巽风答题量子力学的学派

合集下载

量子力学答案

量子力学答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThc ekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学复习题附答案

量子力学复习题附答案

量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。

2. 描述态叠加原理的内容。

答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。

系统的态函数可以表示为这些可能状态的叠加。

3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。

4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。

5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。

6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。

7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。

8. 描述量子力学中的隧道效应。

答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。

这是量子力学中粒子波性质的体现。

9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。

10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。

量子力学基础简答题(经典)

量子力学基础简答题(经典)

量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。

6、何为束缚态?7、当体系处于归一化波函数ψ(,)ϖr t 所描述的状态时,简述在ψ(,)ϖr t 状态中测量力学量F 的可能值及其几率的方法。

8、设粒子在位置表象中处于态),(t r ϖψ,采用Dirac 符号时,若将ψ(,)ϖr t 改写为ψ(,)ϖr t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示? 9、简述定态微扰理论。

10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如∃()H0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H HH'+=ˆˆˆ0的零级近似波函数? 15、在自旋态χ12()s z 中,∃S x 和∃S y的测不准关系(∃)(∃)∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger &&方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger &&方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。

18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。

19何谓选择定则。

20、能否由Schrodinger &&方程直接导出自旋?21、叙述量子力学的态迭加原理。

量子力学主要三大学派

量子力学主要三大学派

量子力学主要三大学派
量子力学是描述微观世界的一门重要物理学科,在其发展的过程中涌现出了多个不同的学派。

本文将介绍量子力学主要的三大学派,分别是哥本哈根学派、数学派和多世界学派。

哥本哈根学派
哥本哈根学派是由著名物理学家尼尔斯·玻尔和维尔纳·海森堡等人创立的。

该学派强调测不准性原理和干涉原理,认为量子力学是一种统计性理论,无法准确描述微观粒子的具体运动状态,只能通过概率性的波函数描述其可能的位置和动量。

哥本哈根学派的代表性实验是双缝实验,揭示了微观粒子呈现波粒二象性的特点。

数学派
数学派的代表人物是约翰·冯·诺依曼和埃里温·朗道等数学家。

这一学派强调将量子力学建立在数学严谨性的基础上,提出了算子和希尔伯特空间等数学概念,为量子力学的公理化提供了重要支持。

数学派的工作为量子力学打下了坚实的数学基础,为后续的发展奠定了基础。

多世界学派
多世界学派由休谟·伊弗瑞和休伯特·普尔共同提出。

该学派认为在测量微观粒子时,宇宙会分裂成多个平行宇宙,每个宇宙符合量子力学的统计规律。

这一学派的理论解释了量子纠缠和量子隐形传态等现象,提出了量子态的波函数演化是宇宙的分裂过程。

综上所述,量子力学主要的三大学派分别是哥本哈根学派、数学派和多世界学派。

它们各自提出了不同的解释和观点,丰富了人们对于微观世界的理解,推动了量子力学的不断发展和完善。

量子力学课后答案

量子力学课后答案

=,量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学》题库完整

《量子力学》题库完整

《量子力学》题库一、简答题1 试写了德布罗意公式或德布罗意关系式,简述其物理意义 答:微观粒子的能量和动量分别表示为: ων ==h Ek n h p ==ˆλ其物理意义是把微观粒子的波动性和粒子性联系起来。

等式左边的能量和动量是描述粒子性的;而等式右边的频率和波长那么是描述波的特性的量。

2 简述玻恩关于波函数的统计解释,按这种解释,描写粒子的波是什么波?答:波函数的统计解释是:波函数在空间中某一点的强度〔振幅绝对值的平方〕和在该点找到粒子的几率成正比。

按这种解释,描写粒子的波是几率波。

3 根据量子力学中波函数的几率解释,说明量子力学中的波函数与描述声波、光波等其它波动过程的波函数的区别。

答:根据量子力学中波函数的几率解释,因为粒子必定要在空间某一点出现,所以粒子在空间各点出现的几率总和为1,因而粒子在空间各点出现的几率只决定于波函数在空间各点的相对强度而不决定于强度的绝对大小;因而将波函数乘上一个常数后,所描写的粒子状态不变,这是其他波动过程所没有的。

