配气相位与可变配气相位机构
第三章 配气机构
概述 配气相位 配气机构的组成和零件 可变配气相位
§3.1
功用
概
述
按照发动机每个气缸内所进行的工作循环和发火次序的要求, 定时开启和关闭气缸的进、排气门,使新鲜可燃混合气(汽油机)或 空气(柴油机)得以及时进入气缸,废气得以及时从气缸排出。
配气结构的要求
1、配气机构要保证进气充分,进气量尽可能的多。 2、废气要排除的干净,因为气缸内残留的废气越多,进气量就 会越少。 3、 配气机构应有利于减少进气和排气的阻力,进、排气门的 开启时刻和持续开启时间很恰当,使近期充分和排气彻底。 4、配齐机构的运动件应具有较小的质量和较大的刚度,使其具 有良好的动力性能。
边缘应保持一定 的厚度,1~3mm。 装配前应将密 封锥面研磨。
2) 气门锥角的作用
就向锥形塞子可以塞紧瓶口一样, 能获得较大的气门座合压力,以提高 密封性和导热性; 气门落座时有自动定位作用; 避免气流拐弯过大而降低流速; 气门落座时能挤掉接触面的沉积物, 即有自洁作用。
3) 进、排气门锥角的大小 进气门锥角较小,多用300。因锥角越小, 进气通道截面越大,进气量越多。 排气门锥角较大,通常为450。因锥角越 大,气门头部边缘的厚度大,不易变形。 排气门热负荷较大而用较大的锥角,以加 强散热和避免受热变形。且锥角越大,座 合压力越大,自洁作用越大。
特点: A、气门行程大,结构 较复杂,燃烧室紧凑。 B、曲轴与凸轮轴传动 比为2:1。
2、气门侧置式
进排气门都布置在气缸 的一侧,结构简单、零件数 目少。
气门布置在同一侧导致 燃烧室结构不紧凑、热量损 失大、进气道曲折、进气阻 力大,使发动机性能下降, 已趋于淘汰。
二、凸轮轴的布置型式
四种形式的可变配气机构 2
汽车新技术
27
汽车新技术
ECU是用不同的电流值,调节滑阀的位置,随发动机工况的变 化,有“保持〞、“提前〞、“迟后〞等状态。例如:“提前状态 〞时,控制油道使油腔1、3、5、7充油;油腔2、4、6、8泄油, 转子和进气凸轮轴右旋转动一定角度,进气门即早开启。又如: “迟后状态〞时,控制油道转换,油腔充油和泄油那么按相反顺 序工作。
汽车新技术
6
试验证明: 两种进气迟后角的充气效率 〔ηv〕和功率〔Ne〕变化 规律是: 〔1〕升高迟后。 〔2〕高速时—越过2300~ 2500r/min后,晚关60°的 ηv和Ne,明显优于40o的相 位角。 〔3〕有一个转折点α,这 就是可变配气相位的控制点 〔VTEC起作用的始点〕。
汽车新技术
11
汽车新技术
3.3个摇臂靠近气门一侧制有柱塞孔,孔中有靠油压控制滑动柱 塞,以便锁止联动。 4.控制油压由ECM的电磁阀控制,其线圈的电阻值为14~30Ω, 投入工作时,油压为250kPa以上,使柱塞移动锁止摇臂。
12
汽车新技术
5.VTEC机构投入工作时,在油压作用下,压力开关断开,给 ECM一个反响信号,确认凸轮已转换工作。如油压低于标准值 49kPa时,压力开关闭合,5v搭铁电压信号即报警。 6.在大负荷、低转速工况工作时,如 VTEC机构不及时投入工作, 充气效率和进气涡流速度降低,会发生轻微爆燃〔如爬坡时〕。
19
汽车新技术
VVT—i〔Variable Valve Timing intelligent〕智能 可变气门正时系统,用来控制进气凸轮轴在40°角范 围内,自动保持最正确的气门正时,以适应发动机工 作状况的需要,实现了在所有速度范围内,使配气相 位智能化的变化〔保持、提前、迟后〕。从而,提高 了发动机的扭矩和燃油经济性及净化性。
配气相位
(三)进气门的配气相位 • 1.进气提前角α
• 2.进、排气错乱的问题:
