人教版七年级数学下册课件:第九章 不等式与不等式组-基础专题 一元一次不等式(组)与学科内知识的综合
合集下载
(高分突破)2019人教版七年级数学下册课件:第9章 不等式与不等式组
数学
解:去分母,得 3(2x-3)<x+1, 去括号,得 6x-9<x+1, 移项,合并同类项,得 5x<10, 系数化为 1,得 x<2. 不等式的解集在数轴上表示如下:
数学 (2)2x- 3 1-9x+ 6 2≤1.
数学
解:去分母,得 2(2x-1)-(9x+2)≤6, 去括号,得 4x-2-9x-2≤6, 移项,得 4x-9x≤6+2+2, 合并同类项,得-5x≤10, 系数化为 1,得 x≥-2. 不等式的解集在数轴上表示如下:
第九章 不等式与不等式组
数学
知识点 1 不等式及其解集和性质
1.下列各式:①-3<0;②4x+3y>0;③x=3;④x2+xy+
y2;⑤x≠5;⑥x+2>y+3.其中不等式的个数有( B )
A.5 个
B.4 个
C.3 个
D.1 个
数学
2.根据下列数量关系,列出不等式: (1)x 与 2 的和是负数; (2)m 与 1 的相反数的和是非负数; (3)a 与-2 的差不大于它的 3 倍; (4)a,b 两数的平方和不小于它们的积的两倍.
数学 知识点 2 一元一次不等式的解法
1.下列不等式中,是一元一次不等式的是( A )
A.5x-2>0 C.6x-
2.已知-31x2a-1+5>0 是关于 x 的一元一次不等式,则 a 的
值是 1 .
数学
3.解下列不等式,并把解集在数轴上表示出来: (1)2x-3<x+3 1;
数学
2.某次知识竞赛共有 25 道题,答对一道得 4 分,答错或不 答都扣 2 分.小明得分要超过 80 分,他至少要答对多少道题?
数学
解:设小明答对 x 道题,则他答错或不答的题数为(25-x)道.根 据他的得分要超过 80 分,得 4x-2(25-x)>80,解得 x>2132. 因为 x 应是整数而且不能超过 25,所以小明至少要答对 22 道 题. 答:小明至少要答对 22 道题.
人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)
新课引入 展示目标 精讲精练 归纳小结 强化训练
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.
9.3一元一次不等式组(第3课时)课件人教版数学七年级下册
解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知
审
解用 决一
设
实元 际一
列
问次
题不
解
的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型
人教版七年级数学下册教学课件(人教版) 第九章 不等式与不等式组 第1课时 解一元一次不等式
归纳总结
一元一次不等式的解法与一元一次方程的解法 类似,其根据是不等式的基本性质,其步骤是:去 分母、去括号、移项、合并同类项、将未知数的系 数化为 1.
针对训练
1.解下列不等式,并在数轴上表示解集:
(1) 5x+15>4x-1;
(2) 2(x+5)≤3(x-5);
(3) x 1< 2x 5;
知识点三 一元一次不等式的特殊解
例3 求不等式3(x+1)≥5x-9的非负整数解.
解析:求不等式的非负整数解,即在原不等式的解集 中找出它所包含的“非负整数”特殊解;因此 先需求出原不等式的解集.
解:∵解不等式3(x+1)≥5x-9得x≤6. ∴不等式3(x+1)≥5x-9的非负整数解为 0,1,2,3,4,5,6.
等式;(4)是一元一次不等式.
归纳总结
判断一个不等式是否为一元一次不等式的步骤: 先对所给不等式进行化简整理,再看是否满足: (1)不等式的左、右两边都是整式; (2)不等式中只含有一个未知数; (3)未知数的次数是1且系数不为0. 当这三个条件同时满足时,才能判定该不等式是一 元一次不等式.
针对练习
课堂小结
解一元一次不等式的一般步骤和根据如下:
步骤
根据
1
去分母
不等式的基本性质 3
2
去括号
单项式乘以多项式法则
3
移项
不等式的基本性质 1
合并同类项,得 4 ax>b,或ax<b (a≠0)
合并同类项法则
5 系数化为1
不等式的基本性质 3
归方F纳法法 正确理解关键词语的含义是准确解题的关键,
“非负整数解”即0和正整数解.
