一起向右做匀速直线运动,则物块与小车间不存在摩擦力作用B.如果二者一起向右做匀速直线运动,则物块与小车间存在摩擦力作用C.如果二者一起向右做匀加速直线运动,则小车受到物块施加的水平向左的摩擦力作用D.如果二者一起向右做匀加速直线运动,则小车受到物块施加的水平向右的摩擦力作用2.(多选)如图所示,质量为m'、上表面光滑的斜面体放置在水平面上,另一质量为m的物块沿斜面向下滑动时,斜面体一直静止不动。
已知斜面倾角为θ,重力加速度为g,则( )A.地面对斜面体的支持力为(m'+m)gB.地面对斜面体的摩擦力为零C.斜面倾角θ越大,地面对斜面体的支持力越小D.斜面倾角θ不同,地面对斜面体的摩擦力可能相同3.(多选)(浙江桐乡一中期末)如图所示,质量分别为m1和m2的小物块,通过轻绳相连,并接在装有光滑定滑轮的小车上。
如果按图甲所示,装置在水平力F1作用下做匀加速运动时,两个小物块恰好相对静止;如果互换两个小物块,如图乙所示,装置在水平力F2作用下做匀加速运动时,两个小物块也恰好相对静止,一切摩擦不计,则( )A.F1∶F2=m22∶m12B.F1∶F2=m12∶m22C.两种情况下小车对质量为m2的小物块的作用力大小之比为m2∶m1D.两种情况下小车对质量为m2的小物块的作用力大小之比为m1∶m2微练二临界极值问题(弹力临界)4.(多选)(浙江丽水中学月考)如图所示,5颗完全相同的象棋棋子整齐叠放在水平面上,第5颗棋子最左端与水平面上的A点重合,所有接触面间的动摩擦因数均相同,最大静摩擦力等于滑动摩擦力。
现将水平向右的恒力F作用在第3颗棋子上,恒力作用一小段时间后,五颗棋子的位置情况可能是( )5.如图甲所示,轻质弹簧下端固定在水平面上,上端连接物体B,B上叠放着物体A,系统处于静止状态。
高中物理必修一 第四章 第五节 牛顿运动定律的应用
针对训练1
一质量为m=2 kg的滑块在倾角为θ=30°的足够 长的固定斜面上在无外力F的情况下以加速度a= 2.5 m/s2匀加速下滑.若用一水平向右的恒力F作用 于滑块,如图所示,使滑块由静止开始沿斜面向上做匀加速直线运动, 在0~2 s时间内沿斜面运动的位移s=4 m.求:(g取10 m/s2) (1)滑块和斜面之间的动摩擦因数μ;
答案 0.5 30 N
设力F作用时物体的加速度 为a1,对物体进行受力分析, 由牛顿第二定律可知: F-mgsin 37°-μmgcos 37° =ma1, 撤去力F后,物体的加速度大小为a2,由牛顿第二定律有 mgsin 37°+μmgcos 37°=ma2, 根据v-t图像的斜率表示加速度可知a1=20 m/s2,a2=10 m/s2, 联立解得μ=0.5,F=30 N.
(1)滑雪者受到雪面的支持力大小; 答案 400 N
滑雪者在雪坡上受力如图所示,建立如图所示的直角 坐标系, FN=mgcos 37°=400 N.
(2)滑雪者受到的阻力大小. 答案 100 N
由v-t图像可得滑雪者的加速度大小, a=v2-t v1=4 m/s2,
根据牛顿第二定律,mgsin 37°-f=ma, 得f=mgsin 37°-ma=100 N.
(2)人在离C点多远处停下.
答案 12.8 m
人在水平面上滑行时,水平方向只受到水平面的摩擦力作用.设人在 水平面上运动的加速度大小为a′,由牛顿第二定律得μmg=ma′ 设人到达C时的速度为v,则由匀变速直线运动规律得 人在斜坡下滑的过程:v2=2aL 人在水平面上滑行时:0-v2=-2a′s 联立解得s=12.8 m.
(2)t=3 s时物体的速度大小;
答案 0 t=3 s时的速度v3=v1-a2t=20 m/s-10×2 m/s=0, 即t=3 s时物体的速度为0.