气门叠开不会产生废气倒 排回进气管和新鲜气体随 废气排出的问题。其原因 是由于叠开时气门的开度 较小,且新鲜气体和废气 流的惯性要保持原来的流 动方向,所以只要叠开角 适当,就不会产生废气倒 排回进气管和新鲜气体随 废气排出的问题。发动机 的结构不同、转速不同, 配气相位也就不同。
汽修专业许平
上节回顾
• 配气机构功用 • 组成 • 充气效率
课题引入
• 发动机转速 • 燃油价格 • 排放标准
一、配气相位
• 1、概念
• 用曲轴转角表示的进 排气门从开启到关闭 时刻和开启持续的时 间, 称为配气相位。 • 配气相位的各个角度 可用配气相位图来表 示。
(一)理论上的配气相位分析
配气相位演示
• 进排气的配气相位演示图 →
10°~30 °
40°~80 °
40°~80 ° 10°~30 °
配气相位对发动机性能的影响
• 1、气门叠开角
• 进气提前角增大或排气迟后角增大使气门重 叠角增大时,会出现废气倒流、新鲜气体随废气 排出的现象,不但影响废气的排出量和进气的充 气量大小,对于汽油机来说,还会造成燃料的浪 费。相反,若气门重叠角过小,又会造成排气不 彻底和进气量减少。
排气门配气相位的目的
• 1.排气门早开: • ①利用气缸内的废气压力 提前自由排气:恰当的排 气门早开,气缸内还有大 约300kPa~500kPa的压力, 作功作用已经不大,可用 它使气缸内的废气迅速地 自由排出。 • ②减少排气消耗的功率: 提前排气,等活塞到达下 止点时,气缸内只剩约 110kPa~120kPa的压力,使 排气冲程所消耗的功率大 为减小。 • ③高温废气的早排,还可 以防止发动机过热。
汽车智能技术专业《配气相位4》
任务配气相位认知与检查1 配气相位配气相位为用曲轴转角表示的发动机进、排气门实际关闭时刻和开启持续时间。
通常用相对于上、下止点曲轴位置的曲轴转角的环形图来表示,此图即为配气相位图,如图5-27所示。
理论上,四冲程发动机的进气门应在曲轴处于上止点位置时开启,到下止点位置时关闭,排气门应在曲轴处于下止点位置时开启,到上止点位置时关闭。
但由于现代发动机转速很高,一个行程经历的时间很短〔如上海桑塔纳的四冲程的发动机,在最大功率时的发动机转速达5600r/min,那么一个行程的时间只有〕。
这样短时间的进气和排气过程将使发动机充气缺乏或者排气不彻底,使发动机功率下降。
为保证发动机气缸的进气充分和排气彻底,要求气门有尽可能大的通过能力,故气门的实际开启时间、关闭时间不是恰好在曲轴位于上、下止点,而是适当的提前或延迟。
图5-27 配气相位图2 进气门与排气门的配气相位发动机实际工作过程中,在活塞上行到排气行程上止点之前,进气门便开始开启,从进气门开始开启到活塞移动到排气行程上止点所对应的曲轴转角,称为进气提前角。
进气门提前开启的目的是保证进气行程开始时气门开度能足够大,减小进气阻力,新鲜混合气能够顺利充分的进入气缸。
发动机在实际工作时,活塞在进气行程下止点过后又上行一段,进气门才关闭。
从活塞位于进气行程下止点到进气门完全关闭所对应的曲轴转角,称为进气迟后角。
进气门延迟关闭的目的是,当活塞到达气缸上止点时,能利用气流的惯性和压力差继续进气,使进气充分。
发动机在实际工作时,活塞到达做功行程下止点之前,排气门便开始开启。
从排气门开始开启到活塞移动到做功行程下止点所对应的曲轴转角,称为排气提前角。
当做功行程活塞接近下止点时,排气门提前开启,利用气缸内的较高气压使大局部废气迅速排出,减少排气阻力,降低排气过程中的功率消耗。
高温废气的迅速排出,还可以防止发动机过热。
发动机运转时,活塞在排气行程上止点过后又下行一段,排气门才关闭。
配气机构的组成和配气相位
配气相位
配气相位
配气相位的必要性: (1)因发动机转速高,气门开启的理论持续时间极短。例如四冲 程发动机转速3000r/min时,一个行程时间只有0.01s。
