二次根式知识点归纳及题型总结

合集下载

二次根式知识点总结及练习题大全

二次根式知识点总结及练习题大全

二次根式知识点总结及练习题大全1.二次根式:式子(≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)()2= (≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】(2)、平方法当时,①如果,则;②如果,则。

例1、比较与的大小。

例2、比较与的大小。

(3)、分母有理化法通过分母有理化,利用分子的大小来比较。

例3、比较与的大小。

(4)、分子有理化法通过分子有理化,利用分母的大小来比较。

例4、比较与的大小。

(5)、倒数法例5、比较与的大小。

(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。

例6、比较与的大小。

(7)、作差比较法在对两数比较大小时,经常运用如下性质:①;②例7、比较与的大小。

(8)、求商比较法它运用如下性质:当a>0,b>0时,则:①;②例8、比较与的大小。

二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”)(1)()2=- ();(2)=- ()(3)(-)2=- ();(4)(2)2=2×=1 ()2.下面的计算中,错误..的是()A.=±0.03 B.±=±0.07C.=0.15 D.-=-0.133.下列各式中一定成立的是()A.=+=3+4=7 B.=-C.(-)2= D.=1-=4.()2-=________; 5.+(-)2=________.6.[-]·-6;7.数a在数轴上的位置如图所示,化简:-│1-a│=_______.8.计算:+=_______.9.--()2 10、-|-|11.+ 12.+ 13.二次根式的乘除练习题1、填空:(1)二次根式的乘法法则用式子表示为__________(2)二次根式的除法法则用式子表示为__________(3)把分母中的___化去,叫做分母有理化. 将式子分母有理化后等于_________ (4)成立的条件是_________(5)成立的条件是_________(6)(6)成立的条件是_________(7)化简:(8)计算:1.下列运算正确的是()A.()2=-5 B.(-)2=-5 C.-=5 D.=5a -2-12102.下面的计算中,正确的是( )A .=0.1;B .-=-0.03;C .±=±13;D .=-43.下列命题中,错误..的是( ) A .如果=5,则x=5;B .若a (a ≥0)为有理数,则是它的算术平方根C .化简的结果是-3D .在直角三角形中,若两条直角边分别是,2,那么斜边长为54.计算+|-11|-,正确的结果是( )A .-11B .11C .22D .-225.(-)2-+=________; 6.=________.7.-(2)2=__________.8.比较大小6______7.(填“>”,“=”,“<”号)9.数a 在数轴上的位置如图所示,化简:│-a-1│-2=________.10.=________.11.计算:+++…+=______.12.如果+│b-2│=0,求以a 、b 为边长的等腰三角形的周长.1、判断题:下列运算是否正确.( )(1)( )(2)( )(3)( )(4)( )(5)( )(6)( )(7)( )(8)1、运用乘法分配律进行简单的根式运算.例1 计算 (1) (2)(1) (2)(3)2、比较两个实数的大小.例2 比较下列两个数的大小(1)与(2)与1、与2、与3、与4、与3、二次根式的乘除混合运算.(1)(2)(1)(2)4、运用分母有理化进行计算.例3 化简分析:当分母里二次根式的被开方数都相差1时,如果分母有理化后则变为1或-1,就可将原式变为不含分母的二次根式.思考题:计算二次根式的加减1.若与是同类二次根式,则a=_______,b=_______.2.在,,,中能与进行加减合并的根式有_________.3.计算: +=_________.4.已知长方形的长和宽分别为,,则它的周长是________.5.在实数范围内分解因式:a2-4=_________.6. +与+大小关系是_________.7.下列根式中与其他三个不同类的是()A. B. C. D.8.下列各组二次根式中,可以进行加减合并的一组是()A.与 B.与 C.与2 D.18与9.下列根式合并过程正确的是()A.2--=2 B.a+b=a+bC.5+=a+ D. -=10.计算: ++-的值是()A. +5 B. +8 C.6+ D.12+11.若5+=6,则y值为()A. B.1 C.2 D.312.一个等腰三角形的两边分别为2,3,则这个三角形的周长为()A.3+4 B.6+2C.6+4 D.3+4或6+213.计算:(1)2+3 (2)5+-7(3)++-+ (4)+6a-3a214.如果△ABC的三边a=7,b=4,c=2,求周长P.巩固练习1. 下列根式中,与是同类二次根式的是()A. B. C. D.2. 下面说法正确的是()A. 被开方数相同的二次根式一定是同类二次根式B.与是同类二次根式C.与不是同类二次根式D. 同类二次根式是根指数为2的根式3. 与不是同类二次根式的是()A. B. C. D.4. 下列根式中,是最简二次根式的是()A. B. C. D.★5. 若,则化简的结果是()A. B. C. 3 D. -3★6. 若的整数部分为,小数部分为,则的值是()A. B. C. 1 D. 37. 下列式子中正确的是()A. B.C. D.8. 在中,与是同类二次根式的是。

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

《二次根式》知识点总结-题型分类-复习专用

《二次根式》知识点总结-题型分类-复习专用

《二次根式》题型分类知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a--+---+,其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是()A、aB、10- C、1a+ D、21a+2、在a、2a b、1x+、21x+、3中是二次根式的个数有______个【例2】2-x有意义的x的取值范围是_____举一反三:1、使代数式43--xx有意义的x的取值范围是()A、x>3B、x≥3C、x>4D 、x≥3且x≠42、若式子13x-有意义,则x的取值范围是.【例3】若y=5-x+x-5,则x+y=举一反三:若x、y都是实数,且y=,求xy的值3、当a取什么值时,代数式211a++取值最小,并求出这个最小值。