当堂练习
1.下列不等式中,是一元一次不等式的是( C )
人教版七年级数学下册课件 第九章 不等式与不等式组 一元一次不等式 第2课时 一元一次不等式的应用
购买数量(件)
A
第一次 第二次
B
购买总费用(元)
2
1
55
1
3
65
解:(1)设 A 种商品的单价为 x 元,B 种商品的单价为 y 元,根据题 意,可得2xx++3yy= =5655, , 解得xy==1250,,
答:A 种商品的单价为 20 元,B 种商品的单价为 15 元
(2)设第三次购买商品A种a件,则购买B种商品(12-a)件,根据题意, 可得a≥2(2y=y=59940000,,
解得xy==13
500, 200,
答:每台 A 型电脑
的价格为 3 500 元,每台 B 型打印机的价格为 1 200 元
(2)设学校购买 a 台 B 型打印机,则购买 A 型电脑为(a-1)台,根据题 意,得 3 500(a-1)+1 200a≤20 000,解得 a≤5.答:该学校至多能购买 5 台 B 型打印机
9.某大型超市从生产基地购进一批水果,运输过程中质量损失10%, 假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水 果的售价在进价的基础上应至少提高( B )
A.40% B.33.4% C.33.3% D.30%
10.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件, 后改进了工作方式,结果提前一天完成了加工任务,马师傅在两天后每天 至少加工__4_0_个零件.
∵m=20a+15(12-a)=5a+180,∴当a=8时所花钱数最少,即购买 A商品8件,B商品4件
(1)求每台A型电脑和每台B型打印机的价格分别是多少元? (2)如果学校购买A型电脑和B型打印机的预算费用不超过20 000元,并 且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至 多能购买多少台B型打印机?
一元一次不等式(1)一元一次不等式的解法课件人教版数学七年级下册
第九章 不等式与不等式组
9.2 一元一次不等式
一元一次不等式的解法
自主导学
一
1
x<a
x>a
x>33 x>75
x≥-3
探究学习
一元一次不等式的概念
解析:可根据一元一次不等式的概念进行判断,因为B选项中未知数 的次数为2,所以不是一元一次不等式;因为C选项中不含未知数,所以 不是一元一次不等式;因为D选项中不等号左边不是整式,所以不是一 元一次不等式;只有A选项含有一个未知数且未知数的次数是1,是一元 一次不等式.
解:去分母,得4(2-x)+12≤3(x+2). 去括号,得8-4x+12≤3x+6. 移项,得-4x-3x≤6-8-12. 合并同类项,得-7x≤-14. 系数化为1,得x≥2.
技巧点拨:解不等式时应注意以下几点. (1)在去分母时,不要漏乘不含分母的项; (2)因为分数线具有括号的作用,所以去分母后,整个分子要用括号括 起来; (3)在系数化为1时,若系数为负数,则不等号要改变方向.
把
B.a≤3
C.a≥3
D.a≥2
C 0
m≥5
解:10-2(2-3x)<5(1+x) 10-4+6x<5+5x x<-1
图略
解:26-3x+6≥2x-18+40 -5x≥-10 x≤2
图略
解:6(x-2)>5(2x+4) 6x-12>10x+20 x<-8
图略
解:2(4x-1)-3(3x+6)≤12 8x-2-9x-18≤12 x≥-32
跟踪训练 2.(1)解不等式:5(x-2)+8<6(x-1)+7;
解:5x-10+8<6x-6+7 x>-3
(2)若(1)中的不等式的最小整数解是关于x的一元一次方程2x-ax=3 的解,求a的值.
9.2 一元一次不等式
一元一次不等式的解法
自主导学
一
1
x<a
x>a
x>33 x>75
x≥-3
探究学习
一元一次不等式的概念
解析:可根据一元一次不等式的概念进行判断,因为B选项中未知数 的次数为2,所以不是一元一次不等式;因为C选项中不含未知数,所以 不是一元一次不等式;因为D选项中不等号左边不是整式,所以不是一 元一次不等式;只有A选项含有一个未知数且未知数的次数是1,是一元 一次不等式.
解:去分母,得4(2-x)+12≤3(x+2). 去括号,得8-4x+12≤3x+6. 移项,得-4x-3x≤6-8-12. 合并同类项,得-7x≤-14. 系数化为1,得x≥2.
技巧点拨:解不等式时应注意以下几点. (1)在去分母时,不要漏乘不含分母的项; (2)因为分数线具有括号的作用,所以去分母后,整个分子要用括号括 起来; (3)在系数化为1时,若系数为负数,则不等号要改变方向.
