第二章 误差和分析数据处理
第二章 误差和分析数据处理
课堂互动 下面是三位学生练习射击后的射击靶 图,请您用精密度或准确度的概念来评 价这三位学生的射击成绩。
二、系统误差和偶然误差
误差(error):测量值与真实值的差值
根据误差产生的原因及性质,可以将误差分为系统误 差和偶然误差。
1 系统误差 (systematic error) 又称可测误差,由某
§3 有效数字及计算规则
小问题:1与1.0和1.00相等吗? 答:在分析化学中1≠1.0≠1.00 一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字,除最后一 位为可疑数字,其余的数字都是确定的
如:分析天平称量:1.21 23 (g) 滴定管读数:23.20 (ml)
=0.17
S 0.17 RSD 100 % 100 % 1.1% 15.82 X
用标准偏差比用平均偏差更科学更准确。
例: 两组数据
(1) 0.11, -0.73, 0.24, 0.51, -0.14, 0.00, 0.30, -0.21,
n=8 n=8 d1=0.28 d2=0.28 s1>s2 s1=0.38 s2=0.29 (2) 0.18, 0.26, -0.25, -0.37, 0.32, -0.28, 0.31,-0.27
(1)绝对误差 (δ) : δ= x-μ (2) 相对误差(RE): R E= δ / μ× 100%
注:
注1:两种误差都有正、负值之分。
小问题1:
买猪肉1000斤少0.5斤和买1斤少0.5斤哪个误差大?
小问题2: 用分析天平称量两个样品,一个是0.0021克,另一 个是0.5432克,两个测量值的绝对误差都是0.0001 克,试通过计算相对误差来说明哪种表示法更好。
第二章 误差和分析数据的处理
第二章误差和分析数据的处理第一节误差及其产生的原因定量分析的任务是准确测定试样中各组分的含量,因此必须使分析结果具有一定的准确度。
不准确的分析结果将会导致生产上的损失、资源上的浪费和科学上的错误结论。
在定量分析中,由于受到分析方法、测量仪器、所用试剂和分析人员主观条件等方面的限制,故使测定的结果不可能和真实含量完全一致;即使是分析技术非常熟练的分析人员,用最完善的分析方法、最精密的仪器和最纯的试剂,在同一时间,同样条件下,对同一试样进行多次测定,其结果也不会完全一样。
这说明客观存在着难于避免的误差。
因此,人们在进行定量分析时,不仅要得到被测组分的含量,而且必须对分析结果进行评价,判断分析结果的准确性(可靠程度),检查产生误差的原因,采取减小误差的有效措施,从而不断提高分析结果的准确程度。
分析结果与真实结果之间的差值称为误差。
分析结果大于真实结果,误差为正;分析结果小于真实结果,误差为负。
一、误差的分类根据误差的性质与产生的原因,可将误差区分为系统误差和偶然误差两类。
(一)系统误差系统误差(systematic error)也叫可定误差(determination error),它是由某种确定的原因引起的,一般有固定的方向(正或负)和大小,重复测定可重复出现。
根据系统误差的来源,可区分为方法误差、仪器误差、试剂误差及操作误差等四种。
(1)方法误差:由于分析方法本身的缺陷或不够完善所引起的误差。
例如,在质量分析法中,由于沉淀的溶解或非被测组分的共沉淀;在滴定分析法中,由于滴定反应进行不完全,干扰离子的影响,测定终点和化学计量点不符合等,都会产生这种误差。
(2)仪器误差:由于所用仪器本身不够准确或未经校正所引起的误差。
例如,天平两臂不等长,砝码、滴定管刻度不够准确等,会使测定结果产生误差。
(3)试剂误差:由于试剂不纯和蒸馏水中含有杂质引入的误差。
(4)操作误差:由于操作人员的习惯与偏向而引起的误差。
例如,读取滴定管的读数时偏高或偏低,对某种颜色的变化辨别不够敏锐等所造成的误差。
第二章_误差和分析数据处理讲解
化学分析
第二章 误差和分析数据处理
30
• 例 设天平称量时的标准偏差S=0.1mg,求称量试
样时的标准偏差Sm。
• 解:试样量是两次称量所得m1与m2的差值,即
•
m=m1-m2 或 m=m2-m1
• 读取称量m1与m2时平衡点的偏差,要反映到m中 去,因此
化学分析
第二章 误差和分析数据处理
7
3. 真值与标准值
• 某一物理量本身具有的客观存在的真实数值,即 为该量的真值。一般来说,真值是未知的,但下 列情况的真值可以认为是已知的。
• (1)理论真值:如某化合物的理论组成等。
• (2)约定真值:由国际计量大会定义的单位(国 际单位)及我国的法定计量单位。如长度、质量、 时间、电流强度、热力学温度、发光强度及物质 的量。元素的原子量也为约定真值。
• ②比例误差(proportional error):如果系统误差 的绝对值随试样量的增大而成比例的增大,但相 对值保持不变则称为比例误差。例如,试样中存 在的干扰成分引起的误差,误差绝对值随试样量 的增大而成比例的增大,而其相对值保持不变。
化学分析
第二章 误差和分析数据处理
22
• (二)偶然误差(accidental error) • 1. 定义:又称为随机误差。它是由一些无法控制
