高中数学必修2常用公式及结论2
高中数学二级结论公式
高中数学二级结论公式
高中数学二级公式包括但不限于以下内容:
1. 圆的弦长公式:AB=2r2−d2r:圆的半径;d:弦心距,即弦长与圆心的距离。
2. 其他曲线的弦长公式:AB=1+k2x1−x2=1+k2(x1+x2)2−4x1x2二次项系数=1+k2⋅Δ二次项系数二次项系数:直线曲线联立后的二次项系数。
3. 圆上动点到圆外定点的距离最值口诀:最小值:穿心半径最小值:穿心-半径即圆外点到圆心的距离减去半径。
最大值:穿心半径最大值:穿心+半径即圆外点到圆心的距离加上半径。
以上信息仅供参考,建议查阅高中数学教材或咨询数学老师获取更准确的信息。
高中数学必修二知识点总结及公式大全
高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
高中数学必修2,选修1-1公式表
第一部分立体几何1、常见基本函数的导数(1)常函数:0)()(='⇒=x f C x f (2)幂函数:1)()(-='⇒=αααx x f x x f (3)正弦函数:x x f x x f cos )(sin )(='⇒= (4)余弦函数:x x f x x f sin )(cos )(-='⇒= (5)指数函数1:a a x f a x f x x ln )()(='⇒= (6)指数函数2:x x e x f e x f ='⇒=)()( (7)对数函数1:ax x f x x f a ln 1)(log )(='⇒= (8)对数函数2:xx f x x f 1)(ln )(='⇒= 2、导数运算公式:(1)和的导数:)()(])()([x g x f x g x f '±'⇒'±(2)积的导数:)()()()(])()([x g x f x g x f x g x f '+'⇒'(3)商的导数:)()()()()(])()([2x g x g x f x g x f x g x f '-'⇒' 3、导数的意义:(1)导数值就是曲线在该点的斜率:)(0x f k '=; (2)位移的导数就是瞬时速度:)(t s v '=瞬 (3)速度的导数就是瞬时加速度:)(t v a '=瞬4、曲线的切线方程:))((000x x x f y y -'=-5、导数与单调性:(1)增区间x I x f ⇒⎩⎨⎧>'0)(范围; (2)减区间x I x f ⇒⎩⎨⎧<'0)(范围; 求单调区间步骤:求定义域→求导函数→分类求交集;6、利用单调性求参数范围 (1)求定义域: (2)求导函数:(3)由函数的单调性写出导函数的符号;①若)(x f 在区间D 上是单调递增函数0)(≥'⇒x f 在D 上恒成立; ②若)(x f 在区间D 上是单调递减函数0)(≤'⇒x f 在D 上恒成立; (4)分离参数①max )()(x a x a ϕϕ≥⇒≥; ②min )()(x a x a ϕϕ≤⇒≤; 例、已知函数xx a x x f 2ln )(2++=在[)+∞,1单调递增函数,求实数a 的取值范围。
高中数学-必修二6.2.2二倍角公式-知识点
1、熟记二倍角公式及其常用变形.