已知a是5整数部分,b是5的小数部分,求a-b的值。

知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数.2. ()()a aa 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()() 4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系 (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的.【典型例题】(公式)0()(2≥=a a a 的运用)注意:此性质可作公式记住,后面根式运算中经常用到.【例5】 化简:21(3)a a -+-的结果为( )A 、4—2aB 、0C 、2a —4D 、4举一反三:在实数范围内分解因式:23x-= ;(公式⎩⎨⎧<-≥==)0a (a )0a (a a a 2的应用) 注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.【例6】已知2x <,则化简2)2(-x 的结果是A 、2x -B 、2x +C 、2x --D 、2x -举一反三:1、根式2(3)-的值是( )A .-3B .3或-3C .3D .9 2、已知a<0,那么│2a -2a │可化简为( )A .-aB .aC .-3aD .3a【例7】如果表示a ,b 两个实数的点在数轴上的位置如图所示,那么化简│a -b │+2()a b + 的结果等于( )A .-2bB .2bC .-2aD .2a举一反三:实数a 在数轴上的位置如图所示:化简:21(2)______a a -+-=.【例8】1、把二次根式a a-1化简,正确的结果是( ) A. -aB. --aC. -aD. a2、把根号外的因式移到根号内:当b >0时,x xb = ;aa --11)1(= 。

九年级上册数学21章22章知识点

九年级上册数学21章22章知识点

九年级上册数学21章22章知识点一、二次根式(第 21 章)(一)二次根式的概念形如\(\sqrt{a}(a\geq 0)\)的式子叫做二次根式。

其中\(a\)叫做被开方数。

要理解二次根式,需要注意以下几点:1、二次根式必须含有二次根号“\(\sqrt{}\)”。

2、被开方数\(a\)必须是非负数,即\(a\geq 0\)。

例如,\(\sqrt{5}\),\(\sqrt{20}\),\(\sqrt{x^2 +1}\)(\(x\)为任意实数)都是二次根式;而\(\sqrt{-5}\)就不是二次根式,因为被开方数\(-5\)是负数。

(二)二次根式的性质1、\(\sqrt{a^2} =|a|\)当\(a\geq 0\)时,\(\sqrt{a^2} = a\);当\(a < 0\)时,\(\sqrt{a^2} = a\)。

例如,\(\sqrt{4^2} = 4\),\(\sqrt{(-3)^2} = 3\)。

2、\(\sqrt{ab} =\sqrt{a}\cdot\sqrt{b}\)(\(a\geq 0\),\(b\geq 0\))times\sqrt{3} = 2\sqrt{3}\)3、\(\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}\)(\(a\geq 0\),\(b > 0\))例如,\(\dfrac{\sqrt{18}}{\sqrt{2}}=\sqrt{\dfrac{18}{2}}=\sqrt{9} = 3\)(三)二次根式的运算1、二次根式的加减法先将二次根式化为最简二次根式,然后把被开方数相同的二次根式合并。

例如,\(\sqrt{8} +\sqrt{18} = 2\sqrt{2} + 3\sqrt{2} =5\sqrt{2}\)2、二次根式的乘除法乘法:\(\sqrt{a}\cdot\sqrt{b} =\sqrt{ab}\)(\(a\geq0\),\(b\geq 0\))除法:\(\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}\)(\(a\geq 0\),\(b > 0\))(四)二次根式的化简化简二次根式就是把被开方数中的完全平方数因子开出来。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

《二次根式》的知识要点和习题

《二次根式》的知识要点和习题

《二次根式》的知识要点和习题知识要点1、二次根式的概念:形如a (a ≥0)的式子叫做二次根式。

二次根式a 的实质是一个非负数a 的算术平方根。

注意:在二次根式中,被开放数能够是数,也能够是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0是a 为二次根式的前提条件,如5,21x +,等是二次根式,而5-、2x -、12--x 等都不是二次根式;a 的根指数是2, 即2a ,可省略不写;b a 也是二次根式。

当b 为带分数时,要把b 改写成假分数。

538是二次根式,不能写成2532。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。

如 不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如 ,,..........都不是最简二次根式,而,,5,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如 ,,就是同类二次根式,因为=2,=3,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

①的有理化因式为,②的有理化因式为,③的有理化因式为,④的有理化因式为,⑤的有理化因式为5.二次根式的性质:(1). (a≥0)是一个非负数, 即≥0;(2).非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);(3).某数的平方的算术平方根等于某数的绝对值,即=|a|=(4).非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。

(5).非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。

6.二次根式的乘除(1). 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

(完整版)二次根式知识点归纳及题型总结精华版

(完整版)二次根式知识点归纳及题型总结精华版

二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.;2.;3.;4.积的算术平方根的性质:;5. 商的算术平方根的性质:.6.假设,那么.知识点二、二次根式的运算1.二次根式的乘除运算(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混杂运算(1) 明确运算的序次,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2) 整式、分式中的运算律、运算法那么及乘法公式在二次根式的混杂运算中也同样适用.一. 利用二次根式的双重非负性来解题〔a0 〔a≥0〕,即一个非负数的算术平方根是一个非负数。

〕1.〕。

A、3;B、x ;C、x21;D、x1以下各式中必然是二次根式的是〔2.等式(x 1)2=1- x 成立的条件是 _____________ .3.当 x____________ 时,二次根式2x 3 有意义.4.x 取何值时,以下各式在实数范围内有意义。