23
• 系统误差和偶然误差来源不同,处理方法也不 同。但二者经常同时存在,有时很难分清,从 而将认识不到的系统误差归为偶然误差。
• 除了系统误差和偶然误差外,在分析过程中往 往会遇到由于疏忽或差错引起的所谓“过失”, 其实质是一种错误,不能称为误差。这种错误 主要是由于操作者主观上责任心不强,粗枝大 叶或工作差错(如加错试剂、记录错误等)造 成的。
第二章 误差及分析数据处理
4.产生原因: 偶然因素 随机变化因素(环
境温度、湿度和气压 的微小波动)
三、误差的减免
1. 系统误差的减免 与标准试样的标准结果对照
(1) 对照实验: 与标准方法比较 回收实验 “内检”与“外检”
(2) 空白实验 (3) 校准仪器 (4)定期培训
•分析化学常用试验的方法检查系统误差的存在, 并对测定值加以校正,使之更接近真实值。常有 以下试验方法:
二、数字的修约规则 四舍六入五成双
注意: 1、要修约的数值小于等于4则舍;
2、要修约的数值大于等于6则进到前一位
3、要修约的数值为5时:如5后无数或为 零时,5前为奇数则进到前一位; 5前为偶数则 舍弃;但当5后有非零数字时,无论5前为奇数 还是偶数,都要进到前一位;
4、在对数字进行修约时,只能一次修约到 所需的位数,不能分步修约。
2.平均偏差 ( d )
为各次测定值的偏差的绝对值的平均值
特点:简单;
n
Xi X
d i1 n
缺点:大偏差得不到应有反映。
3.相对平均偏差:为平均偏差与平均值之 比,常用百分率表示:
Rd d 100 % X
4.标准偏差(standard deviation; S)
使用标准偏差是为了突出较大偏差的影
解:X =(15.67+15.69+16.03+15.89)/4=15.82
d = Xi-X =15.67-15.82=-0.15
RE% =-0.15/15.82×100%=-0.95%
n
Xi X
d i1
=(0.15+0.13+0.21+0.07)/4=0.14
分析化学第二章误差与分析数据处理
根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性
。
1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。
第二章_误差和分析数据处理 3.
dr
x x x
100 0 0
平均偏差(mean deviation, d ):将一组测量值之各次测定偏 差的绝对值对测定次数求得的平均值。平均偏差无正负之分。
1 n d xi x n i 1
相对平均偏差 (relative mean deviation, d ):平均偏差占测 r 量平均值的比例。
2. 随机误差(random error)
由测量过程中一系列有关因素的微小随机波动 而引起的、具有相互抵消性的误差,具有统计规 律性,多次测量时正负误差可能相互抵消。 随机误差不可避免,也无法严格控制,仅可尽量 减少(如增加测定次数)。
系统误差的单向性和可重复性决定其只影响准确 度而不影响精密度;随机误差的双向和不确定性 则对准确度和精密度都有影响。
第二章 误差和分析数据处理
(Errors in Quantitative Analysis and Statistical Data Treatment )
2.1 测定误差及其分类 2.2 有效数字及运算规则
2.3 分析数据的统计处理
2.1 测定误差及其分类
2.1.1 准确度和精密度 1. 误差和准确度
2.偏差与精密度
平均值( x , mean):n 次测量数据的算术平均值。
x1 x2 x3 xn 1 n X xi n n i 1 平均值比单次测量值 x 更客观地代表待测参数。
精密度(precision):一组测定数值彼此之间的接近程度(即
多次重复测定某一量时所得测量值的离散程度),常以偏差、
d d r 100% x
标准偏差(standard deviation, s):偏差平方和之均值的平方根 (特点:将突现大偏差对测定结果的影响)。
第二章 实验数据误差分析和数据处理
第二章误差和分析数据处理•2.1 测量值的准确度和精密度•2.2 提高分析结果准确度的方法(自学)•2.3 有效数字及其运算规则•2.4 有限量测量数据的统计处理•2.5 相关分析和回归分析(自学)§2.1 测量值的准确度和精密度误差(Error) : 测量值与真值之差。
➢真值T (True value)某一物理量本身具有的客观存在的真实值。
真值是未知的、客观存在的量。