4 设描写粒子状态的函数ψ可以写成2211ϕϕψc c +=,其中1c 和2c 为复数,1ϕ和2ϕ为粒子的分别属于能量1E 和2E 的构成完备系的能量本征态。

试说明式子2211ϕϕψc c +=的含义,并指出在状态ψ中测量体系的能量的可能值及其几率。

答:2211ϕϕψc c +=的含义是:当粒子处于1ϕ和2ϕ的线性叠加态ψ时,粒子是既处于1ϕ态,又处于2ϕ态。

或者说,当1ϕ和2ϕ是体系可能的状态时,它们的线性叠加态ψ也是体系一个可能的状态;或者说,当体系处在态ψ时,体系局部地处于态1ϕ、2ϕ中。

在状态ψ中测量体系的能量的可能值为1E 和2E ,各自出现的几率为21c 和22c 。

5 什么是定态?定态有什么性质?答:定态是指体系的能量有确定值的态。

在定态中,所有不显含时间的力学量的几率密度及向率流密度都不随时间变化。

6 什么是全同性原理和泡利不相容原理?两者的关系是什么? 答:全同性原理是指由全同粒子组成的体系中,两全同粒子相互代换不引起物理状态的改变。

量子力学(物理学理论)—搜狗百科

量子力学(物理学理论)—搜狗百科

量子力学(物理学理论)—搜狗百科理论的产生及其发展量子力学是描述物质微观世界结构、运动与变化规律的物理科学。

它是20世纪人类文明发展的一个重大飞跃,量子力学的发现引发了一系列划时代的科学发现与技术发明,对人类社会的进步做出重要贡献。

19世纪末正当人们为经典物理取得重大成就的时候,一系列经典理论无法解释的现象一个接一个地发现了。

德国物理学家维恩通过热辐射能谱的测量发现的热辐射定理。

德国物理学家普朗克为了解释热辐射能谱提出了一个大胆的假设:在热辐射的产生与吸收过程中能量是以hf为最小单位,一份一份交换的。

这个能量量子化的假设不仅强调了热辐射能量的不连续性,而且跟'辐射能量与频率无关,由振幅确定'的基本概念直接相矛盾,无法纳入任何一个经典范畴。

当时只有少数科学家认真研究这个问题。

爱因斯坦于1905年提出了光量子说。

1916年,美国物理学家密立根发表了光电效应实验结果,验证了爱因斯坦的光量子说。

1913年丹麦物理学家玻尔为解决卢瑟福原子行星模型的不稳定性(按经典理论,原子中电子绕原子核作圆周运动要辐射能量,导致轨道半径缩小直到跌落进原子核),提出定态假设:原子中的电子并不像行星一样可在任意经典力学的轨道上运转,稳定轨道的作用量fpdq必须为h的整数倍(角动量量子化),即fpdq=nh,n称之为量子数。

玻尔又提出原子发光过程不是经典辐射,是电子在不同的稳定轨道态之间的不连续的跃迁过程,光的频率由轨道态之间的能量差确定,即频率法则。

这样,玻尔原子理论以它简单明晰的图像解释了氢原子分立光谱线,并以电子轨道态直观地解释了化学元素周期表,导致了72号元素铪的发现,在随后的短短十多年内引发了一系列的重大科学进展。

这在物理学史上是空前的。

由于量子论的深刻内涵,以玻尔为代表的哥本哈根学派对此进行了深入的研究,他们对对应原理、矩阵力学、不相容原理、测不准关系、互补原理。

量子力学的几率解释等都做出了贡献。

关于量子力学解释的各种学派

关于量子力学解释的各种学派

量子力学解释的学派有:
1. 经典量子力学:经典量子力学是由爱因斯坦、玻尔、普朗克和费米等物理学家在20世纪20年代初提出的,它是一种基于经典物理学的量子力学理论,它将量子力学的概念应用于经典物理学的框架中,以解释量子力学现象。

2. 相对论量子力学:相对论量子力学是由爱因斯坦和费米在20世纪30年代提出的,它是一种基于相对论的量子力学理论,它将量子力学的概念应用于相对论的框架中,以解释量子力学现象。

