二元函数极限的求法
二元函数的极限求法
二元函数的极限求法二元函数的极限求法是高等数学中的重要内容,它是研究二元函数在某一点处的极限值的方法。
在这篇文章中,我们将介绍二元函数的极限求法的基本概念、方法和应用。
一、二元函数的极限概念二元函数是指有两个自变量的函数,通常表示为f(x,y)。
在二元函数中,我们可以考虑它在某一点(x0,y0)处的极限值。
如果当(x,y)趋近于(x0,y0)时,f(x,y)的值趋近于一个确定的常数L,那么我们就称L 为f(x,y)在点(x0,y0)处的极限值,记作:lim f(x,y) = L(x,y)->(x0,y0)其中,(x,y)->(x0,y0)表示当(x,y)趋近于(x0,y0)时,f(x,y)的极限值存在。
二元函数的极限求法有以下几种方法:1. 二重极限法二重极限法是指先对其中一个自变量求极限,再对另一个自变量求极限的方法。
具体来说,如果f(x,y)在点(x0,y0)处的极限存在,那么我们可以先对x求极限,再对y求极限,即:lim lim f(x,y) = lim lim f(x,y) = Ly->y0 x->x0 x->x0 y->y02. 极坐标法极坐标法是指将二元函数表示为极坐标形式,然后对极角和极径分别求极限的方法。
具体来说,如果f(x,y)在点(x0,y0)处的极限存在,那么我们可以将(x,y)表示为极坐标形式(r,θ),即:x = rcosθy = rsinθ然后对r和θ分别求极限,即:lim f(x,y) = lim f(rcosθ,rsinθ) = L(x,y)->(x0,y0) r->0 θ->θ03. 直角坐标法直角坐标法是指将二元函数表示为直角坐标形式,然后对x和y分别求极限的方法。
具体来说,如果f(x,y)在点(x0,y0)处的极限存在,那么我们可以将(x,y)表示为直角坐标形式(x0+h,y0+k),即:x = x0 + hy = y0 + k然后对h和k分别求极限,即:lim f(x,y) = lim f(x0+h,y0+k) = L(x,y)->(x0,y0) h->0 k->0三、二元函数的极限应用二元函数的极限应用广泛,例如在微积分、物理学、工程学等领域中都有重要的应用。
二元函数极限的求法
二元函数极限的求法二元函数极限是数学中一个重要的概念,它研究二元函数在某个点处的极限值。
它不仅在函数中被广泛应用,而且在微积分学中也有重要的作用。
因此,了解二元函数极限的求法尤为重要。
一般而言,二元函数极限的求法一般是通过分析函数在某点附近的曲线行为来求解。
这种方法可以分为三种:一是按照函数在某点附近的导数来寻找极限值;二是利用函数在某点附近的凸性来求解;三是根据函数在该点处的异常情况来进行求解。
首先,如果二元函数在某点处有定义,那么该函数在该点处的极限值就是该点的函数值。
如果函数在该点处没有定义,但是函数的导数在该点处有定义,那么可以通过求导数的极限来计算函数的极限值,即:如果存在某个点,其导数的极限值存在并且为非零,那么函数在该点的极限值就是该点的函数值除以该点导数的极限值。
具体来说,如果用y=f(x)来表示一个函数,那么它在x=a处的极限值就是y=f (a)/[f(a)],其中f(a)表示函数在x=a处的导数。
其次,如果在某点处函数的导数不存在,而且函数在该点处有定义,那么可以利用函数在该点处的凸性来求解极限值,即,如果函数在某点处不存在导数,而且该点是凸函数,则函数的极限值等于该点的函数值。
反之,如果函数在某点处不存在导数,但是该函数是凹函数,则该函数在该点处的极限值就是该点左右两处函数值的中点值。
最后,如果函数在某点处存在明显的异常情况,比如跳跃,则可以利用定义结合函数的连续性和连续导数的有界性,以及梯形定理等,来求解函数在该点处的极限值。
总之,二元函数极限的求解一般是根据函数在某点处的行为来确定的,有的时候可以利用函数的导数来求解,有的时候利用函数的凸凹性来求解,而有的时候则要利用函数的异常情况来解决。
因此,理解二元函数极限的求法就显得尤为重要。
求二元函数极限的几种方法二元函数极限定理
1 / 151.二元函数极限概念分析定义1 设函数f 在2D R ⊂上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<,则称f 在D 上当0P P →时,以A 为极限,记0lim ()P P P Df P A →∈=.上述极限又称为二重极限.2.二元函数极限的求法2.1 利用二元函数的连续性命题 若函数(,)f x y 在点00(,)x y 处连续,则0000(,)(,)lim(,)(,)x y x y f x y f x y →=.例1 求2(,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2(,)2f x y x xy =+在点(1,2)处连续,所以122122lim (,)lim(2)12125.x y x y f x y x xy →→→→=+=+⨯⨯=例2 求极限()()221,1,21limy x y x +→.解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即()()221,1,21limy x y x +→=31.2 / 152.2 利用恒等变形法将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求00x y →→解: 00x y →→00x y →→=0x y →→=001.4x y →→==-例4 ()()22220,0,321)31)(21(lim yx y x y x +-++→.