(1)正弦:sin2α=2sinαcosα。常用变形:①sinα=2sin cos ;②(sinα±cosα)2=1±sin2α。
(2)余弦:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。常用变形-降幂公式:①cos2α= ,②sin2α= 。
5、积化和差公式(容易由两角和或差的正/余弦公式反向推导得出)
sinαcosβ= [sin(α+β)+sin(α-β)]
cosαsinβ= [sin(α+β)-sin(α-β)]
cosαcosβ= [cos(α+β)+cos(α-β)]
sinαsinβ=- [cos(α+β)-cos(α-β)]
6、和差化积公式:
(3)正切:tan2α= 。
2、题型:给角求值。典例:求sin10°sin50°sin70°。方法:变形,凑配,逆用公式。原式=cos80°cos40°cos20°= = (分子连续逆用正弦二倍角公= ;②cos = ;③tan = = = 。
4、万能公式:sinα= ,cosα= ,tanα= 。
①sinα+sinβ=2sin cos
②sinα-sinβ=2cos sin
③cosα+cosβ=2cos cos
④cosα-cosβ=-2sin sin
★记忆口诀:①角的顺序都是α,β, , ;②公式的左边:一加二减,三加四减。③三角函数名:赛赛赛口;赛赛口赛;口口口口;口口赛赛。④第4个公式,有负号。
高中数学必修2知识点总结
高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。
求解一元二次方程的方法是配方法、公式法和因式分解法。
2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。
三角函数的定义域和值域以及其性质和图像都是必须掌握的。
3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。
三角恒等式是解决三角函数问题的重要工具。
4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。
二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。
必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。
5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。
向量的运算包括向量的加法、减法、数量积和向量积。
向量的坐标表示是将向量投影在坐标轴上来表示的。
6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。
此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。
7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。
轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。
8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。
9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。
10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。
函数的应用包括函数的极值、最大值和最小值等问题。
以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。
高中数学必修2第二章知识点总结及例题
高中数学必修2知识点总结立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)chS =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积rhS π2=圆柱侧()l r r S +=π2圆柱表 rlSπ=圆锥侧面积()l r r S +=π圆锥表l R r S π)(+=圆台侧面积()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式V Sh=柱 13V Sh =锥'1()3V S S h =台2V Sh r h π==圆柱 h r V 231π=圆锥'2211()()33V S S h r rR R hπ=+=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 12 三个公理:(1符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3公理1 异面直线: 不同在任何一个平面内,没有公共点。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥bLA ²α C ²B²A ² α =>a ∥c强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
高中数学必修2知识点总结:第三章_直线与方程2
高中数学必修2知识点总结:第三章_直线与方程2直线与方程3.1直线的倾斜角和斜率3.1 倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示, k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. .....4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k = y2-y1/x2-x1 3.1.2 两条直线的平行与垂直1、两条直线的平行① 若两条直线的斜率都存在,则:k1 = k2 = L1∥L2或者..L1与L2重合② 两条不重合直线平行的判定条件:⑴ 两条直线的斜率都不存在;⑵ 两条直线的斜率存在,且k1 = k2...(若已知两条直线的斜率存在且平行,则应k1 = k2 且纵截距不相等;若已知两条直线的斜率不存在且平行,则应横截距不相等)2、两条直线垂直①若两条直线的斜率都存在,则:k1 k2 = - 1 = L1 ⊥ L2 .....②两条直线垂直的判定条件:⑴ 两条直线:一条斜率不存在,另外一条k =0 ;⑵ 两条直线的斜率存在:k1 k2 = - 1 3、利用系数来判断平行与垂直★ 已知L1: A1x+B1y+C1=0 , L2 : A2x+B2y+C2=0 那么:① A1B2-A2B1=0两条直线平行或重合....两条直线相交③ A1A2 + B1B2 = 0..② A1B2-A2B1 ≠0两条直线垂直..★ 如果已知两条直线的一般式方程,则可以通过系数关系求解相应的参数的值。