在特定情况下认为是已知的:1、理论真值(如化合物的理论组成)(如,NaCl中Cl的含量)2、计量学约定真值(如国际计量大会确定的长度、质量、物质的量单位等等)3、相对真值(如高一级精度的测量值相对于低一级精度的测量值)(例如,标准样品的标准值)误差分类•系统误差(Systematic error)—某种固定的因素造成的误差方法误差、仪器误差、试剂误差、操作误差•随机误差(Random error)—不定的因素造成的误差仪器误差、操作误差系统误差与随机误差的比较项目系统误差随机误差产生原因固定因素,有时不存在不定因素,总是存在分类方法误差、仪器与试剂误差、主观误差环境的变化因素、主观的变化因素等性质重现性、单向性(或周期性)、可测性服从概率统计规律、不可测性影响准确度精密度消除或减小的方法校正增加测定的次数系统误差的校正•方法系统误差——方法校正•主观系统误差——对照实验校正(外检)•仪器系统误差——对照实验校正•试剂系统误差——空白实验校正如何判断是否存在系统误差?E a = x –x T 相对误差x <x T 为负误差,说明测定结果偏低x >x T 为正误差,说明测定结果偏高误差越小,分析结果越接近真实值,准确度也越高x -x T x T x T E r = ——= ————常用%表示Ea 绝对误差 误差的表示:对一B 物质客观存在量为T 的分析对象进行分析,得到n 个个别测定值x 1、x 2、x 3、••• x n ,对n 个测定值进行平均,得到测定结果的平均值,那么:个别测定的误差为:T x i -测定结果的绝对误差为:T x E a -=测定结果的相对误差为:%100⨯=TE E a r 平均值偏差(deviation): 单次测量值与测量平均值之差。
第二章+误差和分析数据的+处理
总体标准偏差():当测量为无限次测量时,各 测量值对总体平均值的偏离。
公式:
n
(xi ) 2
i 1
n
—总体平均值
只能在总体平均值已知的情况下才使用
• (样本)标准偏差(standard deviation, S):有限次测
量(n20)的各测量值对平均值的偏离。
(2)若分析结果R是测量值X、Y、Z三个测量值相 乘除的结果,例如:R=XY/Z 则:
R X Y Z
RXY Z
• P12 例3
2.1.3.2 偶然误差的传递
1.极值误差法
考虑在最不利的情况下,各步测量带来的误差的 相互累加,这种误差称为极值误差。 用这种简便的方法可以粗略估计可能出现的最大 偶然误差。 一般情况下,当确定了使用的测量仪器和测定步 骤后,各测量值的最大误差就是已知的。 例如:称量;滴定
滴定管读数的极值误差为: ΔV=|±0.01 mL| + |±0.01 mL |=0.02 mL
故滴定剂体积为: (22.10-0.05)mL± 0.02 mL =(22.05±0.02)mL
2. 标准偏差法 (1)和、差的结果的标准偏差的平方是各测量值
标准偏差的平方之和。
(2)积、商的结果的相对标准偏差的平方是各测 量值相对标准偏差的平方之和。
被测组分含量不同时,对分析结果准确度的要求 就不一样。常量组分的分析一般要求相对误差在 0.2%,微量组分在1%到5%。
2.1.4.2 减小测量误差
根据误差的传递规律,分析过程中每一步的测
量误差都会影响最后的分析结果,所以尽量减 小各步的测量误差。 如何减小?
各测量步骤的准确度应与分析方法的准确度相
02 第二章 误差与分析数据的处理
1.频数分布
频数是指每组中测量值出现的次数,频数与数据 总数之比为相对频数,即概率密度。
整理上述数据,按组距0.03来分成10组,得频数分布表:
分 组
1.265% 1.295% 1.295% 1.325% 1.325% 1.355% 1.355% 1.385% 1.385% 1.415% 1.415% 1.445% 1.445% 1.475% 1.475% 1.505% 1.505% 1.535% 1.535% 1.565%
因此,应该了解分析过程中误差产生的原因及其出现的 规律,以便采取相应措施,尽可能使误差减小。另一方面 需要对测试数据进行正确的统计处理,以获得最可靠的数 据信息。
2.1 定量分析中的 误差
误差与准确度
准确度(accuracy)是指分析结果(测定平均值)与真值
接近的程度,常用误差大小表示。误差小,准确度高。
两组精密度不同的测量值的正态分布曲线
正态分布规律
(1)x=μ时,y最大。即多数测量值集中在μ附近,或者说
总体平均值是最可信赖值或最佳值。 (2)x=μ时的直线为对称轴。即正负误差出现的概率相等。 (3)x→〒≦时,曲线以x轴为渐近线。即大误差出现的 概率小,出现很大误差的测定值概率趋近零。 (4) ↗, y↘ ,即测量精密度越差,测量值分布越分散, 曲线平坦。
2.正态分布
在分析化学中,测量数据一般符合正态分布规律。正态分 布是德国数学家高斯首先提出的,又称高斯曲线,下图即为正 态分布曲线N(μ,σ2),其数学表达式为
1 y f(x) e 2
(x ) 2 2 2
y表示概率密度;x表示测量值; μ是总体平均值;σ是总体标准偏差 μ决定曲线在x轴的位臵;σ决定 曲线的形状:σ小,数据的精密度好, 曲线瘦高;σ大,数据分散,曲线较扁平。
第二章 误差和分析数据处理-分析化学
第二章 误差和分析数据处理
第一节 概述
xie 分 析 化 学
产生测定误差的原因:
抽样的代表性; 测定方法的可靠性; 仪器的准确性; 测定方法的复杂性;
测定者的主观性;
操作者的熟练性
xie 分 析 化 学 一、绝对误差和相对误差
第二节 测量误差
绝对误差(absolute error)
减小测量误差
取样量大于0.2g;
滴定液消耗的体积大于20ml;
紫外吸收度在0.2~0.7之间。
xie 分 析 化 学
相对误差=δw/W<1‰