牛顿第二定律应用(2)
如图所示,物块A 质量分别为m 2m、3m, 如图所示,物块A、B、c质量分别为m、2m、3m, 与天花板间、 之间用轻弹簧相连, A与天花板间、B与C之间用轻弹簧相连,当系统平 衡后,突然将AB间绳烧断,在绳断瞬间, AB间绳烧断 衡后,突然将AB间绳烧断,在绳断瞬间,A、B、C 的加速度(以向下为正方向)分别为( 的加速度(以向下为正方向)分别为( )。 (A)g, (B)-5g,2.5g, (A)g,g,g (B)-5g,2.5g,0 (C)-5g,2g, (D)- 2g, (C)-5g,2g,0 (D)-g,2g,3g
θ
F1=FCos θ X
例3、一个滑雪的人,质量m=75kg,以V0=2m/s的初速度 沿山坡匀加速地滑下,山坡的倾角ß=300,在t=5s的时间内 滑下的路程s=60m,求滑雪人受到的阻力(包括滑动摩擦力 和空气阻力)。 思路:已知运动情况求受力。应先求出加速度 , 思路:已知运动情况求受力。应先求出加速度a,再利 用牛顿第二定律F 求滑雪人受到的阻力。 用牛顿第二定律 合=ma求滑雪人受到的阻力。 求滑雪人受到的阻力
分析:此题的物理情景是物体在拉力F 分析:此题的物理情景是物体在拉力F的作用下 做匀加速直线运动,运动5 的路程,速度由4 做匀加速直线运动,运动5m的路程,速度由4m/s 增加到6m/s,是一个已知物体的运动状态, 增加到6m/s,是一个已知物体的运动状态,求物 体受力的问题。 体受力的问题。
解题步骤: 解题步骤: 1。确定研究对象,分析物体运动状态 确定研究对象, 此题的研究对象为物块, 此题的研究对象为物块,运动状态为匀加速直线运动 2。由运动学公式求出物体的加速度 )/(2× 由 v2t- v20 =2as 得a=(v2t- v20 )/2s=(62 -42 )/(2×5)=2m/s2 3。由牛顿第二定律求物体所受的合外力 F合 =ma=5×2N=10N ma=5×2N=10N 4。分析物体受力情况,建立直角坐标系,由力的合 分析物体受力情况,建立直角坐标系, 成与分解求出F 成与分解求出F X方向 Fcos 370 -f=ma= F合 Y方向 N+Fsin 370 -mg=0 又 f=uN 联立三式可得F=17.6N 联立三式可得F=17.6N
牛顿运动定律的综合应用(二)(练习)(解析版)—2025年高考物理一轮复习讲练测(新教材新高考)
A.1.0m B.1.5m 【答案】BA.木板的长度为2mB.木板的质量为1kgC.木板运动的最大距离为2m由图可知,木板的长度为:132m 3m 2L ´=´=木板运动的最大距离为:31m 1.5m 2x ´==分析滑块B ,减速时间设为B t ,则有:B B 0v a t =-解得:B 0.75st =()(0.75330.75´--A .1m =2mB .1m <2mC .1m >22mD .1m =22m 【答案】C【详解】由v t -图像分析可知,木板相对地面滑动,滑块与木板共速后一起减速到停止,对木板:122mg mgm m >则有:1m >22m 故选C 。
F=时,小滑块和木板一起匀速运动A.当拉力18N运动F=时,小滑块和木板一起加速运动C.当拉力30NA.木板的长度为3m由图像可知2.5s时两者共速,则木板在物块在0~2.0s内的加速度大小为:物块在2.0s~2.5s内的加速度大小为:m=A.动摩擦因数0.5B.铁块A和长木板B共速后的速度大小为C.长木板的长度为2.25mD.从铁块放上到铁块和长木板共速的过程中,A.小孩在滑板上下滑的加速度大小为2m/sB.小孩和滑板脱离前滑板的加速度大小为C.经过1s的时间,小孩离开滑板D.小孩离开滑板时的速度大小为0.8m/s【答案】BC【详解】AB.对小孩,由牛顿第二定律得,加速度大小为:同理对滑板,加速度大小为:2sin37 mga°=A .10N 15N F <<时物块B 和木板C 相对滑动B .