〔 1〕〔 2〕1〔3〕5x 2 x1x4〔 4〕假设x( x1)x x1,那么 x 的取值范围是〔 5〕假设x3x3,那么 x 的取值范围是。

x1x16.假设3m 1 有意义,那么m能取的最小整数值是;假设 20m 是一个正整数,那么正整数m的最小值是________.7.当 x 为何整数时,10x11有最小整数值,这个最小整数值为。

8. 假设2004 a a2005a ,那么a2004 2=_____________;假设y x33x 4 ,那么x y9.设 m、n 满足n m299m22mn =。

m 3,那么10. 假设三角形的三边a、 b、 c 满足a24a 4 b 3 =0,那么第三边c的取值范围是11. 假设|4x8 |x y m0 ,且 y 0 时,那么〔〕 A 、0m1 B 、m2C、m 2 D、 m 2利用二次根式的性质2a(a b)(即一个数的平方的算术平方根等于这个数的绝对值)来解题二. a =|a|=0(a0)a(a0)1.x33x2=-x x 3 ,那么〔〕 A.x≤0 B. x≤- 3C. x≥- 3 D.- 3≤x≤ 02.. a<b,化简二次根式 a 3b 的正确结果是〔〕A.a ab B .a ab C. a ab D .a ab3.假设化简 | 1-x |-28x16 的结果为2x-5 那么〔〕 A 、 x 为任意实数B、1≤ x≤ 4C、 x≥1 D 、x≤ 4 x4. a, b, c 为三角形的三边,那么(a b c)2(b c a) 2(b c a) 2=5.当 -3<x<5 时,化简26921025 =。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。

二次根式知识点总结题型分类复习专用

二次根式知识点总结题型分类复习专用

《二次根式》题型分类知识点一:二次根式的概念【知识要点】二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是 . 举一反三:1、使代数式43--x x 有意义的x 的取值范围是( ) A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42、使代数式221x x-+-有意义的x 的取值范围是3、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=举一反三:1、若11x x ---2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2 D .32、若x 、y 都是实数,且y=4x 233x 2+-+-,求xy 的值3、当a 取什么值时,代数式211a ++取值最小,并求出这个最小值。

已知a 是5整数部分,b 是 5的小数部分,求12a b ++的值。

若7-3的整数部分是a ,小数部分是b ,则=-b a 3 。

若172+的整数部分为x ,小数部分为y ,求y x 12+的值.知识点二:二次根式的性质【知识要点】1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a aa 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()20 3.a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系 (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的.【典型例题】【例4】若()22340a b c -+-+-=,则=+-c b a .举一反三:1、若0)1(32=++-n m ,则m n +的值为 。

二次根式知识点

二次根式知识点

二次根式知识点1. 二次根式的定义二次根式指的是形如√a的数,其中a为非负实数。

a被称为被开方数,√a被称为二次根式,也可以叫做平方根。

2. 二次根式的基本性质① 非负性:二次根式必须为非负实数。

② 同根式的加减法:同一指数的二次根式可以进行加减法运算,结果等于指数不变时各自运算后相加减。

③ 同根式的乘法:同一指数的二次根式可以进行乘法运算,结果等于指数不变时各自运算后相乘。

④ 同底数的指数运算:同一被开方数的不同指数的二次根式,可以进行指数运算,结果等于底数相同时指数相加或相减后的二次根式。

⑤ 合并同类项:不同被开方数的二次根式不能进行加减运算,必须化为同一被开方数才能进行操作。

3. 二次根式的化简① 化简含有平方数的二次根式例如:√36 = √(6²)= 6② 化简含有分数的二次根式例如:√(1/4)= 1/√4= 1/2③ 化简含有根号的二次根式例如:√(128)= √(2*64)= 8√2④ 去除被开方数中的平方因子例如:√(80)= √(16*5)= 4√54. 二次根式的应用由于二次根式代表着平方根,所以在一些实际问题中,经常出现二次根式的应用。

例1:计算正方形对角线的长度设正方形边长为a,则对角线长度d = √(a²+a²)=a√2例2:炮弹落地问题假设炮弹以初速度v以角度α斜抛,落地时的水平距离为x,求炮弹所需的最小速度v。

根据物理学上的知识,可以得到:x = v²sin2α/g其中g为重力加速度,有g = 9.8m/s²,化简可得:v = √(gx/ sin2α)在实际问题中,二次根式的应用还有很多,比如在建筑设计中计算楼梯踏步和踏板的长度,计算圆周率的近似值等等。

5. 二次根式的拓展除了√a这种形式的二次根式外,还可以拓展为含有多个根号的形式。

例如:√(a±√b)化简时,可以拆分成两个二次根式相加或相减的形式:当加号为正号时,可拆分为:√(a+√b)+√(a-√b)当减号为负号时,可拆分为:√(a-√b)-√(a+√b)在拓展的形式中,二次根式的化简变得更为复杂,需要运用其他方法进行化简。

九年级数学二次根式知识点

九年级数学二次根式知识点

九年级数学二次根式知识点一、二次根式1. 定义:二次根式是形如√a的表达式,其中a是非负实数。

2. 运算规则:(1) 乘法规则:√a * √b = √(a * b)(2) 除法规则:√a / √b = √(a / b),其中b不能为0(3) 幂运算规则:(√a)^n = (√a)^(n / 2),其中n为偶数,a为非负实数3. 合并同类项:(1) 如果二次根式的底数相同,则可以合并为一个根号,即√a ±√a = ±2√a(2) 如果二次根式的根次相同,则可以合并为同一个根次的根号,即√a^n ±√a^n = ±2√a^n(3) 如果二次根式的底数和根次都相同,则可以合并为同一个根号,即√a^n * √a^n = a^n,(√a^n) / (√a^n) = 1二、二次根式的化简1. 因式分解法:将二次根式的底数a分解为素数的乘积,然后利用乘法规则、除法规则和合并同类项的规则将二次根式化简为最简形式。