(2)气门开启需要一个过程,气门全开时间就更短。在这样短的 时间内,难以做到进气充分和排气干净,因此实际发动机的进、 排气门都要早开和晚关,气门开启的持续角都大于1800。
维持气门关闭。
配气机构的组成
气门传动组
摇臂 调整螺钉及锁紧螺母 摇臂轴 摇臂轴支架 推杆
气门挺柱 凸轮轴 凸轮轴正时齿轮
驱动气门使气门打开。
配气机构的组成
摇臂轴
凸轮
凸轮轴正 时齿轮
凸轮轴
斜齿轮
摇臂
推杆 挺柱
配气机构的类型
配气机构的类型
按凸轮轴位置不同可分为凸轮轴下置式,凸轮轴中置式及凸轮上置式三种。
齿轮传动
张紧装置
导链板
链条传动
齿形带传动
配气机构的驱动方式
齿轮传动: 用于凸轮轴下置式配气机构中; 一对正时齿轮传动,距离较远时 加入惰轮;
正时齿轮上有正时记号,保证配气 正时,装配时应对齐;
正时齿轮多为斜齿轮,传动平稳。
正时记号
齿轮传动
配气机构的驱动方式
凸轮轴正时齿轮 曲轴正时齿轮
曲轴正时齿轮→凸轮轴正时齿轮
配气相位
为了能提高充气效率,实际发动机都采用延长进、排气时间,使气门早开
晚关,以改善进、排气状况,提高发动机的动力性。
上止点
配气相位:用曲轴转角表示的进、 排气门开闭时刻和开启持续时间, 称为配气相位。
配气相位图:表示进、排气门 的实际开闭时刻的环形图称为 配气相位图
下止点
配气相位
四种形式的可变配气机构 2
三、工作原理:
1、怠速工况—转速较低,混合气流速慢,进气提前 角应较小,使进气重叠角减小,以防止发动机回火。 为此,电磁阀的控制电流较小,磁吸力较小,使滑 阀应处于“保持状态”,油道内无油压,锁销处于 锁止状态,进气门不提前开启,保证怠速平稳运转。
2、中等负荷工况—转速较高,混合气流速加快,惯性 能量较大,进气门应早开,加大重叠角,可使废气排 出量加大,提高容积效率。滑阀应处于“提前状态”, 以加大发动机的扭矩值。为此,电磁阀的电流随之加 大,滑阀在较大的磁吸力作用下,可左移到极限位置, 出油孔和回油孔随动开启。使转子右旋转,进气门开
(一)构造—它是在液压紧链器的基础上,加装了用ECU 控制的电磁阀,形成了一个“配气相位调节总成”部件。
只能对进气凸轮轴进行调 整。排气凸轮轴被曲轴正 时齿带驱动,不能调整。 进气凸轮轴通过正时链条 被排气凸轮轴驱动。 凸轮轴调整是通过电控液 压活塞将油压作用于链条 张紧器来完成的。凸轮轴 调整机构的工作油路与气 缸盖上的油道相通。
启程度随之加大,最大可达40° 曲轴转角。
3、大负荷工况—转速相对降低,混合气流速变慢,应使进气门早 开程度减小,以防止发动机回火,用加大晚关程度来加大扭矩值。 为此,电磁阀不通电,不产生磁吸力,滑阀在其弹簧的作用下,被 推到右端极限位置。其出油道和回油道反向转换,转子反向左转, 进气门早开程度减小,滑阀应处于“迟后状态”,保证了发动机扭
丰田车系
智能可变气门正时系统(VVT—i系 统)
VVT—i(Variable Valve Timing intelligent)
智能可变气门正时系统,用来控制进气凸轮轴在 40°角范围内,自动保持最佳的气门正时,以适应 发动机工作状况的需要,实现了在所有速度范围内, 使配气相位智能化的变化(保持、提前、迟后)。从 而,提高了发动机的扭矩和燃油经济性及净化性。
可变配气相位
三、宝马(BMW's variable valve travel)
宝马的控制机构是由电机 驱动的,电机通过蜗杆传 动齿轮,然后由齿轮上的 凸轮带动摇臂运动来改变 摇臂的控制角,然后在凸 轮轴的驱动下由摇臂带动 气门运动。所以通过改变 摇臂的角度就可以改变气 门的行程了。由于是通过 电机控制的,所以可以在 一定区域内做无段级调节 气门开度。
方法:排气门早开是为了在气压较大时排干净,而排 气门晚关也是为了利用惯性排气。