W>δw/1‰=0.0002/1‰=0.2g 相对误差=δv/V<1‰ V>δv/1‰=0.02/1‰=20 ml
增加平行测定次数
xie 分 析 化 学
2 i
n
相对标准偏差(relative standarddeviation;RSD) 或称变异系数(coefficient of variation;CV)
2 ( x x ) i n i 1
S RSD 100% x
n 1 x
100%
例题 :四次标定某溶液的浓度,结果为0.2041、
标准偏差法:
R=x+y-z
R=xy/z
2 2 2 2 SR Sx Sy Sz
Sy 2 Sx 2 SR 2 Sz 2 ( ) ( ) ( ) ( ) R x y z
五、提高分析准确度的方法
xie 分 析 化 学
选择恰当的分析方法
被测组分的含量; 被测组分共存的其它物质的干扰。
0.00022 0.00062 0.00042 0.00002 标准偏差 S 0.0004 (mol/ L) 4 1
第二章 误差和分析数据处理
2位
2位
2位
(6) 数据的第一位数大于等于 8, 有效数字可多算一 位: 9.55 4位 ; 8.2 3位
37
1.0008 0.1000 0.0382
43181 10.98%
五 位有效数字 四 位有效数字 二 位有效数字 一 位有效数字 位数模糊
1.98×10-10 三 位有效数字
54
0.05
0.0040
度)是精密度常见的别名。
一般例行分析精密度用相对平均偏差表示就
够了,但在科研中要用标准偏差或相对标准偏差
来表示。
18
3、准确度和精密度的关系
x1
x2
x3
x4
19
一般情况下,精密度高,准确度不 一定高。 精密度不高,准确度不可靠。 在消除系统误差的前提下,精密度 好,准确度就高。 精密度高是保证准确度好的前提 精密度好不一定准确度高
答:不可以。 3、系统误差和偶然误差在起因及出现规律方面,有什 么不同? 答:系统误差是由确定原因引起的,可重复出现,偶然 误差是由不确定原因引起的,遵循一定的统计规律。
7
4、分析测定中系统误差的特点是: A、由一些原因引起的 B、重复测定会重复出现 C、增加测定次数可减小系统误差 D、系统误差无法消除
☆移液管:25.00mL(4);
☆量筒(量至1mL或0.1mL):25mL(2), 4.0mL(2)
34
有效数字的位数与计算相对误差有关
0.5180g
相对误差=± 0.0001/ 0.5180 ×100%=±0.02%
0.518g
相对误差=± 0.001/0.518 ×100%=±0.2%
35
判断有效数字的位数:
第二章
第二章 误差及分析数据的统计处理
(3)、有界性:小误差测量值出现的机会大,大误差 测量值出现的机会小,极大误差的测定值出现的 机会更小。实际测定的结果总是被限制在一定的 范围内波动。 (4)、抵偿性:误差的算术平均值的极限为零。
有关随机误差分布规律的正态分布曲线将在后 面详细介绍。 (三)过失误差 这种误差不同于上面讨论的两类误差,它是由 于操作者粗心大意或操作失误造成的。在分析工 作中应避免这类误差的发生。
f对t分布的影响实质上反映的是测量次数n对t分布 的影响 。 从图可以看出:t分布曲线一般总要比标准正态分布 曲线 “矮胖”,这表明有限次测量的分布要更分散。
2=0.023
y x x-
概率密度 个别测量值 随机误差
1=0.047
15.90 15.95 16.00 16.05 16.10 16.15 16.20
0
x-
x
测量值的正态分布
随机误差的正态分布
把一个普通的正态分布转换为标准正态分布, 设 u x μ u称为标准正态变量
σ
x为测定值,µ 为总体平均值,σ总体标准偏差。
此时高斯方程就转化为只有变量u的函数表达式,
即
1 y (u) e 2
-
u2
2
此式就是标准正态分布曲线方程,从形式上看,标准正 态分布与 0, 1 的正态分布完全相同,所以标准 正态分布记作N(0,1)。各种不同的正态分布都可以 通过上述变化而转换成标准正态分布。以u值为横坐 标,误差出现的概率为纵坐标,当测定次数无限多时, 得到随机误差标准正态分布曲线,如p12,图2-2。
从这两批数据的个别测定值的偏差来看,第二批 较分散,因为其中有两个较大的偏差(上角标* 者)。所以用平均偏差反映不出这两批数据的好坏。 从表中第三列的计算可以看出:将偏差平方后再加 和,所得结果分别为0.72、0.99,清楚看出两批数 据的差异。 总体标准偏差(均方根偏差) ( x - )
第二章误差和数据处理
第二节 有效数字及其运算法则
一、有效数字 二、数字的修约规则 三、有效数字的运算规则
一、有效数字 (significant figure)
定义:是指在分析工作中实际上能测量到的数字, 有效数字位数包括所有准确数字和一位欠准数字。
解:R= 4.10 0.0050 / 1.97 =0.0104 R/R=-0.02/4.10+0.0001/0.00500–(-0.04)/1.97
=0.035 = 3.5% R =R 0.035 = 0.035 0.0104 = 0.00036 = R - R = 0.0104 - 0.00036 =0.01004