2. 有理化分母法:利用有理化分母公式将二次根式的分母有理化。

(1) a + √b有理化分母:a + √b = (a + √b) * (a - √b) / (a - √b)(2) a - √b有理化分母:a - √b = (a - √b) * (a + √b) / (a + √b)(3) 1 / (a + √b)有理化分母:1 / (a + √b) = (a - √b) / (a^2 - b)(4) 1 / (a - √b)有理化分母:1 / (a - √b) = (a + √b) / (a^2 - b)三、二次根式的运算1. 加减运算:将二次根式化为最简形式,然后合并同类项。

2. 乘法运算:将二次根式的底数和根次分别相乘。

3. 除法运算:将二次根式的底数和根次分别相除。

4. 化简运算:利用因式分解法或有理化分母法将二次根式化简为最简形式。

四、二次根式的应用二次根式在实际问题中具有广泛的应用,例如计算物体的体积、面积等。

二次根式知识点归纳和题型归类

二次根式知识点归纳和题型归类

二次根式知识点归纳和题型归类一、知识点归纳二次方程,是一种整式方程,其未知项的最高次数是2,且各项未知数的次数只能是自然数。

一个二次方程只含有一个未知数 x,那么就称其为一元二次方程,其主要内容包括方程求解、方程图像、一元二次函数求最值三个方面;如果一个二次方程含有二个未知数x、y,那么就称其为二元二次方程,以此类推。

二次方程是一种整式方程,其未知项的最高次数是2。

根的判定是利用判别式判定。

二次方程中最常见的是一元二次方程。

二次方程根的判定解实系数一元二次方程时,必须关注解是实数还是复数,通过判断判别式的正负可以判断。

对于任意一个一元二次方程:(1)若△<0,方程无实数根,有两个复数根:(2)若△=0,方程有两个相等的实根:(3)若△>0,方程有两个不等实根。

解一元二次方程的基本思想是设法把所有方程变形成和它同解的两个最简单的一元一次方程.该方法主要是通过因式分解,把一个一元二次方程的求解问题转化为一元一次方程的求解问题,通常把这种方法也叫作降次求解方法,这种方法也适用于某些高次方程。

学好一元二次方程的第二个要求就是要会解一元二次方程,一元二次方程属于高次方程;所以我们解题的基本思路就是降次,其主要方法有四种:(1)直接开方法;(2)因式分解法;(3)配方法;(4)公式法。

二、二次方程的求根公式解ax^2+bx+c=0的解。

移项,ax^2+bx=-c两边除a,然后再配方,x^2+(b/a)x+(b/2a)^2=-c/a+(b/2a)^2[x+b/(2a)]^2=[b^2-4ac]/(2a)^2两边开平方根,解得x=[-b±√(b2-4ac)]/(2a)。

《二次根式》知识点总结,题型分类,复习专用

《二次根式》知识点总结,题型分类,复习专用

《二次根式》题型分类知识点一:二次根式的概念【知识要点】 二次根式的定义: 形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+, 其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、21a+2、在a 、2ab 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子有意义,则x 的取值范围是.举一反三:1、使代数式有意义的x 的取值范围是( )A 、x>3B 、x ≥3C 、 x>4D 、x ≥3且x ≠42x 的取值范围是3、如果代数式有意义,那么,直角坐标系中点P (m ,n )的位置在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限【例3】若y=5-x +x -5+2009,则x+y=举一反三: 1、2()x y =+,则x -y 的值为( ) A .-1 B .1 C .2D .32、若x 、y 都是实数,且 y=4x 233x 2+-+-,求xy 的值3、当a 取什么值时,1取值最小,并求出这个最小值。

已知ab 是的小数部分,求的值。

若7-3的整数部分是a ,小数部分是b ,则=-b a 3。

若172+的整数部分为x ,小数部分为y ,求的值.知识点二:二次根式的性质【知识要点】 1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a aa 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203.a a a a a a 200==≥-<⎧⎨⎩||()() 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替. (3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外. 4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()及()()a aa 20=≥的区别及联系 (1)a 2表示求一个数的平方的算术根,a 的范围是一切实数.(2)()a 2表示一个数的算术平方根的平方,a的范围是非负数.(3)a 2和()a 2的运算结果都是非负的.【典型例题】【例4】若()22340a b c -+-+-=,则=+-c b a .举一反三:1、若0)1(32=++-n m ,则m n +的值为。

二次根式的知识点、典型例题、练习

二次根式的知识点、典型例题、练习

第十六章 二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如 Va (a >0的代数式叫做二次根式。

当时, .a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若 根号下为负数,则无实数根)概念:式子-a (a >0叫二次根式。

.a (a >0是一个非负数。

题型一:判断二次根式(1)下列式子,哪些是二次根式, 哪些不是二次根式:、、2、3 3、-、、、x (x>0)、x中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 (3)下列各式一定是二次根式的是( )2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件(1) 3x 4(2) 1 8a (3) . m 2 4V32、 ---- 有意乂,贝U ____________________ ;J x 1 2、 当x 是多少时, 2x 3+x 2在实数范围内有意义?x3 若、J x 2 * 2成立,贝q x 满足 ___________________ 。