由于进气门早开和排气门晚关,致使活塞在上止点附 近出现进、排气门同时开启的现象,称其为气门重叠。
气门重叠大小对发动机带来的影响
气门重叠角小:发动机在低速的时候可以获得较大的进气量, 能在低速时发挥出较大的扭矩。而在高速时发动机无法获 得较大的充气量,导致无法获得较大的功率,气门重叠角 过小时,发动机在高速时会熄火。
气门重叠角大:发动机在低速时无法获得较大的进气量,而 导致在低速运转时无法获得较大的转矩。而在高速时发动 机却能获得较大的充气量,使发动机能够发挥出较大的功 率. 配气相位使得气门开启和关闭时间成为一个定值,无法 改变,这也就意味着发动机只能在低速或者高速时发出较 大的转矩或者较大的功率。
新技术
近几十年来,基于提高汽车发动机动力性、经济性和降 低排污的要求,许多国家和发动机厂商、科研机构投入了大 量的人力、物力进行新技术的研究与开发。目前,这些新技 术和新方法,有的已在内燃机上得到应用,有些正处于发展 和完善阶段,有可能成为未来内燃机技术的发展方向。
二、本田(VTEC)
结构:
VTEC不工作时,正时活塞和主同步活塞位于主摇臂缸内,和 中间摇臂等宽的中间同步活塞位于中间摇臂油缸内,次同步活 塞和弹簧一起则位于次摇臂油缸内。正时活塞的一端和液力油 道相通,液力油来自工作油泵,油道的开启由ECM通过VTEC 电磁阀控制。
配气相位名词解释
配气相位名词解释配气相位是内燃机中配气机构的一种工作状态,指进、排气阀门的开启和关闭时间以及进、排气阀的开启程度。
具体来说,配气相位包括进气相位和排气相位。
进气相位是指进气阀门打开和关闭的时间以及进气阀门的开启程度。
在内燃机的工作循环中,进气相位的目标是在适当的时间点打开进气阀门,使气缸内形成适当的吸气压力,以保证燃油能够完全燃烧。
进气相位的调整可以影响进气道温度、压力和流速,从而改变气缸内的气体组成和运动状态,进而影响燃烧过程和发动机的性能。
排气相位是指排气阀门打开和关闭的时间以及排气阀门的开启程度。
在内燃机的工作循环中,排气相位的目标是在适当的时间点打开排气阀门,使已燃烧的废气能够及时排出气缸,为新鲜的燃料-空气混合物的进入创造条件。
排气相位的调整可以影响排气道温度、压力和流速,从而影响气缸内废气的排除能力和排放污染物的成分。
配气相位的调整是通过改变凸轮轴的凸轮形状和凸轮轴与曲轴的相对位置来实现的。
凸轮形状的改变可以影响进、排气阀门的开启时间和开启程度,进而改变气缸内的气体组成和运动状态。
凸轮轴与曲轴的相对位置的改变可以改变进气相位和排气相位的相对位置,进而影响气缸内的气体流动和压力变化。
配气相位的调整可以根据发动机需要来进行优化。
比如,通过适当提前进气相位,可以增加进气道流速和进气压力,有利于增强气缸内的搅拌效应,提高燃烧效率和动力输出;通过适当延迟排气相位,可以延长排气过程,增加废气排出时间,有利于排除废气和降低排放污染物。
总之,配气相位是内燃机中配气机构的一种工作状态,通过调整进、排气阀门的开启和关闭时间以及开启程度,可以改变气缸内的气体组成和运动状态,进而影响燃烧过程和发动机的性能。
项目三 配气机构
项目三配气机构教学目标:【知识目标】●本项目同学们将学习配气机构,希望同学们对配气机构的组成,功用,零部件总成。
●希望同学们能够描述气门组的组成及结构、气门传动组的功用、类型、组成。
●了解配气相位与可变气门正时技术【重点内容】1.配气机构的组成,功用,零部件总成。
2.气门组的组成及结构、气门传动组的功用、类型、组成。
【任务导入】配气机构按照发动机每一气缸内所进行的工作循环和各缸的点火次序的要求.定时开启和关闭各气缸的进、排气门.使可姗混合气及时进人气缸,废气及时从气缸排出。
新鲜空气或可染混合气被吸入气缸越多,则发动机可能发出的功率越大,新鲜混合气或空气充满气缸的程度,用充气效率来表示。