把
B.a≤3
C.a≥3
D.a≥2
C 0
m≥5
解:10-2(2-3x)<5(1+x) 10-4+6x<5+5x x<-1
图略
解:26-3x+6≥2x-18+40 -5x≥-10 x≤2
图略
解:6(x-2)>5(2x+4) 6x-12>10x+20 x<-8
图略
解:2(4x-1)-3(3x+6)≤12 8x-2-9x-18≤12 x≥-32
跟踪训练 2.(1)解不等式:5(x-2)+8<6(x-1)+7;
解:5x-10+8<6x-6+7 x>-3
(2)若(1)中的不等式的最小整数解是关于x的一元一次方程2x-ax=3 的解,求a的值.
人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法
数学 七年级下册 人教版
第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:
第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:
人教版数学七年级下册一元一次不等式第一课时一元一次不等式及其解法课件
不无为所穷 求分变则节无,所母不获为。、贱易_志。__去__括__号___、__移__项____、合并同类项、未知数系数化成1.
褴褛衣内可藏志。 志不真则心不热,心不热则功不贤。
第九章 不等式与不等式组
1.下列不等式中,是一元一次不等式的是
A.13(x+2)>4x-1
B.(1+x)(1-x)>5
C.x+2 1-4≤x
第九章 不等式与不等式组
(2)2x-74≥94.
解:去分母,得2x-7≥9, 移项,得2x≥9+7, 合并同类项,得2x≥16. 系数化为1,得x≥8,其解集在数轴上表示,如图2所示.
第九章 不等式与不等式组
4.解下列各题: (1)解不等式:2(5x+3)≤x-3(1-2x); (2)解不等式:2x+ 3 2-3x+ 2 1<1,并把解集表示在数轴上. 解:(1)去括号,得 10x+6≤x-3+6x, 移项、合并同类项,得 3x≤-9, 系数化为 1,得 x≤-3. 所以原不等式的解集是 x≤-3.
解:移项,得 2x-4x>-3,即-2x>-3. 去括号,得4x+4-9x-3<6,
但方程两边同乘(或除以)一个负数时,方程的解不变. 6.已知3m-5x3+m>4是关于x的一元一次不等式, 系数化为1,得x>-1.
3 移项、合并同类项,得7x≥-14, 系数化为 1,得 x<2,其解集在数轴上表示,如图 1 所示. 去括号,得3x+12+4x+2≥0,
志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。 去括号,得3x+12+4x+2≥0, 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
(1)2x+3>4x; 解:(1)∵3m-5x3+m>4是关于x的一元一次不等式,
(2)求这个不等式的解集. 【第二关】 建议用时6分钟 ②不等式中,当两边同乘(或除以)一个负数时,不等号的方向改变;
褴褛衣内可藏志。 志不真则心不热,心不热则功不贤。
第九章 不等式与不等式组
1.下列不等式中,是一元一次不等式的是
A.13(x+2)>4x-1
B.(1+x)(1-x)>5
C.x+2 1-4≤x
第九章 不等式与不等式组
(2)2x-74≥94.
解:去分母,得2x-7≥9, 移项,得2x≥9+7, 合并同类项,得2x≥16. 系数化为1,得x≥8,其解集在数轴上表示,如图2所示.
第九章 不等式与不等式组
4.解下列各题: (1)解不等式:2(5x+3)≤x-3(1-2x); (2)解不等式:2x+ 3 2-3x+ 2 1<1,并把解集表示在数轴上. 解:(1)去括号,得 10x+6≤x-3+6x, 移项、合并同类项,得 3x≤-9, 系数化为 1,得 x≤-3. 所以原不等式的解集是 x≤-3.
解:移项,得 2x-4x>-3,即-2x>-3. 去括号,得4x+4-9x-3<6,
但方程两边同乘(或除以)一个负数时,方程的解不变. 6.已知3m-5x3+m>4是关于x的一元一次不等式, 系数化为1,得x>-1.