数学高中必修二知识点总结必看
数学高中必修二知识点总结必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些数学高中必修二知识点的学习资料,希望对大家有所帮助。
高一年级数学必修二知识点总结【两个平面的位置关系】(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
【两平面垂直】两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。
高二数学必修二知识点归纳一、直线与圆:1、直线的倾斜角的范围是在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。
高中必修一二数学公式总结大全
高中必修一二数学公式总结大全一、数学公式的作用与价值数学公式作为数学知识的精华和核心,承载着丰富的数学内涵和深刻的数学思想,对于学习和理解整个数学体系起着至关重要的作用。
高中必修一二数学公式集中体现了高中数学课程的重点和难点,具有重要的理论和应用价值。
深入全面地了解和掌握高中必修一二数学公式,将对学生的数学学习和数学素养起到非常重要的促进作用。
二、高中必修一数学公式总结1. 一次函数方程:y=kx+b2. 二次函数方程:y=ax^2+bx+cx=-b±√(b^2-4ac)/2a3. 指数和对数:a^m*a^n=a^(m+n)(a^m)^n=a^(mn)a^0=1a^-m=1/a^mloga(mn)=logam+loganloga(m/n)=logam-loganloga(1/m)=-logamlogam/n=nlogam4. 三角函数:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ∓sinαsinβtan(α±β)=(tanα±tanβ)/(1∓tanαtanβ)sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α三、高中必修二数学公式总结1. 二次函数:抛物线的一般方程y=ax^2+bx+c抛物线的顶点坐标为:(-b/2a,c-b^2/4a)2. 三角函数:三角函数的诱导公式tanx=sinx/cosx四、对高中必修一二数学公式的个人理解高中数学是数学学科的一个重要阶段,在这一阶段学生需要系统、全面地学习各种数学知识,数学公式作为数学知识的核心之一,对于学生打下坚实的数学基础至关重要。
高中必修一二数学公式凝聚了教育部数学教学大纲的精华,每个公式都有其独特的数学内涵和广阔的应用空间。
学生要想在高中数学学习中取得好成绩,必须充分理解和掌握这些数学公式,灵活应用于解决实际问题。
数学-必修二公式定理
高中数学必修二 包含的公式定理一 空间几何体的表面积和体积(1)圆柱 S=2πr ²+2πr l=2πr (r + l) 柱体 V=Sh(2)圆锥 S= πr ²+πr l =πr (r + l) 椎体 V=31Sh(3)圆台 S=π( r 1²+r 2²+r 1l+r 2l) 台体V=31(S 上底下底下底S S ⋅+S 下底)h(4)球 S=4πR ² V=34πR 3二 线线,线面,面面之间的定理(1)空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. (2)平面外一条直线与此平面内的一条直线平行,则此直线与此平面平行. (3)一个平面内的两条相交直线与另一平面平行,则这两个平面平行.(4)一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. (5)如果两个平行平面同时和第三个平面相交,那么它们的交线平行.(6)一条直线与一个平面内的两条相交的直线垂直,则该直线与此平面垂直. (7)一个平面过另一平面的垂线,则这两个平面垂直. (8)垂直于同一平面的两条直线平行.(9)两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.三 直线与方程(1) 2121y y k x x -=-当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.(2) 12//l l ⇔12k k = 12l l ⊥⇔121k k ⋅=-(3)点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=- (4)斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+(5)两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=-- (6)截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=(7)一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A-,y 轴上截距为CB-的直线.(8)两点间的距离为:12||PP =(9)点00(,)P xy 到直线:0l Ax By C ++=的距离公式为d =.(10) 两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =四 圆与方程(1)圆的标准方程: 222()()x a y b r -+-= (a , b)为圆心 r 为半径(2)圆的一般方程: x 2+y 2+Dx +Ey +F=0当D 2+E 2-4F >0时,方程②表示(1)当0422>-+F E D 时,表示以(-2D,-2E )为圆心,F E D 42122-+为半径的圆;当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示一个点(-2D,-2E );当0422<-+F E D 时,方程没有实数解(4)空间坐标系两点间的距离:1点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =. 2两点式不能表示垂直x 、y轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.。
高中数学必修2常用公式及结论2(2020年九月整理).doc