V 3 x v 3 x 典型练习题:.0、42、- .2、---- 、__y (X >Q y >0.x y '(2)在式子 J x x f 0 , V2,—1 y2 , , 2x x p 0 ,3 3^. x 2 1,x yA.B. 3 2mC. -a 2 1(4)3、_____________ 当时,VT~2 J i 2x有意义。

4、使式子(x 5)2有意义的未知数x有()个.A. 0 B . 1 C . 2 D .无数5、已知y= 厂x + •一厂2+5,求-的值.y6若・、3 x + , x 3有意义,则厂= ____________ .7、若."m 有意义,则m的取值范围是____________________ 。

m 18、已知' x 2 2 2 x,则x的取值范围是_________________________9、使等式x 1 x 1 •. x 1、、x 1成立的条件是______________ 。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型资料编号:一、二次根式的定义形如.a( a >0)的式子叫做二次根式.其中“”叫做二次根号,a叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围;(2)判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如m・.a ( a > 0)的式子也是二次根式,其中m叫做二次根式的系数,它表示的是:m- a m a ( a > 0);(4)根据二次根式有意义的条件,若二次根式、、A B与.B A都有意义,则有A B.二、二次根式的性质二次根式具有以下性质(1)双重非负性:..a >0, a >0;(主要用于字母的求值)(2)回归性:...a2 a( a > 0);(主要用于二次根式的计算)(3)转化性:a2 a a(a (主要用于二次根式的化简)a(a 0)重要结论:(1)若几个非负数的和为°,则每个非负数分别等于0.若 A B2C 0,贝卩 A 0,B 0,C 0.应用与书写规范:V A B2.C 0,A > 0, B2>0,、C > 0A 0,B 0,C 0.该性质常与配方法结合求字母的值.(2)•. AB2 AB A BA B ;主要用于二次根式的化简.A2 B A 0(3)A国—,其中 B > 0;<A2 B A 0该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的.2(4) A B A2 B,其中 B > 0.该结论主要用于二次根式的计算.例1.式子〒二在实数范围内有意义,则x的取值范围是 ____________ .寸x 1分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0.解:由二次根式有意义的条件可知:x 1 0,二x 1.例2.若x,y为实数,且y -x 1 J x丄,化简:丄」.2 y 1分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式A B与B A都有意义,则有A B .解:•/ x 1 > 0, 1 x > 0x》1, x W 1/. x 1• 1 1 ,…y 0 0 12 2习题1.如果V3C有意义,则实数a的取值范围是_____________ .习题 2.若y 4^32,则x y_____________ .习题3.要使代数式(P 有意义,则x的最大值是 _______________ .习题4.若函数y 丄空,则自变量x的取值范围是.x习题5. 已知b J3a 12 <8 2a 1,贝廿a b__________________ .例 3. 若.a 1 b2 4b 4 0 ,贝卩ab 的值等【】(A) 2 (B) 0 (C) 1 (D) 2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:T1 b2 4b 4 0/. a 1 b 2 20T a 1 > 0, b 2 2> 0二 a 1 0,b 2 0「• ab 1 2 2.选择【D ] 例4.无论x取任何实数,代数式x2 6x m都有意义,则m的取值范围是 __________ .分析:无论x取任何实数,代数式.x2 6x m都有意义,即被开方数x2 6x m > 0恒成立,所以有如下两种解法:解法一:由题意可知:x2 6x m > 0T x2 6x m x 3 2 m 9 > 0--x 3 > 9 m•/ x 3 2> 0/. 9 m < 0, A m > 9.解法二:设y x2 6x mT•无论x取任何实数,代数式x2 6x m都有意义A y x2 6x m》0恒成立即抛物线y x2 6x m与x轴最多有一个交点2A 6 4m 36 4m < 0解之得:m > 9.例5.已知a,b,c是厶ABC勺三边长,并且满足、、a 6 8 b c2 100 20c,试判断△ ABC勺形状.分析:非负数的性质常和配方法结合用于求字母的值解:T a 6 8 b c2100 20ca 6b 8 c220c 100 0.a 6 b 8 c 10 20T a 6 > 0, b 8 > 0, c 10 2> 0二 a 6 0, b 8 0,c 10 0二 a 6, b 8, c 10T a2 b26282100,c2102100•••△ ABC为直角三角形.习题6.已知实数x,y满足x 4,Y 8 0,则以x,y的值为两边长的等(A) 20或16 (B) 20解:(1 )-6 2 6;(D )以上答案均不对习题7.当x ________________ 时,<9x 1 1取得最小值,这个最小值为习题8.已知V 我4韶X?,则x y 的值为x 2习题9.已知非零实数a,b 满足.a 2 8a 16 b 3 . a 5 b 2 1 4 a ,求a b1的值.提示:由 a 5 b 2 1 > 0,且 b 2 1 0可得:a 5》0, — a > 5.例6•计算:二次根式的计算.(C ) 16 —2(1)6 ;------------- 2(2)2x 3 ;(3)3,3分析:本题考查二次根式的性质_ 2 ______________________________________________________ . ”.a a ( a > 0).该性质主要用于_ ______ 2(2)、2x 3 2x 3;-2 - 2(3)3J - 3 29 - 6. ^3丫 3 3注意:A. B 2 A 2 B ,其中B > 0.该结论主要用于二次根式的计算例7.化简:I2(1)< 252 ; ( 2)10; ( 3). X 2 6x 9 x 3 .¥7二次根式的化简. 解:(1).25225 25;10 ;7;二原式 3 x .和绝对值的化简.分析:本题考查二次根式的性质:a 2aaa(a 0)0).该性质主要用于(2)注意:结论:.A B 2A BABA B A A.该结论主要用于二次根式10 7(3) x 2 6x 932例10.已知0 a 1 ,化简:a ; 2例8.当、、x 3有意义时,化简:x 5 . x 22.. 1解:•••二次根式、x 3有意义-----2'xx 5 x 2 1xx 5 x 2 x 13x 2例9. 化简:i.2一 x 2分析:,x 2 2x 2,继续化简需要x 的取值范围需要挖掘题目本身的隐含条件 「X 3的被开方数 ,而取值范围的获得x 3为非负数.解:由二次根式有意义的条件可知:* 3 >----------- 2 --------------------------x 3 x 2x 3 x 2 x 3 x 22x 5221解:由函数y m 3x n 2的图象可知: m 3 0, n 2 0m 3,n 2m n | :n 2 4n 4 |m 1m n..n 2 2 m1mn n2 m 1 m n 2 n m 1m n 2 n m 1解:•/ 0 a 1• r~ 1…、.a —.a2肓I.a 1 ■- a1 a 1 .a例11.已知直线y m 3 x n 2 ( m,n 是常数),如图(1),化简m| *n 2 4n 4 m 1 .x例12.已知a,b,c在数轴上的位置如图(2 )所示,化简:ac a 0图(2)解:由数轴可知:c a 0 b二 a a c $ 、c a $ . b2习题10.要使..x 2 2 x 2 2 ,x的取值范围是习题11.若.a2 a 0,则a的取值范围是习题12.习题13.计算:〉2习题14. 若:.x 3 2x 3成立,则x的取值范围是15. 