3 移项、合并同类项,得7x≥-14, 系数化为 1,得 x<2,其解集在数轴上表示,如图 1 所示. 去括号,得3x+12+4x+2≥0,
志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。 去括号,得3x+12+4x+2≥0, 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
(1)2x+3>4x; 解:(1)∵3m-5x3+m>4是关于x的一元一次不等式,
(2)求这个不等式的解集. 【第二关】 建议用时6分钟 ②不等式中,当两边同乘(或除以)一个负数时,不等号的方向改变;
人教版七年级下册数学第9章 不等式与不等式组全章课件
10天的工作量 < 500件
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组
(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组
人教版七年级数学下册 第九章 不等式与不等式组 一元一次不等式 第2课时 实际问题与一元一次不等式
A.58 B.59 C.60 D.61 4.(舞钢市期末)小张购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢 笔5元,费用不超过100元钱,设小张买了x支钢笔,则x应满足的不等式是 _5_x_+__2_(_3_0_-__x_)≤_1_0_0__.
5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车
5.(2021·焦作期末)一种苹果的进价是每千克1.9元,销售中估计有5%的苹果 正常损耗,商家把售价至少定为__2__元,才能避免亏本.
解:因为1.5×10=15<25,所以小明家这个月的用水量超过10立方米.设小明 家这个月的用水量至少为x立方米,根据题意有15+2(x-10)≥25,解得x≥15,答: 他家这个月的用水量至少是15立方米
11.(2021·河北)已知训练场球筐中有A,B两种品牌的乒乓球共101个,设A品 牌乒乓球有x个.
(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方 程:101-x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法 说明A品牌球最多有几个.
解:(1)嘉嘉所列方程为 101-x=2x,解得 x=3323 ,又∵x 为整数,∴x=3323 不合题意,∴淇淇的说法不正确 (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101-x)个,依题意,得101-x- x≥28,解得x≤36.5,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36 个
8.红旗中学组织本校师生参加红色研学实践活动,现租用11辆甲、乙两种型 号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动.
甲、乙两种型号的大客车的载客量如表所示:
则最多可以租用多少辆甲种型号大客车?有几种租车方案?
解:设租用x辆甲种型号大客车,则租用(11-x)辆乙种型号大客车,依题意得: 40x+55(11-x)≥549+11,解得x≤3,∴x可以取的最大值为3.∵x为正整数,∴x= 1或2或3,∴有3种租车方案.答:最多可以租用3辆甲种型号大客车.有3种租车 方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆 甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙 种型号大客车
人教版七年级数学下册《不等式的性质》不等式与不等式组PPT优秀课件
第九章 不等式与不等式组
不等式的性质
学习目标
1.(课标)探索不等式的基本性质. 2.掌握不等式的三个性质并且能正确应用. 3.理解解不等式的概念. 4.(课标)能解数字系数的一元一次不等式.
知识要点
知识点一:不等式的性质 (1)不等式的性质1 文字语言:不等式两边加(或减)同一个数(或式子),不等号的方 向 不变 . 符号语言:如果a>b,那么a±c > b±c.
4.(人教7下P119)用不等式表示下列语句并写出解集,并在数 轴上表示解集: (1)x的3倍大于或等于1; (2)x与3的和不小于3; (3)y与1的差不大于0;
(4)y 的1小于或等于-2.
4
(1)3x≥1,即 x≥1
3
(3)y-1≤0,即 y≤1
数轴略.
(2)x+3≥3,即 x≥0 (4)1y≤-2,即 y≤-8
★.(新题速递)(人教7下P121改编)根据等式和不等式的基本 性质,我们可以得到比较两数大小的方法: 若a-b>0,则a>b;若a-b=0,则a=b; 若a-b<0,则a<b.反之也成立. 这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题: 比较4+3a2-2b+b2与3a2-2b+1的大小. 解:∵4+3a2-2b+b2-(3a2-2b+1)=b2+3>0, ∴4+3a2-2b+b2>3a2-2b+1.
数轴略.
(2)6x<5x-1;
x<-1
(4)1-1x≥x-2.
3
x≤9
4
8.【例4】(创新题)四个小朋友玩跷跷板,他们的体重分别为 P,Q,R,S,如图所示,则他们的体重大小关系是( D )
A.P>R>S>Q C.S>P>Q>R
B.Q>S>P>R D.S>P>R>Q
初中数学 人教版七年级下册 9.2一元一次不等式 课件
⑤
两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的字母写在不等号的左边。
练习反馈
4.解下列不等式,并在数轴上表示解集.
(1) -5x ≤10 ;
x ≥ -2
(2)4x-3 < 10x+7 .
x
>
-
5 3
(3) 3x -1 > 2(2-5x) ;
5
x > 13
(4) x 32≥2x23
合并同类项,得 系数化为1,得
2x 1 x 1
2
移项,得 合并同类项,得 系数化为1,得
3x 4x 2 6, x 8,
x 8.