解:原式()()())()(),0,02211lim231x y xy →=+()(22,0,0limx y →=+11022=+=.2.3 利用等价无穷小代换一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的等价无穷小((,)0)u x y→,有sin(,)(,)u x y u x y;2(,)1cos(,)2u x yu x y-;[]ln1(,)(,)u x y u x y+;tan(,)(,)u x y u x y;arcsin(,)(,)u x y u x y;arctan(,)(,)u x y u x y(,)1u x yn;(,)1(,)u x ye u x y-;同一元函数一样,等价无穷小代换只能在乘法和除法中应用.例5求xy→→解: 当x→,0y→时,有0x y+→11()2x y+,所以1()2lim1.2xyxyx yx y→→→→+=+=这个例子也可以用恒等变形法计算,如:1.2xyxyxy→→→→→→===3 / 154 / 152.4 利用两个重要极限(,)0sin (,)lim 1(,)u x y u x y u x y →=,[]1(,)(,)0lim 1(,)u x y u x y u x y e →+= 它们分别是一元函数中两个重要极限的推广.例6 求极限 21lim(1)x x yx y axy+→∞→+.解: 先把已知极限化为22()11lim(1)lim (1)x x xy x y xy x yx x y ay a xy xy ++→∞→∞→→⎡⎤+=+⎢⎥⎣⎦,而 211limlim ,()(1)x x y a y a x y xy x y ay x→∞→∞→→==++ 当 ,x y a →∞→时1,0xy xy →∞→,所以 1lim(1).xy x y ae xy →∞→+=故原式=2()11lim (1).x xy x y xy xy a axy e +→∞→⎡⎤+⎢⎥⎣⎦=例7 求 0sin()limx y axy x →→极限.解: 因为sin()sin().xy xy y x xy=,当0,x y a →→时,0xy →,所以 sin()1xy xy→,再利用极限四则运算可得: 000sin()sin()sin()limlim .lim .lim .x x y a xy y a y axy xy xy y y a x xy xy →→→→→→===·1=a .这个例子也可以用等价无穷小代换计算,如: 当 0x →,y a →时,0xy → ,sin()xy xy .5 / 15所以, 00sin()limlim lim .x x y a y a y axy xyy a x x →→→→→===2.5 利用无穷小量与有界量的乘积仍为无穷小量的结论例8 求0011)sin cos x y y x y →→解: 因为00)0x y y →→= 是无穷小量, 11sin cos 1x y ≤ 是有界量 ,故可知,0011)sin cos 0.x y y x y →→=例9 求 22232(3)(2)lim (3)(2)x y x y x y →→---+-解 原式=2232(3)(2)lim(3)(3)(2)x y x y x x y →→--⋅--+-因为 222222(3)(2)(3)(2)1(3)(2)22(3)(2)x y x y x y x y ---+-≤=-+-⎡⎤-+-⎣⎦ 是有界量,又 32lim(3)0x y x →→-= 是无穷小量,所以 , 22232(3)(2)lim0(3)(2)x y x y x y →→--=-+- . 虽然这个方法计算实际问题上不那么多用,但计算对无穷小量与有界量的乘积形式的极限的最简单方法之一 .2.6利用变量替换法通过变量替换可以将某些二元函数的极限转化为一元函数的极限来计算,6 / 15从而使二元函数的极限变得简单.但利用时一定要满足下面的定理。
二元函数求极限的定义与基本性质
二元函数求极限的定义与基本性质在数学中,二元函数是指依赖于两个变量的函数。
求解二元函数的极限是研究其变化趋势和性质的重要手段之一。
本文将介绍二元函数求极限的定义,并探讨一些基本的性质。
一、二元函数求极限的定义对于给定的二元函数 f(x, y),当自变量 (x, y) 的取值趋近于某个点(a, b) 时,如果函数值 f(x, y) 的极限存在且唯一,那么我们称该函数在点 (a, b) 处有极限,记作:lim_(x,y)→(a,b) f(x,y) = L其中 L 为极限值。
二、二元函数极限的性质1. 唯一性:二元函数的极限值在同一点处只能有唯一的取值。
2. 有界性:如果函数在某点 (a, b) 处有极限,那么它在该点周围的某个邻域内是有界的。
3. 保号性:如果函数在某点 (a, b) 处的极限存在且大于零(或小于零),那么在该点附近的某个领域内,函数的取值也大于零(或小于零)。