3. 波动力学:波动力学是由爱因斯坦、玻尔、普朗克和费米等物理学家在20世纪20年代初提出的,它是一种基于波动力学的量子力学理论,它将量子力学的概念应用于波动力学的框架中,以解释量子力学现象。

4. 原子力学:原子力学是由爱因斯坦、玻尔、普朗克和费米等物理学家在20世纪20年代初提出的,它是一种基于原子力学的量子力学理论,它将量子力学的概念应用于原子力学的框架中,以解释量子力学现象。

5. 数学量子力学:数学量子力学是由爱因斯坦、玻尔、普朗克和费米等物理学家在20世纪20年代初提出的,它是一种基于数学的量子力学理论,它将量子力学的概念应用于数学的框架中,以解释量子力学现象。

量子力学复习题答案

量子力学复习题答案

量子力学复习题答案1. 什么是波函数?波函数在量子力学中扮演什么角色?答:波函数是量子力学中描述粒子状态的数学函数。

它提供了粒子在空间中的概率分布信息,即粒子出现在某个位置的概率密度。

波函数的平方给出了粒子在特定位置被发现的概率。

在量子力学中,波函数是基本的物理量,它包含了关于粒子的所有可能信息。

2. 请解释海森堡不确定性原理。

答:海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。

具体来说,粒子的位置确定得越精确,其动量的不确定性就越大,反之亦然。

数学上,这可以表达为Δx * Δp ≥ ħ/2,其中Δx是位置的不确定性,Δp是动量的不确定性,ħ是约化普朗克常数。

3. 什么是薛定谔方程,它在量子力学中的作用是什么?答:薛定谔方程是量子力学中描述波函数随时间演化的基本方程。

它是一个线性偏微分方程,形式为iħ∂ψ/∂t = Hψ,其中ψ是波函数,H是哈密顿算符,代表系统的总能量。

薛定谔方程在量子力学中的作用是确定波函数随时间的变化,从而预测粒子的行为。

4. 简述泡利不相容原理。

答:泡利不相容原理指出,在同一个原子中,没有两个电子可以具有完全相同的四个量子数。

这意味着电子必须占据不同的能级,且每个能级最多只能有两个电子,它们的自旋必须相反。

这一原理解释了原子的电子排布,以及元素周期表的结构。

5. 什么是量子纠缠,它在量子计算中有何应用?答:量子纠缠是指两个或多个量子系统之间的一种特殊的相关性,即使它们相隔很远,一个系统的状态无论何时被测量,都会立即影响另一个系统的状态。

在量子计算中,量子纠缠是实现量子比特(qubits)之间信息共享和量子逻辑门操作的关键资源,它是构建量子计算机和执行量子算法的基础。

6. 描述一下量子隧穿效应。

答:量子隧穿效应是指粒子通过一个势垒,即使其能量低于势垒的高度,也能有一定概率出现在势垒的另一侧。

这一现象在经典物理学中是不可能发生的,但在量子力学中,由于波函数的非零值可以延伸到势垒内部,粒子有一定的概率能够“隧穿”过去。

量子力学基础简答题(经典)(完整资料).doc

量子力学基础简答题(经典)(完整资料).doc

【最新整理,下载后即可编辑】量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么?3、力学量Gˆ在自身表象中的矩阵表示有何特点? 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化?解释各项的几率意义。

6、何为束缚态?7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。

8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥?采用Dirac 符号时,位置表象中的波函数应如何表示?9、简述定态微扰理论。

10、Stern —Gerlach 实验证实了什么? 11、一个物理体系存在束缚态的条件是什么? 12、两个对易的力学量是否一定同时确定?为什么? 13、测不准关系是否与表象有关?14、在简并定态微扰论中,如 ()H 0的某一能级)0(n E ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H H H'+=ˆˆˆ0的零级近似波函数?15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少? 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解?同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解?17、两个不对易的算符所表示的力学量是否一定不能同时确定?举例说明。