高中数学必修2常用公式及结论II直线与圆1.斜率公式:k111(,)P x y、222(,)P x y.斜率与倾斜角的关系:(1)斜率存在:k(2)斜率不存在,=α2.直线方程的五种形式:(1)直线l过点),(yx,且斜率为k).(2)l在y轴上的截距).(3)111(,)x y、222(,)P x y12x x≠,12y y≠).(4)b分别为直线在x轴、y轴上的截距,且0,0≠≠ba).(5)A、B不同时为0).3.两条直线的位置关系:(1)若111:l y k x b=+,222:l y k x b=+,则:①(2)若1111:0l A x B y C++=,2222:0l A x B y C++=,则:①②5.距离公式:(1)点),(111yxA,),(22yxB之间的距离:221221)()(yyxxAB-+-=(2)点P(x0,y0)到直线Ax+By+C=0的距离:d=(3)两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离2221BACCd+-=6.圆的方程:⑴标准方程:①222)()(rbyax=-+-,圆心是),(ba,半径是r②222ryx=+,圆心是(0,0),半径是r⑵一般方程:022=++++FEyDxyx()0422>-+FED注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆⇔A=C≠0且B=0且D2+E2-4AF>07.圆的方程的求法:⑴待定系数法;⑵几何法。
8.点、直线与圆的位置关系:(主要掌握几何法)⑴点与圆的位置关系:(d表示点到圆心的距离)①⇔=Rd点在圆上;②⇔<R d 点在圆内;③⇔>R d 点在圆外。
⑵直线与圆的位置关系:(d 表示圆心到直线的距离)①⇔=R d 相切;②⇔<R d 相交;③⇔>R d 相离。
⑶圆与圆的位置关系:(d 表示圆心距,r R ,表示两圆半径,且r R >) ①⇔+>r R d 外离;②⇔+=r R d 外切;③⇔+<<-r R d r R 相交;④⇔-=r R d 内切;⑤⇔-<<r R d 0内含。
[高中数学必修2]第二章 平面解析几何初步 知识梳理
第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。
数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。
记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。
可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。
(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。
从点A 到点B的向量,记作AB 。
线段AB 的长叫做向量AB 的长度,记作|AB|。
我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。
例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。
注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。
③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。
(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。
对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。
已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。
必修二数学知识点归纳
必修二数学知识点归纳高中数学必修二的内容主要包括立体几何初步、平面解析几何初步。
以下是对这些知识点的详细归纳:一、立体几何初步1、空间几何体多面体:由若干个平面多边形围成的几何体叫做多面体。
旋转体:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面,封闭的旋转面围成的几何体叫作旋转体。
2、棱柱、棱锥、棱台棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
3、圆柱、圆锥、圆台、球圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
球:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。
4、中心投影与平行投影中心投影:光由一点向外散射形成的投影,叫做中心投影。
平行投影:在一束平行光线照射下形成的投影,叫做平行投影。
5、直观图斜二测画法:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 x 轴和 y 轴,两轴相交于点 O。
画直观图时,把它们画成对应的 x'轴和 y'轴,两轴交于点 O',且使∠x'O'y' = 45°(或 135°),它们确定的平面表示水平平面。
已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x'轴或 y'轴的线段。
已知图形中平行于 x 轴的线段,在直观图中长度不变;平行于 y 轴的线段,长度变为原来的一半。
6、三视图正视图:光线从几何体的前面向后面正投影得到的投影图。
2019年最新-人教版高中数学必修二直线与圆的位置关系(公式及技巧)
2.已知:如图,PT切⊙O于点T,PA交⊙O于A、B两点且 与直径CT交于点D,CD=2,AD=3,BD=6,则PB= ________.
解析:由AD·BD=CD·TD,得TD=9,又由
得PB(PB+9)=(PB+6)2-92,则PB=15. 答案:15
3.如图,已知EB是半圆O的直径,A是BE延长线上一点,AC
解析:∵∠CAE=∠EAB,∠EAB=∠ACB, ∴∠ACB=∠CAE=∠EAB. 又∵CB⊥AD,∴∠ACB=∠CAE=∠EAB=30°. 又∵AE=2,∴AB= 3,AC2 3,BC=3. 答案:
6.如图,EB、EC是⊙O的两条切线,B、C是切点,A、D 是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A 的度数是________.
3,能创编动作表现歌(乐)曲,准 确地唱 歌。
教学重点:用柔和的声音演唱歌曲。
教学难点:能创编动作表现歌曲。
教学准备:录音机,电子琴
教学内容及过程:
一 开始部分:
1 听音乐问好!