4. 极限的四则运算性质:设二元函数 f(x, y) 和 g(x, y) 在点 (a, b) 处有极限,则它们的和、差、乘积以及商(当g(x, y) ≠ 0)仍在该点处有极限,并且有以下运算公式:lim_(x,y)→(a,b) (f+g)(x,y) = lim_(x,y)→(a,b) f(x,y) + lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f-g)(x,y) = lim_(x,y)→(a,b) f(x,y) - lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f*g)(x,y) = lim_(x,y)→(a,b) f(x,y) * lim_(x,y)→(a,b)g(x,y)lim_(x,y)→(a,b) (f/g)(x,y) = lim_(x,y)→(a,b) f(x,y) / lim_(x,y)→(a,b)g(x,y)5. 极限的复合性质:设函数 f(x, y) 在点 (a, b) 处有极限 L,函数 g(u) 在点 L 处有极限 M,则复合函数 g(f(x, y)) 在点 (a, b) 处也有极限 M。
二元函数极限的求法
二元函数极限的求法
二元函数极限是一个有用的概念,它可以帮助我们讨论函数的行
为和图像的性质,同时也是很多函数中的重要部分。
学习如何求二元
函数极限可以帮助我们了解函数的行为,从而使我们更好地理解函数
的意义。
求二元函数极限的一般方法是使用切线定理。
通过切线定理,我
们可以将一个函数的行为拆分为两个单独的函数:函数本身和其切线。
通过这种拆分,我们可以使用函数本身和它的切线来求得极限。
必须找到一组合适的切线。
有时候,它只需要简单地向某个方向
切开即可,有时候可能需要尝试多个方向,但总的来说,重点是找到
可以处理的切线以及它们的slope。
然后,我们可以使用偏导数的方法来确定极限的起始点。
使用偏导数,我们可以从一个函数中寻找出对
第二个函数的影响,从而找到两个函数之间的极限。
我们可以开始求函数本身的极限。
有时,我们可以使用数学公式,例如牛顿-拉弗森方程或梯形公式来直接估算函数的极限。
而在其他情
况下,我们可能需要结合该函数本身的性质,使用查表、图像解释或
是向上、向下导数等技术,来找出函数的极限。
可以使用解析方法,将上面提到的函数极限与切线函数的极限进
行比较,以找出二元函数极限的最终结果。
如果两个函数均不存在极限,则二元函数也不存在极限。
如果两者有极限存在,则最后的极限
将是两者极限的最小值。
因此,利用切线定理和数学公式,我们可以求出二元函数极限,
并以此来更全面地理解函数的行为。
二元函数的极限求法
求解二元函数的极限需要根据具体函数形式和极限的定义进行分析。
以下是常见的二元函数极限求解方法:
代数法:对于简单的二元函数,可以直接使用代数法进行极限求解。
例如,对于二元函数f(x, y),可以将x和y分别替换成具体的数值,然后计算函数值,观察当变量趋于某个值时函数的变化情况。
分量法:对于形如f(x, y) = g(x)h(y)的二元函数,可以使用分量法将二元函数转化为一元函数的极限问题。
将其中一个变量固定,求解关于另一个变量的一元函数的极限,然后再将这些极限组合起来求得原二元函数的极限。
二重极限法:当二元函数在某点的极限存在但与路径有关时,可以使用二重极限法求解。
首先固定其中一个变量,求解关于另一个变量的极限;然后再固定另一个变量,求解关于第一个变量的极限。
如果两个单变量极限存在且相等,则可以得到二元函数的极限。
极坐标法:对于以极坐标表示的二元函数,可以使用极坐标法求解。
将二元函数转化为极坐标表示,然后求解关于极径r和极角θ的一元函数的极限。
通路法:对于二元函数的极限存在但与路径有关的情况,可以使用通路法进行求解。
通过选取不同的路径,比如直线路径、曲线路径等,求解沿该路径的一元函数极限,并观察不同路径下的极限值是否相同。
二元函数求极限例题
二元函数求极限例题在数学中,求极限是一个重要的概念,给出任意一个函数,可以求出它的极限,相信很多同学对这一概念都不陌生。
下面,让我们以一下例题来了解二元函数求极限的实际操作。
例题1:求函数f(x,y)=(2x+2y)/(x^2+y^2)的极限解法:我们首先假定x和y都走向零,我们可以建立一个二元函数:f(x,y)=(2x+2y)/(x^2+y^2)首先知道当x和y都朝0走的时候,那么f(0,0)=2,但是只有当x和y都走到0的时候,f(x,y)才能够等于2,但是如果x 和y的值都不为零的时候就无法得出结论。
因此我们必须分别求出当x和y朝0走的时候,f(x,y)的极限,由于函数中有x^2+y^2,因此当x和y都走向0的时候,分母会比较小,所以我们可以先设置一个小的正数δ,这里我们可以取δ=1/2.其次,极限的定义:当x走向0的时候,f(x,y)的极限,只要给定一个δ>0,使x的绝对值小于δ,并且y的绝对值小于δ,那么f(x,y)的值就要接近极限2.因此,我们可以把δ写成x^2+y^2<1/4,即当x和y绝对值均小于1/2时,f(x,y)的值与极限2接近。
下面我们来检验这个性质,比如当x=1/10,y=1/10时,我们可以计算出f(x,y)=2.2,而当x=1/100,y=1/100时,f(x,y)= 1.999,从计算结果可以看出,当x和y的绝对值都小于1/2时,f(x,y)的值越来越接近极限2。
由此可以得出结论:当x和y趋向零的时候,f(x,y)的极限为2例题2:求函数f(x,y)=(2x-y)/(x^2+y^2)的极限解法:同样,我们先假设x和y朝0走,得到二元函数:f(x,y)=(2x-y)/(x^2+y^2)同样,当x和y都朝0走的时候,那么f(0,0)=0,但是只有当x和y都走到0的时候,f(x,y)才能够等于0,但是如果x和y 的值都不为零的时候就无法得出结论。
因此,我们也必须分别求出当x和y朝0走的时候,f(x,y)的极限。
利用洛必达法则求解二元函数的极限
利用洛必达法则求解二元函数的极限在高等数学中,洛必达法则是一种常用的求解极限的方法。