下列等式正确2 __________________________________________________________ _____ _(A )品 3(B )厂〒 3___ 2(C )-..33 3(D )、、3 3习题18.化简:厂2卫 _________________ .习题 19.若 Ja 2 3a 1 b 2 2b 1 0,则a 2 丄 b ______________________a2 '2~习题20.已知1 a 0,化简{ a 14J a 14得 -----------16.下 列 各 式成 立 的 是(A )(B )32 3(C )(D), 32 42 7习题17.计算:2、72习题21.实数a,b,c 在数轴上对应的点如图3)所示,化简代数式: a 2 2a 1 b c | ::a 2 2ab b 2的【 】 结果为(A ) 2b c 1(B ) 1(C) 2a c 1 (D) b c 11 212例13.把a 1中根号外的因式移到根号内,结果是Y a【 】(A ) . a( B ) .. a ( C ) . a( D )a分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的 系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符 号.有如下的结论:解:由二次根式有意义的条件可知:1 0a图(3)习题22.化简:.4x 2 4x 1________ 2“2x 3A-BA 2B A 0 A 2B A 0,其中B > 0.1 a 1aa .选择【D ]习题23.化简2「工得\a 2 ----------------------三、二次根式的乘法一般地,有:a b ab ( a > 0, b > 0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a >0, b > 0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:m.. a n b mn._ ab ( a > 0, b > 0);(4)二次根式的乘法公式可逆用,即有:' ab a ' b ( a》0, b》0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14.若.x x 6 .. x x 6 成立,则【】(C) x > 0 (D) x为任意实数(A) x》6(B) 0w x w 63分析:本题考查二次根式乘法公式成立的条件:•. a .b . ab ( a > 0, b > 0)解:由题意可得解之得:x > 6.选择【A J .例15.若Vx2 i jx i 成立,则x的取值范围是___________________分析:本题考查二次根式乘法公式逆用成立的条件:ab - a0, b >0)解:由题意可得解之得:x > 1.例16.计算:..2a :;a ( a >0) 解:2a 8a .2a 8a >2■. :a厂a》0)习题24.计算:J-叼 ______________ .习题25. 已知2 213(A ) 5 m 6(C )5 m 4(D )6 m 5习题26.化简 辺 的结果是 __________ .四、二次根式的除法般地,有:(1) 以上便是二次根式的除法公式,要特别注意公式成立的条件(2) 二次根式的除法公式用于二次根式的计算;(3) 二次根式的除法公式可写为:•. a . a b ( a > 0, b 0 )(4) 二次根式的除法公式可逆用,即有:公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变 五、最简二次根式符合以下条件的二次根式为最简二次根式(B) 4 m 5:a(a》o,b(1)被开方数中不含有完全平方数或完全平方式(2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化.如对寺进行分母有理化,过程为:〒2 2 2 2;对、233进行42分母有理化,过程为:丽 3 、2 3 -、23 .2 3 27 '由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17•计算:(1 ;(2)8占23 ;(3)J28xy2 J7『.解:(1)54 54.9 3;(2)83 3 228338 8 3 8 8 3 3 8 9 8 3(2)®2 3 23 8:2 3、3 3 -2 3 3-2 8 3 “6 3 ;2;v4x 2丘.3 - 28xy2...7y2 28xy2 7y2例18.化简:(1) 5;(2) .、0.4;(3) ,.a3 6a2 9a ( a 3).Y 6解:(1) 5i5'-5 6 30 .解:(1)'. 6 .6 .6、6 可;(—5; ¥;(3)V a 3/. .a3 6a2 9a a a2 6a 9 、aa 32 a 3 , a注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略以简化计算.例19.式子$ —旦成立的条件是\x 2 v x 2 ----------------------分析:本题求解的是x的取值范围,考查了二次根式除法公式逆用成立的条件:a a\ b vb(a > 0, b 0 )解:由题意可得解之得:x 2.2 4-16 2 4,2 4 3、-2例20.计算:⑵201解:(1)3 . 752 2 .275 ■. 25 ~5(2)(3) 解法1:32'.8.232 8.16 42 24 22.解法 2: 32.82:、22 、8 、2 ■::2 」2• 64 、162二次根式的乘除混合运算 例21.计算:222W ;(2)■ 12 .27.18.解:(〔)原式竝号芒2£18 3(2原式1218f --- 1 O 24、8 2.2.;27■ 3习题27.下列计算正确的是【】(A)J2 2.3(B) . 3\ 22(C)、、x3x.. x(D). x2x习题28.计算:727 J8黒.\ 3 \ 2 -------------------习题29.计算:^r6x y2\卜.\ 3习题30.直线y打x 1与x轴的交点坐标是____________ .习题31.如果ab 0, a b 0 ,那么下面各式:①,a a;②.a . b 1;③ ab ,a b.-b . b■. b . a,b其中正确的是__________ (填序号).习题32.若ab 0,则化简J硬的结果是 _____________ .习题33.计算:(1)■. 2 1 3.28 5 22;(2)1 18 8 1〈41\ 2 V 7 4 * 36 ^2X 3 4x 4 n3X 1 X 1 X 1 X 1X 12x 2X 2 x 2 X 1X 1 X 22X 2X2当X2 2时原式2 2 2 2 4222 2 2J 、J3X例也先化简,再求值:耳X 1=,其中X 2 *-习题34.先化简,再求值:占a 1 a 2 2a 1时其中 a 2 1.2 2x y2 2X 2xy y习题36.下列根式中是最简二次根式的是(B) 3(C) .9 (D) 、12例23.观察下列各式:112 .313 .41 、21 \2 1 2■ 3 .2;卅4 ?3;(1)请利用上面的规律直接写出 199 .100的结果(2)请用含n ( n为正整数)的代数式表示上述规律,并证明;(3)计算:丿I 1 V2017■ 2016-2017分析:本题考查分母有理化2. 100、99 10 3 11 ; •、99 .100(2).2017 1 . 2017 12017 1 2016七、同类二次根式如果几个最简二次根式的被开方数相同,那么它们是同类二次根 式•同类二次根式的判断方法:(1) 先化简二次根式;(2) 看被开方数是否相同;(3) 定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法几个同类二次根式相加减,将它们的系数相加减,二次根式保持解:(1) (3)原式 2 1,3 ,2.3 .2017 ,2016 1 .. 2017习题37.化简:二1、9 、8不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24.计算:(1).8 -.18 12;(2)• 27 ■. 12 . 45 .解:(1)原式2、2 3-2 2..3 5 2 2 3 ;(2)原式 3 3 2.3 3 5 ,3 3.5 .注意:不是同类二次根式不能合并例25 •计算:..25 32 <18.2解:原式4.2 3、\2 .227、22例26 •计算:(1)三二虫二T V T V解:(1)原式3 24 91936(2)原式 5 7 8 463习题35.先化简,再求值:--x 12。