18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。

19何谓选择定则。

20、能否由Schrodinger 方程直接导出自旋?21、叙述量子力学的态迭加原理。

22、厄米算符是如何定义的?23、据[aˆ,+a ˆ]=1,a a N ˆˆˆ+=,n n n N =ˆ,证明:1ˆ-=n n n a 。

量子力学基础知识习题解答可修改全文

量子力学基础知识习题解答可修改全文

01.量子力学基础知识本章主要知识点一、微观粒子的运动特征 1. 波粒二象性:,hE h p νλ==2. 测不准原理:,,,x y z x p h y p h z p h t E h ∆∆≥∆∆≥∆∆≥∆∆≥3. 能量量子化; 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数(,,,)x y z t ψ来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数(,,)x y z ψ称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于*ψψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将*ψψ称为几率密度,它就是通常所说的电子云;*d ψψτ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born )统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,ψψψ⋅=*2合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 自厄算符:满足**2121ˆˆ()d ()d A A ψψτψψτ=∫∫的算符。

自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

3. 假设3:若某一物理量A 的算符ˆA作用于某一状态函数ψ,等于某一常数a 乘以ψ,即:ˆAa ψψ=,那么对ψ所描述的这个微观体系的状态,物理量A 具有确定的数字a 。

量子力学所有简答题答案

量子力学所有简答题答案

简答题1.什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:光照射到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能。

这类光致电变的现象被人们统称为光电效应。

或光照射到金属上,引起物质的电性质发生变化。

这类光变致电的现象被人们统称为光电效应。

光电效应规律如下:1.每一种金属在产生光电效应时都存在一极限频率(或称截止频率),即照射光的频率不能低于某一临界值。

当入射光的频率低于极限频率时,无论多强的光都无法使电子逸出。

2.光电效应中产生的光电子的速度与光的频率有关,而与光强无关。

3.光电效应的瞬时性。

实验发现,只要光的频率高于金属的极限频率,光的亮度无论强弱,光子的产生都几乎是瞬时的。

4.入射光的强度只影响光电流的强弱,即只影响在单位时间内由单位面积是逸出的光电子数目。

爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。

(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。

(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。

逸出电子的动能、光子能量和逸出功之间的关系可以表示成:221mv A h +=ν这就是爱因斯坦光电效应方程。

其中,h 是普朗克常数;f 是入射光子的频率。

2.写出德布罗意假设和德布罗意公式。

德布罗意假设:实物粒子具有波粒二象性。

德布罗意公式:νωh E ==η λhk P ==η3.简述波函数的统计解释,为什么说波函数可以完全描述微观体系的状态。

几率波满足的条件。

波函数在空间中某一点的强度和在该点找到粒子的几率成正比。

因为它能根据现在的状态预知未来的状态。

波函数满足归一化条件。

4.以微观粒子的双缝干涉实验为例,说明态的叠加原理。

下列属于量子力学的学派

下列属于量子力学的学派

下列属于量子力学的学派
量子力学三大学派是:慕尼黑、哥廷根、根本哈根。

1、量子力学是研究物质世界微观粒子运动规律的物理学分支,主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质,与相对论一起构成现代物理学的理论基础。

量子力学是现代物理学的基础理论之一,广泛应用于量子化学、量子光学、量子计算、超导磁体、发光二极管、激光器、晶体管和半导体如微处理器等领域。

2、量子力学是描述微观物质的理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学、固体物理学、核物理学和粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。

3、量子力学是描写原子和亚原子尺度的物理学理论。

该理论形成于20世纪初期,彻底改变了人们对物质组成成分的认识。

微观世界里,粒子不是台球,而是嗡嗡跳跃的概率云,它们不只存在一个位置,也不会从点A通过一条单一路径到达点B。

4、根据量子理论,粒子的行为常常像波,用于描述粒子行为的波函数预测一个粒子可能的特性,诸如它的位置和速度,而非确定的特性。

物理学中有些怪异的概念,诸如纠缠和不确定性原理,就源于量子力学。

量子力学基础简答题

量子力学基础简答题

量子力学基础简答题(经典)(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--量子力学基础简答题1、简述波函数的统计解释;2、对“轨道”和“电子云”的概念,量子力学的解释是什么3、力学量Gˆ在自身表象中的矩阵表示有何特点 4、简述能量的测不准关系;5、电子在位置和自旋z S ˆ表象下,波函数⎪⎪⎭⎫ ⎝⎛=ψ),,(),,(21z y x z y x ψψ如何归一化解释各项的几率意义。