它可以用于求解二元函数的极限。
本文将介绍洛必达法则的基本概念以及应用方法,并结合实例进行详细解析。
一、洛必达法则的基本概念洛必达法则是由法国数学家洛必达(L'Hospital)在17世纪提出的一种极限计算法则。
它适用于计算形如$\frac{0}{0}$或$\frac{\infty}{\infty}$的极限。
其基本思想是将极限转化为函数的导数的极限。
二、洛必达法则的应用方法根据洛必达法则,若要计算二元函数$\frac{f(x)}{g(x)}$在$x=a$处的极限,当 $\lim \limits_{x \to a}f(x) = 0$且$\lim \limits_{x \to a}g(x) =0$,或者 $\lim \limits_{x \to a}f(x) = \infty$且$\lim \limits_{x \to a}g(x) = \infty$时,可以进行以下步骤:1. 求出$f(x)$在$x=a$处的导数$f'(x)$和$g(x)$在$x=a$处的导数$g'(x)$;2. 计算$\lim \limits_{x \to a}\frac{f'(x)}{g'(x)}$;3. 若存在极限$\lim \limits_{x \to a}\frac{f'(x)}{g'(x)}$,则$\lim\limits_{x \to a}\frac{f(x)}{g(x)}=\lim \limits_{x \to a}\frac{f'(x)}{g'(x)}$。
三、实例解析现以二元函数$\frac{x^2-1}{x-1}$为例来说明洛必达法则的应用方法。
首先,我们计算$f(x)$和$g(x)$在$x=1$处的导数:$$f'(x)=\frac{d}{dx}(x^2-1)=2x$$$$g'(x)=\frac{d}{dx}(x-1)=1$$然后,我们计算$\lim \limits_{x \to 1}\frac{f'(x)}{g'(x)}$:$$\lim \limits_{x \to 1}\frac{f'(x)}{g'(x)}=\lim \limits_{x \to1}\frac{2x}{1}=2$$由洛必达法则的推导,我们知道在$x=1$处的极限$\lim \limits_{x \to 1}\frac{x^2-1}{x-1}$等于$\lim \limits_{x \to 1}\frac{2x}{1}$,即极限为2。
二元函数求极限的通用方法与技巧
二元函数求极限的通用方法与技巧在数学中,我们经常会遇到二元函数求极限的问题。
二元函数是指含有两个自变量的函数,而求极限则是要求在某个点上函数的值趋于无穷或趋于某个确定的值。
本文将介绍二元函数求极限的通用方法与技巧,帮助读者更好地理解和解决这类问题。
一、基本性质首先,我们需要了解二元函数求极限的基本性质。
对于二元函数f(x, y),如果在点P(a, b)的某个邻域内,f(x, y)的值趋于L,则称L为f(x, y)在点P(a, b)处的极限,记作lim[f(x, y)] = L, (x, y)→(a, b)。
二、分别求限法对于一些特殊的二元函数,我们可以通过将其中一个自变量固定,然后求另一个自变量趋于某个确定的常数,从而得到二元函数的极限。
1. 水平线法对于形如f(x, y) = F(x)的二元函数,我们可以先将其中一个变量固定,对另一个变量求极限。
例如,对于f(x, y) = x^2 + y,我们可以将y固定为某个常数c,然后对x进行求极限,即求lim[x^2 + c]。
通过求解这个一元函数的极限,我们可以得到f(x, y)的极限。
2. 垂直线法类似的,当二元函数f(x, y)中含有一个x和一个y的系数,且此系数仅与其中一个变量相关时,我们可以先固定一个自变量,再对另一个自变量进行求极限。
例如,对于f(x, y) = (x^2 + 2xy)/(3x),我们可以将x固定为某个常数c,然后对y进行求极限,即求lim[(c^2 +2cy)/(3c)]。
三、使用一元函数的性质除了分别求限法外,我们还可以使用一元函数的性质来求解二元函数的极限。
1. 夹逼定理对于形如g(x, y) ≤ f(x, y) ≤ h(x, y)的二元函数,如果lim[g(x, y)] =lim[h(x, y)] = L,那么我们可以推断lim[f(x, y)] = L。
2. 代数运算法则对于一组二元函数f(x, y)和g(x, y),如果lim[f(x, y)] = L1,lim[g(x, y)] = L2,则我们可以利用代数运算法则求解f(x, y)和g(x, y)的和、差、乘积和商的极限。
二元函数求极限的方法总结
二元函数求极限的方法总结二元函数求极限是微积分中的重要内容之一,它涉及到对两个变量同时进行极限运算。
在实际应用中,二元函数求极限的方法有多种。
下面将对常用的方法进行总结和拓展。
一、直接代入法:当二元函数在某一点的极限存在且可以直接代入,即函数在该点连续时,可以直接将函数值代入,得到极限值。
二、分别求极限法:当二元函数在某一点的极限不存在或者无法直接代入时,可以分别对两个变量进行极限运算。
即先对其中一个变量进行极限运算,然后再对另一个变量进行极限运算。
通过这种方法,可以得到二元函数在某一点的极限值。
三、路径法:路径法是一种常用的求二元函数极限的方法。
其基本思想是通过选择不同的路径,对二元函数在该路径上的极限进行求解。
如果在所有路径上的极限都存在且相等,则该极限即为二元函数在该点的极限。
常用的路径包括x轴,y轴,直线y=kx,抛物线y=x^2等。