系统误差的来源
•方法误差:方法不恰当或不完善 •仪器误差:仪器不准或未校正 •试剂误差:试剂不纯 •操作误差:个人操作问题
(主观误差)
系统误差的表现方式
•恒量误差:多次测定中系统误差的 绝对值保持不变 •比例误差:系统误差的绝对值随样 品量的增大而成比例增大,相对值不 变。
偶然误差
又称随机误差或不可定误差,是由某些偶 然因素引起的误差。
偶然误差特点
a.方向不确定(误差时正时负) b.大小不确定(误差时大时小) c.符合统计规律
绝对值相等的正负误差出现概率基本相等 小误差出现的概率大,大误差出现的概率小
d.可增加平行测定次数消除
过失误差
在正常情况下不会发生过失误差,是仪器失灵、 试剂被污染、试样的意外损失等原因造成的。 一旦察觉到过失误差的发生,应停止正在进行 的步骤,重新开始实验。
•平均偏差:各个偏差绝对值的平均值。
《分析化学》第二章 误差和分析数据的处理
例:3600 → 3.6×103 两位 → 3.60×103 三位
(2)在分析化学计算中遇到倍数、π、e等常数 时,视为无限多位有效数字。
(3)对数数值的有效数字位数由该数尾数部分决定
[H+]= 6.3×10-12 [mol/L] → pH = 11.20
由国际权威机构国际计量大会定义的单位、数值, 如 时间、长度、原子量、物质的量等
如:基准米 1m=1 650 763.73 λ
(λ:氪-86的能级跃迁在真空中的辐射波长)
(3)相对真值:
由某一行业或领域内的权威机构严格按 标准方法获得的测量值。
如卫生部药品检定所派发的标准参考物质, 其证书上所表明的含量 (4)标准参考物质
②积、商的极值相对误差等于各测量值相对误差的 绝对值之和。
R=xy/z
R X Y Z RXYZ
标定NaOH溶液,称取KHP0.2000g,溶解, 用NaOH溶液滴定,消耗20.00ml。计算结果的 极值相对误差。
W W1 W2 W W1 W2 0.0001 0.0001 0.0002g
(4)首位为8或9的数字,有效数字可多计一位。
92.5可以认为是4位有效数
◇分析天平: 12.8228g(6) , 0.2348g(4) , ◇台秤: 4.0g(2), 30.2g(3) ☆50ml滴定管: 26.32mL(4), 3.97mL(3) ☆容量瓶: 50.00mL(4), 250.0mL (4) ☆移液管: 25.00mL(4); ☆10ml量筒: 4.5mL(2)
RE ±0.8% ±0.4% ±0.009%
(三)乘方、开方 结果的有效数字位数不变
第二章 误差及数据处理
第二章误差及数据处理§1 误差概述一、误差的来源1.测定值分析过程是通过测定被测物的某些物理量,并依此计算欲测组分的含量来完成定量任务的,所有这些实际测定的数值及依此计算得到的数值均为测定值。
2.真实值 true value真实值是被测物质中某一欲测组分含量客观存在的数值。
在实验中,由于应用的仪器,分析方法,样品处理,分析人员的观察能力以及测定程序都不十全十美,所以测定得到的数据均为测定值,而并非真实值。
真实值是客观存在的,但在实际中却难以测得。
真值一般分为:<1>理论真值:三角形内角和等于1800。
<2>约定真值:统一单位(m.k g,.s)和导出单位、辅助单位。
1)时, <3>相对真值:高一级的标准器的误差为低一级标准器的误差的51(31~20则认为前者为后者的相对真值。
思考:滴定管与量筒、天平与台称3.误差的来源真值是不可测的,测定值与真实值之差称为误差。
在定量分析中,误差主要来源于以下六个方面:<1> 分析方法由于任何一种分析方法都仅是在一定程度上反映欲测体系的真实性。
因此,对于一个样品来说,采用不同的分析方法常常得到不同的分析结果。
实验中,当我们采用不同手段对同一样品进行同一项目测定时,经常得到不同的结果,说明分析方法和操作均会引起误差。
例如:在酸碱滴定中,选用不同的指示剂会得到不同的结果,这是因为每一种指示剂都有着特定的pH变化范围,反应的变色点与酸、碱的化学计量点有或多或少的差距。
另外在样品处理过程中,由于浸取、消化、沉淀、萃取、交换等操作过程,不能全部回收欲测物质或引入其他杂质,对测定结果也会引入误差。
<2> 仪器设备由于仪器设备的结构,所用的仪表及标准量器等引起的误差称为仪器设备误差。
如:天平两臂不等、仪表指示有误差、砝码锈蚀、容量瓶刻度不准等。
<3> 试剂误差试剂中常含有一定的杂质或由贮存不当给定量分析引入不易发现的误差。
第二章 误差和分析数据的处理
第二章误差和分析数据的处理一、内容提要本章讨论了误差的来源、性质及其减免方法,有效数字及运算规则,并简单介绍应用统计学原理处理分析数据的基本方法。
定量分析的任务是准确测定试样中组分的含量。
在分析过程中误差是客观存在的,因此作为分析工作者,不仅要测定试样中待测组分的含量,还应对测定结果作出评价,判断其准确性和可靠程度,查出产生误差的原因,并采取有效措施减少误差,使所得结果尽可能准确地反映试样中待测组分的真实含量。
定量分析误差根据其性质和来源,可分为系统误差和偶然误差两类。
系统误差是由确定原因引起,数据其恒定单向性,包括方法误差、仪器和试剂误差、操作误差。