木板和物块两者间的动摩擦因数不可求出C .由题目条件可求木板C 的质量D .15N F >时物块B 和木板C 相对滑动【答案】DA .小滑块的加速度向右,大小为A.小物块从传送带左端滑离传送带B.小物块滑离传送带时的速度大小为6m/sC.小物块从滑上传送带到滑离传送带经历的时间为A .2t 时刻,小物块离A 处的距离最大B .20t :时间内,小物块的加速度方向先向右后向左C .20t :时间内,因摩擦产生的热量为12121()22vv t mg t t m éù++êúëûD .20t :时间内,物块在传送带上留下的划痕为()21122v v t t ++A.物块最终从传送带N点离开B.物块将在4.8s时回到原处C.物块与传送带之间的摩擦因数为3 2D.传送带的速度1m/sv=,方向沿斜面向下【答案】C【详解】AD.从v t-图像可知,物体速度减为零后反向向上运动,最终的速度大小为A.5N·s B.20N·s【答案】D【详解】邮件轻放在传送带上时,受力分析如图所示支持力:NN cos53F mg q==A....【答案】D>),且小于传送带的速度时,对小物块受力分析,由【详解】AB.当小物块的初速度沿斜面向下(tan qA.弹出纸板后瞬间,纸板的加速度大小为2m/s²B.橡皮擦与纸板达到相同速度后,一直与纸板相对静止C.最终橡皮擦不会脱离纸板. .. .【答案】C【详解】箱子以一定的水平初速度0v 从左端滑上平板车,在摩擦力作用下,箱子做匀减速直线运动,平板A .当F 足够小时,A 仍保持静止状态B .当拉力F mg m =时,物块A.货物与平台一起做匀加速直线运动v=时,货物加速度为B.当平台速度0.6m/sv=时,货物加速度为C.当平台速度0.6m/sF<,平台将保持静止D.若施加的恒力10N【答案】C可知平台受到两个圆柱表面对平台沿平行于轴线的方向的摩擦力大小均为:F-根据牛顿第二定律可得:2可知随着平台速度v的逐渐增大,匀加速直线运动,故A错误;v=时,则有:BC.当平台速度0.6m/sA.传送带的速度越快,饺子的加速度越大B.饺子相对与传送带的位移为C.饺子由静止开始加速到与传送带速度相等的过程中,增加的动能等于因摩擦产生的热量D.传送带因传送饺子多消耗的电能等于饺子增加的动能A.图线I 反映的是包裹的运动B.包裹和传送带间的动摩擦因数为C.传送带的长度为20 mD.包裹相对传送带滑动的距离为【答案】D【详解】A.传送带启动后做匀加速运动,包裹在摩擦力作用下也做加速运动,则包裹的加速度一定小于传送到的加速度,则由图像可知图线A.t=2.5s时,货物所受摩擦力方向改变B.货物与传送带间的动摩擦因数为0.4C.传送带运行的速度大小为0.5m/sD.货物向下运动过程中所具有的机械能先减小后不变【答案】C【详解】A.由图乙可知,在0~2.5s内,货物的速度大于传动带的速度,A.包裹在最高点c时,对圆弧轨道的压力为零B.第一个包裹在传送带上运动的时间为C.圆弧轨道半径为() 223m5-A.货物与输送带间的动摩擦因数为0.825B.输送带A、B两端点间的距离为8mC.货物从下端A点运动到上端B点的时间为9s D.皮带输送机因运送该货物而多消耗的能量为【答案】CA.滑雪板与滑雪毯间的动摩擦因数为B.滑雪者从坡道顶端由静止滑到底端所需时间为C.整个下滑过程滑雪板与雪毯之间由于摩擦而产生热量为D.整个过程中摩擦力对滑雪板一直做正功【答案】CA.游客在“雪地魔毯”上一直做匀加速运动B.游客在“雪地魔毯”上匀加速运动的时间为C.游客在“雪地魔毯”受到的摩擦力的方向可能改变D.游客与“雪地魔毯”间的动摩擦因数约为【答案】D【详解】A.若游客在“雪地魔毯”上一直做匀加速运动,则游客的位移:13.如图,物块A 、B 静置叠放在光滑水平面上,A 、B 上下表面水平。
牛顿定律的应用举例
物体旳加速度和绳旳张力.