2 复习歌曲。
3 复习柯尔文手势。
二 基本部分:
1、表演《布谷》
a 完整地感受歌曲的旋律,课题是学 生跟着 音乐拍 手、拍 腿,感 受歌曲 的节拍 。然后 听歌曲 录音, 用手指 点歌词 ,想一 想哪些 音长?
(1)可利用圆内接四边形对角互补来证明A,P,O,M四 点共圆; (2)利用(1)所得结论即可求得∠OAM+∠APM的大小.
证明:连结OP,OM,如图(1)所示.因为AP与⊙O相切 于点P,所以OP⊥AP.因为M是⊙O的弦BC的中点,所以 OM⊥BC.于是∠OPA+∠OMA=180°.由圆心O在∠PAC的 内部,可知四边形APOM的对角互补,所以A,P,O, M四点共圆.
新教材北师大版高中数学必修二 高中数学常用解题公式结论
数学公式一.三角函数1.三角函数的定义:正弦:sin y r α=;余弦:cos x r α=;正切:tan yxα=;其中:r =2.诱导公式:π倍加减名不变,符号只需看象限;半π加减名要变,符号还是看象限。
3.和差公式:①sin()sin cos cos sin αβαβαβ±=±(伞科科伞,符号不反) ②cos()cos cos sin sin αβαβαβ±=(科科伞伞,符号相反) ③tan tan tan()1tan tan αβαβαβ±±=(上同下相反)4.二倍角公式:①sin 22sin cos ααα=②2222cos 2cos sin 12sin 2cos 1ααααα=-=-=- ③22tan tan 21tan ααα=- 5.降幂公式:①.sin 2sin cos 2ααα=②.21cos 2sin 2αα-=③.21cos 2cos 2αα+=6.辅助角公式:sin cos ).(tan ,0)ba wxb wx wx a aϕϕ+=+=>7.正弦定理:2sin sin sin a b cR A B C ===8.余弦定理:①222222cos 2cos 2b c a A a b c bc A bc+-=⇔=+- ②222222cos 2cos 2a c b B b a c ac B ac +-=⇔=+- ③222222cos 2cos 2a b c C c a b ab C ab+-=⇔=+- 9.三角形最值原理:三角形中一个角及其对边已知时、另外两边或两角相等时周长取得最小值,面积取得最大值;二.平面向量1.向量加法的作图:上终下起,中间消去;AB BC AC +=2.向量减法的作图:起点相同,倒回来读;C C A -AB =B3.向量平行的判定:(1)向量法://=a b b a λ⇔; (2)向量法: 1221//0a b x y x y ⇔-=4.向量垂直的判定:(1)向量法: 0a b a b ⊥⇔=; (2)向量法: 12120a b x x y y ⊥⇔+=5.向量的数量积公式:(1)向量法: cos a b a b θ=; (2)向量法: 1212=a b x x y y +6.向量的夹角公式:(1)向量法: cos =a b a bθ; (2)向量法: cos θ7.a 方向上的单位向量: (1)向量法: a e a=; (2)向量法: 121=x a e a x ⎛⎫= +⎝ 8.证明A 、B 、C 三点共线两种方法:(1)两个向量,AB AC 共线且有一个公共点A ;(2)(1)PA xPB yPC x y =++=三.立体几何初步1.多面体的内切球半径:123nVr S S S =++⋅⋅⋅+2.长方体的外接球半径:2R =3.直棱锥的外接球半径:222()22sin h R r a r A ⎧=+⎪⎪⎨⎪=⎪⎩4.正棱锥的外接球半径:222()2sin Rr h R a r A ⎧=+-⎪⎨=⎪⎩5.正三角形的性质:高:h =,面积:2S = 6.正三角形与圆:内切圆半径:r =,外接圆半径:R =,且21R r =7.正四面体的高:斜高:h =斜,正高:h =正8.正四面体与球:内切球半径r ,外接球半径R ,且31R r=且r R h +=正。
高中数学必修二公式汇总与整理
高中数学必修二公式汇总与整理一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质3.绝对值不等式的性质(1)如果a>0,那么(2)|a?b|=|a|?|b|.(3)|a|-|b|≤|a±b|≤|a|+|b|.(4)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同四、《不等式》解不等式的途径,利用函数的性质。
高中数学必修2公式(最新整理)
高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即。
斜率反映直线与轴的倾斜程度。