系统误差对分析结果的作用有两种形式:恒定误差和比例误差。
系统误差可通过对照实验、回收实验、空白实验和校准仪器来检验和消除。
偶然误差是由偶然原因引起,其大小和正负都不固定,但服从统计规律,增加平行测定次数可减小偶然误差。
准确度是指测定值与真实值接近的程度,用误差来衡量,误差越小,准确度越高。
误差通常用绝对误差、相对误差表示。
精密度是指用相同方法对同一试样进行多次测定,各测定值彼此接近的程度,用偏差来衡量。
偏差越小,精密度越高,常用绝对偏差、平均偏差、相对平均偏差、标准偏差,相对标准偏差来表示。
准确度和精确度既有严格区别又相互关联,一般而言:准确度高的前提是精密度高;但精密度高不一定准确度高;精密度不高,准确度肯定不可靠;只有精密度和准确度都好的结果才最为可靠。
因此,只有防止过失误差,减小偶然误差,消除或校正系统误差,才能得到可靠的分析结果。
有效数字的位数表示了分析结果的准确度,其记录和运算须遵循响应的规则。
相关与回归是研究变量间关系的统计方法,通常用相关系数来判断二变量是否成线性关系,由回归直线方程计算试样中被测组分的浓度。
本章重点是误差的分类,准确度与精密度的关系,有效数字及其修约规则。
本章难点是相关计算。
二、习题(一)判断题()1.精密度高,准确度一定高。
第二章 误差和分析数据处理
∆R ∆x ∆y ∆z = + + R x y z
例如 用容量分析法测定药物有效成分的含量,其百 分含量(w%)计算公式:
TVF w% = ×100% m
则w的极值相对误差是:
∆ w ∆V ∆m ∆F = + + w V F m
2. 标准偏差法 定义:利用偶然误差的统计学传递规律估计测量结果的 偶然误差。 规律2:乘、除结果的相 规律1:和、差结果的标准 对标准偏差的平方,等 偏差的平方,等于各测量 于各测量值的相对标准 值的标准偏差的平方和。 偏差的平方和。 公式:R = x + y - z 公式:R = x·y/z
用分析天平称量两个样品,一个是0.0021g,另 一个是0.5432g。两个测量值的绝对误差都是 0.0001g,但相对误差呢
注意: (1)测高含量组分,Er可小;测低含量组分,Er可大 (2)仪器分析法——测低含量组分,Er大 化学分析法——测高含量组分,Er小
常用相对误差表示测定结果的准确度。
测量点
准确度与精密度的关系
精密度高是保证准确度高的前提。 精密度高,不一定准确度就高。
二、系统误差和偶然误差——误差的分类
(一)系统误差(systematic error)
由某种确定原因 确定原因造成的。 确定原因
特 点
单向性 重现性 可测性
对结果的影响比较固定。 重复测定重复出现。 原因可查,可以消除。
(三)准确度与精密度的关系
例:A、B、C、D 四个分析工作者对同一铁标样 (wFe=37.40%)中的铁含量进行测量,结果如图示。
D C B A
36.00 36.50 37.00 平均值 37.50 38.00 真值 表观准确度高, 表观准确度高,精密度低 不可靠) (不可靠)
考研分析化学第二章误差和分析数据处理
第二章 误差和分析数据处理何测量都不可能绝对准确,在一定条件下,测量结果只能接近于真实值,而不能达到真实值个定量分析要经过许多步骤,并不只是一次简单的测量,每步测量的误差,都影响分析结果的性,因而定量分析结果的误差更加复杂行定量分析时,必须根据对分析结果准确度的要求,合理地安排实验,避免不必要的追求高准节 测量误差是衡量一个测量值的不准确性的尺度,反映测量准确性的高低差越小,测量的准确性越高1、 绝对误差和相对误差测量之中的误差,主要有两种表示方法:绝对误差与相对误差(一)绝对误差:测量值与真值(真实值)之差称为~绝对误差是以测量值的单位为单位,可以是正值,也可以是负值,及测量值可能大于或小于测量值越接近真值,绝对误差越小;反之,越大(二)相对误差:绝对误差与真值的比值称为~相对误差反映测量误差在测量结果中所占的比例,它没有单位通常相对误差以%,%0表示如果不知道真值,但知道测量的绝对误差,则相对误差也可以测量值x为基础表示在分析工作中,用相对误差衡量分析结果,比绝对误差更常用根据相对误差的大小,还能提供正确选择分析仪器的仪器对于高含量组分测定的相对误差应当要求严些(小些)对于低含量组分测定的相对误差可以允许大些在相对误差要求固定时,测定高含量组分可选用灵敏度较低的仪器,而对低含量组分灵敏度较高的仪器二、真值与标准参考物质可知的真值,有三类:理论真值、约定真值、相对真值:三角形内角和为180度:国际单位及我国的法定计量单位是约定真值各元素的原子量物质的理论含量:常用标准参考物质的证书上所给出的含量作为相对真值标准参考物质:1必须是经工人的权威机构鉴定,并给予证书的2必须具有很好的均匀性与稳定性3其含量测量的准确度至少要高于实际测量的3倍约定真值与相对真值是分析化学工作中最常用的真值除理论真值外,其它真值都是由实验测得,都带有一定的误差三、系统误差和偶然误差按误差的性质分:系统误差和偶然误差(一)系统误差:是由某种确定的原因引起的,一般它有固定的方向(正或负)和大小,重复测定时重复出现根据系统误差的来源分为:方法误差、仪器(或试剂)误差、操作误差方法误差:是由于不适当的试验设计或所选择的分析方法不恰当所引起的,通常方法误差影响的存在,使测定结果要么总是偏高;要么总是偏低,误差的方向固定仪器或试剂误差:是由仪器未经校准或试剂不合格所引起的:是由于分析工作者的操作不符合要求造成的在一个测定过程中这三种误差都可能存在:如果在多次测定中系统误差的绝对值保持不变,但相对值随被测组分含量的增大而:如果系统误差的绝对值随样品量的增大而成比例增大,相对值不变,则称为~也有时,系统误差的绝对值虽然随样品量的增大而增大,但不成比例系统误差是以固定的方向和大小出现,并具有重复性。