m1 m2
§2-4 牛顿定律旳应用举例
解(1) 以地面为参照系
画受力图、选用坐标如右图
m1g FT m1a m2 g FT m2a a m1 m2 g
m1 m2
FT
0
maF1Tm' 2y
FT
2m1m2 m1 m2
g
a
P1 y P2 0
l l
m
m
利用此原理,可制成蒸汽机旳调速器 (如图所示)
例 设空气对抛体
旳正阻比力,与即抛Fr体旳k速v度,成
y v0
旳k 质为量百m为分比、系初数速.v为抛0体、
抛射角为 .求抛体运 o
x
动旳轨迹方程.
解 取如图所示旳
Oxy 平面坐标系
m dvx dt
kvx
y v0
Fr A Pv
(2):求物体旳运动方程
因为 a dv ,初始条件为:t=0时,v=0得:
dt
v
dv
t
adt
t m1 m2 gdt
0
0
0 m1 m2
有:v m1 m2 gt
m1 m2
又因为 v dy ,而初始条件为:t=0时,y=0得:
dt
y
m1 m2
2m1 m2 )
gt 2
§2-4 牛顿定律旳应用举例
vy
(v0
sin
mg k
)ekt / m
mg k
dx vxdt dy vydt
由上式积分
y v0
Fr A Pv
代初始条件得:
o
x
x
m k
(v0
力学三大基本观点的综合应用研究
力学三大基本观点的综合应用研究力学三大基本观点,即牛顿运动定律(特别是牛顿第二定律)、动量守恒定律和能量守恒定律,是物理学中解决力学问题的基石。
这些观点不仅各自独立且深刻,而且在实际应用中往往相互关联、相互补充,共同构成了解决复杂力学问题的完整框架。
以下是对力学三大基本观点综合应用的研究。
1. 牛顿运动定律的应用牛顿第二定律(F=ma)是连接力和运动的桥梁,它描述了物体加速度与所受合外力及物体质量之间的关系。
在解决力学问题时,首先需要根据物体的受力情况(包括重力、弹力、摩擦力等)确定合外力,然后利用牛顿第二定律求出物体的加速度,进而通过运动学公式求解物体的速度、位移等运动学量。
2. 动量守恒定律的应用动量守恒定律(在没有外力作用或外力作用远小于内力作用时,系统总动量保持不变)是处理碰撞、爆炸等涉及多个物体相互作用问题的重要工具。
在应用动量守恒定律时,需要明确系统的边界(即哪些物体构成系统),判断系统是否满足动量守恒的条件,然后建立动量守恒的等式进行求解。
动量守恒定律不仅简化了问题的求解过程,还揭示了物体间相互作用的本质。
3. 能量守恒定律的应用能量守恒定律(能量既不会被消灭,也不会创生,能量只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变)是自然界普遍遵循的基本定律之一。
在力学中,它表现为机械能守恒(在只有重力或弹力做功的情况下,物体的动能和势能之和保持不变)或更一般的能量转化与守恒。
通过分析物体的受力情况和运动过程,确定能量的转化与守恒关系,可以建立能量等式进行求解。
这种方法在处理复杂力学问题时尤为有效。
4. 三大观点的综合应用在实际问题中,力学三大基本观点往往不是孤立地应用,而是需要综合运用。
例如,在处理碰撞问题时,可以首先利用动量守恒定律确定碰撞前后物体的速度关系,然后利用牛顿第二定律分析碰撞过程中的受力情况,最后通过能量守恒定律验证结果的正确性。
牛顿运动定律在实际中的应用
牛顿第三定律在田 径运动中的应用: 运动员在跳跃或投 掷项目中,通过施
加相反方向的力 (例如在跳高时的 起跳和摆腿力量) 来增加垂直方向上 的加速度,从而跳 得更高或投得更远。
添加标题
牛顿运动定律在 田径运动中的综 合应用:在长距 离跑项目中,运 动员通过保持恒 定的速度和加速 度,以最少的能 量消耗完成比赛。
,a click to unlimited possibilities
汇报人:
01
02
03
04
05
06
牛顿第一定律:物 体在无外力作用下, 将保持静止或匀速 直线运动状态。
牛顿第二定律:物 体加速度的大小与 作用力成正比,与 物体的质量成反比。
牛顿第三定律:作 用力和反作用力大 小相等,方向相反, 作用在同一条直线 上。
动作捕捉技术:利用牛顿运动定律进行演员的动作捕捉,实现逼真的动画效果。
特效制作:利用牛顿运动定律模拟自然现象,如爆炸、烟雾等,增强电影的视觉 效果。