tan k α=当时,; 当时,; 当时,不存[) 90,0∈α0≥k ()180,90∈α0<k 90=αk 在。
②过两点的直线的斜率公式: )(211212x x x x y y k ≠--=注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;21x x =(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:直线斜率k ,且过点)(11x x k y y -=-()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:,直线斜率为k ,直线在y 轴上的截距为bb kx y +=③两点式:()直线两点,112121y y x x y y x x --=--1212,x x y y ≠≠()11,y x ()22,y x ④截矩式:1x y a b+=其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
l x (,0)a y (0,)b l x y ,a b ⑤一般式:(A ,B 不全为0)0=++C By Ax 注意:各式的适用范围 特殊的方程如:○1○2平行于x 轴的直线:(b 为常数); 平行于y 轴的直线:(a 为常数);b y =a x =(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:0000=++C y B x A 00,B A (C 为常数)000=++C y B x A (二)过定点的直线系(ⅰ)斜率为k 的直线系:,直线过定点;()00x x k y y -=-()00,y x (ⅱ)过两条直线,的交点的直线系方程0:1111=++C y B x A l 0:2222=++C y B x A l 为(为参数),其中直线不在直线系中。
高中数学必修二公式
高中数学必修二公式1.二次函数与一次函数公式:- 一元二次方程的解公式:$x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$- 一次函数的一般形式:$y = ax + b$-一次函数图像上的点斜式:$y-y_1=m(x-x_1)$2.平面几何公式:- 平面上两点距离公式:$d = \sqrt{(x_2 - x_1)^2 + (y_2 -y_1)^2}$- 点到直线距离公式:$d = \frac{,Ax + By + C,}{\sqrt{A^2 + B^2}}$- 直线斜率公式:$m = \frac{y_2 - y_1}{x_2 - x_1}$- 直线倾斜角公式:$\alpha = \arctan(m)$-直线方程一般式:$Ax+By+C=0$3.三角函数公式:- 正弦定理:$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} =\frac{c}{\sin(C)}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab \cos(C)$- 正弦函数的定义:$\sin(\alpha) = \frac{y}{r}$- 余弦函数的定义:$\cos(\alpha) = \frac{x}{r}$- 正切函数的定义:$\tan(\alpha) = \frac{y}{x}$- 特殊角公式:$\sin(\frac{\pi}{6}) = \frac{1}{2}$,$\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$, $\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}}$4.矩阵相关公式:- 矩阵加法和减法:$A \pm B = (a_{ij} \pm b_{ij})$- 矩阵数乘:$kA = (ka_{ij})$- 矩阵乘法:$AB = (a_{ik} \cdot b_{kj})$- 矩阵转置:$A^T = (a_{ji})$- 矩阵行列式:$,A, = a_{11}\cdot a_{22} \cdot ... \cdota_{nn}$- 逆矩阵:$A^{-1}$满足$A \cdot A^{-1} = I$5.统计与概率公式:- 排列与组合公式:$P_n^k = \frac{n!}{(n-k)!}$, $C_n^k =\frac{P_n^k}{k!}$- 二项式定理:$(a + b)^n = C_n^0 \cdot a^n \cdot b^0 + C_n^1 \cdot a^{n-1} \cdot b^1 + ... + C_n^n \cdot a^0 \cdot b^n$ - 条件概率公式:$P(A,B) = \frac{P(A \cap B)}{P(B)}$- 期望公式:$E(X) = \sum_{i=1}^{n} x_i \cdot P_i$以上是高中数学必修二公式的一部分,请根据你的需要进行查看和使用。