分析化学第二章 误差及分析数据的处理
性质 影响 消除或减 小的方法
重现性、单向性 、可测 服从概率统计规律、
性
准确度 校正
不可测性
精密度 增加测定的次数
六、提高分析结果准确度的Байду номын сангаас法
1. 选择恰当的分析方法 2. 减小测量误差
与经典方法进行比较 校准仪器 4. 消除测量中的系统误差 空白试验 对照试验 回收试验
3. 减小偶然误差
1.选择合适的分析方法
系统误差 产生的原因
a.方法误差——选择的方法不够完善
例:重量分析中沉淀的溶解损失;
滴定分析中指示剂选择不当。 b.仪器误差——仪器本身的缺陷 例: 天平两臂不等,砝码未校正; 滴定管,容量瓶未校正。
c.试剂误差——所用试剂有杂质
例:去离子水不合格; 试剂纯度不够(含待测组份或干扰离子)。 d.操作误差——操作人员主观因素造成 例:对指示剂颜色辨别偏深或偏浅; 滴定管读数不准
d
i 1
n
i
n
0.11% 0.14% 0.16% 0.04% 0.09% 0.11% 5
相对平均偏差
d 0.11% d r 100% 100% 0.29% x 37.34%
标准偏差
2 ( x i x ) i 1 n
s
n 1
(0.11%) 2 (0.14%) 2 (0.16%) 2 (0.04%) 2 (0.09%) 2 0.13% 5 1
回收率越接近100%,方法准确度越高
方法误差 仪器误差 系统误差 试剂误差 操作误差
选择适当的分析方法 校正仪器 空白实验 对照实验
误差
分析测试中,一般对同一试样平行 偶然误差 测定 3~4 次,精密度符合要求即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
2.1.4 提高分析准确度的方法
• 选择恰当的分析方法
• 消除测量中的系统误差 • 减小测量误差
• 减小偶然误差的影响
上一内容 下一内容 回主目录
返回
选择恰当的分析方法
分析方 法相对 误差 含铁量(%) Fe%=50% Fe%=0.5%
测定方法
重铬酸钾法 (化学分析) 分光光度法 (仪器分析)
x与μ接近的程度 误差表示
系统误差的大小 测量结果的正确性
上一内容 下一内容 回主目录
偏差表示
偶然误差的大小 测量结果的重现性
返回
误差的表示方法
•绝对误差(absolute error; δ)
单次测量
x
多次测量
x
• 分析天平称量的δ=±0.0001g • 滴定管滴定的δ=±0.01ml
上一内容 下一内容 回主目录
修约
1.09
100 % 0 . 2 % 100 % 0 . 05 % 100 % 0 . 01 %
返回
分析化学有效数字保留规则的一般规则
• • • • • • •
①不同含量组分: 高含量组分(>10%)——4位 中含量组分(1~10%)——3位 微量组分(<1%)——2位 ②不同分析方法: 化学分析——4位 仪器分析——2~3位 ③误差、偏差:2位 ④自然数:不考虑有效数字位数问题
B
100 %
0 . 0002 0 . 2172
100 % 0 . 1 %
RE %( B )
上一内容
B
100 %
0 . 0002 0 . 0215
100 % 1 %
返回
下一内容
回主目录
真值与标准参考物质
真(实)值(true value; μ):某一物理量本身具有的客观存 在的真实数值,是一个可接近而不可达到的理论值。
上一内容 下一内容
0.23 0.23
回主目录
S 0.29 0.37
返回
标准偏差(standard deviation; S)
Sx
x
i
x
2
平方:避免正负抵消 突出大偏差的影响
n 1
相对标准偏差
自由度f=n-1,独立偏差个数
(relative standard deviation; RSD) 变异系数(coefficient of variation; CV)
•与经典方法进行比较 •与标准试样进行比较 •回收试验
• 校准仪器 • 系统误差的消除 • 空白试验 • 其他分析方法校正
上一内容 下一内容 回主目录
返回
减小测量误差
• 称量误差
RE %
称样量
100 % 0 . 1 %
0 . 0002 g 0 .1 %
称样量
RE %
0 .2 g
绝对误差(δ)
0.0002g 0.0002g
相对误差 (RE%) 0.1%
1%
A x A A 0 . 2172 0 . 2170 0 . 0002
B x B B 0 . 0217 0 . 0215 0 . 0002
RE %( A )
A A
上一内容
下一内容