归纳总结 归纳解不等式的一般步骤,并指出每个步骤的根据,完成下表.
步骤
根据
①
去分母
不等式的基本性质2,3
②
去括号
去括号法则
③
移项
不等式的基本性质1
④
合并同类项
合并同类项法则
-5x >-10
x=2
系数化为1
x<2
总结归纳
解一元一次不等式与解一元一次方程的依据和步骤有什么异同点?
相同之处:
议
基本步骤相同:去分母,去括号,移项,合并同类项,
一 议
系数它化们为的1依这.据些不步相骤同中. ,要特别注意的是:
解一元一不次等方式程两的边依都乘(或除以)同一个 据是等式负的数性,质必,须解改变不等号的方向.这是 一元一次与不解等一式元的一依次方程不同的地方.
✓ (2)5x+3<5(x-y) ✓
✕ (4)x(x–1)< x2 -2x ✓
✕ (6) x2-3x-5<6
人教版数学七年级下册9.3 一元一次不等式组-课件
④ x< -1 x≥ 2
A x ≥ -1
A x< -1
A x ≥ -1
A x< -1
B x≥ 2
B x< 2
B x< 2
B
x≥ 2
C -1≤ x≤ 2
C -1< x< 2
C -1≤ x< 2
C -1< x≥ 2
D 无解
D 无解
D 无解
D 无解
2 x-
1
x,
①
2.
解不等式组:
1
x
< 3.
②
2
解: 解不等式①,得 x > 1 .
因此,原不等式组的解集为 20<x <22.
2x+y=5m+6 ① 7.已知方程组 x-2y=-17 ② 的解x,y的值都是正数,且x<y,求m的取值范围.
解:①×2+②得:5x=10m-5,得:x=2m-1.
①-②×2得:5y=5m+40,得:y=m+8.
又∵x,y的值都是正数,且x<y.
∴ 2m-1>0 m+8>0 2m-1<m+8
a x>b
b
同大取大
a x<a b
同小取小
a a<x<b b
大小小大中间找
a 无解 b
大大小小无处找
练一练
填表:
不等式组
x
≥
-5,
x
>
-
3
x
>
-5,
x
≤
-3
x-
5
<
0,
x
+
3
<
0
不等式组的解集 x﹥-3 -5﹤x≤-3 x<-3
人教版七年级数学下册第九章《 9.1.1 不等式及其解集》公开课课件(共39张PPT)
第九章 不等式与不等式组 9.1 不等式 9.1.1 不等式及其解集
1.用“__>__”或“__<__”表示大小关系的式子叫做不等式,用“__≠__”表示不等 关系的式子也是不等式.
2.使不等式成立的__未知数的值__叫做不等式的解;一般地,一个含有未知数的不等式 的__所有的解__组成这个不等式的解集.求不等式的__解集__的过程叫做解不等式.
21.(16分)阅读下列材料,并完成填空. 你能比较2 0142015和2 0152014的大小吗? 为 了 解 决 这 个 问 题 , 先 把 问 题 一 般 化 , 比 较 nn + 1 和 (n + 1)n(n≥1 , 且 n 为 整 数 ) 的 大 小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜 想得出结论. (1)通过计算(可用计算器)比较下列①~⑦组两数的大小;(在横线上填上“>”“=”或“<”) ①12__<__21;②23__<__32;③34__>__43; ④45__>__54;⑤56__>__65;⑥67__>__76; ⑦78__>__87. (2)归纳第(1)问的结果,可以猜想出nn+1和(n+1)n的大小关系; (3)根据以上结论,请判断2 0142 015和2 0152 014的大小关系. 解:(2)当n=1或2时,nn+1<(n+1)n;当n≥3时,nn+1>(n+1)n
第九章 不等式与不等式组 9.1.2 不等式的性质
4.(4分)平面直角坐标系中,点Q(2,-3m+1)在第四象限,则m的取 值范围是( D ) A.m< B.m>- C.m<- D.m>
5.(3分)在下列不等式的变形后面填上依据: (1)如果a-3>-3,那么a>0;__不等式的性质1__ (2)如果3a<6,那么a<2;__不等式的性质2__ (3)如果-a>4,那么a<-4.__不等式的性质3__
1.用“__>__”或“__<__”表示大小关系的式子叫做不等式,用“__≠__”表示不等 关系的式子也是不等式.