充气效率越高,表明进入气缸内的新鲜空气或可染混合气质量越多,燃烧混合气可能发出的热量越大,发动机的功率越大。
任务一概述基础知识:一、配气机构的功用:图3-1 发动机配气机构功用:发动机配气机构的作用是根据发动机工作次序和各缸工作循环的要求,定时开启和关闭进、排气门, 在进气行程使可燃混合气( 汽油机)或空气( 柴油机) 进入气缸, 在排气行程将燃烧后的废气排出气缸。
二、配气机构的组成:发动机的配气机构由气门组和气门传动组组成。
气门组的功用是封闭进、排气道。
气门传动组的作用是使进、排气门按规定的时刻开闭,且保证有足够的开度,满足发动机的工况要求。
气门组图3-2 气门组结构1-气门锁片2-汽门弹簧座3-气门弹簧4-气门油封5-气门弹簧垫6-气门导管7-气门8-气门座9-汽缸盖二、配气机构的工作过程:图3-3配气机构工作原理图a ) 气门开启 b) 气门关闭1—凸轮轴2—挺柱 3 —推杆4—摇臂轴支座 5—摇臂 6—气门发动机工作时曲轴通过正时齿轮驱动凸轮轴旋转, 当凸轮的凸起部分顶起挺柱时, 挺柱推动推杆一起上行, 作用于摇臂上的推动力驱使摇臂绕轴转动, 摇臂的另一端压缩气门弹簧使气门下行,打开气门,如图3 - 3a 所示。
配气定时
一、配气定时(配气相位)以曲轴转角表示的进、排气门开闭时刻及其开启的持续时间称作配气定时。
进气门在进气行程上止点之前开启谓之早开。
从进气门开到上止点曲轴所转过的角度称作进气提前角,记作α。
进气门在进气行程下止点之后关闭谓之晚关。
从进气行程下止点到进气门关闭曲轴转过的角度称作进气迟后角,记作β。
整个进气过程持续的时间或进气持续角为180°+ α+β曲轴转角。
一般α=0°~30°、β=30°~80°曲轴转角。
排气门在作功行程结束之前,即在作功行程下止点之前开启,谓之排气门早开。
从排气门开启到下止点曲轴转过的角度称作排气提前角,记作γ。
排气门在排气行程结束之后,即在排气行程上止点之后关闭,谓之排气门晚关。
从上止点到排气门关闭曲轴转过的角度称作排气迟后角,记作δ。
整个排气过程持续时间或排气持续角为180°+γ+δ曲轴转角。
一般γ=40°~80°、δ=0°~30°曲轴转角。
由于进气门早开和排气门晚关,致使活塞在上止点附近出现进、排气门同时开启的现象,称其为气门重叠。
重叠期间的曲轴转角称为气门重叠角,它等于进气提前角与排气迟后角之和,即α+δ。
二、可变配气定时机构采用可变配气定时机构可以改善发动机的性能。
发动机转速不同,要求不同的配气定时。
这是因为:当发动机转速改变时,由于进气流速和强制排气时期的废气流速也随之改变,因此在气门晚关期间利用气流惯性增加进气和促进排气的效果将会不同。
例如,当发动机在低速运转时,气流惯性小,若此时配气定时保持不变,则部分进气将被活塞推出气缸,使进气量减少,气缸内残余废气将会增多。
当发动机在高速运转时,气流惯性大,若此时增大进气迟后角和气门重叠角,则会增加进气量和减少残余废气量,使发动机的换气过程臻于完善。
总之,四冲程发动机的配气定时应该是进气迟后角和气门重叠角随发动机转速的升高而加大。
第三章1 配气机构与配气相位 ppt课件
第三章(1) 配气机构与配气相位
配气机构(概述)
1、作用:按照气缸的工作顺序和工作 过程的要求,准时打开或关闭进、排 气门;并且进气[可燃混合气(汽油机) 或新鲜空气(柴油机)]充分,排气彻 底。
2、充气效率 :新鲜空气或可燃混合气 充满气缸的程度,用充气效率hv表示。 hv越高,表明进入气缸的新气越多, 可燃混合气燃烧时可能放出的热量也 就越大,发动机的功率越大。
点击观看动画
2020/10/28
17
第三章(1) 配气机构与配气相位
实际配气相位的优点