回主目录
返回
绝对偏差(absolute deviation; di)
d i xi x
d
i 1
n
i
(x
i 1
n
i
x)
i 1
n
xi
i 1
n
x nx nx 0
单次测量结果的偏差之和等于零
相对偏差(relative deviation; dr)
增加平行测定次数 系统误差→校正 偶然误差→控制 ×过失误差→避免
回主目录
上一内容
下一内容
返回
系统误差的种类
• 根据系统误差的来源可分为: 分析方法的选择 方法误差 仪器或试剂误差 仪器准确性、试剂纯度 操作误差 分析工作者的操作
• 根据系统误差的出现规律可分为: 恒量误差 系统误差的绝对值恒定 比例误差 系统误差的相对值恒定
返回
两位小数,最大
下一内容
2、乘除法运算
• 计算结果的相对误差与各数据中 相对误差最大的那个数据相当 有效数字位数最少
5.21×0.2000×1.0432=1.0870144
三位有效数字,RE%最大
0 . 01 5 . 21 0 . 0001 0 . 2000 0 . 0001 1 . 0432
0 . 088
d r (%)
d x
100 %
0 . 088 37 . 34
100 % 0 . 24 (%)
标准偏差
Sx
x
i
x
2
n 1
0 . 06
2
0 . 14
2
0 . 04
2
0 . 16
2
0 . 04
2
5 1
0 . 114
相对标准偏差(变异系数)
0.05030g
有效数字
上一内容 下一内容 回主目录
四位有效数字
返回
有效数字注意事项
• 1.单位变换 • 2.科学计数法 35000L
10.00ml 15.0g
0.05030g 3.500×104L 四位有效数字
0.1000L
15000mg4mg 1.50×10 5.030×10-2g 3.50×104L 三位有效数字
100 %
返回
平均偏差的特点 • 计算简便,但不能考虑极大和极小现象 不能反映大偏差对精密度的影响
di A B d1 +0.4 +0.7 d2 -0.3 -0.1 d3 0.0 0.0 d4 +0.1 -0.2
d
d5 -0.4 0.0
d6 d7 +0.2 -0.2 -0.5 +0.1
A B
系统误差
poor precision poor accuracy ×结果不可靠
?
poor precision ? accuracy
大误差抵消
上一内容
下一内容
回主目录
返回
准确度与精密度的关系
• ⑴准确度高,精密度一定好;但精密度 好,准确度不一定高。 • ⑵在消除系统误差的前提下,精密度好, 准确度就会高。 • ⑶精密度差的,准确度不大可能高,故 精密度好是保证准确度高的前提条件。
上一内容 下一内容 回主目录
返回
偶然误差的统计规律
• 大偶然误差出现的概率小 • 小偶然误差出现的概率大
• 绝对值相同的正、负偶然 误差出现的概率大致相等
偶然误差的正态分布
上一内容
下一内容
回主目录
返回
2.1.2 准确度和精密度
准确度(accuracy) 精密度(precision) x与 x 接近的程度
dr
上一内容 下一内容
di x
100 %
返回
回主目录
平均偏差(average deviation; d )
d
i 1
n
xi x n
取绝对值避 免正负抵消
相对平均偏差
(relative average deviation; d r)
d r (%) d x
上一内容 下一内容 回主目录
i 1 n
-0.14
xi
-0.04
+0.16
-0.04
37 . 34
37 . 40 37 . 20 37 . 30 37 . 50 37 . 30 5
n
d
i 1
n
xi x n
0 . 06 0 . 14 0 . 04 0 . 16 0 . 04 5
•相对误差(relative error; RE%)
RE %
100 %
x
100 %
• 相对误差反映测量误差在测量结果中所 占的比例,实际工作中常用。
上一内容 下一内容 回主目录
返回
绝对误差与相对误差的计算
物品 测量值(x) 真值(μ)
A B 0.2170g 0.0217g 0.2172g 0.0215g
下一内容 回主目录
上一内容
返回
2.2.3 有效数字的运算法则
1、加减法运算
• 计算结果的绝对误差与各数据中 绝对误差最大的那个数据相当
小数点后位数最少 0.7362 0.001 + 0.35 1.0872
上一内容
0.74 修约 0.00 + 0.35 修约 1.09
回主目录
9.0053 1.9724 + 0.0003 10.9780
2.2.1 有效数字 2.2.2 数字修约规则 2.2.3 有效数字的运算法则
上一内容
下一内容
回主目录
返回
分析化学数字类别
• 非测量所得——自然数 数量大小 • 测量所得—— 准确度高低 准确测量 正确记录和计算
2 3.4 5 ml 2 3.4 4 ml 2 3.4 6 ml 准确
可疑(欠准)数字
2.1.4 提高分析结果准确度的方法
上一内容 下一内容 回主目录
返回
2.1.1 系统误差和偶然误差
系统误差
偶然误差
(accidental error)
(systematic error)