通过选择不同的路径进行计算,可以帮助我们判断二元函数在某一点的极限是否存在。
四、夹逼定理:夹逼定理也适用于二元函数的极限求解。
当我们希望求二元函数在某一点的极限时,可以找到两个函数,一个函数上界大于该二元函数,一个函数下界小于该二元函数,并且两个函数在该点的极限相等。
利用夹逼定理可以得到二元函数在该点的极限值。
五、极限存在的条件:当我们希望判断二元函数在某一点的极限是否存在时,可以利用一些条件来进行判断。
常见的条件包括函数连续性、函数的有界性、函数的单调性等。
通过分析这些条件,可以得到二元函数在某一点的极限是否存在的结论。
总之,二元函数求极限的方法有多种,我们可以根据具体情况选择适当的方法。
通过深入理解这些方法,我们可以更好地进行二元函数的极限运算,并应用于实际问题中。
二元函数极限的求法
二元函数极限的求法极限是数学上一个最重要的概念,它使数学分析得以完善,在研究函数的运动规律、研究定积分的收敛性及研究偏导数的存在性等等方面具有重要的作用。
本文将重点介绍极限在二元函数的求法。
首先,要界定极限的概念。
极限的概念表述为:当函数在某点取值时,其值接近于某值,而当其取值变得更加接近这点时,值不断接近此值,此时,该值称之为函数在此点的极限值。
其次,要熟悉极限求解中重要的求解方法,这些方法可任意组合使用,都可以得到极限值。
(1)直接求解直接求解是极限求解中最基本的方法,这一方法主要是通过函数的定义域,即函数的取值范围,直接判断函数的极限值。
在此过程中,根据函数的定义域,可以将函数的取值范围分为某些子集,然后根据这些子集的特点,立即判断函数的极限值。
(2)定义商的极限定义商的极限是极限求解中最常用的一种方法,它由极限的定义和定义积分引出,定义商极限表述为:设函数f(x)及g(x)在x=x0周围及x→x0方向可导,其中f(x)非零,则若存在某个极限,则使得 $$lim_{x→x_{0}}frac{f(x)}{g(x)}=L$$则称L为定义商的极限。
(3)极限的性质极限的性质是极限求解中一种重要的方法,可以通过函数的性质来求解极限。
这些性质可以大致分为下面几类:(a)绝对值函数的极限若函数f(x)中存在绝对值函数,$$|f(x)|$$,则$$|f(x)|$$任意一点具有一定的极限值,且满足:$$lim_{x→x_{0}}|f(x)|=|L|$$其中L即为绝对值函数f(x)的极限值。
(b)复合函数的极限若函数f(x)为复合函数,则f(x)具有一定的极限值,且满足: $$lim_{x→x_{0}}f(x)=L=f(L)$$其中L即为复合函数f(x)的极限值。
(c)连续函数的极限若函数f(x)在某一点x0处及x→x0方向上可连续,则f(x)具有一定的极限值,且满足:$$lim_{x→x_{0}}f(x)=L=f(x_{0})$$其中L即为连续函数f(x)的极限值。
求二元函数极限的几种方法
1.二元函数极限观点剖析定义 1 设函数f在D R2上有定义,P0是 D 的聚点, A 是一个确立的实数.假如关于随意给定的正数,总存在某正数,使得 P U0(P0; )I D 时,都有f (P) A,则称 f 在D受骗 P P0时,以A为极限,记lim f (P) A .P P0P D上述极限又称为二重极限.2.二元函数极限的求法2.1 利用二元函数的连续性命题若函数 f (x, y) 在点 ( x0 , y0 ) 处连续,则limf ( x, y) f ( x0 , y0 ) .( x, y) (x0 , y0 )例 1求 f ( x, y) x22xy 在点(1,2)的极限 .解:因为 f ( x, y)x22xy 在点(1,2)处连续,所以lim f ( x, y)x 1y 2lim( x22xy)x 1y 2122125.例 2求极限 lim1.2y 2x , y1,1 2x解:因函数在 1,1 点的邻域内连续,故可直接代入求极限,即lim1= 1.x, y1, 1 2x2y 232.2 利用恒等变形法将二元函数进行恒等变形,比如分母或分子有理化等.例 32xy 4求 limxyx 0y 02 xy 4解: limxyx 0y 0lim (2xy 4)(2xy4)xy(2xy4)x 0ylimxyxy(2xy 4)x 0ylim1x 0 2xy4y1 .4例 4lim(1 2x 2 )(13y 2 ) 1.2x2 3 y2x, y0 ,0解:原式lim1 2 x 2 1 3 y 211 2x2 1 3y 2 1x, y 0,0 2x23 y21 2 x21 3y21lim16x 2 y 2x, y0,01 2x 21 3 y 21 2x 23y 21 2x 21 3y 211 0 1 .222.3 利用等价无量小代换一元函数中的等价无量小观点能够推行到二元函数. 在二元函数中常有的等价无量小 (u( x, y)0) ,有 sin u(x, y) : u( x, y) ;1 cosu( x, y) :u 2( x, y);2ln 1 u( x, y) : u( x, y) ; tan u(x, y) : u( x, y) ; arcsin u( x, y) : u(x, y) ;arctan u( x, y) : u( x, y) ; n 1 u(x, y) 1 :u( x, y) ; e u( x, y ) 1 : u(x, y) ;同一元函n数相同,等价无量小代换只好在乘法和除法中应用 .