角色动画:通过牛顿运动定律对角色进行骨骼绑定和动画制作,使角色动作更加 自然流畅。
场景设计:利用牛顿运动定律进行场景的物理模拟,如重力、碰撞等,增强场景 的真实感。
添加标题
牛顿第一定律:游泳者在水中前进时,由于受到水的阻力,需要施加一个力来克服阻力, 使身体持续向前移动。
牛顿第二定律:游泳者在加速游动时,需要施加更大的力来克服阻力,使身体加速前进。
牛顿第三定律:游泳者在游动时,需要保持身体的平衡,以保持稳定的前进速度和方向。
牛顿万有引力定律:在水中保持浮力平衡,通过调整身体的姿态和呼吸来控制身体的位置 和深度。
牛顿运动定律在机械制造中的应用,如机器的设计、制造和优化。 机器的运转和控制系统,如自动化生产线和机器人,都基于牛顿运动定律。 机械制造中使用的各种工具和设备,如机床、刀具和夹具,都受到牛顿运动定律的支配。 机械制造中的质量控制和误差分析,也涉及到牛顿运动定律的应用。
人教版高中物理必修一 牛顿运动定律的应用之板块与传送带问题 学案
牛顿运动定律应用之板块和传送带问题(4.5 牛顿运动定律的应用第2课时)一.滑块、木板相对运动问题1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在的相互作用下发生滑动。
2.位移关系:滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移大小之差∆x=;滑块和木板反向运动时,位移大小之和∆x=。
3.分析滑块方法:首先求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),然后找出物体之间的位移(路程)关系或速度关系是解题的突破口.思路如下:(1)确定研究对象,分析每一个物体的受力情况、运动情况(2)应用,计算滑块和木板的加速度(3)找出物体之间的关系是解题的突破口,前一个过程的速度是下一个过程的速度例1、(多选)如图所示,物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6 kg,m B=2 kg;A、B间动摩擦因数μ=0.2;A物体上系一细线,细线能承受的最大拉力是20 N,水平向右拉细线,下述中正确的是(g取10 m/s2)()A.当拉力0<F<12 N时,A静止不动B.当拉力F>12 N时,A相对B滑动C.当拉力F=16 N时,B受到A的摩擦力等于4 ND.在细线可以承受的范围内,无论拉力F多大,A相对B始终静止【模型突破】做好两物体的受力分析和运动过程分析是解决此类问题的关键点和突破口,解答此类问题的注意事项:(1)要注意运动过程中两物体的速度关系、位移关系等,画出位移关系图;(2)相对静止时,常存在静摩擦力,两物体发生相对滑动的临界条件是静摩擦力达到最大值;(3)两物体速度相等时可能存在运动规律的变化,在解题时要注意这个临界状态。
两物体发生相对滑动后,属于“追及相遇问题”,要注意列出两物体间的位移关系.例2.、长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.求:(1)木块与冰面的动摩擦因数;(2)小物块相对于长木板滑行的距离;(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大?(取g =10m /s 2)【方法技巧】(1)若两物体以不同的初速度开始运动,则板块之间一定发生相对运动,物块刚好没有从木板上滑下,则此时它们的位移关系:同向时,位移大小之差△x=x 物块-x 木板=L (板长);反向时,位移大小之和△x=x 物块+x 木板=L 。
4.6牛顿运动定律的应用+教学设计2023-2024学年高一上学期物理教科版(2019)必修第一册
6.牛顿运动定律的应用★课标解析1.课标内容要求。
理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题。
2.课标内容解析。
牛顿运动定律包括牛顿三大定律。
牛顿第一定律指出力不是维持物体运动状态的原因,而是改变物体运动状态的原因,一切物体都有惯性,且物体的质量是其惯性大小的量度,物体的惯性与物体的运动状态无关。
牛顿第二定律可用公式F=ma简洁表述,是运动学和静力学联系的桥梁与纽带,是动力学的基础。
牛顿第三定律阐述了物体间作用力与反作用力的关系。