二次根式知识点总结及习题带答案

二次根式知识点总结及习题带答案

二次根式知识点总结及习题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【基础知识巩固】一、二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

二、取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。

三、二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

四、二次根式()的性质:一个非负数的算术平方根的平方等于这个非负数。

()注:二次根式的性质公式()是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若,则,如:,.五、二次根式的性质:一个数的平方的算术平方根等于这个数的绝对值。

1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。

六、与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。

但与都是非负数,即,。

因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.七、二次根式的运算1、最简二次根式必须满足以下两个条件(1)被开方数不含分母,即被开方的因式必须是整式;(2)被开方数中不含能开得尽方的因数或因式,即被开方数中每一个因数或因式的指数都是1.2ab a·b(a≥0,b≥0);积的算术平方根的性质即乘法法则的逆用.3、除法法则:b ba a(b≥0,a>0);商的算术平方根的性质即除法法则的逆用.4、合并同类项的法则:系数相加减,字母的指数不变.5、二次根式的加减(1)二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并。

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型

二次根式知识点总结及常见题型二次根式知识点总结及常见题型一、二次根式的定义形如$a\sqrt{a}$的式子叫做二次根式。

其中$\sqrt{a}$叫做二次根号,$a$叫做被开方数。

1) 二次根式有意义的条件是被开方数为非负数。

据此可以确定字母的取值范围。

2) 判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“$\sqrt{}$”;②被开方数是否为非负数。

若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式。

3) 形如$m\sqrt{a}$的式子也是二次根式,其中$m$叫做二次根式的系数,它表示的是:$m\sqrt{a}=m\cdot\sqrt{a}$。

4) 根据二次根式有意义的条件,若二次根式$A-B$与$B-A$都有意义,则有$A=B$。

二、二次根式的性质二次根式具有以下性质:1) 双重非负性:$a\geq0$,$\sqrt{a}\geq0$。

(主要用于字母的求值)2) 回归性:$(\sqrt{a})^2=a$,其中$a\geq0$。

(主要用于二次根式的计算)begin{cases}sqrt{a}(a\geq0)\\sqrt{a}(a\leq0)end{cases}$(主要用于二次根式的化简)重要结论:1) 若几个非负数的和为0,则每个非负数分别等于0.若$A+B^2+C=0$,则$A=0$,$B=0$,$C=0$。

应用与书写规范:$\because A+B^2+C=0$,$A\geq0$,$B^2\geq0$,$C\geq0$,$\therefore A=0$,$B=0$,$C=0$。