例 51 x y 1求 limx yxy解: 当 x0 , y0 时,有 xy 0 .1 x y 1 : 1( x y) ,所以2 lim 1 x y 1xyx 01(x y) lim2x yx 0y1 .2lim 1 x y 1x yx 0y 0lim1 x y 1( 1 x y 1)( 1 x y 1)这个例子也能够用恒等变形法计算,如:x 0 y 0lim11 x y 1x 0y 01 .22.4 利用两个重要极限sin u( x, y) 1lim1, lim 1 u( x, y) u( x, y ) e 它们分别是一元函数中两个重u( x, y)u (x , y) 0u ( x, y) 0要极限的推行 .x 2例 6求极限 lim(11) x y .xxyy a解: 先把已知极限化为x 2x 22xy( x y )lim(1 1 ) xlim(1 1,而 limxlimy) xyy)yaxyy axyx xy( xxxxa(1 y ay 当 x, ya 时 xy,1,所以 lim(1 1 )xy e. xyy axyxx 2lim (11)xy xy( x y)故原式 = x yaxy1e a .例 7 求 lim sin( xy) 极限 .x 0 xy a解:因为 sin( xy)y. sin( xy) ,当 x0, ya 时, xyxxysin( xy)1 ,再利用极限四则运算可得:xysin( xy)lim y.sin(xy)lim y. limsin( xy)a.·1= a .limxxyxyx 0x 0 y axy 0y ay a这个例子也能够用等价无量小代换计算,如:当 x 0 , y a 时, xy 0 , sin( xy) : xy .11 ,y ) y a x0 ,所以所以, lim sin( xy) lim xy lim y a.x x x 0 x 0 y ay a y a2.5 利用无量小量与有界量的乘积仍为无量小量的结论例 8 求 lim( 3x y)sin 1cos 1y 0 xyx 0解:因为 lim( 3x y) 0 是无量小量,x 0 y 0故可知 , lim( 3 x y)sin 1cos 10.x 0 x yy 0例 9 求 lim( x 3)2 ( y 2)2 2x 3(x 3) ( y 2)y 2解原式 = lim (x 3)( y 2)2 (x 3)(x 3) 2( y 2)x 3y 2因为(x 3)( y2)(x3)2 ( y2)2(x 3)2( y 2)22 ( x 3)2( y 2)2lim( x 3) 0 是无量小量,x 3 y 2所以 , lim ( x 3)2( y 2)0 .(x3)2 ( y 2) 2x 3 y21 1 是有界量 ,sin cos1 xy1 是有界量,又2固然这个方法计算实质问题上不那么多用,但计算对无量小量与有界量的乘积形式的极限的最简单方法之一 .2.6 利用变量替代法经过变量替代能够将某些二元函数的极限转变为一元函数的极限来计算,从而使二元函数的极限变得简单. 但利用时必定要知足下边的定理。
利用柯西中值定理求解二元函数的极限
利用柯西中值定理求解二元函数的极限在数学的研究和应用中,求解函数的极限是一项基本而重要的任务。
柯西中值定理(Cauchy's Mean Value Theorem)是一种常用的方法,用于求解二元函数的极限。
本文将介绍柯西中值定理的原理和应用,并通过具体的例子来演示如何利用柯西中值定理求解二元函数的极限。
柯西中值定理是由法国数学家奥古斯丁·路易·柯西(Augustin-Louis Cauchy)在19世纪初提出的。
该定理描述了如果一个函数在一个闭区间上连续,在该区间的内部可微分,那么在该区间内,函数在两个点之间某个点的导数等于函数在两个端点处的差值与两个端点之间的距离的商。
具体而言,对于二维平面上的函数f(x, y),如果存在一个闭区间[a,b]×[c, d],其中a < b,c < d,且在该区间内,函数f(x, y)满足以下条件:1. 函数f(x, y)在闭区间内连续;2. 函数f(x, y)在闭区间内可微分;那么对于闭区间内的任意两点(A, B),其中A的坐标为(a, c),B的坐标为(b, d),在A和B之间至少存在一点M,其坐标为(x0, y0),满足以下等式:f(b, d) - f(a, c) = [∂f/∂x(x0, y0)] * (b - a) + [∂f/∂y(x0, y0)] * (d - c)从这个等式可以推导出以下结论:1. 如果二元函数f(x, y)在闭区间内的偏导数存在且连续,那么存在至少一个点M,使得函数在该点处的导数等于函数在闭区间两个端点处的斜率;2. 如果二元函数f(x, y)在闭区间内的偏导数不仅存在且连续,而且在该闭区间上连续,则通过柯西中值定理可以求得一个确切的点M;现在,我们通过一个具体的例子来演示如何利用柯西中值定理求解二元函数的极限。
例子:假设有一个二元函数f(x, y) = (xy^2)/(x^2 + y^2),我们希望求解函数f(x, y)在点(0, 0)处的极限。
利用对数换底法则求解二元函数的极限
利用对数换底法则求解二元函数的极限对于求解二元函数的极限,我们可以利用对数换底法则来进行计算。
在数学中,对数换底法则是一种用于简化对数计算的方法,它可以将不同底数的对数转化为同一底数的对数,从而简化计算过程。
首先,我们来回顾一下对数换底法则的表达式:logₐb = logₓb / logₓa其中,logₐb表示以a为底数,b的对数;logₓb表示以x为底数,b的对数;logₓa表示以x为底数,a的对数。
接下来,我们将利用对数换底法则求解二元函数的极限。
假设我们需要求解的函数为:f(x, y) = logₐ(x^m * y^n)其中,a、m、n为常数,x和y为自变量。