2.使不等式成立的__未知数的值__叫做不等式的解;一般地,一个含有未知数的不等式 的__所有的解__组成这个不等式的解集.求不等式的__解集__的过程叫做解不等式.
21.(16分)阅读下列材料,并完成填空. 你能比较2 0142015和2 0152014的大小吗? 为 了 解 决 这 个 问 题 , 先 把 问 题 一 般 化 , 比 较 nn + 1 和 (n + 1)n(n≥1 , 且 n 为 整 数 ) 的 大 小.然后从分析n=1,n=2,n=3…的简单情形入手,从中发现规律,经过归纳、猜 想得出结论. (1)通过计算(可用计算器)比较下列①~⑦组两数的大小;(在横线上填上“>”“=”或“<”) ①12__<__21;②23__<__32;③34__>__43; ④45__>__54;⑤56__>__65;⑥67__>__76; ⑦78__>__87. (2)归纳第(1)问的结果,可以猜想出nn+1和(n+1)n的大小关系; (3)根据以上结论,请判断2 0142 015和2 0152 014的大小关系. 解:(2)当n=1或2时,nn+1<(n+1)n;当n≥3时,nn+1>(n+1)n
第九章 不等式与不等式组 9.1.2 不等式的性质
4.(4分)平面直角坐标系中,点Q(2,-3m+1)在第四象限,则m的取 值范围是( D ) A.m< B.m>- C.m<- D.m>
5.(3分)在下列不等式的变形后面填上依据: (1)如果a-3>-3,那么a>0;__不等式的性质1__ (2)如果3a<6,那么a<2;__不等式的性质2__ (3)如果-a>4,那么a<-4.__不等式的性质3__
最新人教版七下数学 第九章 不等式与不等式组 单元解读课件
章节内容分析
第9.2节中,首先介绍了一元一次不等式及其解法,然后利用一元 一次不等式解决实际问题.类比一元一次方程的解法,通过典型例 题将化归思想程序化,给出一元一次不等式的解法,并利用归纳 栏目概括出一元一次不等式与一元一次方程在解法上的异同及应 注意之处.在具备基本知识和技能基础上,教科书借助两个实际 问题(空气质量和购物花费),说明如何建立不等式模型解决实 际问题,而这正是本章的核心内容.
章节课标解读
教学内容
课标要求
9.1 不等式
1. 了解不等式及相关概念. 2. 掌握不等式的性质,能利用不等式的性质解简单的
不等式,并会用数轴表示不等式的解集,体会数形 结合思想. 3. 通过实际问题列出不等式,感受数学建模思想.
章节课标解读
教学内容
课标要求
9.2 一元一次
不等式
1. 了解一元一次不等式的概念. 2. 能解数字系数的一元一次不等式,并能在数轴上表
章节内容分析
第9.3节中,结合污水抽取问题,引进了一元一次不等式组及其解 集的概念.在第八章刚学习了二元一次方程组的基础上,讨论不 等式组是比较自然的安排.这里公共解集中的“公共”,是指各 不等式解集的公共部分(交集).二元一次方程组的解可以通过 消元直接产生,而一元一次不等式组的解集可以借助画出数轴 (或在头脑中想象数轴)得出.在这个问题上借助直观容易确定 不等式的解集.
人教版·七年级下册
9
单元解读
教材分析
数与式
统
计
与
方程与不等式
概
率
函数
“方程与不等式”揭示 了数学中最基本的数量 关系(相等关系和不等 关系),是一类应用广 泛的数学工具.
教材分析
七年级上册(相等关系)
七年级数学下册第9章不等式与不等式组9.2.2再探实际问题与一元一次不等式的应用(图文详解)
并,系数化为1。
解:去分母,得 去括号,得 移项,得 合并,得
2(2x+1) ≤6+9(x-1)
4x+2 ≤6+9x49x-9x ≤6-9-2
-5x ≤-5
系数化为1,得 x ≥1
七年级数学第9章不等式与不等式组 将不等式的解集在轴上表示为:
01
x
归纳:
解一元一次不等式的一般步骤: 去分母
去括号 移项 合并
当Y1 > Y2 即100+0.9(X-100) > 50+0.95(X-50) 时,X < 150
议一
故宫博议物院门票是每位10元,20人以上(含20人)的
团体票8折优惠.现有18位同学结伴去博物院,当领队小 华准备好了零钱到售票处买18张票时,李明喊住了他: “买20张吧!”小华困惑了:18人买20张不是浪费吗? 你认为呢?为什么? 此外,不足20人时,多少人买20张的团体票比普通票便宜?