6、何为束缚态7、当体系处于归一化波函数ψ(,) r t 所描述的状态时,简述在ψ(,)r t 状态中测量力学量F 的可能值及其几率的方法。

8、设粒子在位置表象中处于态),(t rψ,采用Dirac 符号时,若将ψ(,)r t 改写为ψ(,)r t 有何不妥采用Dirac 符号时,位置表象中的波函数应如何表示9、简述定态微扰理论。

10、Stern —Gerlach 实验证实了什么 11、一个物理体系存在束缚态的条件是什么 12、两个对易的力学量是否一定同时确定为什么 13、测不准关系是否与表象有关14、在简并定态微扰论中,如 ()H 0的某一能级)0(nE ,对应f 个正交归一本征函数i φ(i =1,2,…,f ),为什么一般地i φ不能直接作为()H H H'+=ˆˆˆ0的零级近似波函数15、在自旋态χ12()s z 中, S x 和 S y的测不准关系( )( )∆∆S S x y 22•是多少 16、在定态问题中,不同能量所对应的态的迭加是否为定态Schrodinger 方程的解同一能量对应的各简并态的迭加是否仍为定态Schrodinger 方程的解17、两个不对易的算符所表示的力学量是否一定不能同时确定举例说明。

18说明厄米矩阵的对角元素是实的,关于对角线对称的元素互相共轭。

19何谓选择定则。

20、能否由Schrodinger 方程直接导出自旋21、叙述量子力学的态迭加原理。

以下属于量子力的学派

以下属于量子力的学派

以下属于量子力的学派
量子力学是一门多面向的学科,它考虑了自然界微观世界中微小分子、原子、分子、原子核以及原子小粒子的运动规律。

有几个主要的学派
和面向:
1、波力学:又称量子力学,借鉴了物理学的波动理论,认为被观察的
物理系统是由一种解释成波的形式可以描述的,专门研究能量以及物
质在微小范围内的运动,提出了唯波力学理论。

2、薛定谔方程:也称哈密顿方程,又称量子力学对电子化学和结构的
解释,它定义了物理系统的动力学性质,可以用来描述电子的行为,
利用它可以描述电子结构,如分子的稳定性、迁移性等。

3、原子理论:主要由克莱因、喷尔斯等人倡导,考虑了原子的结构及
它的能量模型,认为原子的形成是由若干个基本的桥架元素组成的,
并提出了原子结构模型,用来更好地研究原子结构。

4、原子核理论:主要涉及核反应过程中的原子核,借鉴了量子思想,
考虑了原子核的结构及其结构特性,用来描述核反应的动态过程,从
而更好地研究原子核的反应特性。

5、量子力学的定性理论:考虑的是物质的定性特性,如量子现象、量
子波动、量子约束等,从而对物质的性质进行更具体的描述,这给物
理学提供了一个更大的单元来解释量子现象。

6、量子场论:又称量子场理论,它将量子力学的基本原理应用于磁场、电场和弱电场之类的物理场中,在描述量子现象时,考虑了物质与其
场中的相互作用,同时也强调了物质在场中的相对性。