我们首先将其转化为自然对数的形式:f(x, y) = ln(x^m * y^n) / ln(a)接下来,我们可以利用对数的性质来进行计算。
根据对数的性质,我们可以将ln(x^m * y^n)展开为ln(x^m) + ln(y^n),从而得到:f(x, y) = (m * ln(x) + n * ln(y)) / ln(a)现在我们需要求解的是二元函数f(x, y)在某个点(x₀, y₀)处的极限,即x趋于x₀,y趋于y₀时的极限值。
我们可以利用极限的定义来进行计算。
根据极限的定义,当x趋于x₀,y趋于y₀时,我们要求极限值L满足以下条件:对于任意ε > 0,存在δ > 0,使得当0 < √((x - x₀)² + (y - y₀)²) < δ时,有|f(x, y) - L| < ε成立。
根据以上分析,我们可以得出结论:对于给定的二元函数f(x, y),要求其在某个点(x₀, y₀)处的极限,我们可以通过将其转化为对数的形式,并利用对数换底法则,将其化简为较为简单的表达式,然后利用极限的定义进行计算。
总结起来,对数换底法则是一种有助于求解二元函数的极限的有效方法之一。
通过利用对数换底法则,我们可以将不同底数的对数转化为同一底数的对数,从而简化计算过程,使得求解极限问题更加方便快捷。
二元函数求极限的泰勒展开应用
二元函数求极限的泰勒展开应用泰勒展开是微积分中经常应用的重要工具之一,用于在某一点的附近以多项式的形式逼近函数。
在单变量函数求极限的情况下,泰勒展开已经得到广泛应用。
然而,在实际问题中,我们经常遇到的是二元函数的极限求解。
本篇文章将介绍如何应用泰勒展开来求解二元函数的极限问题。
对于一个具有两个自变量的函数f(x, y),当我们要求点(x0, y0)处的极限时,可以使用泰勒展开来逼近。
泰勒展开的一般形式为:f(x, y) = f(x0, y0) + (x - x0) * ∂f/∂x + (y - y0) * ∂f/∂y + 1/2! * ((x -x0)^2 * ∂^2f/∂x^2 + (x - x0) * (y - y0) * ∂^2f/∂x∂y + (y - y0)^2 * ∂^2f/∂y^2) + ...其中,∂f/∂x 表示偏导数,∂^2f/∂x^2 表示二阶偏导数。
将这个展开式应用到极限求解中,我们可以通过截取合适的项来逼近函数极限的值。
为了更好地理解这个方法,我们以一个具体的例子来说明。
假设我们要求解函数f(x, y) = sin(x^2 + y^2)在点(0, 0)处的极限。
首先,我们计算出函数在该点的一阶和二阶偏导数:∂f/∂x = 2 * x * cos(x^2 + y^2)∂f/∂y = 2 * y * cos(x^2 + y^2)∂^2f/∂x^2 = 2 * cos(x^2 + y^2) - 4 * x^2 * sin(x^2 + y^2)∂^2f/∂x∂y = -4 * x * y * sin(x^2 + y^2)∂^2f/∂y^2 = 2 * cos(x^2 + y^2) - 4 * y^2 * sin(x^2 + y^2)根据泰勒展开的公式,我们可以将函数展开为:f(x, y) = f(0, 0) + x * ∂f/∂x + y * ∂f/∂y + 1/2! * (x^2 * ∂^2f/∂x^2 + x * y * ∂^2f/∂x∂y + y^2 * ∂^2f/∂y^2) + ...由于我们要求解的是在点(0, 0)处的极限,那么我们可以忽略掉一阶及以上的项,只关注常数项。
二元函数求极限
二元函数求极限
如果能说明二元极限不存在,那么极限也就不用求了,说明极限不存在的方法有:
①令 y=kx 或其他的形式,将其代入,说明极限与 k 有关,代入后除了 k 以外不含有其他字母;
②找两个特殊路径代入,说明两极限不同即可说明极限不存在;
③极坐标换元代入,要根据变量趋势合理换元,说明极限跟极角\theta 有关即可。
2.二元极限存在,计算其极限
若根据题意,极限一定存在,那么可采用以下方法计算:
①等价无穷小替换;
②常用结论:如无穷小量乘以有界量依然为无穷小;
③不严谨的方法:极坐标换元,这种做法本质上还是一类路径而不是任意路径,有时会出错;
④夹逼准则,根据结构合理放缩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
$8 (
=>取 对 数 法
例 ? 求 567-!"#$. " !"$" !8 ( $8 (
解
设
@’ -!"# $".!"$",则
5A@’!"$"5A-!"#$".’ !!"#"$$""-!"#$".5A-!"#$".,而
567
!8 (
!!"#"$$""’
$8 (
567
!8 ( $8 (
$%"#%!%"’ (/ 令
时有 &+7&+,)+5+18
由 于 9&+&,*))+6 (97 9+&&*))9-
:+9&9+ 即 有 9&+&,*))+97
:+9&9+5 1"故
#$%
&’ (
&+&,*))+-
(
)’ (
.三/ 利用类似于一元函数求极限的方法
:;通 过 分 子 或 分 母 有 理 化 "把 未 定 式 极 限 转 化 为 定 式 极 限
数
*$%*%)是
其
定
义
区
域
内
的
点
*故
原
式
7
-$%*%)7
%
$二) 283法
例#
讨论
-$.*/)7
.’/ 在 .#9 /#
$%*%)点
的
极
限
解 $")可先令 /7D.*考虑 -$.*/)沿此直线趋于$%*%)时的极限
=>?-$.*/)7
.< %
=>?