高中必修二数学方差公式
高中必修二数学方差公式高中数学中,方差是一个重要的概念。
方差是用来描述一组数据的分散程度的统计量。
在高中必修二数学中,我们学习了方差的计算方法,即方差公式。
方差公式是通过计算每个数据与平均值之差的平方,并求平均得到的。
方差公式的具体表达为:方差=每个数据与平均值之差的平方的和除以数据个数。
在实际问题中,方差的计算可以帮助我们对数据进行分析和比较。
下面我们通过几个例子来说明方差的应用。
例1:某班级的学生参加了一次数学考试,他们的成绩如下:80,85,90,92,95。
求这组数据的方差。
解:首先,我们需要计算这组数据的平均值。
将这些数据相加后除以数据个数,即(80+85+90+92+95)/5=88.4。
所以平均值为88.4。
然后,我们计算每个数据与平均值之差的平方,并求和。
计算得到的结果为((80-88.4)^2+(85-88.4)^2+(90-88.4)^2+(92-88.4)^2+(95-88.4)^2)=165.2。
我们将这个和除以数据个数,即165.2/5=33.04。
所以这组数据的方差为33.04。
例2:某班级的学生参加了两次数学考试,他们的成绩如下表所示。
求这组数据的方差,并比较两次考试的分散程度。
第一次考试:80,85,90,92,95第二次考试:83,86,88,90,95解:首先,我们分别计算两次考试的平均值。
第一次考试的平均值为(80+85+90+92+95)/5=88.4,第二次考试的平均值为(83+86+88+90+95)/5=88.4。
然后,我们分别计算每个数据与平均值之差的平方,并求和。
第一次考试的结果为165.2,第二次考试的结果为38.8。
我们分别将这个和除以数据个数,得到第一次考试的方差为33.04,第二次考试的方差为7.76。
通过比较两次考试的方差,我们可以发现第二次考试的分数相较于第一次考试更加集中,分散程度更小。
方差公式在实际问题中有着广泛的应用。
例如,在金融领域中,方差可以用来度量投资组合的风险;在质量管理中,方差可以用来衡量产品质量的稳定性;在社会调查中,方差可以用来分析数据的差异等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修2常用公式及结论
第一部分立体几何
1.三视图与直观图:⑴画三视图要求:正视图与俯视图长对正;正视图与侧视图高平齐;侧视图与俯视图宽相等。
⑵斜二测画法画水平放置几何体的直观图的要领。
2.表(侧)面积与体积公式:
⑶台体:
②侧面积:
3.四个公理:
①如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
②过不在一条直线上的三点,有且仅有一个平面。
③如果两个不重合的平面有一个公共点,那么它们有且仅有一条过该点的公共直线。
④平行于同一直线的两条直线平行。
4.等角定理:
空间中如果两个角的两边对应平行,那么这两个角相等或互补。
5、平行位置关系:
⎪⎩
⎪
⎨
⎧
⎩
⎨
⎧
异面直线
相交
平行
共面直线
不同在任何一个平面内的两直线称为异面直线。
6、直线与平面平行:
定义一条直线与一个平面没有公共点,则这条直线与这个平面平行。
判定平面外一条直线与此平面内的一直线平行,则该直线与此平面平行。
性质一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
7、平面与平面平行:
定义两个平面没有公共点,则这两平面平行。
判定若一个平面内有两条相交直线与另一个平面平行,则这两个平面平行。
性质①如果两个平面平行,则其中一个面内的任一直线与另一个平面平行。
②如果两个平行平面同时与第三个平面相交,那么它们交线平行。
8、直线与平面垂直:
定义如果一条直线与一个平面内的任一直线都垂直,则这条直线与这个平面垂直。
判定一条直线与一个平面内的两相交直线垂直,则这条直线与这个平面垂直。
性质①垂直于同一平面的两条直线平行。
②两平行直线中的一条与一个平面垂直,则另一条也与这个平面垂直。
9、平面与平面垂直:
定义两个平行相交,如果它们所成的二面角是直二面角,则这两个平面垂直。
判定一个平面过另一个平面的垂线,则这两个平面垂直。
性质两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
10.三角形四“心”
(1)O 为ABC ∆的外心(各边垂直平分线的交点). (2)O 为ABC ∆的重心(各边中线的交点). (3)O 为ABC ∆的垂心(各边高的交点).