总之,量子力学的学派非常复杂,这些学派的发展历程也代表着物理
学的发展,它集合了众多学科的共性,让我们更常地去认识世界。

以下属于量子力学的学派

以下属于量子力学的学派

以下属于量子力学的学派量子力学学派是一个重要的流派,它的重要意义在于在近百年的研究中,它为我们提供了一种研究物质和能量构成的宇宙的重要理论。

其中,量子力学的学派有很多,下面详细介绍一下:**第一派:解析力学**解析力学是量子力学学派之一,由爱尔兰物理学家德拉特纳和德国物理学家德尔塔尼所创立。

解析力学是第一个使用“数学主义”方法建立的,利用数学来考究物体的运动规律,并分析其在外力作用下的变化,它是把量子物理分析作为一门独立的学科的基础。

沿着这个学派,学者们发展出了精确分析量子力学的数学方法,这一方法不仅促进了量子力学的发展,也是形式量子力学学派发展的基石。

**第二派:凝聚态量子力学**凝聚态量子力学是指利用量子力学定义、计算以固体为基本系统的物理性质、结构和物性,它主要研究在低温和压力下,由原子、分子、电子和中子构成的微观系统。

这一物理学学派是在二十世纪30年代开展的,它综合了传统物理学的根据实验和实践的经验的研究成果以及计算机技术等现代方法,令量子力学在科学研究中发挥了巨大作用。

**第三派:量子场论**量子场论是量子力学学派之一,是由二十世纪六十年代德国物理学家纳斯兰姆所创立的。

量子场论思想在量子力学的研究中发挥了重要作用,它不仅加深了有关物质的研究,而且解释了宇宙中时空之间的关系,同时也极大地推动了高能物理的研究和发展。

由于它的强大理论和实验研究,它在宇宙学研究中的地位也越来越重要。

以上就是介绍三个量子力学学派的内容,每种学派都有它特殊的视角、吸引力、用来分析宇宙构成的方法,都为我们研究宇宙奠定了坚实的基础。

量子力学基础知识习题解答

量子力学基础知识习题解答

01.量子力学基础知识本章主要知识点一、微观粒子的运动特征 1. 波粒二象性:,hE h p νλ==2. 测不准原理:,,,x y z x p h y p h z p h t E h ∆∆≥∆∆≥∆∆≥∆∆≥3. 能量量子化; 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数(,,,)x y z t ψ来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数(,,)x y z ψ称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于*ψψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将*ψψ称为几率密度,它就是通常所说的电子云;*d ψψτ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born )统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,ψψψ⋅=*2合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 自厄算符:满足**2121ˆˆ()d ()d A A ψψτψψτ=∫∫的算符。

自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

3. 假设3:若某一物理量A 的算符ˆA作用于某一状态函数ψ,等于某一常数a 乘以ψ,即:ˆAa ψψ=,那么对ψ所描述的这个微观体系的状态,物理量A 具有确定的数字a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巽风答题量子力学的学派
量子力学是现代物理学的重要分支,它研究微观粒子的运动和相互作用,其中包括原子、分子、原子核等微观粒子。

自从20世纪诞生以来,量子力学便成为了物理学界的热门话题之一,同时也产生了不少的学派,其中以哥本哈根学派、多世界学派、相干态学派较为著名。

而巽风答题中所问的是量子力学的学派问题,我将从这三个学派角度出发,为大家详细介绍一下量子力学的学派。

哥本哈根学派是量子力学最为传统的学派之一。

这个学派以哥本哈根大学物理系为中心,以波尔、海森堡、玻尔等著名物理学家为代表,倡导一种不可分离原理——通过观察过程的干扰或测量会改变受测系统的状态,从而影响测量结果。

哥本哈根学派重视量子力学的经典解释,认为它解释不了物质的本质,且量子力学的基本概念和数学形式只是一种描述,并没有真正的物理意义。

与哥本哈根学派不同,多世界学派则认为测量不会影响系统的状态,毫无干扰,量子体系存在多种不同的状态。

多世界学派中最著名的代表是休姆普登和伊弗双胞胎(Everett),他们发展出分支宇宙的概念,解决了哥本哈根学派中的量子纠缠问题。

多世界学派认为,当我们测量一个体系时,我们所处的这个宇宙就会随之分裂出许多不同的宇宙,每个宇宙都对应着量子体系的某个状态。

这种学派的理论对于描述宇宙的微观世界非常有意义。

相干态学派则主张考虑系统和观察者之间的相互作用。

这个学派的代表人物是芬曼,他强调量子体系和观察仪之间的相互作用,此时的观测手段可以被视为量子
态。

相干态学派认为,只有这样才能充分解释量子纠缠的现象,同时也完善了物理学对于测量理论的探讨。

综上所述,哥本哈根学派、多世界学派、相干态学派是量子力学中的重要学派,它们各自有着不同的表述方式和解释方式,包括对于测量理论的探讨、对于观测者的涵义以及它们各自独特的学说。

这些学派虽然各自不同,但都深刻地影响着量子力学这门重要的学科,同时也为物理学的发展作出了重要的贡献。

相关文档
最新文档