牛顿运动定律是日常生活、自然规律的总结与提炼,日常生产生活中的现象与牛顿运动定律规律相符合。
培养学生用牛顿运动定律解释生产生活中的有关现象、解决有关问题的能力是培育物理学科核心素养的重要载体,也是物理教学的学科价值的体现。
★教学目标1.理解牛顿第二定律中的加速度、力、质量三者之间的关系,形成正确的物理观念。
2.了解力与运动是与我们日常生产、生活密不可分的两大物理内容。
3.会用牛顿运动定律来解释和解决遇到的相关问题。
4.体会用牛顿运动定律解决生产生活中的问题的过程是理论联系实际的过程。
5.在牛顿运动定律的应用过程中体会科学解决问题的思路与策略。
6.在用牛顿运动定律科学解决问题的过程中培养模型建构能力和科学推理能力。
7.体会日常生活中物理无处不在,均是物理规律在起作用,培养学生的科学态度与责任心。
★教学准备1.本节的教学用1课时。
2.多媒体使用。
PPT课件,电脑投影。
3.教学顺序。
(1)复习引入:牛顿第二定律表达式F=ma中含有加速度、力、质量三个方面关系;(2)问题导向:以教科书中的问题1为例,体会动力学测物体质量的方法;(3)交流讨论,提炼思路;(4)问题导向:以教科书中的问题2为例,体会从受力确定运动情况的过程;(5)问题导向:以教科书中的问题3为例,体会从运动情况确定受力的过程;(6)以理点悟、深化主题:请学生整理、提炼、领悟牛顿运动定律应用的思路与策略。
牛顿运动定律及其应用
惯性:物体保持其运动状态不变的特性。
(2). 定义了惯性参考系
二、牛顿第二定律(Newton second law)
在受到外力作用时,物体所获得的加速度的大小与
外力成正比,与物体的质量成反比;加速度的方向与
外力的矢量和的方向相同。
F ma
F 质点运动微分方程: m d m d 2r
d dt 2
m
4、定量的量度了惯性
mA aB mB aA
相同外力下,m大的a小, m小的a大。m越大,惯性越大。
质量是物体惯性大小的量度。
惯性质量:牛顿第二定律中的质量常被称为惯性质量
引力质量:
F
G
m1m2 r2
r0
式中 m1、m2 被称为引力质量
经典力学中不区分引力质量和惯性质量
三、第三定律(Newton third law) 两个物体之间对各自对方的相互作用总是相等的,
a0
F0 ma0
F
超重与失重
❖ 升降机以 a 上升。
F N mg ma 0
N mg mamg
可见,人的有效重力m(g+a)大于人的重力mg,
这种情况称为超重。
❖ 升降机以 a 下降。
F N mg ma 0
N mg mamg
❖ 可见,人的有效重力m(g-a)小于人的重力mg,
这种情况称为失重。
❖ 如果a=g,则N=0,完全失重。如宇航员。
引入惯性力后,质点在直线加速参考系中牛顿第二定律的 形式为
F F0 ma
作用于质点 的相互作用 力
惯性力
质点相对于该非惯性系的 加速度3.匀角速度转动参考系中的惯性力----惯性离心力
牛顿运动定律综合应用
牛顿定律综合应用1.知道传动带模型和滑板模型的概念。
2.掌握处理传送带问题和滑板模型的方法,形成处理叠加体问题的思路。
3.通过多体多过程的问题分析,培养良好的过程分析与逻辑推理的科学思维。
如何应用力与运动关系解决传送带模型?一.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上运动的力学系统可看做“传送带”模型。
二.模型分类(1)水平传送带模型:求解的关键在于对物体所受的摩擦力进行正确的分析判断。
判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等。
物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
(2)倾斜传送带模型:求解的关键在于分析清楚物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。
当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。
三.传送带模型的一般解法① 确定研究对象;① 分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;① 分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