.< %
.#$"D9.ED#)7
=>?.#
.< %
D "9 D#
故
1*(# *%!%# *"!"%# + # *)!)% ’ $% *( # *%!" # *"!""# + # *)!)" ’ $"
0
+++++++
*( # *%!)# *"!")# + # *)!)) ’ $)
2*( # *%!)#% # *"!")#% # + # *)!))#% ’ $)#%
二 二元函数极限的求法
$一) 利用连续性求函数的极限
设 /7-$.*/)为二元初等函数*1%$.%*/%)是其定义区域内的点*则有 =>?-$.*/)7-$.%*/%) .< .% /< /%
例"
求
=>?
.< %
@./8ABC/ "9.9/
/< %
解
-$.*/)7
@./8ABC/为 "9.9/
初
等
函
!"#$"’B,知
567-!"#$".5A-!"#$".’ 567B5AB’(,故原式’<(’%/
!8 ( $8 (
B8 (#
二元函数极限的求法
作者: 作者单位:
刊名: 英文刊名: 年,卷(期): 被引用次数:
冯英杰, 李丽霞 冯英杰(河北化工医药职业技术学院,河北石家庄,05003), 李丽霞(河北科技大学 应用数学系,河北石家庄,050018)
<;等 价 无 穷 小 代 换
例@
求
#$%
&’ (
A$B.&*,)*/ &,)
)’ (
解 因为 &’(")’(时 &*,)*’("所以 A$B.&*,)*/C&*,)*"故
原
式
-
#$%
&’ (
A$B.&&,*,))*/-
#$%.&+6
&’ (
&),
)+/-
(
)’ (
)’ (
?;通 过 变 量 代 换 "将 二 重 极 限 向 一 元 函 数 中 的 已 知 极 限 转 化
:为 +
有Байду номын сангаас
界变
量 "又
#$%.&6 */- ("故 原 式 - (8
&’ *
)’ +
*;不 等 式 放 大 法
例?
求
#$%
&’ (
&+, )+ 9&9, 9)9
)’ (
解
由
(7
&+, 9&9,
)9)+97
.99&&99,,99))99/+- 9&9, 9)9’ (.&’ (")’ (/"可 得 原 式 - (
% !%
!"% + !)%
$%
% !" ++
!"" + !)" +++
$" ’(
+
% !)
!") + !))
$)
%
!)# %
!" )# %
+
! $ ) )# %
)# %
-上接第 &&页.
%
: ; 解
原式’ 567:-%# !8 9
!%.!;!#!$’
567
!8 9
-%# !%.!
%#
$
!’
<%’
<
$8 (
*%,*",+,*)/所以,)次多项式 $’*(#*%!#*"!"#+#*)!),可由其图象上的 )#%个横坐标互不
相 同 的 点 -!%,$%.,-!",$".,+ ,-!),$).,-!)# %,$)# %.所 惟 一 确 定 / 该 多 项 式 方 程 的 行 列 式 形 式 为
% ! !" + !) $
一 二元函数的极限
定 义 设函数 -$.*/)在 区 域 0 内 有 定 义*1%$.%*/%)是 0 的 内 点*如 果 对 于 任 意 给 定 的 正 数 2*总存在正数 3*使得对于 0 内且适合不等式
: %4 56%657 $.8 .%)#9 $/8 /%)# 4 3
的 一切点 1$.*/)*都有5-$.*/)8;542成立*则 称 常 数 ; 为 函 数 -$.*/)当 .<.%*/</% 的 $二 重)极限*记作 =>?-$.*/)7;或 -$.*/)<; $.<.%*/</%)
7
%
/7 D.
! 收稿日期Z#%%#["%[%(
第 @卷第 :期
冯 英 杰 I李 丽 霞 !二 元 函 数 极 限 的 求 法
**
注 意 !因 为 此 路 径 为 特 殊 路 径 "故 不 能 据 此 说 明
#$%
&’ (
&+&,*))+- (
)’ (
.+/ 再用定义判定 (即为其极限0对任给的 12("取 3- 4+1"当 (5 4.&6(/+,.)6(/+53
G’ , E
GF+G-
#$%
G’ , E
+FGG-
#$%
G’ , E
F+G- ("
)’ , E
故原式-(
例H
求
#$%.:,
&’ E
&:/&&,+)
)’ (
.下转第 <*页/
第 =卷第 %期
杨 桂 元 D用 行 列 式 求 通 过 定 点 的 曲 线 与 曲 面 方 程
C&
!"# $" ! $ %
!"% # $"% !% $% %
高等数学研究 STUDIES IN COLLEGE MATHEMATICS 2003,6(1) 4次
引证文献(4条)
1.陶会强.罗成广 二元函数极限的计算方法[期刊论文]-天中学刊 2009(2) 2.陈明华 关于多元函数极限的一种求法的注记[期刊论文]-皖西学院学报 2007(5) 3.丁殿坤.王云丽 球面坐标在求多元函数极限中的应用[期刊论文]-雁北师范学院学报 2005(2) 4.丁殿坤.吕端良.李淑英 多元函数极限的一种求法[期刊论文]-南阳师范学院学报 2004(12)
例 D 求 #$% .&+,)+/F6.&,)/ &’ , E )’ , E
解
原
式-
#$%
&’ , E
=.&F.,&,))//+&+,&++,&)),+
)+>0
)’ , E
因
&2(")2(时"9&+,&++,&)),+ )+97:8令 &,)-G"则