该性质常与配方法结合求字母的值。

2) $\begin{cases}A-B(A\geq B)\\frac{(A-B)^2}{A+B}\end{cases}$(主要用于二次根式的化简)3) $AB=\begin{cases}A\cdot B(A>0)\\A\cdot B(A<0)\end{cases}$,其中$B\geq0$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式知识点归纳和题型归类
一、知识框图
二、知识要点梳理
知识点一、二次根式的主要性质:
1.;
2.;
3.;
4. 积的算术平方根的性质:;
5. 商的算术平方根的性质:.
6.若,则.
知识点二、二次根式的运算
1.二次根式的乘除运算
(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.
(2) 注意每一步运算的算理;
(3) 乘法公式的推广:
2.二次根式的加减运算 先化简,再运算,
3.二次根式的混合运算 (1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;
(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 一. 利用二次根式的双重非负性来解题(0≥a (a ≥0),即一个非负数的算术平方根是一个非负数。


1.下列各式中一定是二次根式的是( )。

A 、
3-; B 、x ; C 、12+x ; D 、1-x
2.x 取何值时,下列各式在实数范围内有意义。

(1) (2)121+-x (3)45++x x (6).
(7)若1)1(-=-x x x x ,则x 的取值范围是 (8)若1
313++=++x x x x ,则x 的取值范围是 。

3.若13-m 有意义,则m 能取的最小整数值是 ;若20m 是一个正整数,则正整数m 的最小值是________.
4.当x 为何整数时,1110+-x 有最小整数值,这个最小整数值为 。

5. 若20042005a a a -+-=,则22004a -=_____________;若433+-+-=x x y ,则=+y x
6.设m 、n 满足3
29922-+-+-=m m m n ,则mn = 。

8. 若三角形的三边a 、b 、c 满足3442-++-b a a =0,则第三边c 的取值范围是
10.若0|84|=--+-m y x x ,且0>y 时,则( ) A 、10<<m B 、2≥m C 、2<m
D 、2≤m 二.利用二次根式的性质2a =|a |=⎪⎩
⎪⎨⎧<-=>)0()0(0)(a a a b a a (即一个数的平方的算术平方根等于这个数的绝对值)来解题 1.已知233x x +=-x 3+x ,则( ) A.x ≤0 B.x ≤-3 C.x ≥-3 D.-3≤x ≤0
2..已知a<b ,化简二次根式b a 3-的正确结果是( )A .ab a -- B .ab a - C .ab a D .ab a -
3.若化简|1-x |-1682+-x x 的结果为2x-5则( ) A 、x 为任意实数 B 、1≤x ≤4 C 、x ≥1 D 、x ≤4
4.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+=
5. 当-3<x<5时,化简
25109622+-+++x x x x = 。

6、化简)0(||2<<--y x x y x 的结果是( ) A .x y 2- B .y C .y x -2 D .y -
7、已知:221a a a +-+=1,则a 的取值范围是( )。

A 、0=a ; B 、1=a ; C 、0=a 或1; D 、1≤a
8、化简21)2(---x x 的结果为( ) A 、
x -2; B 、2-x ;C 、2--x D 、x --2
三.二次根式的化简与计算(主要依据是二次根式的性质:(a )2=a (a ≥0),即||2a a =以及混合运算法则)
(一)化简与求值
1.把下列各式化成最简二次根式:(1)833 (2)224041- (3)2
255m (4)224y x x +
2.下列哪些是同类二次根式:(1)75,271,12,2,501,3,101; (2),533c b a 323c b a ,4c
ab ,a bc a 3.计算下列各题:
(1)6)33(27-⋅ (2)49123a ab ⋅;(3)a c c b b a 53654⋅⋅ (4)24182 (5)-545321÷ (6))(23522c ab c b a -÷4.计算(1)2505
1122183133++-- 5.已知1018222=++x x x x
,则x 等于( ) A .4 B .±2 C .2 D .±4 6. 211++321++431++…+100
991+ (二)先化简,后求值:
1. 直接代入法:已知),57(21+=
x ),57(21-=y 求(1) 22y x + (2) y x x y + 2.变形代入法:
(1)变条件:①已知:132
-=x ,求12+-x x 的值。

②.已知:x =2323,2323-+=+-y ,求3x 2-5xy +3y 2的值 (2)变结论:
①设 3 =a ,30 =b ,则0.9 = 。

③.已知12,12+=-=y x ,求xy
y x x y y x 33++++ 。

⑤已知5=+y x ,3=xy ,(1)求x y y x +的值 (2)求y
x y x +-的值 五.关于求二次根式的整数部分与小数部分的问题
1.估算31-2的值在哪两个数之间( )A .1~2 B.2~3 C. 3~4 D.4~5
2.若3的整数部分是a ,小数部分是b ,则=-b a 3
3.已知9+13913-与的小数部分分别是a 和b ,求ab -3a +4b +8的值
4.若a ,b 为有理数,且8+18+81=a+b
2,则b a = .
六.二次根式的比较大小(1)322005
1和 (2)-5566-和 (3)13151517--和 (4)设a=23-, 32-=b ,25-=c , 则( )A. c b a >> B. b c a >> C. a b c >> D. a c b >>
七.实数范围内因式分解: 1. 9x 2-5y 2 2. 4x 4-4x 2+1 3. x 4+x 2-6
19. 已知:1110a a +=+,求221a a
+的值。

20. 已知:,x y 为实数,且113y
x x -+-+,化简:23816y y y ---+。

21. 已知()11039
322++=+-+-y x x x y x ,求的值。

相关文档
最新文档