在甲店累计购买100元商品后,再购买的商品按原价的 90%收费;在乙 店累计购买50元商品后,再购买的商品按 原价的95%收费,顾客怎样选择商店购物能获得最大优惠。
(3) 如果累计购物超过100元,那么在甲店花费一定少吗?
解:设累计购物X元(X>100)
在甲店购物花费:Y1 = 100+0.9(X-100) 在乙店购物花费:Y2 = 50+0.95(X-50)
购物花费小;累计购物150元时,在两店购物花费一样; 累计购物超过150元时,在甲店购物花费小.
甲、乙两商店以同样的价格出售同样的商品,并且 又各自推出不同的优惠方案:
在甲店累计购买100元商品后,再购买的商品按原价的90%收费; 在乙 店累计购买50元商品后,再购买的商品按原价的95%收费, 顾客怎样选择商店购物能获得最大优惠。
人教版数学七年级下册一元一次不等式第三课时一元一次不等式的应用课件
第九章 不等式与不等式组
答:加工乙种零件的同学至少为13人.
知识点 利用一元一次不等式解决比较复杂的实际问题
9.2 一元一次不等式 A.12
B.13
1.请你谈谈解一元一次不等式的一般方法和步骤是哪些.
另据估计,从2020年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.
根据题意,得(6 000-x)90%+95%x≥93%×6 000,
胸无大志,枉活一世。
天才是由于对事业的热爱感而发展起来的,简直可以说天才。
根据题意,得24×4x+16×5×(20-x)≥1 800, 人生不得行胸怀,虽寿百岁犹为无也。
对没志气的人,路程显得远;对没有银钱的人,城镇显得远。
雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
解这个不等式,得x≥12.5. 雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
燕雀安知鸿鹄之志哉。
不低于1 志正则众邪不生。
心志要坚,意趣要乐。
800元,加工乙种零件的同学至少为几人?
男儿不展同云志,空负天生八尺躯。
少年心事当拿云。
解:设加工乙种零件的同学为x 以天下为己任。
远大的希望造就伟大的人物。
人
,
则
这
天
可
加
工
乙
种
零
件
4x个
,
岂能尽如人意,但求无愧我心.
甲种零件有5(20-x)个. 人之所以异于禽者,唯志而已矣!
第九章 不等式与不等式组
第3课时 一元一次不等式的应用(2) 8若天人14少天另根雄1若另解 因若6另根因根 4千.....要才生千才据据鹰小据:为要据据为据米 请 小 某 某 小保 是 不 米 是 估 题 必 区 估 设x使 估 题 x题.你明次林明是是证由得才由计意须的计加 这计意意已谈家数场家正正绿于行能于,,比总,工 批,,,知谈离学计离整整色对胸不对从得鸟占从乙 树从得得他解火竞划火数数草事怀误事2(飞地2种 苗2((222步一车0赛0购0车,,111地业,当业2得面2零 的2666行元站0共0买0站所所×××面的虽次的高积件 成年年年的一有甲11以以999积热寿火热,为的 活0初初初0000速次、2xxkk%%%不爱百车爱因同率起01起起最最mm度不乙道4+++低感岁?感为学 不,,,小小,,0为等两选xxx0于而犹而它为 低该该该值值某某)))0式种9×择××规发为发的于0市m市x市是是天天的树米9题99人2定展无展猎此0此9此001111,一苗/%,3%%,3300分要起也起物后后%后..点点小+++般共评则,,求来。来就每每每11区xxx方分6这00跑且≤≤≤,的的是年年年分分0内222法办天0步购333则,,鸟报报报小小0每111和法可棵的买...最简简。废废废明明幢步:加,速树多直直的 的 的离 离楼骤答工甲度苗只可可汽汽汽家家房是对乙种为的能以以车车车赶赶的哪一种树2总建说说数数数111建11些题零苗0费点点造天天量量量米筑.得件每用整整多才才是是是面/54分棵最的的少。。上上上分x积个,5低火火幢年年年,元为,若,车车住底底底答,5甲他6应去去宅汽汽汽错乙0种要最某某楼车车车或m种零在2多地地?拥拥拥不树;件1选,,有有有答5苗有分购他他量量量一每5钟乙先先的的的题(棵2内种0以以1扣118-000到元树33%2%%x分达kk,苗...)个mm.乙相多//.hh参地关的的少赛,资速速棵学至料度度?生少表走走至需明了了少要:55 答跑mm甲ii对步nn、到到多乙达达少两汽汽道种车车题树站站成苗,,绩的然然才成后后能活乘乘不率公公低分共共于别汽汽(6为0车车分9去去0)%火火和车车95站站%... 请请问问::公公共共汽汽车车每每( 小小时时)至至少少走走多多
答:加工乙种零件的同学至少为13人.