配气相位分析:气、排门早开晚闭。延续时间都是曲轴转 角大于180°。进气门早开:增大了进气行程开始时气门的 开启高度,减小进气阻力,增加进气量。 进气门晚关:延 长了进气时间,在大气压和气体惯性力的作用下,增加进 气量。 排气门早开:借助气缸内的高压自行排气,大大减 小了排气阻力,使排气干净。 排气门晚关:延长了排气时 间,在废气压力和废气惯性力的作用下,使排气干净。
曲轴转过的角度,一般为 40°~80°。
C、进气门开启持续角:从进气门开
始开启到完全关闭,曲轴转过的 角度,即α+180°+β。
进气门配气相位
2020/10/28
20
第三章(1) 配气机构与配气相位
实际排气特点
1)从排气门开始开启到下止点所对应的曲轴转角称为排 气提前角 ,用γ表示。 γ一般=40°~80°。 2)从上止点到排气门关闭所对应的曲轴转角称为排气迟 后角,用δ表示。 δ一般=10°~30°。 从排气门开始开启到关闭所对应的曲轴转角=180°+α+δ。
点击观看视频
2020/10/28
5
第三章(1) 配气机构与配气相位
汽车新技术可变配气相位
汽车新技术: 可变配气相位引言近年来,随着汽车工业的快速发展,汽车的性能和效率要求也越来越高。
为了满足这些需求,汽车制造商一直在努力寻找新技术,其中之一就是可变配气相位技术。
本文将详细介绍可变配气相位技术以及它对汽车性能和效率的影响。
什么是可变配气相位技术?可变配气相位技术是指通过控制发动机进气和排气门的开启和关闭时间,来调整气门的开启和关闭时机以及持续时间。
传统配气相位是固定的,不随发动机工况的变化而变化。
而可变配气相位技术则根据发动机负荷、转速和其他因素来实时调整气门的开启和关闭时间,以优化燃烧过程。
实现可变配气相位的方法实现可变配气相位的方法有多种,下面是几种常见的方法:1. 可变气门正时系统(VVT)可变气门正时系统是一种通过控制凸轮轴相对于曲轴的角度来实现可变配气相位的技术。
通过调整凸轮轴的角度,可以改变气门的开启和关闭时机,以适应不同的工况。
VVT技术可以提供更好的动力和燃油经济性。
2. 可变进气歧管(VIM)可变进气歧管是一种通过改变进气歧管的形状和长度,来实现可变配气相位的技术。
不同的进气歧管形状和长度可以改变进气道的流向和速度,从而影响燃烧过程。
VIM技术可以提供更好的动力和响应性。
3. 可变排气歧管(VEM)可变排气歧管是一种通过改变排气歧管的形状和长度,来实现可变配气相位的技术。
不同的排气歧管形状和长度可以改变排气道的流向和速度,从而影响排气过程。
VEM技术可以提供更好的动力和排放性能。
4. 电子控制单元(ECU)电子控制单元是控制发动机运行的核心设备。
通过控制ECU的软件,可以实现对可变配气相位的精确控制。
ECU利用传感器来监测发动机工况,并根据参数来调整配气相位,以达到最佳性能和效率。
可变配气相位技术的优势可变配气相位技术具有许多优势,对汽车性能和效率的改善有着显著的影响:1. 动力提升可变配气相位技术可以调整气门的时机和持续时间,使得燃烧过程更加充分,更加高效。
这可以提升发动机的动力输出,提高汽车加速性能和爬坡能力。
配气相位
凸轮轴 主进气 摇臂 排气门
19
低转速时VTEC的工作原理 低转速时VTEC的工作原理 VTEC
20
高转速时VTEC的工作原理 高转速时VTEC的工作原理 VTEC
21
丰田的VVTL-i 丰田的
连续可变配气相位: 连续可变配气相位:电驱动控制圆盘 有级可变气门升程: 有级可变气门升程:两种不同轮廓的凸轮
5
讨论: 讨论: 配气相位的实现
凸轮轮廓的设计: 凸轮轮廓的设计: 控制气门的运动 凸轮轴的正确安装: 凸轮轴的正确安装:和曲轴有正确的相位关系
不可改变的配气相位 只能在某一转速时充分利用了气体流动惯性 能否任何转速都可以充分利用气体流动惯性? 能否任何转速都可以充分利用气体流动惯性?