四.注意事项1. 传送带模型中要注意摩擦力的突变① 滑动摩擦力消失① 滑动摩擦力突变为静摩擦力① 滑动摩擦力改变方向2.传送带与物体运动的牵制。
牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。
3. 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【例题1.1】如图所示,水平传送带两端相距x=8 m,工件与传送带间的动摩擦因数μ=0.6,工件滑上A端时速度v A=10 m/s,设工件到达B端时的速度为v B。
(取g=10 m/s2)(1)若传送带静止不动,求v B;(2)若传送带顺时针转动,工件还能到达B端吗?若不能,说明理由;若能,求到达B 点的速度v B;(3)若传送带以v=13 m/s逆时针匀速转动,求v B及工件由A到B所用的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律的应用(2)
A 卷
1、如图所示,在原来静止的木箱内,放有A 物体,A 被一伸长的弹簧拉住
且恰好静止,现突然发现A 被弹簧拉动,则木箱的运动情况可能是( )
A 、加速下降
B 、减速上升
C 、匀速向右运动
D 、加速向左运动
2、如图所示,一木块在光滑水平面上以速度v 运动,前方固定有一个弹簧,对木块压缩弹簧过程的描述,正确的是( )
A 、木块一直做减速运动,直至速度减为零
B 、木块先做减速运动,后做匀速运动
C 、木块的速度不断减小,加速度大小也不断减小
D 、木块的速度不断减小,加速度大小不断增大
3、某消防队员从一平台上跳下,下落2m 后双脚触地,紧接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5m 。
在着地过程中,地面对他双脚的平均作用力估计为自身重力的( )
A 、2倍
B 、5倍
C 、8倍
D 、10倍
4、用40N 的水平力F 拉一个静止在光滑水平面上、质量为20kg 的物体,力F 作用3s 后撤去,则第5s 末物体的速度和加速度的大小分别是( )
A.v=6m/s,a=0
B.v=10m/s,a=2m/s 2
C.v=6m/s,a=2m/s
2 D.v=10m/s,a=0
5、如图所示,水平传送带以恒定速度v 向右运动。
将质量为m 的物体Q 轻轻放在水平传送带的左端A 处,经过t 秒后,Q 的速度也变为v,再经t 秒物体Q 到达传
送带的右端B 处,则( )
A.前t 秒内物体做匀加速运动,后t 秒内物体做匀减速运动
B.后t 秒内Q 与传送带之间无摩擦力
C.前t 秒内Q 的位移与后t 秒内Q 的位移大小之比为1∶1
D.Q 由传送带左端运动到右端的平均速度为34
v 6、如图所示,当车厢向前加速前进时,物体M 静止于竖直车厢壁上,当车厢加速度增加时,则
( )
A.静摩擦力增加
B.车厢竖直壁对物体的弹力增加
C.物体M 仍保持相对于车厢的静止状态
D.物体的加速度也增加
7、水平传送带A、B以v=2m/s的速度匀速运动,如图所示所示,
A、B相距11m,一物体(可视为质点)从A点由静止释放,物
体与传送带间的动摩擦因数 =0.2,则物体从A 沿传送带运动到B所需的时间为多少秒。
(g=10m/s2)
8、2t的汽车在4000N的水平牵引力作用下,沿水平公路运动了1min,然后牵引力减为3500N,又运动了1min;最后撤去牵引力,直至汽车停止,汽车与地面间的动摩擦因数μ=0.15,求汽车在上述过程中一共走了多少路程?(g取10m/s2)
B卷
9、钢球在足够深的油槽中由静止开始下落,设油对球的阻力正比于其速率,则球的运动状态是()
A.先加速后减速最后静止B.先加速后匀速
C.加速度减小到零时速度最大D.加速度减小到零时速度最小
10、在粗糙的水平面上,一个质量为m的物体在水平恒力F作用下,由静止开始运动,经过时间t后速度达到V,若要使静止物体的速度达到2V,可以采用
A、将物体的质量减速为原来的1/2,其它条件不变
B、将水平恒力F增到2F,其他条件不变
C、将水平恒力作用的时间增加到2 t,其它条件不变
D、同时将水平恒力F和时间增加1倍。