(4)O 为ABC ∆的内心(各内角平分线的交点).
11.位置关系的证明(主要方法):
⑴直线与直线平行:①公理4:②线面平行的性质定理;③面面平行的性质定理。
⑵直线与平面平行:①线面平行的判定定理;②面面平行)线面平行。
⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。
⑸平面与平面垂直:①定义----两平面所成二面角为直角;②面面垂直的判定定理。
12角:(步骤-------Ⅰ.找或作角;Ⅱ.求角) ⑴异面直线所成角的求法:
平移法:平移直线,构造三角形; ⑵直线与平面所成的角:
直接法(利用线面角定义)
13距离:(步骤-------Ⅰ.找或作垂线段;Ⅱ.求距离) 点到平面的距离:等体积法
14.一些结论
(1)长方体从一个顶点出发的三条棱长分别为a ,b ,c
(2
)正方体的棱长为a
(3)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长. 球与正方体的组合体:正方体的内切球的直径是正方体的棱长,
正方体的棱切球的直径是正方体的面对角线长,
正方体的外接球的直径是正方体的体对角线长.
(4)正四面体的性质:设棱长为a ,则正四面体的: ①
直线与圆
1.斜率公式:k 111
(,)P x y 、222(,)
P x y .
斜率与倾斜角的关系:(1)斜率存在:k (2)斜率不存在,=α2.直线方程的五种形式:
(1)
直线l 过点),(00y x ,且斜率为k ). (2)l 在y 轴上的截距). (3)111(,)x y 、222(,)P x y 12x x ≠,12y y ≠).
(4)、b 分别为直线在x 轴、y 轴上的截距,且0,0≠≠b a ). (5)其中A 、B 不同时为0).
3.两条直线的位置关系:
(1)若111:l y k x b =+,222:l y k x b =+,则:
① (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,则:
① ②5.距离公式:
(1)点),(111y x A ,),(22y x B 之间的距离:221221)()(y y x x AB -+-=
(2)点P (x 0,y 0)到直线Ax+By+C=0的距离:
d =
(3)两条平行线Ax+By+C 1=0与 Ax+By+C 2=0的距离2
2
21B
A C C d +-=
6.圆的方程:
⑴标准方程:①2
22)()(r b y a x =-+- ,圆心是),(b a ,半径是r ②2
22r y x =+ ,圆心是(0,0),半径是r
⑵一般方程:022=++++F Ey Dx y x ()042
2>-+F E D 注:Ax 2
+Bxy+Cy 2
+Dx+Ey+F=0表示圆⇔A=C ≠0且B=0且D 2
+E 2
-4AF>0 7.圆的方程的求法:⑴待定系数法;⑵几何法。
8.点、直线与圆的位置关系:(主要掌握几何法) ⑴点与圆的位置关系:(d 表示点到圆心的距离) ①⇔=R d 点在圆上; ②⇔<R d 点在圆内; ③⇔>R d 点在圆外。
⑵直线与圆的位置关系:(d 表示圆心到直线的距离) ①⇔=R d 相切; ②⇔<R d 相交; ③⇔>R d 相离。
⑶圆与圆的位置关系:(d 表示圆心距,r R ,表示两圆半径,且r R >) ①⇔+>r R d 外离; ②⇔+=r R d 外切;
③⇔+<<-r R d r R 相交; ④⇔-=r R d 内切; ⑤⇔-<<r R d 0内含。
、。