6
三、可变配气机构
第三节
ห้องสมุดไป่ตู้
配气相位及可变配气机构
配气相位 配气相位图 可变配气机构
1
一、配气相位
定义: 定义:进、排气门开闭时刻及其开启的持续时间。 排气门开闭时刻及其开启的持续时间。 进气门早开: 气门已有一定开度,使进气顺利。 进气门早开: 气门已有一定开度,使进气顺利。 进气门晚关: 利用进气流惯性,继续进气。 进气门晚关: 利用进气流惯性,继续进气。 排气门早开: 减小推出废气所耗的功。 排气门早开: 减小推出废气所耗的功。 排气门晚关: 利用排气流惯性,多排气。 排气门晚关: 利用排气流惯性,多排气。
10
进气门提前关闭: 进气门提前关闭: 凸轮轴调整器向下拉长, 凸轮轴调整器向下拉长, 于是链条上部变短, 于是链条上部变短,下部 变长。 变长。 在这个位置时, 在这个位置时,对应发动 机的中、低转速。 机的中、低转速。
配气相位的定义
引擎中的配气相位到底是什么?解密发动机
工作原理!
引擎,作为车辆行驶动力的核心组件,其工作原理一直以来都备
受人们关注。
而其中的配气相位,更是一个被人们广受关注的概念。
那么,什么是配气相位呢?下面,我们就来逐一解释一下这个概念。
一、配气相位的概念
配气相位,指的是一个碳氢燃料发动机在工作时,使空气和燃料
按照一定的规律进入和排出汽缸的时间以及阀门的偏移量。
这个规律
是由凸轮轴控制的。
凸轮轴是驱动汽缸内阀门工作的部件,而其规律
则是通过车辆控制系统调整来实现的。
二、配气相位控制的意义
通过调整配气相位可以调整发动机的进、排气效果,从而改善发
动机的燃烧效率,增强发动机的输出功率。
因此,配气相位的优化不
仅能够提升车辆的动力性能,同时还能够有效地降低车辆的燃油消耗。
三、配气相位的类型
常见的配气相位有相位提高和相位延迟两种,两种不同的相位调
整方式对发动机的曲轴角度有不同的影响。
具体来说,相位提高代表
着凸轮轴在正时会提前若干度工作,但进、排气门的每次打开时间不
会改变;而相位延迟则是凸轮轴在正时会延后若干度工作,此时进、
排气门的每次打开时间同样不会改变。
不同的调整方式会导致不同的
发动机输出特性,需要根据车辆实际情况进行灵活的调整。
总之,在发动机运行过程中,配气相位的调整将对发动机的性能
产生至关重要的影响,因此在进行车辆维护和调整时需要对配气相位
的状态进行全面的检测和调整,以保证车辆的动力性能和燃油经济性。
配气相位解释
配气相位解释配气相位解释在汽车引擎中,配气相位是一项非常重要的设计参数。
它直接影响着引擎的输出功率、转速范围和燃油经济性。
而正确的配气相位设计则可以大大提升汽车的性能和燃油经济性。
那么,什么是配气相位呢?让我们从三个方面进行解释。
一、概念解释所谓配气相位,是指发动机进气阀和排气阀打开和关闭的时间点在摩擦副中的日期单位上的实际角度。
一般情况下,配气相位是通过凸轮轴上凸轮的位置来控制的。
也就是说,当凸轮轴旋转时,凸轮的形状将控制进气阀或排气阀的开关时间。
通过调整凸轮轴上不同凸轮的位置和形状,就可以改变配气相位。
二、配气相位对引擎性能的影响正确的配气相位可以显著提升汽车的性能。
其中,进气相位直接影响着引擎的输出功率和转速范围,而排气相位则会影响汽车的燃油经济性。
具体来说,正确的进气相位可以使得引擎在高转速时具有更高的功率输出,相应的,排气相位的调整可以让废气更加充分地被排出,从而降低燃油消耗。
三、配气相位的类别和作用1. 提前相位提前相位是指进气门提前开启的角度。
通常来说,提高进气门的提前角度,可以提高汽车的输出功率。
然而,如果提前角度过大,会使得引擎的中低转速区间输出不稳定,而且会加剧燃油消耗。
2. 滞后相位滞后相位是指进气门滞后关闭的角度。
一般来说,减小滞后角度,可以增加中低转速区间的输出扭矩。