知识点 利用一元一次不等式解决比较复杂的实际问题
9.2 一元一次不等式 A.12
B.13
1.请你谈谈解一元一次不等式的一般方法和步骤是哪些.
另据估计,从2020年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.
根据题意,得(6 000-x)90%+95%x≥93%×6 000,
胸无大志,枉活一世。
天才是由于对事业的热爱感而发展起来的,简直可以说天才。
根据题意,得24×4x+16×5×(20-x)≥1 800, 人生不得行胸怀,虽寿百岁犹为无也。
对没志气的人,路程显得远;对没有银钱的人,城镇显得远。
雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
解这个不等式,得x≥12.5. 雄鹰必须比鸟飞得高,因为它的猎物就是鸟。
燕雀安知鸿鹄之志哉。
不低于1 志正则众邪不生。
心志要坚,意趣要乐。
800元,加工乙种零件的同学至少为几人?
男儿不展同云志,空负天生八尺躯。
少年心事当拿云。
解:设加工乙种零件的同学为x 以天下为己任。
远大的希望造就伟大的人物。
人
,
则
这
天
可
加
工
乙
种
零
件
4x个
,
岂能尽如人意,但求无愧我心.
甲种零件有5(20-x)个. 人之所以异于禽者,唯志而已矣!
第九章 不等式与不等式组
第3课时 一元一次不等式的应用(2) 8若天人14少天另根雄1若另解 因若6另根因根 4千.....要才生千才据据鹰小据:为要据据为据米 请 小 某 某 小保 是 不 米 是 估 题 必 区 估 设x使 估 题 x题.你明次林明是是证由得才由计意须的计加 这计意意已谈家数场家正正绿于行能于,,比总,工 批,,,知谈离学计离整整色对胸不对从得鸟占从乙 树从得得他解火竞划火数数草事怀误事2(飞地2种 苗2((222步一车0赛0购0车,,111地业,当业2得面2零 的2666行元站0共0买0站所所×××面的虽次的高积件 成年年年的一有甲11以以999积热寿火热,为的 活0初初初0000速次、2xxkk%%%不爱百车爱因同率起01起起最最mm度不乙道4+++低感岁?感为学 不,,,小小,,0为等两选xxx0于而犹而它为 低该该该值值某某)))0式种9×择××规发为发的于0市m市x市是是天天的树米9题99人2定展无展猎此0此9此001111,一苗/%,3%%,3300分要起也起物后后%后..点点小+++般共评则,,求来。来就每每每11区xxx方分6这00跑且≤≤≤,的的是年年年分分0内222法办天0步购333则,,鸟报报报小小0每111和法可棵的买...最简简。废废废明明幢步:加,速树多直直的 的 的离 离楼骤答工甲度苗只可可汽汽汽家家房是对乙种为的能以以车车车赶赶的哪一种树2总建说说数数数111建11些题零苗0费点点造天天量量量米筑.得件每用整整多才才是是是面/54分棵最的的少。。上上上分x积个,5低火火幢年年年,元为,若,车车住底底底答,5甲他6应去去宅汽汽汽错乙0种要最某某楼车车车或m种零在2多地地?拥拥拥不树;件1选,,有有有答5苗有分购他他量量量一每5钟乙先先的的的题(棵2内种0以以1扣118-000到元树33%2%%x分达kk,苗...)个mm.乙相多//.hh参地关的的少赛,资速速棵学至料度度?生少表走走至需明了了少要:55 答跑mm甲ii对步nn、到到多乙达达少两汽汽道种车车题树站站成苗,,绩的然然才成后后能活乘乘不率公公低分共共于别汽汽(6为0车车分9去去0)%火火和车车95站站%... 请请问问::公公共共汽汽车车每每( 小小时时)至至少少走走多多