不过,如果滞后角度过小,会导致引擎在高转速时出现输出不稳定的情况。
3. 短开时间短开时间又被称为进气门开启持续时间。
通过控制进气门的开启持续时间和关闭时间,可以改变进气道中的空气流量和速度,从而影响汽车的燃油经济性和输出功率。
总结:配气相位是汽车引擎设计中非常重要的参数,对汽车的性能和燃油经济性有着直接的影响。
正确的配气相位设计可以提升汽车的性能和燃油经济性。
上述提前相位、滞后相位和短开时间是三种广泛应用的配气相位控制方式。
需要指出的是,不同的汽车型号和应用领域,可能需要通过不同的配气相位设计来实现最优的性能和燃油经济性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑦气门重叠:在某一时间内,进气门、排气门同时开启的现 象。
⑧气门重叠角α+δ :气门重叠时的曲轴转角。
气门重叠与气门重叠角
1.气门重叠:当进气门早开和排气门迟关时,出现的进排气 门同时开启的现象。
2.气门重叠角:气门同时开启的角度(+ )。
气门重叠角
排气过程
进气过程
配 气 相 位 示 意 图
位,增大进气 地利用高转速时的气流惯
迟闭角;提前 性,充分进行过后充气,
排气门相位, 提高充气效率;排气门相
增大排气提前 位提前,满足发动机高速
角
时动力性的要求
适当推迟排气 推迟排气相位,充分利用 相位,减小排 燃烧压力;进气门相位提 气提前角;提 前,提高充气效率,减小 前 进 气 门 相 位 ,泵气损失,使发动机获得 减 小 进 气 迟 闭 最大转矩。 角
进气侧凸轮正时提前示意图
配气相位保Hale Waihona Puke 示意图进气侧凸轮正时延迟示意图
(4)Dual VVT-i机构在不同工作情况下实现的正时功能
怠速、轻 载、低温 和起动
中等负荷 时
进气门相位延迟,排 防 止 出 现 缸 内 气门相位提前,减小 新 鲜 充 量 向 进 进排气门的重叠角, 气 管 的 倒 流 ,
配气相位动态演示
二、 可变配气相位机构
1.发动机双智能可变气门正时机构(Dual VVT-i) (1)Dual VVT-i机构组成及控制原理
Dual VVT—i机构控制原理
(2)Dual VVT-i机构的结构
VVT-i控制器
进气侧凸轮轴正时机油控制阀
(3)Dual VVT-i机构工作原理
配气相位与可变配气相位机构
发动机的配气相位
配气相位角:
①进气提前角α :一般为:10º-30º ②进气迟后角β :一般为:40º-80º ③进气持续角:进气门开启持续时间的曲轴转角。
180º+α+β ④排气提前角γ :一般为:40º-80º ⑤排气迟后角δ :一般为:10º-30º ⑥排气持续角:排气门开启持续时间的曲轴转角。
2. 发动机的可变气门控制机构(VTEC)
(1)VTEC机构的结 构
1.正时板;2.中间摇臂;3.次摇臂;4. 中间同步活塞;5.主同步活塞;6.正时 活塞;7.进气门;8.主摇臂;9.凸轮轴
1.正时活塞;2.正时活塞弹簧;3.主 同步活塞;4.中间同步活塞;5.次摇
臂;6.中间摇臂;7.主摇臂
摇臂组件
气门可变驱动机构结构
(2)VTEC机构的工作原理 VTEC机构的控制原理
1.主凸轮;2.中间凸轮;3.次凸轮;4.主 摇臂;5.中间摇臂;6.次摇臂;7.正时 活塞;8.主同步活塞;9.中间同步活塞 10.次同步活塞;11. 次同步活塞弹簧
VTEC机构低速工作
1.中间摇臂;2.中间凸轮
VTEC机构高速工作
使混合气稳定 燃烧,增加低 速转矩,提高 燃油经济性和 环保性
进气门相位提早, 让部分废气 排气门相位延迟, 倒流入进气管, 使气门重叠角增大 降低NOX 排放,
另外能降低发 动机泵气损失, 提高了发动机 的动力,改善 了燃油经济性
高速、 重载工 况时
中转速、 大负荷 时
推迟进气门相 增大进气迟闭角最大程度